Fix: rculfhash: use zmalloc()
[lttng-tools.git] / src / common / hashtable / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #define _GNU_SOURCE
260 #include <stdlib.h>
261 #include <errno.h>
262 #include <assert.h>
263 #include <stdio.h>
264 #include <stdint.h>
265 #include <string.h>
266 #include <sched.h>
267
268 #include "config.h"
269 #include <urcu.h>
270 #include <urcu-call-rcu.h>
271 #include <urcu/arch.h>
272 #include <urcu/uatomic.h>
273 #include <urcu/compiler.h>
274 #include <stdio.h>
275 #include <pthread.h>
276
277 #include "rculfhash.h"
278 #include "rculfhash-internal.h"
279 #include "urcu-flavor.h"
280
281 #include <common/common.h>
282
283 /*
284 * We need to lock pthread exit, which deadlocks __nptl_setxid in the runas
285 * clone. This work-around will be allowed to be removed when runas.c gets
286 * changed to do an exec() before issuing seteuid/setegid. See
287 * http://sourceware.org/bugzilla/show_bug.cgi?id=10184 for details.
288 */
289 pthread_mutex_t lttng_libc_state_lock = PTHREAD_MUTEX_INITIALIZER;
290
291 /*
292 * Split-counters lazily update the global counter each 1024
293 * addition/removal. It automatically keeps track of resize required.
294 * We use the bucket length as indicator for need to expand for small
295 * tables and machines lacking per-cpu data suppport.
296 */
297 #define COUNT_COMMIT_ORDER 10
298 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
299 #define CHAIN_LEN_TARGET 1
300 #define CHAIN_LEN_RESIZE_THRESHOLD 3
301
302 /*
303 * Define the minimum table size.
304 */
305 #define MIN_TABLE_ORDER 0
306 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
307
308 /*
309 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
310 */
311 #define MIN_PARTITION_PER_THREAD_ORDER 12
312 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
313
314 /*
315 * The removed flag needs to be updated atomically with the pointer.
316 * It indicates that no node must attach to the node scheduled for
317 * removal, and that node garbage collection must be performed.
318 * The bucket flag does not require to be updated atomically with the
319 * pointer, but it is added as a pointer low bit flag to save space.
320 * The "removal owner" flag is used to detect which of the "del"
321 * operation that has set the "removed flag" gets to return the removed
322 * node to its caller. Note that the replace operation does not need to
323 * iteract with the "removal owner" flag, because it validates that
324 * the "removed" flag is not set before performing its cmpxchg.
325 */
326 #define REMOVED_FLAG (1UL << 0)
327 #define BUCKET_FLAG (1UL << 1)
328 #define REMOVAL_OWNER_FLAG (1UL << 2)
329 #define FLAGS_MASK ((1UL << 3) - 1)
330
331 /* Value of the end pointer. Should not interact with flags. */
332 #define END_VALUE NULL
333
334 /*
335 * ht_items_count: Split-counters counting the number of node addition
336 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
337 * is set at hash table creation.
338 *
339 * These are free-running counters, never reset to zero. They count the
340 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
341 * operations to update the global counter. We choose a power-of-2 value
342 * for the trigger to deal with 32 or 64-bit overflow of the counter.
343 */
344 struct ht_items_count {
345 unsigned long add, del;
346 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
347
348 /*
349 * rcu_resize_work: Contains arguments passed to RCU worker thread
350 * responsible for performing lazy resize.
351 */
352 struct rcu_resize_work {
353 struct rcu_head head;
354 struct cds_lfht *ht;
355 };
356
357 /*
358 * partition_resize_work: Contains arguments passed to worker threads
359 * executing the hash table resize on partitions of the hash table
360 * assigned to each processor's worker thread.
361 */
362 struct partition_resize_work {
363 pthread_t thread_id;
364 struct cds_lfht *ht;
365 unsigned long i, start, len;
366 void (*fct)(struct cds_lfht *ht, unsigned long i,
367 unsigned long start, unsigned long len);
368 };
369
370 /*
371 * Algorithm to reverse bits in a word by lookup table, extended to
372 * 64-bit words.
373 * Source:
374 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
375 * Originally from Public Domain.
376 */
377
378 static const uint8_t BitReverseTable256[256] =
379 {
380 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
381 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
382 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
383 R6(0), R6(2), R6(1), R6(3)
384 };
385 #undef R2
386 #undef R4
387 #undef R6
388
389 static
390 uint8_t bit_reverse_u8(uint8_t v)
391 {
392 return BitReverseTable256[v];
393 }
394
395 static __attribute__((unused))
396 uint32_t bit_reverse_u32(uint32_t v)
397 {
398 return ((uint32_t) bit_reverse_u8(v) << 24) |
399 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
400 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
401 ((uint32_t) bit_reverse_u8(v >> 24));
402 }
403
404 static __attribute__((unused))
405 uint64_t bit_reverse_u64(uint64_t v)
406 {
407 return ((uint64_t) bit_reverse_u8(v) << 56) |
408 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
409 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
410 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
411 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
412 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
413 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
414 ((uint64_t) bit_reverse_u8(v >> 56));
415 }
416
417 static
418 unsigned long bit_reverse_ulong(unsigned long v)
419 {
420 #if (CAA_BITS_PER_LONG == 32)
421 return bit_reverse_u32(v);
422 #else
423 return bit_reverse_u64(v);
424 #endif
425 }
426
427 /*
428 * fls: returns the position of the most significant bit.
429 * Returns 0 if no bit is set, else returns the position of the most
430 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
431 */
432 #if defined(__i386) || defined(__x86_64)
433 static inline
434 unsigned int fls_u32(uint32_t x)
435 {
436 int r;
437
438 asm("bsrl %1,%0\n\t"
439 "jnz 1f\n\t"
440 "movl $-1,%0\n\t"
441 "1:\n\t"
442 : "=r" (r) : "rm" (x));
443 return r + 1;
444 }
445 #define HAS_FLS_U32
446 #endif
447
448 #if defined(__x86_64)
449 static inline
450 unsigned int fls_u64(uint64_t x)
451 {
452 long r;
453
454 asm("bsrq %1,%0\n\t"
455 "jnz 1f\n\t"
456 "movq $-1,%0\n\t"
457 "1:\n\t"
458 : "=r" (r) : "rm" (x));
459 return r + 1;
460 }
461 #define HAS_FLS_U64
462 #endif
463
464 #ifndef HAS_FLS_U64
465 static __attribute__((unused))
466 unsigned int fls_u64(uint64_t x)
467 {
468 unsigned int r = 64;
469
470 if (!x)
471 return 0;
472
473 if (!(x & 0xFFFFFFFF00000000ULL)) {
474 x <<= 32;
475 r -= 32;
476 }
477 if (!(x & 0xFFFF000000000000ULL)) {
478 x <<= 16;
479 r -= 16;
480 }
481 if (!(x & 0xFF00000000000000ULL)) {
482 x <<= 8;
483 r -= 8;
484 }
485 if (!(x & 0xF000000000000000ULL)) {
486 x <<= 4;
487 r -= 4;
488 }
489 if (!(x & 0xC000000000000000ULL)) {
490 x <<= 2;
491 r -= 2;
492 }
493 if (!(x & 0x8000000000000000ULL)) {
494 x <<= 1;
495 r -= 1;
496 }
497 return r;
498 }
499 #endif
500
501 #ifndef HAS_FLS_U32
502 static __attribute__((unused))
503 unsigned int fls_u32(uint32_t x)
504 {
505 unsigned int r = 32;
506
507 if (!x)
508 return 0;
509 if (!(x & 0xFFFF0000U)) {
510 x <<= 16;
511 r -= 16;
512 }
513 if (!(x & 0xFF000000U)) {
514 x <<= 8;
515 r -= 8;
516 }
517 if (!(x & 0xF0000000U)) {
518 x <<= 4;
519 r -= 4;
520 }
521 if (!(x & 0xC0000000U)) {
522 x <<= 2;
523 r -= 2;
524 }
525 if (!(x & 0x80000000U)) {
526 x <<= 1;
527 r -= 1;
528 }
529 return r;
530 }
531 #endif
532
533 unsigned int cds_lfht_fls_ulong(unsigned long x)
534 {
535 #if (CAA_BITS_PER_LONG == 32)
536 return fls_u32(x);
537 #else
538 return fls_u64(x);
539 #endif
540 }
541
542 /*
543 * Return the minimum order for which x <= (1UL << order).
544 * Return -1 if x is 0.
545 */
546 int cds_lfht_get_count_order_u32(uint32_t x)
547 {
548 if (!x)
549 return -1;
550
551 return fls_u32(x - 1);
552 }
553
554 /*
555 * Return the minimum order for which x <= (1UL << order).
556 * Return -1 if x is 0.
557 */
558 int cds_lfht_get_count_order_ulong(unsigned long x)
559 {
560 if (!x)
561 return -1;
562
563 return cds_lfht_fls_ulong(x - 1);
564 }
565
566 static
567 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
568
569 static
570 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
571 unsigned long count);
572
573 static long nr_cpus_mask = -1;
574 static long split_count_mask = -1;
575 static int split_count_order = -1;
576
577 #if defined(HAVE_SYSCONF)
578 static void ht_init_nr_cpus_mask(void)
579 {
580 long maxcpus;
581
582 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
583 if (maxcpus <= 0) {
584 nr_cpus_mask = -2;
585 return;
586 }
587 /*
588 * round up number of CPUs to next power of two, so we
589 * can use & for modulo.
590 */
591 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
592 nr_cpus_mask = maxcpus - 1;
593 }
594 #else /* #if defined(HAVE_SYSCONF) */
595 static void ht_init_nr_cpus_mask(void)
596 {
597 nr_cpus_mask = -2;
598 }
599 #endif /* #else #if defined(HAVE_SYSCONF) */
600
601 static
602 void alloc_split_items_count(struct cds_lfht *ht)
603 {
604 struct ht_items_count *count;
605
606 if (nr_cpus_mask == -1) {
607 ht_init_nr_cpus_mask();
608 if (nr_cpus_mask < 0)
609 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
610 else
611 split_count_mask = nr_cpus_mask;
612 split_count_order =
613 cds_lfht_get_count_order_ulong(split_count_mask + 1);
614 }
615
616 assert(split_count_mask >= 0);
617
618 if (ht->flags & CDS_LFHT_ACCOUNTING) {
619 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
620 assert(ht->split_count);
621 } else {
622 ht->split_count = NULL;
623 }
624 }
625
626 static
627 void free_split_items_count(struct cds_lfht *ht)
628 {
629 poison_free(ht->split_count);
630 }
631
632 #if defined(HAVE_SCHED_GETCPU) && !defined(VALGRIND)
633 static
634 int ht_get_split_count_index(unsigned long hash)
635 {
636 int cpu;
637
638 assert(split_count_mask >= 0);
639 cpu = sched_getcpu();
640 if (caa_unlikely(cpu < 0))
641 return hash & split_count_mask;
642 else
643 return cpu & split_count_mask;
644 }
645 #else /* #if defined(HAVE_SCHED_GETCPU) */
646 static
647 int ht_get_split_count_index(unsigned long hash)
648 {
649 return hash & split_count_mask;
650 }
651 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
652
653 static
654 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
655 {
656 unsigned long split_count;
657 int index;
658 long count;
659
660 if (caa_unlikely(!ht->split_count))
661 return;
662 index = ht_get_split_count_index(hash);
663 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
664 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
665 return;
666 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
667
668 dbg_printf("add split count %lu\n", split_count);
669 count = uatomic_add_return(&ht->count,
670 1UL << COUNT_COMMIT_ORDER);
671 if (caa_likely(count & (count - 1)))
672 return;
673 /* Only if global count is power of 2 */
674
675 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
676 return;
677 dbg_printf("add set global %ld\n", count);
678 cds_lfht_resize_lazy_count(ht, size,
679 count >> (CHAIN_LEN_TARGET - 1));
680 }
681
682 static
683 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
684 {
685 unsigned long split_count;
686 int index;
687 long count;
688
689 if (caa_unlikely(!ht->split_count))
690 return;
691 index = ht_get_split_count_index(hash);
692 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
693 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
694 return;
695 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
696
697 dbg_printf("del split count %lu\n", split_count);
698 count = uatomic_add_return(&ht->count,
699 -(1UL << COUNT_COMMIT_ORDER));
700 if (caa_likely(count & (count - 1)))
701 return;
702 /* Only if global count is power of 2 */
703
704 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
705 return;
706 dbg_printf("del set global %ld\n", count);
707 /*
708 * Don't shrink table if the number of nodes is below a
709 * certain threshold.
710 */
711 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
712 return;
713 cds_lfht_resize_lazy_count(ht, size,
714 count >> (CHAIN_LEN_TARGET - 1));
715 }
716
717 static
718 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
719 {
720 unsigned long count;
721
722 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
723 return;
724 count = uatomic_read(&ht->count);
725 /*
726 * Use bucket-local length for small table expand and for
727 * environments lacking per-cpu data support.
728 */
729 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
730 return;
731 if (chain_len > 100)
732 dbg_printf("WARNING: large chain length: %u.\n",
733 chain_len);
734 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
735 int growth;
736
737 /*
738 * Ideal growth calculated based on chain length.
739 */
740 growth = cds_lfht_get_count_order_u32(chain_len
741 - (CHAIN_LEN_TARGET - 1));
742 if ((ht->flags & CDS_LFHT_ACCOUNTING)
743 && (size << growth)
744 >= (1UL << (COUNT_COMMIT_ORDER
745 + split_count_order))) {
746 /*
747 * If ideal growth expands the hash table size
748 * beyond the "small hash table" sizes, use the
749 * maximum small hash table size to attempt
750 * expanding the hash table. This only applies
751 * when node accounting is available, otherwise
752 * the chain length is used to expand the hash
753 * table in every case.
754 */
755 growth = COUNT_COMMIT_ORDER + split_count_order
756 - cds_lfht_get_count_order_ulong(size);
757 if (growth <= 0)
758 return;
759 }
760 cds_lfht_resize_lazy_grow(ht, size, growth);
761 }
762 }
763
764 static
765 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
766 {
767 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
768 }
769
770 static
771 int is_removed(struct cds_lfht_node *node)
772 {
773 return ((unsigned long) node) & REMOVED_FLAG;
774 }
775
776 static
777 int is_bucket(struct cds_lfht_node *node)
778 {
779 return ((unsigned long) node) & BUCKET_FLAG;
780 }
781
782 static
783 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
784 {
785 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
786 }
787
788 static
789 int is_removal_owner(struct cds_lfht_node *node)
790 {
791 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
792 }
793
794 static
795 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
796 {
797 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
798 }
799
800 static
801 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
802 {
803 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
804 }
805
806 static
807 struct cds_lfht_node *get_end(void)
808 {
809 return (struct cds_lfht_node *) END_VALUE;
810 }
811
812 static
813 int is_end(struct cds_lfht_node *node)
814 {
815 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
816 }
817
818 static
819 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
820 unsigned long v)
821 {
822 unsigned long old1, old2;
823
824 old1 = uatomic_read(ptr);
825 do {
826 old2 = old1;
827 if (old2 >= v)
828 return old2;
829 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
830 return old2;
831 }
832
833 static
834 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
835 {
836 return ht->mm->alloc_bucket_table(ht, order);
837 }
838
839 /*
840 * cds_lfht_free_bucket_table() should be called with decreasing order.
841 * When cds_lfht_free_bucket_table(0) is called, it means the whole
842 * lfht is destroyed.
843 */
844 static
845 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
846 {
847 return ht->mm->free_bucket_table(ht, order);
848 }
849
850 static inline
851 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
852 {
853 return ht->bucket_at(ht, index);
854 }
855
856 static inline
857 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
858 unsigned long hash)
859 {
860 assert(size > 0);
861 return bucket_at(ht, hash & (size - 1));
862 }
863
864 /*
865 * Remove all logically deleted nodes from a bucket up to a certain node key.
866 */
867 static
868 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
869 {
870 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
871
872 assert(!is_bucket(bucket));
873 assert(!is_removed(bucket));
874 assert(!is_bucket(node));
875 assert(!is_removed(node));
876 for (;;) {
877 iter_prev = bucket;
878 /* We can always skip the bucket node initially */
879 iter = rcu_dereference(iter_prev->next);
880 assert(!is_removed(iter));
881 assert(iter_prev->reverse_hash <= node->reverse_hash);
882 /*
883 * We should never be called with bucket (start of chain)
884 * and logically removed node (end of path compression
885 * marker) being the actual same node. This would be a
886 * bug in the algorithm implementation.
887 */
888 assert(bucket != node);
889 for (;;) {
890 if (caa_unlikely(is_end(iter)))
891 return;
892 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
893 return;
894 next = rcu_dereference(clear_flag(iter)->next);
895 if (caa_likely(is_removed(next)))
896 break;
897 iter_prev = clear_flag(iter);
898 iter = next;
899 }
900 assert(!is_removed(iter));
901 if (is_bucket(iter))
902 new_next = flag_bucket(clear_flag(next));
903 else
904 new_next = clear_flag(next);
905 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
906 }
907 }
908
909 static
910 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
911 struct cds_lfht_node *old_node,
912 struct cds_lfht_node *old_next,
913 struct cds_lfht_node *new_node)
914 {
915 struct cds_lfht_node *bucket, *ret_next;
916
917 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
918 return -ENOENT;
919
920 assert(!is_removed(old_node));
921 assert(!is_bucket(old_node));
922 assert(!is_removed(new_node));
923 assert(!is_bucket(new_node));
924 assert(new_node != old_node);
925 for (;;) {
926 /* Insert after node to be replaced */
927 if (is_removed(old_next)) {
928 /*
929 * Too late, the old node has been removed under us
930 * between lookup and replace. Fail.
931 */
932 return -ENOENT;
933 }
934 assert(old_next == clear_flag(old_next));
935 assert(new_node != old_next);
936 /*
937 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
938 * flag. It is either set atomically at the same time
939 * (replace) or after (del).
940 */
941 assert(!is_removal_owner(old_next));
942 new_node->next = old_next;
943 /*
944 * Here is the whole trick for lock-free replace: we add
945 * the replacement node _after_ the node we want to
946 * replace by atomically setting its next pointer at the
947 * same time we set its removal flag. Given that
948 * the lookups/get next use an iterator aware of the
949 * next pointer, they will either skip the old node due
950 * to the removal flag and see the new node, or use
951 * the old node, but will not see the new one.
952 * This is a replacement of a node with another node
953 * that has the same value: we are therefore not
954 * removing a value from the hash table. We set both the
955 * REMOVED and REMOVAL_OWNER flags atomically so we own
956 * the node after successful cmpxchg.
957 */
958 ret_next = uatomic_cmpxchg(&old_node->next,
959 old_next, flag_removed_or_removal_owner(new_node));
960 if (ret_next == old_next)
961 break; /* We performed the replacement. */
962 old_next = ret_next;
963 }
964
965 /*
966 * Ensure that the old node is not visible to readers anymore:
967 * lookup for the node, and remove it (along with any other
968 * logically removed node) if found.
969 */
970 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
971 _cds_lfht_gc_bucket(bucket, new_node);
972
973 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
974 return 0;
975 }
976
977 /*
978 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
979 * mode. A NULL unique_ret allows creation of duplicate keys.
980 */
981 static
982 void _cds_lfht_add(struct cds_lfht *ht,
983 unsigned long hash,
984 cds_lfht_match_fct match,
985 const void *key,
986 unsigned long size,
987 struct cds_lfht_node *node,
988 struct cds_lfht_iter *unique_ret,
989 int bucket_flag)
990 {
991 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
992 *return_node;
993 struct cds_lfht_node *bucket;
994
995 assert(!is_bucket(node));
996 assert(!is_removed(node));
997 bucket = lookup_bucket(ht, size, hash);
998 for (;;) {
999 uint32_t chain_len = 0;
1000
1001 /*
1002 * iter_prev points to the non-removed node prior to the
1003 * insert location.
1004 */
1005 iter_prev = bucket;
1006 /* We can always skip the bucket node initially */
1007 iter = rcu_dereference(iter_prev->next);
1008 assert(iter_prev->reverse_hash <= node->reverse_hash);
1009 for (;;) {
1010 if (caa_unlikely(is_end(iter)))
1011 goto insert;
1012 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1013 goto insert;
1014
1015 /* bucket node is the first node of the identical-hash-value chain */
1016 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1017 goto insert;
1018
1019 next = rcu_dereference(clear_flag(iter)->next);
1020 if (caa_unlikely(is_removed(next)))
1021 goto gc_node;
1022
1023 /* uniquely add */
1024 if (unique_ret
1025 && !is_bucket(next)
1026 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1027 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1028
1029 /*
1030 * uniquely adding inserts the node as the first
1031 * node of the identical-hash-value node chain.
1032 *
1033 * This semantic ensures no duplicated keys
1034 * should ever be observable in the table
1035 * (including traversing the table node by
1036 * node by forward iterations)
1037 */
1038 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1039 if (!d_iter.node)
1040 goto insert;
1041
1042 *unique_ret = d_iter;
1043 return;
1044 }
1045
1046 /* Only account for identical reverse hash once */
1047 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1048 && !is_bucket(next))
1049 check_resize(ht, size, ++chain_len);
1050 iter_prev = clear_flag(iter);
1051 iter = next;
1052 }
1053
1054 insert:
1055 assert(node != clear_flag(iter));
1056 assert(!is_removed(iter_prev));
1057 assert(!is_removed(iter));
1058 assert(iter_prev != node);
1059 if (!bucket_flag)
1060 node->next = clear_flag(iter);
1061 else
1062 node->next = flag_bucket(clear_flag(iter));
1063 if (is_bucket(iter))
1064 new_node = flag_bucket(node);
1065 else
1066 new_node = node;
1067 if (uatomic_cmpxchg(&iter_prev->next, iter,
1068 new_node) != iter) {
1069 continue; /* retry */
1070 } else {
1071 return_node = node;
1072 goto end;
1073 }
1074
1075 gc_node:
1076 assert(!is_removed(iter));
1077 if (is_bucket(iter))
1078 new_next = flag_bucket(clear_flag(next));
1079 else
1080 new_next = clear_flag(next);
1081 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1082 /* retry */
1083 }
1084 end:
1085 if (unique_ret) {
1086 unique_ret->node = return_node;
1087 /* unique_ret->next left unset, never used. */
1088 }
1089 }
1090
1091 static
1092 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1093 struct cds_lfht_node *node)
1094 {
1095 struct cds_lfht_node *bucket, *next;
1096
1097 if (!node) /* Return -ENOENT if asked to delete NULL node */
1098 return -ENOENT;
1099
1100 /* logically delete the node */
1101 assert(!is_bucket(node));
1102 assert(!is_removed(node));
1103 assert(!is_removal_owner(node));
1104
1105 /*
1106 * We are first checking if the node had previously been
1107 * logically removed (this check is not atomic with setting the
1108 * logical removal flag). Return -ENOENT if the node had
1109 * previously been removed.
1110 */
1111 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1112 if (caa_unlikely(is_removed(next)))
1113 return -ENOENT;
1114 assert(!is_bucket(next));
1115 /*
1116 * The del operation semantic guarantees a full memory barrier
1117 * before the uatomic_or atomic commit of the deletion flag.
1118 */
1119 cmm_smp_mb__before_uatomic_or();
1120 /*
1121 * We set the REMOVED_FLAG unconditionally. Note that there may
1122 * be more than one concurrent thread setting this flag.
1123 * Knowing which wins the race will be known after the garbage
1124 * collection phase, stay tuned!
1125 */
1126 uatomic_or(&node->next, REMOVED_FLAG);
1127 /* We performed the (logical) deletion. */
1128
1129 /*
1130 * Ensure that the node is not visible to readers anymore: lookup for
1131 * the node, and remove it (along with any other logically removed node)
1132 * if found.
1133 */
1134 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1135 _cds_lfht_gc_bucket(bucket, node);
1136
1137 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1138 /*
1139 * Last phase: atomically exchange node->next with a version
1140 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1141 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1142 * the node and win the removal race.
1143 * It is interesting to note that all "add" paths are forbidden
1144 * to change the next pointer starting from the point where the
1145 * REMOVED_FLAG is set, so here using a read, followed by a
1146 * xchg() suffice to guarantee that the xchg() will ever only
1147 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1148 * was already set).
1149 */
1150 if (!is_removal_owner(uatomic_xchg(&node->next,
1151 flag_removal_owner(node->next))))
1152 return 0;
1153 else
1154 return -ENOENT;
1155 }
1156
1157 static
1158 void *partition_resize_thread(void *arg)
1159 {
1160 struct partition_resize_work *work = arg;
1161
1162 work->ht->flavor->register_thread();
1163 work->fct(work->ht, work->i, work->start, work->len);
1164 work->ht->flavor->unregister_thread();
1165 return NULL;
1166 }
1167
1168 static
1169 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1170 unsigned long len,
1171 void (*fct)(struct cds_lfht *ht, unsigned long i,
1172 unsigned long start, unsigned long len))
1173 {
1174 unsigned long partition_len;
1175 struct partition_resize_work *work;
1176 int thread, ret;
1177 unsigned long nr_threads;
1178
1179 /*
1180 * Note: nr_cpus_mask + 1 is always power of 2.
1181 * We spawn just the number of threads we need to satisfy the minimum
1182 * partition size, up to the number of CPUs in the system.
1183 */
1184 if (nr_cpus_mask > 0) {
1185 nr_threads = min(nr_cpus_mask + 1,
1186 len >> MIN_PARTITION_PER_THREAD_ORDER);
1187 } else {
1188 nr_threads = 1;
1189 }
1190 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1191 work = calloc(nr_threads, sizeof(*work));
1192 assert(work);
1193 for (thread = 0; thread < nr_threads; thread++) {
1194 work[thread].ht = ht;
1195 work[thread].i = i;
1196 work[thread].len = partition_len;
1197 work[thread].start = thread * partition_len;
1198 work[thread].fct = fct;
1199 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1200 partition_resize_thread, &work[thread]);
1201 assert(!ret);
1202 }
1203 for (thread = 0; thread < nr_threads; thread++) {
1204 ret = pthread_join(work[thread].thread_id, NULL);
1205 assert(!ret);
1206 }
1207 free(work);
1208 }
1209
1210 /*
1211 * Holding RCU read lock to protect _cds_lfht_add against memory
1212 * reclaim that could be performed by other call_rcu worker threads (ABA
1213 * problem).
1214 *
1215 * When we reach a certain length, we can split this population phase over
1216 * many worker threads, based on the number of CPUs available in the system.
1217 * This should therefore take care of not having the expand lagging behind too
1218 * many concurrent insertion threads by using the scheduler's ability to
1219 * schedule bucket node population fairly with insertions.
1220 */
1221 static
1222 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1223 unsigned long start, unsigned long len)
1224 {
1225 unsigned long j, size = 1UL << (i - 1);
1226
1227 assert(i > MIN_TABLE_ORDER);
1228 ht->flavor->read_lock();
1229 for (j = size + start; j < size + start + len; j++) {
1230 struct cds_lfht_node *new_node = bucket_at(ht, j);
1231
1232 assert(j >= size && j < (size << 1));
1233 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1234 i, j, j);
1235 new_node->reverse_hash = bit_reverse_ulong(j);
1236 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1237 }
1238 ht->flavor->read_unlock();
1239 }
1240
1241 static
1242 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1243 unsigned long len)
1244 {
1245 assert(nr_cpus_mask != -1);
1246 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1247 ht->flavor->thread_online();
1248 init_table_populate_partition(ht, i, 0, len);
1249 ht->flavor->thread_offline();
1250 return;
1251 }
1252 partition_resize_helper(ht, i, len, init_table_populate_partition);
1253 }
1254
1255 static
1256 void init_table(struct cds_lfht *ht,
1257 unsigned long first_order, unsigned long last_order)
1258 {
1259 unsigned long i;
1260
1261 dbg_printf("init table: first_order %lu last_order %lu\n",
1262 first_order, last_order);
1263 assert(first_order > MIN_TABLE_ORDER);
1264 for (i = first_order; i <= last_order; i++) {
1265 unsigned long len;
1266
1267 len = 1UL << (i - 1);
1268 dbg_printf("init order %lu len: %lu\n", i, len);
1269
1270 /* Stop expand if the resize target changes under us */
1271 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1272 break;
1273
1274 cds_lfht_alloc_bucket_table(ht, i);
1275
1276 /*
1277 * Set all bucket nodes reverse hash values for a level and
1278 * link all bucket nodes into the table.
1279 */
1280 init_table_populate(ht, i, len);
1281
1282 /*
1283 * Update table size.
1284 */
1285 cmm_smp_wmb(); /* populate data before RCU size */
1286 CMM_STORE_SHARED(ht->size, 1UL << i);
1287
1288 dbg_printf("init new size: %lu\n", 1UL << i);
1289 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1290 break;
1291 }
1292 }
1293
1294 /*
1295 * Holding RCU read lock to protect _cds_lfht_remove against memory
1296 * reclaim that could be performed by other call_rcu worker threads (ABA
1297 * problem).
1298 * For a single level, we logically remove and garbage collect each node.
1299 *
1300 * As a design choice, we perform logical removal and garbage collection on a
1301 * node-per-node basis to simplify this algorithm. We also assume keeping good
1302 * cache locality of the operation would overweight possible performance gain
1303 * that could be achieved by batching garbage collection for multiple levels.
1304 * However, this would have to be justified by benchmarks.
1305 *
1306 * Concurrent removal and add operations are helping us perform garbage
1307 * collection of logically removed nodes. We guarantee that all logically
1308 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1309 * invoked to free a hole level of bucket nodes (after a grace period).
1310 *
1311 * Logical removal and garbage collection can therefore be done in batch
1312 * or on a node-per-node basis, as long as the guarantee above holds.
1313 *
1314 * When we reach a certain length, we can split this removal over many worker
1315 * threads, based on the number of CPUs available in the system. This should
1316 * take care of not letting resize process lag behind too many concurrent
1317 * updater threads actively inserting into the hash table.
1318 */
1319 static
1320 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1321 unsigned long start, unsigned long len)
1322 {
1323 unsigned long j, size = 1UL << (i - 1);
1324
1325 assert(i > MIN_TABLE_ORDER);
1326 ht->flavor->read_lock();
1327 for (j = size + start; j < size + start + len; j++) {
1328 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1329 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1330
1331 assert(j >= size && j < (size << 1));
1332 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1333 i, j, j);
1334 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1335 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1336 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1337 }
1338 ht->flavor->read_unlock();
1339 }
1340
1341 static
1342 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1343 {
1344
1345 assert(nr_cpus_mask != -1);
1346 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1347 ht->flavor->thread_online();
1348 remove_table_partition(ht, i, 0, len);
1349 ht->flavor->thread_offline();
1350 return;
1351 }
1352 partition_resize_helper(ht, i, len, remove_table_partition);
1353 }
1354
1355 /*
1356 * fini_table() is never called for first_order == 0, which is why
1357 * free_by_rcu_order == 0 can be used as criterion to know if free must
1358 * be called.
1359 */
1360 static
1361 void fini_table(struct cds_lfht *ht,
1362 unsigned long first_order, unsigned long last_order)
1363 {
1364 long i;
1365 unsigned long free_by_rcu_order = 0;
1366
1367 dbg_printf("fini table: first_order %lu last_order %lu\n",
1368 first_order, last_order);
1369 assert(first_order > MIN_TABLE_ORDER);
1370 for (i = last_order; i >= first_order; i--) {
1371 unsigned long len;
1372
1373 len = 1UL << (i - 1);
1374 dbg_printf("fini order %lu len: %lu\n", i, len);
1375
1376 /* Stop shrink if the resize target changes under us */
1377 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1378 break;
1379
1380 cmm_smp_wmb(); /* populate data before RCU size */
1381 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1382
1383 /*
1384 * We need to wait for all add operations to reach Q.S. (and
1385 * thus use the new table for lookups) before we can start
1386 * releasing the old bucket nodes. Otherwise their lookup will
1387 * return a logically removed node as insert position.
1388 */
1389 ht->flavor->update_synchronize_rcu();
1390 if (free_by_rcu_order)
1391 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1392
1393 /*
1394 * Set "removed" flag in bucket nodes about to be removed.
1395 * Unlink all now-logically-removed bucket node pointers.
1396 * Concurrent add/remove operation are helping us doing
1397 * the gc.
1398 */
1399 remove_table(ht, i, len);
1400
1401 free_by_rcu_order = i;
1402
1403 dbg_printf("fini new size: %lu\n", 1UL << i);
1404 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1405 break;
1406 }
1407
1408 if (free_by_rcu_order) {
1409 ht->flavor->update_synchronize_rcu();
1410 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1411 }
1412 }
1413
1414 static
1415 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1416 {
1417 struct cds_lfht_node *prev, *node;
1418 unsigned long order, len, i;
1419
1420 cds_lfht_alloc_bucket_table(ht, 0);
1421
1422 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1423 node = bucket_at(ht, 0);
1424 node->next = flag_bucket(get_end());
1425 node->reverse_hash = 0;
1426
1427 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1428 len = 1UL << (order - 1);
1429 cds_lfht_alloc_bucket_table(ht, order);
1430
1431 for (i = 0; i < len; i++) {
1432 /*
1433 * Now, we are trying to init the node with the
1434 * hash=(len+i) (which is also a bucket with the
1435 * index=(len+i)) and insert it into the hash table,
1436 * so this node has to be inserted after the bucket
1437 * with the index=(len+i)&(len-1)=i. And because there
1438 * is no other non-bucket node nor bucket node with
1439 * larger index/hash inserted, so the bucket node
1440 * being inserted should be inserted directly linked
1441 * after the bucket node with index=i.
1442 */
1443 prev = bucket_at(ht, i);
1444 node = bucket_at(ht, len + i);
1445
1446 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1447 order, len + i, len + i);
1448 node->reverse_hash = bit_reverse_ulong(len + i);
1449
1450 /* insert after prev */
1451 assert(is_bucket(prev->next));
1452 node->next = prev->next;
1453 prev->next = flag_bucket(node);
1454 }
1455 }
1456 }
1457
1458 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1459 unsigned long min_nr_alloc_buckets,
1460 unsigned long max_nr_buckets,
1461 int flags,
1462 const struct cds_lfht_mm_type *mm,
1463 const struct rcu_flavor_struct *flavor,
1464 pthread_attr_t *attr)
1465 {
1466 struct cds_lfht *ht;
1467 unsigned long order;
1468
1469 /* min_nr_alloc_buckets must be power of two */
1470 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1471 return NULL;
1472
1473 /* init_size must be power of two */
1474 if (!init_size || (init_size & (init_size - 1)))
1475 return NULL;
1476
1477 /*
1478 * Memory management plugin default.
1479 */
1480 if (!mm) {
1481 if (CAA_BITS_PER_LONG > 32
1482 && max_nr_buckets
1483 && max_nr_buckets <= (1ULL << 32)) {
1484 /*
1485 * For 64-bit architectures, with max number of
1486 * buckets small enough not to use the entire
1487 * 64-bit memory mapping space (and allowing a
1488 * fair number of hash table instances), use the
1489 * mmap allocator, which is faster than the
1490 * order allocator.
1491 */
1492 mm = &cds_lfht_mm_mmap;
1493 } else {
1494 /*
1495 * The fallback is to use the order allocator.
1496 */
1497 mm = &cds_lfht_mm_order;
1498 }
1499 }
1500
1501 /* max_nr_buckets == 0 for order based mm means infinite */
1502 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1503 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1504
1505 /* max_nr_buckets must be power of two */
1506 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1507 return NULL;
1508
1509 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1510 init_size = max(init_size, MIN_TABLE_SIZE);
1511 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1512 init_size = min(init_size, max_nr_buckets);
1513
1514 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1515 assert(ht);
1516 assert(ht->mm == mm);
1517 assert(ht->bucket_at == mm->bucket_at);
1518
1519 ht->flags = flags;
1520 ht->flavor = flavor;
1521 ht->resize_attr = attr;
1522 alloc_split_items_count(ht);
1523 /* this mutex should not nest in read-side C.S. */
1524 pthread_mutex_init(&ht->resize_mutex, NULL);
1525 order = cds_lfht_get_count_order_ulong(init_size);
1526 ht->resize_target = 1UL << order;
1527 cds_lfht_create_bucket(ht, 1UL << order);
1528 ht->size = 1UL << order;
1529 return ht;
1530 }
1531
1532 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1533 cds_lfht_match_fct match, const void *key,
1534 struct cds_lfht_iter *iter)
1535 {
1536 struct cds_lfht_node *node, *next, *bucket;
1537 unsigned long reverse_hash, size;
1538
1539 reverse_hash = bit_reverse_ulong(hash);
1540
1541 size = rcu_dereference(ht->size);
1542 bucket = lookup_bucket(ht, size, hash);
1543 /* We can always skip the bucket node initially */
1544 node = rcu_dereference(bucket->next);
1545 node = clear_flag(node);
1546 for (;;) {
1547 if (caa_unlikely(is_end(node))) {
1548 node = next = NULL;
1549 break;
1550 }
1551 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1552 node = next = NULL;
1553 break;
1554 }
1555 next = rcu_dereference(node->next);
1556 assert(node == clear_flag(node));
1557 if (caa_likely(!is_removed(next))
1558 && !is_bucket(next)
1559 && node->reverse_hash == reverse_hash
1560 && caa_likely(match(node, key))) {
1561 break;
1562 }
1563 node = clear_flag(next);
1564 }
1565 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1566 iter->node = node;
1567 iter->next = next;
1568 }
1569
1570 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1571 const void *key, struct cds_lfht_iter *iter)
1572 {
1573 struct cds_lfht_node *node, *next;
1574 unsigned long reverse_hash;
1575
1576 node = iter->node;
1577 reverse_hash = node->reverse_hash;
1578 next = iter->next;
1579 node = clear_flag(next);
1580
1581 for (;;) {
1582 if (caa_unlikely(is_end(node))) {
1583 node = next = NULL;
1584 break;
1585 }
1586 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1587 node = next = NULL;
1588 break;
1589 }
1590 next = rcu_dereference(node->next);
1591 if (caa_likely(!is_removed(next))
1592 && !is_bucket(next)
1593 && caa_likely(match(node, key))) {
1594 break;
1595 }
1596 node = clear_flag(next);
1597 }
1598 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1599 iter->node = node;
1600 iter->next = next;
1601 }
1602
1603 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1604 {
1605 struct cds_lfht_node *node, *next;
1606
1607 node = clear_flag(iter->next);
1608 for (;;) {
1609 if (caa_unlikely(is_end(node))) {
1610 node = next = NULL;
1611 break;
1612 }
1613 next = rcu_dereference(node->next);
1614 if (caa_likely(!is_removed(next))
1615 && !is_bucket(next)) {
1616 break;
1617 }
1618 node = clear_flag(next);
1619 }
1620 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1621 iter->node = node;
1622 iter->next = next;
1623 }
1624
1625 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1626 {
1627 /*
1628 * Get next after first bucket node. The first bucket node is the
1629 * first node of the linked list.
1630 */
1631 iter->next = bucket_at(ht, 0)->next;
1632 cds_lfht_next(ht, iter);
1633 }
1634
1635 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1636 struct cds_lfht_node *node)
1637 {
1638 unsigned long size;
1639
1640 node->reverse_hash = bit_reverse_ulong(hash);
1641 size = rcu_dereference(ht->size);
1642 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1643 ht_count_add(ht, size, hash);
1644 }
1645
1646 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1647 unsigned long hash,
1648 cds_lfht_match_fct match,
1649 const void *key,
1650 struct cds_lfht_node *node)
1651 {
1652 unsigned long size;
1653 struct cds_lfht_iter iter;
1654
1655 node->reverse_hash = bit_reverse_ulong(hash);
1656 size = rcu_dereference(ht->size);
1657 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1658 if (iter.node == node)
1659 ht_count_add(ht, size, hash);
1660 return iter.node;
1661 }
1662
1663 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1664 unsigned long hash,
1665 cds_lfht_match_fct match,
1666 const void *key,
1667 struct cds_lfht_node *node)
1668 {
1669 unsigned long size;
1670 struct cds_lfht_iter iter;
1671
1672 node->reverse_hash = bit_reverse_ulong(hash);
1673 size = rcu_dereference(ht->size);
1674 for (;;) {
1675 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1676 if (iter.node == node) {
1677 ht_count_add(ht, size, hash);
1678 return NULL;
1679 }
1680
1681 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1682 return iter.node;
1683 }
1684 }
1685
1686 int cds_lfht_replace(struct cds_lfht *ht,
1687 struct cds_lfht_iter *old_iter,
1688 unsigned long hash,
1689 cds_lfht_match_fct match,
1690 const void *key,
1691 struct cds_lfht_node *new_node)
1692 {
1693 unsigned long size;
1694
1695 new_node->reverse_hash = bit_reverse_ulong(hash);
1696 if (!old_iter->node)
1697 return -ENOENT;
1698 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1699 return -EINVAL;
1700 if (caa_unlikely(!match(old_iter->node, key)))
1701 return -EINVAL;
1702 size = rcu_dereference(ht->size);
1703 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1704 new_node);
1705 }
1706
1707 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1708 {
1709 unsigned long size, hash;
1710 int ret;
1711
1712 size = rcu_dereference(ht->size);
1713 ret = _cds_lfht_del(ht, size, node);
1714 if (!ret) {
1715 hash = bit_reverse_ulong(node->reverse_hash);
1716 ht_count_del(ht, size, hash);
1717 }
1718 return ret;
1719 }
1720
1721 int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1722 {
1723 return is_removed(CMM_LOAD_SHARED(node->next));
1724 }
1725
1726 static
1727 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1728 {
1729 struct cds_lfht_node *node;
1730 unsigned long order, i, size;
1731
1732 /* Check that the table is empty */
1733 node = bucket_at(ht, 0);
1734 do {
1735 node = clear_flag(node)->next;
1736 if (!is_bucket(node))
1737 return -EPERM;
1738 assert(!is_removed(node));
1739 } while (!is_end(node));
1740 /*
1741 * size accessed without rcu_dereference because hash table is
1742 * being destroyed.
1743 */
1744 size = ht->size;
1745 /* Internal sanity check: all nodes left should be buckets */
1746 for (i = 0; i < size; i++) {
1747 node = bucket_at(ht, i);
1748 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1749 i, i, bit_reverse_ulong(node->reverse_hash));
1750 assert(is_bucket(node->next));
1751 }
1752
1753 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1754 cds_lfht_free_bucket_table(ht, order);
1755
1756 return 0;
1757 }
1758
1759 /*
1760 * Should only be called when no more concurrent readers nor writers can
1761 * possibly access the table.
1762 */
1763 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1764 {
1765 int ret;
1766 #ifdef rcu_read_ongoing_mb
1767 int was_online;
1768 #endif
1769
1770 /* Wait for in-flight resize operations to complete */
1771 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1772 cmm_smp_mb(); /* Store destroy before load resize */
1773 #ifdef rcu_read_ongoing_mb
1774 was_online = ht->flavor->read_ongoing();
1775 if (was_online)
1776 ht->flavor->thread_offline();
1777 /* Calling with RCU read-side held is an error. */
1778 if (ht->flavor->read_ongoing()) {
1779 ret = -EINVAL;
1780 if (was_online)
1781 ht->flavor->thread_online();
1782 goto end;
1783 }
1784 #endif
1785 while (uatomic_read(&ht->in_progress_resize))
1786 poll(NULL, 0, 100); /* wait for 100ms */
1787 ret = cds_lfht_delete_bucket(ht);
1788 if (ret)
1789 return ret;
1790 free_split_items_count(ht);
1791 if (attr)
1792 *attr = ht->resize_attr;
1793 poison_free(ht);
1794 #ifdef rcu_read_ongoing_mb
1795 end:
1796 #endif
1797 return ret;
1798 }
1799
1800 void cds_lfht_count_nodes(struct cds_lfht *ht,
1801 long *approx_before,
1802 unsigned long *count,
1803 long *approx_after)
1804 {
1805 struct cds_lfht_node *node, *next;
1806 unsigned long nr_bucket = 0, nr_removed = 0;
1807
1808 *approx_before = 0;
1809 if (ht->split_count) {
1810 int i;
1811
1812 for (i = 0; i < split_count_mask + 1; i++) {
1813 *approx_before += uatomic_read(&ht->split_count[i].add);
1814 *approx_before -= uatomic_read(&ht->split_count[i].del);
1815 }
1816 }
1817
1818 *count = 0;
1819
1820 /* Count non-bucket nodes in the table */
1821 node = bucket_at(ht, 0);
1822 do {
1823 next = rcu_dereference(node->next);
1824 if (is_removed(next)) {
1825 if (!is_bucket(next))
1826 (nr_removed)++;
1827 else
1828 (nr_bucket)++;
1829 } else if (!is_bucket(next))
1830 (*count)++;
1831 else
1832 (nr_bucket)++;
1833 node = clear_flag(next);
1834 } while (!is_end(node));
1835 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1836 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1837 *approx_after = 0;
1838 if (ht->split_count) {
1839 int i;
1840
1841 for (i = 0; i < split_count_mask + 1; i++) {
1842 *approx_after += uatomic_read(&ht->split_count[i].add);
1843 *approx_after -= uatomic_read(&ht->split_count[i].del);
1844 }
1845 }
1846 }
1847
1848 /* called with resize mutex held */
1849 static
1850 void _do_cds_lfht_grow(struct cds_lfht *ht,
1851 unsigned long old_size, unsigned long new_size)
1852 {
1853 unsigned long old_order, new_order;
1854
1855 old_order = cds_lfht_get_count_order_ulong(old_size);
1856 new_order = cds_lfht_get_count_order_ulong(new_size);
1857 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1858 old_size, old_order, new_size, new_order);
1859 assert(new_size > old_size);
1860 init_table(ht, old_order + 1, new_order);
1861 }
1862
1863 /* called with resize mutex held */
1864 static
1865 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1866 unsigned long old_size, unsigned long new_size)
1867 {
1868 unsigned long old_order, new_order;
1869
1870 new_size = max(new_size, MIN_TABLE_SIZE);
1871 old_order = cds_lfht_get_count_order_ulong(old_size);
1872 new_order = cds_lfht_get_count_order_ulong(new_size);
1873 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1874 old_size, old_order, new_size, new_order);
1875 assert(new_size < old_size);
1876
1877 /* Remove and unlink all bucket nodes to remove. */
1878 fini_table(ht, new_order + 1, old_order);
1879 }
1880
1881
1882 /* called with resize mutex held */
1883 static
1884 void _do_cds_lfht_resize(struct cds_lfht *ht)
1885 {
1886 unsigned long new_size, old_size;
1887
1888 /*
1889 * Resize table, re-do if the target size has changed under us.
1890 */
1891 do {
1892 assert(uatomic_read(&ht->in_progress_resize));
1893 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1894 break;
1895 ht->resize_initiated = 1;
1896 old_size = ht->size;
1897 new_size = CMM_LOAD_SHARED(ht->resize_target);
1898 if (old_size < new_size)
1899 _do_cds_lfht_grow(ht, old_size, new_size);
1900 else if (old_size > new_size)
1901 _do_cds_lfht_shrink(ht, old_size, new_size);
1902 ht->resize_initiated = 0;
1903 /* write resize_initiated before read resize_target */
1904 cmm_smp_mb();
1905 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1906 }
1907
1908 static
1909 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1910 {
1911 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1912 }
1913
1914 static
1915 void resize_target_update_count(struct cds_lfht *ht,
1916 unsigned long count)
1917 {
1918 count = max(count, MIN_TABLE_SIZE);
1919 count = min(count, ht->max_nr_buckets);
1920 uatomic_set(&ht->resize_target, count);
1921 }
1922
1923 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1924 {
1925 #ifdef rcu_read_ongoing_mb
1926 int was_online;
1927
1928 was_online = ht->flavor->read_ongoing();
1929 if (was_online)
1930 ht->flavor->thread_offline();
1931 /* Calling with RCU read-side held is an error. */
1932 if (ht->flavor->read_ongoing()) {
1933 static int print_once;
1934
1935 if (!CMM_LOAD_SHARED(print_once))
1936 fprintf(stderr, "[error] rculfhash: cds_lfht_resize "
1937 "called with RCU read-side lock held.\n");
1938 CMM_STORE_SHARED(print_once, 1);
1939 assert(0);
1940 goto end;
1941 }
1942 #endif
1943 resize_target_update_count(ht, new_size);
1944 CMM_STORE_SHARED(ht->resize_initiated, 1);
1945 pthread_mutex_lock(&ht->resize_mutex);
1946 _do_cds_lfht_resize(ht);
1947 pthread_mutex_unlock(&ht->resize_mutex);
1948 #ifdef rcu_read_ongoing_mb
1949 end:
1950 if (was_online)
1951 ht->flavor->thread_online();
1952 #endif
1953 }
1954
1955 static
1956 void do_resize_cb(struct rcu_head *head)
1957 {
1958 struct rcu_resize_work *work =
1959 caa_container_of(head, struct rcu_resize_work, head);
1960 struct cds_lfht *ht = work->ht;
1961
1962 ht->flavor->thread_offline();
1963 pthread_mutex_lock(&ht->resize_mutex);
1964 _do_cds_lfht_resize(ht);
1965 pthread_mutex_unlock(&ht->resize_mutex);
1966 ht->flavor->thread_online();
1967 poison_free(work);
1968 cmm_smp_mb(); /* finish resize before decrement */
1969 uatomic_dec(&ht->in_progress_resize);
1970 }
1971
1972 static
1973 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1974 {
1975 struct rcu_resize_work *work;
1976
1977 /* Store resize_target before read resize_initiated */
1978 cmm_smp_mb();
1979 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1980 uatomic_inc(&ht->in_progress_resize);
1981 cmm_smp_mb(); /* increment resize count before load destroy */
1982 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1983 uatomic_dec(&ht->in_progress_resize);
1984 return;
1985 }
1986 work = zmalloc(sizeof(*work));
1987 if (work == NULL) {
1988 dbg_printf("error allocating resize work, bailing out\n");
1989 uatomic_dec(&ht->in_progress_resize);
1990 return;
1991 }
1992 work->ht = ht;
1993 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1994 CMM_STORE_SHARED(ht->resize_initiated, 1);
1995 }
1996 }
1997
1998 static
1999 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2000 {
2001 unsigned long target_size = size << growth;
2002
2003 target_size = min(target_size, ht->max_nr_buckets);
2004 if (resize_target_grow(ht, target_size) >= target_size)
2005 return;
2006
2007 __cds_lfht_resize_lazy_launch(ht);
2008 }
2009
2010 /*
2011 * We favor grow operations over shrink. A shrink operation never occurs
2012 * if a grow operation is queued for lazy execution. A grow operation
2013 * cancels any pending shrink lazy execution.
2014 */
2015 static
2016 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2017 unsigned long count)
2018 {
2019 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2020 return;
2021 count = max(count, MIN_TABLE_SIZE);
2022 count = min(count, ht->max_nr_buckets);
2023 if (count == size)
2024 return; /* Already the right size, no resize needed */
2025 if (count > size) { /* lazy grow */
2026 if (resize_target_grow(ht, count) >= count)
2027 return;
2028 } else { /* lazy shrink */
2029 for (;;) {
2030 unsigned long s;
2031
2032 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2033 if (s == size)
2034 break; /* no resize needed */
2035 if (s > size)
2036 return; /* growing is/(was just) in progress */
2037 if (s <= count)
2038 return; /* some other thread do shrink */
2039 size = s;
2040 }
2041 }
2042 __cds_lfht_resize_lazy_launch(ht);
2043 }
This page took 0.069423 seconds and 5 git commands to generate.