timer API transition for kernel 4.15
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57 #include <asm/cacheflush.h>
58
59 #include <wrapper/ringbuffer/config.h>
60 #include <wrapper/ringbuffer/backend.h>
61 #include <wrapper/ringbuffer/frontend.h>
62 #include <wrapper/ringbuffer/iterator.h>
63 #include <wrapper/ringbuffer/nohz.h>
64 #include <wrapper/atomic.h>
65 #include <wrapper/kref.h>
66 #include <wrapper/percpu-defs.h>
67 #include <wrapper/timer.h>
68 #include <wrapper/vmalloc.h>
69
70 /*
71 * Internal structure representing offsets to use at a sub-buffer switch.
72 */
73 struct switch_offsets {
74 unsigned long begin, end, old;
75 size_t pre_header_padding, size;
76 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
77 switch_old_end:1;
78 };
79
80 #ifdef CONFIG_NO_HZ
81 enum tick_nohz_val {
82 TICK_NOHZ_STOP,
83 TICK_NOHZ_FLUSH,
84 TICK_NOHZ_RESTART,
85 };
86
87 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
88 #endif /* CONFIG_NO_HZ */
89
90 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
91
92 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
93 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
94
95 static
96 void lib_ring_buffer_print_errors(struct channel *chan,
97 struct lib_ring_buffer *buf, int cpu);
98 static
99 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
100 enum switch_mode mode);
101
102 static
103 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
104 struct lib_ring_buffer *buf,
105 struct channel *chan)
106 {
107 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
108
109 consumed_old = atomic_long_read(&buf->consumed);
110 consumed_idx = subbuf_index(consumed_old, chan);
111 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
112 /*
113 * No memory barrier here, since we are only interested
114 * in a statistically correct polling result. The next poll will
115 * get the data is we are racing. The mb() that ensures correct
116 * memory order is in get_subbuf.
117 */
118 write_offset = v_read(config, &buf->offset);
119
120 /*
121 * Check that the subbuffer we are trying to consume has been
122 * already fully committed.
123 */
124
125 if (((commit_count - chan->backend.subbuf_size)
126 & chan->commit_count_mask)
127 - (buf_trunc(consumed_old, chan)
128 >> chan->backend.num_subbuf_order)
129 != 0)
130 return 0;
131
132 /*
133 * Check that we are not about to read the same subbuffer in
134 * which the writer head is.
135 */
136 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
137 == 0)
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * Must be called under cpu hotplug protection.
145 */
146 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
147 {
148 struct channel *chan = buf->backend.chan;
149
150 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
151 lttng_kvfree(buf->commit_hot);
152 lttng_kvfree(buf->commit_cold);
153
154 lib_ring_buffer_backend_free(&buf->backend);
155 }
156
157 /**
158 * lib_ring_buffer_reset - Reset ring buffer to initial values.
159 * @buf: Ring buffer.
160 *
161 * Effectively empty the ring buffer. Should be called when the buffer is not
162 * used for writing. The ring buffer can be opened for reading, but the reader
163 * should not be using the iterator concurrently with reset. The previous
164 * current iterator record is reset.
165 */
166 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
167 {
168 struct channel *chan = buf->backend.chan;
169 const struct lib_ring_buffer_config *config = &chan->backend.config;
170 unsigned int i;
171
172 /*
173 * Reset iterator first. It will put the subbuffer if it currently holds
174 * it.
175 */
176 lib_ring_buffer_iterator_reset(buf);
177 v_set(config, &buf->offset, 0);
178 for (i = 0; i < chan->backend.num_subbuf; i++) {
179 v_set(config, &buf->commit_hot[i].cc, 0);
180 v_set(config, &buf->commit_hot[i].seq, 0);
181 v_set(config, &buf->commit_cold[i].cc_sb, 0);
182 }
183 atomic_long_set(&buf->consumed, 0);
184 atomic_set(&buf->record_disabled, 0);
185 v_set(config, &buf->last_tsc, 0);
186 lib_ring_buffer_backend_reset(&buf->backend);
187 /* Don't reset number of active readers */
188 v_set(config, &buf->records_lost_full, 0);
189 v_set(config, &buf->records_lost_wrap, 0);
190 v_set(config, &buf->records_lost_big, 0);
191 v_set(config, &buf->records_count, 0);
192 v_set(config, &buf->records_overrun, 0);
193 buf->finalized = 0;
194 }
195 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
196
197 /**
198 * channel_reset - Reset channel to initial values.
199 * @chan: Channel.
200 *
201 * Effectively empty the channel. Should be called when the channel is not used
202 * for writing. The channel can be opened for reading, but the reader should not
203 * be using the iterator concurrently with reset. The previous current iterator
204 * record is reset.
205 */
206 void channel_reset(struct channel *chan)
207 {
208 /*
209 * Reset iterators first. Will put the subbuffer if held for reading.
210 */
211 channel_iterator_reset(chan);
212 atomic_set(&chan->record_disabled, 0);
213 /* Don't reset commit_count_mask, still valid */
214 channel_backend_reset(&chan->backend);
215 /* Don't reset switch/read timer interval */
216 /* Don't reset notifiers and notifier enable bits */
217 /* Don't reset reader reference count */
218 }
219 EXPORT_SYMBOL_GPL(channel_reset);
220
221 /*
222 * Must be called under cpu hotplug protection.
223 */
224 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
225 struct channel_backend *chanb, int cpu)
226 {
227 const struct lib_ring_buffer_config *config = &chanb->config;
228 struct channel *chan = container_of(chanb, struct channel, backend);
229 void *priv = chanb->priv;
230 size_t subbuf_header_size;
231 u64 tsc;
232 int ret;
233
234 /* Test for cpu hotplug */
235 if (buf->backend.allocated)
236 return 0;
237
238 /*
239 * Paranoia: per cpu dynamic allocation is not officially documented as
240 * zeroing the memory, so let's do it here too, just in case.
241 */
242 memset(buf, 0, sizeof(*buf));
243
244 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
245 if (ret)
246 return ret;
247
248 buf->commit_hot =
249 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
250 * chan->backend.num_subbuf,
251 1 << INTERNODE_CACHE_SHIFT),
252 GFP_KERNEL | __GFP_NOWARN,
253 cpu_to_node(max(cpu, 0)));
254 if (!buf->commit_hot) {
255 ret = -ENOMEM;
256 goto free_chanbuf;
257 }
258
259 buf->commit_cold =
260 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
261 * chan->backend.num_subbuf,
262 1 << INTERNODE_CACHE_SHIFT),
263 GFP_KERNEL | __GFP_NOWARN,
264 cpu_to_node(max(cpu, 0)));
265 if (!buf->commit_cold) {
266 ret = -ENOMEM;
267 goto free_commit;
268 }
269
270 init_waitqueue_head(&buf->read_wait);
271 init_waitqueue_head(&buf->write_wait);
272 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
273
274 /*
275 * Write the subbuffer header for first subbuffer so we know the total
276 * duration of data gathering.
277 */
278 subbuf_header_size = config->cb.subbuffer_header_size();
279 v_set(config, &buf->offset, subbuf_header_size);
280 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
281 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
282 config->cb.buffer_begin(buf, tsc, 0);
283 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
284
285 if (config->cb.buffer_create) {
286 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
287 if (ret)
288 goto free_init;
289 }
290
291 /*
292 * Ensure the buffer is ready before setting it to allocated and setting
293 * the cpumask.
294 * Used for cpu hotplug vs cpumask iteration.
295 */
296 smp_wmb();
297 buf->backend.allocated = 1;
298
299 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
300 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
301 chan->backend.cpumask));
302 cpumask_set_cpu(cpu, chan->backend.cpumask);
303 }
304
305 return 0;
306
307 /* Error handling */
308 free_init:
309 lttng_kvfree(buf->commit_cold);
310 free_commit:
311 lttng_kvfree(buf->commit_hot);
312 free_chanbuf:
313 lib_ring_buffer_backend_free(&buf->backend);
314 return ret;
315 }
316
317 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
318 {
319 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
320 struct channel *chan = buf->backend.chan;
321 const struct lib_ring_buffer_config *config = &chan->backend.config;
322
323 /*
324 * Only flush buffers periodically if readers are active.
325 */
326 if (atomic_long_read(&buf->active_readers))
327 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
328
329 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
330 lttng_mod_timer_pinned(&buf->switch_timer,
331 jiffies + chan->switch_timer_interval);
332 else
333 mod_timer(&buf->switch_timer,
334 jiffies + chan->switch_timer_interval);
335 }
336
337 /*
338 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
339 */
340 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
341 {
342 struct channel *chan = buf->backend.chan;
343 const struct lib_ring_buffer_config *config = &chan->backend.config;
344 unsigned int flags = 0;
345
346 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
347 return;
348
349 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
350 flags = LTTNG_TIMER_PINNED;
351
352 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
353 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
354
355 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
356 add_timer_on(&buf->switch_timer, buf->backend.cpu);
357 else
358 add_timer(&buf->switch_timer);
359
360 buf->switch_timer_enabled = 1;
361 }
362
363 /*
364 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
365 */
366 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
367 {
368 struct channel *chan = buf->backend.chan;
369
370 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
371 return;
372
373 del_timer_sync(&buf->switch_timer);
374 buf->switch_timer_enabled = 0;
375 }
376
377 /*
378 * Polling timer to check the channels for data.
379 */
380 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
381 {
382 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
383 struct channel *chan = buf->backend.chan;
384 const struct lib_ring_buffer_config *config = &chan->backend.config;
385
386 CHAN_WARN_ON(chan, !buf->backend.allocated);
387
388 if (atomic_long_read(&buf->active_readers)
389 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
390 wake_up_interruptible(&buf->read_wait);
391 wake_up_interruptible(&chan->read_wait);
392 }
393
394 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
395 lttng_mod_timer_pinned(&buf->read_timer,
396 jiffies + chan->read_timer_interval);
397 else
398 mod_timer(&buf->read_timer,
399 jiffies + chan->read_timer_interval);
400 }
401
402 /*
403 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
404 */
405 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
406 {
407 struct channel *chan = buf->backend.chan;
408 const struct lib_ring_buffer_config *config = &chan->backend.config;
409 unsigned int flags;
410
411 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
412 || !chan->read_timer_interval
413 || buf->read_timer_enabled)
414 return;
415
416 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
417 flags = LTTNG_TIMER_PINNED;
418
419 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
420 buf->read_timer.expires = jiffies + chan->read_timer_interval;
421
422 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
423 add_timer_on(&buf->read_timer, buf->backend.cpu);
424 else
425 add_timer(&buf->read_timer);
426
427 buf->read_timer_enabled = 1;
428 }
429
430 /*
431 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
432 */
433 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
434 {
435 struct channel *chan = buf->backend.chan;
436 const struct lib_ring_buffer_config *config = &chan->backend.config;
437
438 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
439 || !chan->read_timer_interval
440 || !buf->read_timer_enabled)
441 return;
442
443 del_timer_sync(&buf->read_timer);
444 /*
445 * do one more check to catch data that has been written in the last
446 * timer period.
447 */
448 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
449 wake_up_interruptible(&buf->read_wait);
450 wake_up_interruptible(&chan->read_wait);
451 }
452 buf->read_timer_enabled = 0;
453 }
454
455 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
456
457 enum cpuhp_state lttng_rb_hp_prepare;
458 enum cpuhp_state lttng_rb_hp_online;
459
460 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
461 {
462 lttng_rb_hp_prepare = val;
463 }
464 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
465
466 void lttng_rb_set_hp_online(enum cpuhp_state val)
467 {
468 lttng_rb_hp_online = val;
469 }
470 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
471
472 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
473 struct lttng_cpuhp_node *node)
474 {
475 struct channel *chan = container_of(node, struct channel,
476 cpuhp_prepare);
477 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
478 const struct lib_ring_buffer_config *config = &chan->backend.config;
479
480 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
481
482 /*
483 * Performing a buffer switch on a remote CPU. Performed by
484 * the CPU responsible for doing the hotunplug after the target
485 * CPU stopped running completely. Ensures that all data
486 * from that remote CPU is flushed.
487 */
488 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
489 return 0;
490 }
491 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
492
493 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
494 struct lttng_cpuhp_node *node)
495 {
496 struct channel *chan = container_of(node, struct channel,
497 cpuhp_online);
498 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
499 const struct lib_ring_buffer_config *config = &chan->backend.config;
500
501 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
502
503 wake_up_interruptible(&chan->hp_wait);
504 lib_ring_buffer_start_switch_timer(buf);
505 lib_ring_buffer_start_read_timer(buf);
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
509
510 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
511 struct lttng_cpuhp_node *node)
512 {
513 struct channel *chan = container_of(node, struct channel,
514 cpuhp_online);
515 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
516 const struct lib_ring_buffer_config *config = &chan->backend.config;
517
518 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
519
520 lib_ring_buffer_stop_switch_timer(buf);
521 lib_ring_buffer_stop_read_timer(buf);
522 return 0;
523 }
524 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
525
526 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
527
528 #ifdef CONFIG_HOTPLUG_CPU
529
530 /**
531 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
532 * @nb: notifier block
533 * @action: hotplug action to take
534 * @hcpu: CPU number
535 *
536 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
537 */
538 static
539 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
540 unsigned long action,
541 void *hcpu)
542 {
543 unsigned int cpu = (unsigned long)hcpu;
544 struct channel *chan = container_of(nb, struct channel,
545 cpu_hp_notifier);
546 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
547 const struct lib_ring_buffer_config *config = &chan->backend.config;
548
549 if (!chan->cpu_hp_enable)
550 return NOTIFY_DONE;
551
552 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
553
554 switch (action) {
555 case CPU_DOWN_FAILED:
556 case CPU_DOWN_FAILED_FROZEN:
557 case CPU_ONLINE:
558 case CPU_ONLINE_FROZEN:
559 wake_up_interruptible(&chan->hp_wait);
560 lib_ring_buffer_start_switch_timer(buf);
561 lib_ring_buffer_start_read_timer(buf);
562 return NOTIFY_OK;
563
564 case CPU_DOWN_PREPARE:
565 case CPU_DOWN_PREPARE_FROZEN:
566 lib_ring_buffer_stop_switch_timer(buf);
567 lib_ring_buffer_stop_read_timer(buf);
568 return NOTIFY_OK;
569
570 case CPU_DEAD:
571 case CPU_DEAD_FROZEN:
572 /*
573 * Performing a buffer switch on a remote CPU. Performed by
574 * the CPU responsible for doing the hotunplug after the target
575 * CPU stopped running completely. Ensures that all data
576 * from that remote CPU is flushed.
577 */
578 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
579 return NOTIFY_OK;
580
581 default:
582 return NOTIFY_DONE;
583 }
584 }
585
586 #endif
587
588 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
589
590 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
591 /*
592 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
593 * that wake-up-tracing generated events are flushed before going idle (in
594 * tick_nohz). We test if the spinlock is locked to deal with the race where
595 * readers try to sample the ring buffer before we perform the switch. We let
596 * the readers retry in that case. If there is data in the buffer, the wake up
597 * is going to forbid the CPU running the reader thread from going idle.
598 */
599 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
600 unsigned long val,
601 void *data)
602 {
603 struct channel *chan = container_of(nb, struct channel,
604 tick_nohz_notifier);
605 const struct lib_ring_buffer_config *config = &chan->backend.config;
606 struct lib_ring_buffer *buf;
607 int cpu = smp_processor_id();
608
609 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
610 /*
611 * We don't support keeping the system idle with global buffers
612 * and streaming active. In order to do so, we would need to
613 * sample a non-nohz-cpumask racelessly with the nohz updates
614 * without adding synchronization overhead to nohz. Leave this
615 * use-case out for now.
616 */
617 return 0;
618 }
619
620 buf = channel_get_ring_buffer(config, chan, cpu);
621 switch (val) {
622 case TICK_NOHZ_FLUSH:
623 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
624 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
625 && chan->read_timer_interval
626 && atomic_long_read(&buf->active_readers)
627 && (lib_ring_buffer_poll_deliver(config, buf, chan)
628 || lib_ring_buffer_pending_data(config, buf, chan))) {
629 wake_up_interruptible(&buf->read_wait);
630 wake_up_interruptible(&chan->read_wait);
631 }
632 if (chan->switch_timer_interval)
633 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
634 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
635 break;
636 case TICK_NOHZ_STOP:
637 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
638 lib_ring_buffer_stop_switch_timer(buf);
639 lib_ring_buffer_stop_read_timer(buf);
640 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
641 break;
642 case TICK_NOHZ_RESTART:
643 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
644 lib_ring_buffer_start_read_timer(buf);
645 lib_ring_buffer_start_switch_timer(buf);
646 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
647 break;
648 }
649
650 return 0;
651 }
652
653 void notrace lib_ring_buffer_tick_nohz_flush(void)
654 {
655 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
656 NULL);
657 }
658
659 void notrace lib_ring_buffer_tick_nohz_stop(void)
660 {
661 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
662 NULL);
663 }
664
665 void notrace lib_ring_buffer_tick_nohz_restart(void)
666 {
667 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
668 NULL);
669 }
670 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
671
672 /*
673 * Holds CPU hotplug.
674 */
675 static void channel_unregister_notifiers(struct channel *chan)
676 {
677 const struct lib_ring_buffer_config *config = &chan->backend.config;
678
679 channel_iterator_unregister_notifiers(chan);
680 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
681 #ifdef CONFIG_NO_HZ
682 /*
683 * Remove the nohz notifier first, so we are certain we stop
684 * the timers.
685 */
686 atomic_notifier_chain_unregister(&tick_nohz_notifier,
687 &chan->tick_nohz_notifier);
688 /*
689 * ring_buffer_nohz_lock will not be needed below, because
690 * we just removed the notifiers, which were the only source of
691 * concurrency.
692 */
693 #endif /* CONFIG_NO_HZ */
694 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
695 {
696 int ret;
697
698 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
699 &chan->cpuhp_online.node);
700 WARN_ON(ret);
701 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
702 &chan->cpuhp_prepare.node);
703 WARN_ON(ret);
704 }
705 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
706 {
707 int cpu;
708
709 #ifdef CONFIG_HOTPLUG_CPU
710 get_online_cpus();
711 chan->cpu_hp_enable = 0;
712 for_each_online_cpu(cpu) {
713 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
714 cpu);
715 lib_ring_buffer_stop_switch_timer(buf);
716 lib_ring_buffer_stop_read_timer(buf);
717 }
718 put_online_cpus();
719 unregister_cpu_notifier(&chan->cpu_hp_notifier);
720 #else
721 for_each_possible_cpu(cpu) {
722 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
723 cpu);
724 lib_ring_buffer_stop_switch_timer(buf);
725 lib_ring_buffer_stop_read_timer(buf);
726 }
727 #endif
728 }
729 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
730 } else {
731 struct lib_ring_buffer *buf = chan->backend.buf;
732
733 lib_ring_buffer_stop_switch_timer(buf);
734 lib_ring_buffer_stop_read_timer(buf);
735 }
736 channel_backend_unregister_notifiers(&chan->backend);
737 }
738
739 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
740 {
741 if (!buf->quiescent) {
742 buf->quiescent = true;
743 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
744 }
745 }
746
747 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
748 {
749 buf->quiescent = false;
750 }
751
752 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
753 {
754 int cpu;
755 const struct lib_ring_buffer_config *config = &chan->backend.config;
756
757 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
758 get_online_cpus();
759 for_each_channel_cpu(cpu, chan) {
760 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
761 cpu);
762
763 lib_ring_buffer_set_quiescent(buf);
764 }
765 put_online_cpus();
766 } else {
767 struct lib_ring_buffer *buf = chan->backend.buf;
768
769 lib_ring_buffer_set_quiescent(buf);
770 }
771 }
772 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
773
774 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
775 {
776 int cpu;
777 const struct lib_ring_buffer_config *config = &chan->backend.config;
778
779 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
780 get_online_cpus();
781 for_each_channel_cpu(cpu, chan) {
782 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
783 cpu);
784
785 lib_ring_buffer_clear_quiescent(buf);
786 }
787 put_online_cpus();
788 } else {
789 struct lib_ring_buffer *buf = chan->backend.buf;
790
791 lib_ring_buffer_clear_quiescent(buf);
792 }
793 }
794 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
795
796 static void channel_free(struct channel *chan)
797 {
798 if (chan->backend.release_priv_ops) {
799 chan->backend.release_priv_ops(chan->backend.priv_ops);
800 }
801 channel_iterator_free(chan);
802 channel_backend_free(&chan->backend);
803 kfree(chan);
804 }
805
806 /**
807 * channel_create - Create channel.
808 * @config: ring buffer instance configuration
809 * @name: name of the channel
810 * @priv: ring buffer client private data
811 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
812 * address mapping. It is used only by RING_BUFFER_STATIC
813 * configuration. It can be set to NULL for other backends.
814 * @subbuf_size: subbuffer size
815 * @num_subbuf: number of subbuffers
816 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
817 * padding to let readers get those sub-buffers.
818 * Used for live streaming.
819 * @read_timer_interval: Time interval (in us) to wake up pending readers.
820 *
821 * Holds cpu hotplug.
822 * Returns NULL on failure.
823 */
824 struct channel *channel_create(const struct lib_ring_buffer_config *config,
825 const char *name, void *priv, void *buf_addr,
826 size_t subbuf_size,
827 size_t num_subbuf, unsigned int switch_timer_interval,
828 unsigned int read_timer_interval)
829 {
830 int ret;
831 struct channel *chan;
832
833 if (lib_ring_buffer_check_config(config, switch_timer_interval,
834 read_timer_interval))
835 return NULL;
836
837 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
838 if (!chan)
839 return NULL;
840
841 ret = channel_backend_init(&chan->backend, name, config, priv,
842 subbuf_size, num_subbuf);
843 if (ret)
844 goto error;
845
846 ret = channel_iterator_init(chan);
847 if (ret)
848 goto error_free_backend;
849
850 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
851 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
852 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
853 kref_init(&chan->ref);
854 init_waitqueue_head(&chan->read_wait);
855 init_waitqueue_head(&chan->hp_wait);
856
857 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
858 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
859 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
860 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
861 &chan->cpuhp_prepare.node);
862 if (ret)
863 goto cpuhp_prepare_error;
864
865 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
866 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
867 &chan->cpuhp_online.node);
868 if (ret)
869 goto cpuhp_online_error;
870 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
871 {
872 int cpu;
873 /*
874 * In case of non-hotplug cpu, if the ring-buffer is allocated
875 * in early initcall, it will not be notified of secondary cpus.
876 * In that off case, we need to allocate for all possible cpus.
877 */
878 #ifdef CONFIG_HOTPLUG_CPU
879 chan->cpu_hp_notifier.notifier_call =
880 lib_ring_buffer_cpu_hp_callback;
881 chan->cpu_hp_notifier.priority = 6;
882 register_cpu_notifier(&chan->cpu_hp_notifier);
883
884 get_online_cpus();
885 for_each_online_cpu(cpu) {
886 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
887 cpu);
888 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
889 lib_ring_buffer_start_switch_timer(buf);
890 lib_ring_buffer_start_read_timer(buf);
891 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
892 }
893 chan->cpu_hp_enable = 1;
894 put_online_cpus();
895 #else
896 for_each_possible_cpu(cpu) {
897 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
898 cpu);
899 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
900 lib_ring_buffer_start_switch_timer(buf);
901 lib_ring_buffer_start_read_timer(buf);
902 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
903 }
904 #endif
905 }
906 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
907
908 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
909 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
910 chan->tick_nohz_notifier.notifier_call =
911 ring_buffer_tick_nohz_callback;
912 chan->tick_nohz_notifier.priority = ~0U;
913 atomic_notifier_chain_register(&tick_nohz_notifier,
914 &chan->tick_nohz_notifier);
915 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
916
917 } else {
918 struct lib_ring_buffer *buf = chan->backend.buf;
919
920 lib_ring_buffer_start_switch_timer(buf);
921 lib_ring_buffer_start_read_timer(buf);
922 }
923
924 return chan;
925
926 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
927 cpuhp_online_error:
928 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
929 &chan->cpuhp_prepare.node);
930 WARN_ON(ret);
931 cpuhp_prepare_error:
932 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
933 error_free_backend:
934 channel_backend_free(&chan->backend);
935 error:
936 kfree(chan);
937 return NULL;
938 }
939 EXPORT_SYMBOL_GPL(channel_create);
940
941 static
942 void channel_release(struct kref *kref)
943 {
944 struct channel *chan = container_of(kref, struct channel, ref);
945 channel_free(chan);
946 }
947
948 /**
949 * channel_destroy - Finalize, wait for q.s. and destroy channel.
950 * @chan: channel to destroy
951 *
952 * Holds cpu hotplug.
953 * Call "destroy" callback, finalize channels, and then decrement the
954 * channel reference count. Note that when readers have completed data
955 * consumption of finalized channels, get_subbuf() will return -ENODATA.
956 * They should release their handle at that point. Returns the private
957 * data pointer.
958 */
959 void *channel_destroy(struct channel *chan)
960 {
961 int cpu;
962 const struct lib_ring_buffer_config *config = &chan->backend.config;
963 void *priv;
964
965 channel_unregister_notifiers(chan);
966
967 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
968 /*
969 * No need to hold cpu hotplug, because all notifiers have been
970 * unregistered.
971 */
972 for_each_channel_cpu(cpu, chan) {
973 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
974 cpu);
975
976 if (config->cb.buffer_finalize)
977 config->cb.buffer_finalize(buf,
978 chan->backend.priv,
979 cpu);
980 if (buf->backend.allocated)
981 lib_ring_buffer_set_quiescent(buf);
982 /*
983 * Perform flush before writing to finalized.
984 */
985 smp_wmb();
986 ACCESS_ONCE(buf->finalized) = 1;
987 wake_up_interruptible(&buf->read_wait);
988 }
989 } else {
990 struct lib_ring_buffer *buf = chan->backend.buf;
991
992 if (config->cb.buffer_finalize)
993 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
994 if (buf->backend.allocated)
995 lib_ring_buffer_set_quiescent(buf);
996 /*
997 * Perform flush before writing to finalized.
998 */
999 smp_wmb();
1000 ACCESS_ONCE(buf->finalized) = 1;
1001 wake_up_interruptible(&buf->read_wait);
1002 }
1003 ACCESS_ONCE(chan->finalized) = 1;
1004 wake_up_interruptible(&chan->hp_wait);
1005 wake_up_interruptible(&chan->read_wait);
1006 priv = chan->backend.priv;
1007 kref_put(&chan->ref, channel_release);
1008 return priv;
1009 }
1010 EXPORT_SYMBOL_GPL(channel_destroy);
1011
1012 struct lib_ring_buffer *channel_get_ring_buffer(
1013 const struct lib_ring_buffer_config *config,
1014 struct channel *chan, int cpu)
1015 {
1016 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1017 return chan->backend.buf;
1018 else
1019 return per_cpu_ptr(chan->backend.buf, cpu);
1020 }
1021 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1022
1023 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1024 {
1025 struct channel *chan = buf->backend.chan;
1026
1027 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1028 return -EBUSY;
1029 if (!lttng_kref_get(&chan->ref)) {
1030 atomic_long_dec(&buf->active_readers);
1031 return -EOVERFLOW;
1032 }
1033 lttng_smp_mb__after_atomic();
1034 return 0;
1035 }
1036 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1037
1038 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1039 {
1040 struct channel *chan = buf->backend.chan;
1041
1042 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1043 lttng_smp_mb__before_atomic();
1044 atomic_long_dec(&buf->active_readers);
1045 kref_put(&chan->ref, channel_release);
1046 }
1047 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1048
1049 /*
1050 * Promote compiler barrier to a smp_mb().
1051 * For the specific ring buffer case, this IPI call should be removed if the
1052 * architecture does not reorder writes. This should eventually be provided by
1053 * a separate architecture-specific infrastructure.
1054 */
1055 static void remote_mb(void *info)
1056 {
1057 smp_mb();
1058 }
1059
1060 /**
1061 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1062 * @buf: ring buffer
1063 * @consumed: consumed count indicating the position where to read
1064 * @produced: produced count, indicates position when to stop reading
1065 *
1066 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1067 * data to read at consumed position, or 0 if the get operation succeeds.
1068 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1069 */
1070
1071 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1072 unsigned long *consumed, unsigned long *produced)
1073 {
1074 struct channel *chan = buf->backend.chan;
1075 const struct lib_ring_buffer_config *config = &chan->backend.config;
1076 unsigned long consumed_cur, write_offset;
1077 int finalized;
1078
1079 retry:
1080 finalized = ACCESS_ONCE(buf->finalized);
1081 /*
1082 * Read finalized before counters.
1083 */
1084 smp_rmb();
1085 consumed_cur = atomic_long_read(&buf->consumed);
1086 /*
1087 * No need to issue a memory barrier between consumed count read and
1088 * write offset read, because consumed count can only change
1089 * concurrently in overwrite mode, and we keep a sequence counter
1090 * identifier derived from the write offset to check we are getting
1091 * the same sub-buffer we are expecting (the sub-buffers are atomically
1092 * "tagged" upon writes, tags are checked upon read).
1093 */
1094 write_offset = v_read(config, &buf->offset);
1095
1096 /*
1097 * Check that we are not about to read the same subbuffer in
1098 * which the writer head is.
1099 */
1100 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1101 == 0)
1102 goto nodata;
1103
1104 *consumed = consumed_cur;
1105 *produced = subbuf_trunc(write_offset, chan);
1106
1107 return 0;
1108
1109 nodata:
1110 /*
1111 * The memory barriers __wait_event()/wake_up_interruptible() take care
1112 * of "raw_spin_is_locked" memory ordering.
1113 */
1114 if (finalized)
1115 return -ENODATA;
1116 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1117 goto retry;
1118 else
1119 return -EAGAIN;
1120 }
1121 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1122
1123 /**
1124 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1125 * are saved regardless of whether the consumed and produced positions are
1126 * in the same subbuffer.
1127 * @buf: ring buffer
1128 * @consumed: consumed byte count indicating the last position read
1129 * @produced: produced byte count indicating the last position written
1130 *
1131 * This function is meant to provide information on the exact producer and
1132 * consumer positions without regard for the "snapshot" feature.
1133 */
1134 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1135 unsigned long *consumed, unsigned long *produced)
1136 {
1137 struct channel *chan = buf->backend.chan;
1138 const struct lib_ring_buffer_config *config = &chan->backend.config;
1139
1140 smp_rmb();
1141 *consumed = atomic_long_read(&buf->consumed);
1142 /*
1143 * No need to issue a memory barrier between consumed count read and
1144 * write offset read, because consumed count can only change
1145 * concurrently in overwrite mode, and we keep a sequence counter
1146 * identifier derived from the write offset to check we are getting
1147 * the same sub-buffer we are expecting (the sub-buffers are atomically
1148 * "tagged" upon writes, tags are checked upon read).
1149 */
1150 *produced = v_read(config, &buf->offset);
1151 return 0;
1152 }
1153
1154 /**
1155 * lib_ring_buffer_put_snapshot - move consumed counter forward
1156 *
1157 * Should only be called from consumer context.
1158 * @buf: ring buffer
1159 * @consumed_new: new consumed count value
1160 */
1161 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1162 unsigned long consumed_new)
1163 {
1164 struct lib_ring_buffer_backend *bufb = &buf->backend;
1165 struct channel *chan = bufb->chan;
1166 unsigned long consumed;
1167
1168 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1169
1170 /*
1171 * Only push the consumed value forward.
1172 * If the consumed cmpxchg fails, this is because we have been pushed by
1173 * the writer in flight recorder mode.
1174 */
1175 consumed = atomic_long_read(&buf->consumed);
1176 while ((long) consumed - (long) consumed_new < 0)
1177 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1178 consumed_new);
1179 /* Wake-up the metadata producer */
1180 wake_up_interruptible(&buf->write_wait);
1181 }
1182 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1183
1184 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1185 static void lib_ring_buffer_flush_read_subbuf_dcache(
1186 const struct lib_ring_buffer_config *config,
1187 struct channel *chan,
1188 struct lib_ring_buffer *buf)
1189 {
1190 struct lib_ring_buffer_backend_pages *pages;
1191 unsigned long sb_bindex, id, i, nr_pages;
1192
1193 if (config->output != RING_BUFFER_MMAP)
1194 return;
1195
1196 /*
1197 * Architectures with caches aliased on virtual addresses may
1198 * use different cache lines for the linear mapping vs
1199 * user-space memory mapping. Given that the ring buffer is
1200 * based on the kernel linear mapping, aligning it with the
1201 * user-space mapping is not straightforward, and would require
1202 * extra TLB entries. Therefore, simply flush the dcache for the
1203 * entire sub-buffer before reading it.
1204 */
1205 id = buf->backend.buf_rsb.id;
1206 sb_bindex = subbuffer_id_get_index(config, id);
1207 pages = buf->backend.array[sb_bindex];
1208 nr_pages = buf->backend.num_pages_per_subbuf;
1209 for (i = 0; i < nr_pages; i++) {
1210 struct lib_ring_buffer_backend_page *backend_page;
1211
1212 backend_page = &pages->p[i];
1213 flush_dcache_page(pfn_to_page(backend_page->pfn));
1214 }
1215 }
1216 #else
1217 static void lib_ring_buffer_flush_read_subbuf_dcache(
1218 const struct lib_ring_buffer_config *config,
1219 struct channel *chan,
1220 struct lib_ring_buffer *buf)
1221 {
1222 }
1223 #endif
1224
1225 /**
1226 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1227 * @buf: ring buffer
1228 * @consumed: consumed count indicating the position where to read
1229 *
1230 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1231 * data to read at consumed position, or 0 if the get operation succeeds.
1232 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1233 */
1234 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1235 unsigned long consumed)
1236 {
1237 struct channel *chan = buf->backend.chan;
1238 const struct lib_ring_buffer_config *config = &chan->backend.config;
1239 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1240 int ret;
1241 int finalized;
1242
1243 if (buf->get_subbuf) {
1244 /*
1245 * Reader is trying to get a subbuffer twice.
1246 */
1247 CHAN_WARN_ON(chan, 1);
1248 return -EBUSY;
1249 }
1250 retry:
1251 finalized = ACCESS_ONCE(buf->finalized);
1252 /*
1253 * Read finalized before counters.
1254 */
1255 smp_rmb();
1256 consumed_cur = atomic_long_read(&buf->consumed);
1257 consumed_idx = subbuf_index(consumed, chan);
1258 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1259 /*
1260 * Make sure we read the commit count before reading the buffer
1261 * data and the write offset. Correct consumed offset ordering
1262 * wrt commit count is insured by the use of cmpxchg to update
1263 * the consumed offset.
1264 * smp_call_function_single can fail if the remote CPU is offline,
1265 * this is OK because then there is no wmb to execute there.
1266 * If our thread is executing on the same CPU as the on the buffers
1267 * belongs to, we don't have to synchronize it at all. If we are
1268 * migrated, the scheduler will take care of the memory barriers.
1269 * Normally, smp_call_function_single() should ensure program order when
1270 * executing the remote function, which implies that it surrounds the
1271 * function execution with :
1272 * smp_mb()
1273 * send IPI
1274 * csd_lock_wait
1275 * recv IPI
1276 * smp_mb()
1277 * exec. function
1278 * smp_mb()
1279 * csd unlock
1280 * smp_mb()
1281 *
1282 * However, smp_call_function_single() does not seem to clearly execute
1283 * such barriers. It depends on spinlock semantic to provide the barrier
1284 * before executing the IPI and, when busy-looping, csd_lock_wait only
1285 * executes smp_mb() when it has to wait for the other CPU.
1286 *
1287 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1288 * required ourself, even if duplicated. It has no performance impact
1289 * anyway.
1290 *
1291 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1292 * read and write vs write. They do not ensure core synchronization. We
1293 * really have to ensure total order between the 3 barriers running on
1294 * the 2 CPUs.
1295 */
1296 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1297 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1298 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1299 if (raw_smp_processor_id() != buf->backend.cpu) {
1300 /* Total order with IPI handler smp_mb() */
1301 smp_mb();
1302 smp_call_function_single(buf->backend.cpu,
1303 remote_mb, NULL, 1);
1304 /* Total order with IPI handler smp_mb() */
1305 smp_mb();
1306 }
1307 } else {
1308 /* Total order with IPI handler smp_mb() */
1309 smp_mb();
1310 smp_call_function(remote_mb, NULL, 1);
1311 /* Total order with IPI handler smp_mb() */
1312 smp_mb();
1313 }
1314 } else {
1315 /*
1316 * Local rmb to match the remote wmb to read the commit count
1317 * before the buffer data and the write offset.
1318 */
1319 smp_rmb();
1320 }
1321
1322 write_offset = v_read(config, &buf->offset);
1323
1324 /*
1325 * Check that the buffer we are getting is after or at consumed_cur
1326 * position.
1327 */
1328 if ((long) subbuf_trunc(consumed, chan)
1329 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1330 goto nodata;
1331
1332 /*
1333 * Check that the subbuffer we are trying to consume has been
1334 * already fully committed.
1335 */
1336 if (((commit_count - chan->backend.subbuf_size)
1337 & chan->commit_count_mask)
1338 - (buf_trunc(consumed, chan)
1339 >> chan->backend.num_subbuf_order)
1340 != 0)
1341 goto nodata;
1342
1343 /*
1344 * Check that we are not about to read the same subbuffer in
1345 * which the writer head is.
1346 */
1347 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1348 == 0)
1349 goto nodata;
1350
1351 /*
1352 * Failure to get the subbuffer causes a busy-loop retry without going
1353 * to a wait queue. These are caused by short-lived race windows where
1354 * the writer is getting access to a subbuffer we were trying to get
1355 * access to. Also checks that the "consumed" buffer count we are
1356 * looking for matches the one contained in the subbuffer id.
1357 */
1358 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1359 consumed_idx, buf_trunc_val(consumed, chan));
1360 if (ret)
1361 goto retry;
1362 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1363
1364 buf->get_subbuf_consumed = consumed;
1365 buf->get_subbuf = 1;
1366
1367 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1368
1369 return 0;
1370
1371 nodata:
1372 /*
1373 * The memory barriers __wait_event()/wake_up_interruptible() take care
1374 * of "raw_spin_is_locked" memory ordering.
1375 */
1376 if (finalized)
1377 return -ENODATA;
1378 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1379 goto retry;
1380 else
1381 return -EAGAIN;
1382 }
1383 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1384
1385 /**
1386 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1387 * @buf: ring buffer
1388 */
1389 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1390 {
1391 struct lib_ring_buffer_backend *bufb = &buf->backend;
1392 struct channel *chan = bufb->chan;
1393 const struct lib_ring_buffer_config *config = &chan->backend.config;
1394 unsigned long read_sb_bindex, consumed_idx, consumed;
1395
1396 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1397
1398 if (!buf->get_subbuf) {
1399 /*
1400 * Reader puts a subbuffer it did not get.
1401 */
1402 CHAN_WARN_ON(chan, 1);
1403 return;
1404 }
1405 consumed = buf->get_subbuf_consumed;
1406 buf->get_subbuf = 0;
1407
1408 /*
1409 * Clear the records_unread counter. (overruns counter)
1410 * Can still be non-zero if a file reader simply grabbed the data
1411 * without using iterators.
1412 * Can be below zero if an iterator is used on a snapshot more than
1413 * once.
1414 */
1415 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1416 v_add(config, v_read(config,
1417 &bufb->array[read_sb_bindex]->records_unread),
1418 &bufb->records_read);
1419 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1420 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1421 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1422 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1423
1424 /*
1425 * Exchange the reader subbuffer with the one we put in its place in the
1426 * writer subbuffer table. Expect the original consumed count. If
1427 * update_read_sb_index fails, this is because the writer updated the
1428 * subbuffer concurrently. We should therefore keep the subbuffer we
1429 * currently have: it has become invalid to try reading this sub-buffer
1430 * consumed count value anyway.
1431 */
1432 consumed_idx = subbuf_index(consumed, chan);
1433 update_read_sb_index(config, &buf->backend, &chan->backend,
1434 consumed_idx, buf_trunc_val(consumed, chan));
1435 /*
1436 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1437 * if the writer concurrently updated it.
1438 */
1439 }
1440 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1441
1442 /*
1443 * cons_offset is an iterator on all subbuffer offsets between the reader
1444 * position and the writer position. (inclusive)
1445 */
1446 static
1447 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1448 struct channel *chan,
1449 unsigned long cons_offset,
1450 int cpu)
1451 {
1452 const struct lib_ring_buffer_config *config = &chan->backend.config;
1453 unsigned long cons_idx, commit_count, commit_count_sb;
1454
1455 cons_idx = subbuf_index(cons_offset, chan);
1456 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1457 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1458
1459 if (subbuf_offset(commit_count, chan) != 0)
1460 printk(KERN_WARNING
1461 "ring buffer %s, cpu %d: "
1462 "commit count in subbuffer %lu,\n"
1463 "expecting multiples of %lu bytes\n"
1464 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1465 chan->backend.name, cpu, cons_idx,
1466 chan->backend.subbuf_size,
1467 commit_count, commit_count_sb);
1468
1469 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1470 chan->backend.name, cpu, commit_count);
1471 }
1472
1473 static
1474 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1475 struct channel *chan,
1476 void *priv, int cpu)
1477 {
1478 const struct lib_ring_buffer_config *config = &chan->backend.config;
1479 unsigned long write_offset, cons_offset;
1480
1481 /*
1482 * No need to order commit_count, write_offset and cons_offset reads
1483 * because we execute at teardown when no more writer nor reader
1484 * references are left.
1485 */
1486 write_offset = v_read(config, &buf->offset);
1487 cons_offset = atomic_long_read(&buf->consumed);
1488 if (write_offset != cons_offset)
1489 printk(KERN_DEBUG
1490 "ring buffer %s, cpu %d: "
1491 "non-consumed data\n"
1492 " [ %lu bytes written, %lu bytes read ]\n",
1493 chan->backend.name, cpu, write_offset, cons_offset);
1494
1495 for (cons_offset = atomic_long_read(&buf->consumed);
1496 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1497 chan)
1498 - cons_offset) > 0;
1499 cons_offset = subbuf_align(cons_offset, chan))
1500 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1501 cpu);
1502 }
1503
1504 static
1505 void lib_ring_buffer_print_errors(struct channel *chan,
1506 struct lib_ring_buffer *buf, int cpu)
1507 {
1508 const struct lib_ring_buffer_config *config = &chan->backend.config;
1509 void *priv = chan->backend.priv;
1510
1511 if (!strcmp(chan->backend.name, "relay-metadata")) {
1512 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1513 "%lu records overrun\n",
1514 chan->backend.name,
1515 v_read(config, &buf->records_count),
1516 v_read(config, &buf->records_overrun));
1517 } else {
1518 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1519 "%lu records overrun\n",
1520 chan->backend.name, cpu,
1521 v_read(config, &buf->records_count),
1522 v_read(config, &buf->records_overrun));
1523
1524 if (v_read(config, &buf->records_lost_full)
1525 || v_read(config, &buf->records_lost_wrap)
1526 || v_read(config, &buf->records_lost_big))
1527 printk(KERN_WARNING
1528 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1529 " [ %lu buffer full, %lu nest buffer wrap-around, "
1530 "%lu event too big ]\n",
1531 chan->backend.name, cpu,
1532 v_read(config, &buf->records_lost_full),
1533 v_read(config, &buf->records_lost_wrap),
1534 v_read(config, &buf->records_lost_big));
1535 }
1536 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1537 }
1538
1539 /*
1540 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1541 *
1542 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1543 */
1544 static
1545 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1546 struct channel *chan,
1547 struct switch_offsets *offsets,
1548 u64 tsc)
1549 {
1550 const struct lib_ring_buffer_config *config = &chan->backend.config;
1551 unsigned long oldidx = subbuf_index(offsets->old, chan);
1552 unsigned long commit_count;
1553 struct commit_counters_hot *cc_hot;
1554
1555 config->cb.buffer_begin(buf, tsc, oldidx);
1556
1557 /*
1558 * Order all writes to buffer before the commit count update that will
1559 * determine that the subbuffer is full.
1560 */
1561 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1562 /*
1563 * Must write slot data before incrementing commit count. This
1564 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1565 * by get_subbuf().
1566 */
1567 barrier();
1568 } else
1569 smp_wmb();
1570 cc_hot = &buf->commit_hot[oldidx];
1571 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1572 commit_count = v_read(config, &cc_hot->cc);
1573 /* Check if the written buffer has to be delivered */
1574 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1575 commit_count, oldidx, tsc);
1576 lib_ring_buffer_write_commit_counter(config, buf, chan,
1577 offsets->old + config->cb.subbuffer_header_size(),
1578 commit_count, cc_hot);
1579 }
1580
1581 /*
1582 * lib_ring_buffer_switch_old_end: switch old subbuffer
1583 *
1584 * Note : offset_old should never be 0 here. It is ok, because we never perform
1585 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1586 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1587 * subbuffer.
1588 */
1589 static
1590 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1591 struct channel *chan,
1592 struct switch_offsets *offsets,
1593 u64 tsc)
1594 {
1595 const struct lib_ring_buffer_config *config = &chan->backend.config;
1596 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1597 unsigned long commit_count, padding_size, data_size;
1598 struct commit_counters_hot *cc_hot;
1599
1600 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1601 padding_size = chan->backend.subbuf_size - data_size;
1602 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1603
1604 /*
1605 * Order all writes to buffer before the commit count update that will
1606 * determine that the subbuffer is full.
1607 */
1608 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1609 /*
1610 * Must write slot data before incrementing commit count. This
1611 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1612 * by get_subbuf().
1613 */
1614 barrier();
1615 } else
1616 smp_wmb();
1617 cc_hot = &buf->commit_hot[oldidx];
1618 v_add(config, padding_size, &cc_hot->cc);
1619 commit_count = v_read(config, &cc_hot->cc);
1620 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1621 commit_count, oldidx, tsc);
1622 lib_ring_buffer_write_commit_counter(config, buf, chan,
1623 offsets->old + padding_size, commit_count,
1624 cc_hot);
1625 }
1626
1627 /*
1628 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1629 *
1630 * This code can be executed unordered : writers may already have written to the
1631 * sub-buffer before this code gets executed, caution. The commit makes sure
1632 * that this code is executed before the deliver of this sub-buffer.
1633 */
1634 static
1635 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1636 struct channel *chan,
1637 struct switch_offsets *offsets,
1638 u64 tsc)
1639 {
1640 const struct lib_ring_buffer_config *config = &chan->backend.config;
1641 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1642 unsigned long commit_count;
1643 struct commit_counters_hot *cc_hot;
1644
1645 config->cb.buffer_begin(buf, tsc, beginidx);
1646
1647 /*
1648 * Order all writes to buffer before the commit count update that will
1649 * determine that the subbuffer is full.
1650 */
1651 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1652 /*
1653 * Must write slot data before incrementing commit count. This
1654 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1655 * by get_subbuf().
1656 */
1657 barrier();
1658 } else
1659 smp_wmb();
1660 cc_hot = &buf->commit_hot[beginidx];
1661 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1662 commit_count = v_read(config, &cc_hot->cc);
1663 /* Check if the written buffer has to be delivered */
1664 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1665 commit_count, beginidx, tsc);
1666 lib_ring_buffer_write_commit_counter(config, buf, chan,
1667 offsets->begin + config->cb.subbuffer_header_size(),
1668 commit_count, cc_hot);
1669 }
1670
1671 /*
1672 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1673 *
1674 * Calls subbuffer_set_data_size() to set the data size of the current
1675 * sub-buffer. We do not need to perform check_deliver nor commit here,
1676 * since this task will be done by the "commit" of the event for which
1677 * we are currently doing the space reservation.
1678 */
1679 static
1680 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1681 struct channel *chan,
1682 struct switch_offsets *offsets,
1683 u64 tsc)
1684 {
1685 const struct lib_ring_buffer_config *config = &chan->backend.config;
1686 unsigned long endidx, data_size;
1687
1688 endidx = subbuf_index(offsets->end - 1, chan);
1689 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1690 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1691 }
1692
1693 /*
1694 * Returns :
1695 * 0 if ok
1696 * !0 if execution must be aborted.
1697 */
1698 static
1699 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1700 struct lib_ring_buffer *buf,
1701 struct channel *chan,
1702 struct switch_offsets *offsets,
1703 u64 *tsc)
1704 {
1705 const struct lib_ring_buffer_config *config = &chan->backend.config;
1706 unsigned long off, reserve_commit_diff;
1707
1708 offsets->begin = v_read(config, &buf->offset);
1709 offsets->old = offsets->begin;
1710 offsets->switch_old_start = 0;
1711 off = subbuf_offset(offsets->begin, chan);
1712
1713 *tsc = config->cb.ring_buffer_clock_read(chan);
1714
1715 /*
1716 * Ensure we flush the header of an empty subbuffer when doing the
1717 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1718 * total data gathering duration even if there were no records saved
1719 * after the last buffer switch.
1720 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1721 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1722 * subbuffer header as appropriate.
1723 * The next record that reserves space will be responsible for
1724 * populating the following subbuffer header. We choose not to populate
1725 * the next subbuffer header here because we want to be able to use
1726 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1727 * buffer flush, which must guarantee that all the buffer content
1728 * (records and header timestamps) are visible to the reader. This is
1729 * required for quiescence guarantees for the fusion merge.
1730 */
1731 if (mode != SWITCH_FLUSH && !off)
1732 return -1; /* we do not have to switch : buffer is empty */
1733
1734 if (unlikely(off == 0)) {
1735 unsigned long sb_index, commit_count;
1736
1737 /*
1738 * We are performing a SWITCH_FLUSH. At this stage, there are no
1739 * concurrent writes into the buffer.
1740 *
1741 * The client does not save any header information. Don't
1742 * switch empty subbuffer on finalize, because it is invalid to
1743 * deliver a completely empty subbuffer.
1744 */
1745 if (!config->cb.subbuffer_header_size())
1746 return -1;
1747
1748 /* Test new buffer integrity */
1749 sb_index = subbuf_index(offsets->begin, chan);
1750 commit_count = v_read(config,
1751 &buf->commit_cold[sb_index].cc_sb);
1752 reserve_commit_diff =
1753 (buf_trunc(offsets->begin, chan)
1754 >> chan->backend.num_subbuf_order)
1755 - (commit_count & chan->commit_count_mask);
1756 if (likely(reserve_commit_diff == 0)) {
1757 /* Next subbuffer not being written to. */
1758 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1759 subbuf_trunc(offsets->begin, chan)
1760 - subbuf_trunc((unsigned long)
1761 atomic_long_read(&buf->consumed), chan)
1762 >= chan->backend.buf_size)) {
1763 /*
1764 * We do not overwrite non consumed buffers
1765 * and we are full : don't switch.
1766 */
1767 return -1;
1768 } else {
1769 /*
1770 * Next subbuffer not being written to, and we
1771 * are either in overwrite mode or the buffer is
1772 * not full. It's safe to write in this new
1773 * subbuffer.
1774 */
1775 }
1776 } else {
1777 /*
1778 * Next subbuffer reserve offset does not match the
1779 * commit offset. Don't perform switch in
1780 * producer-consumer and overwrite mode. Caused by
1781 * either a writer OOPS or too many nested writes over a
1782 * reserve/commit pair.
1783 */
1784 return -1;
1785 }
1786
1787 /*
1788 * Need to write the subbuffer start header on finalize.
1789 */
1790 offsets->switch_old_start = 1;
1791 }
1792 offsets->begin = subbuf_align(offsets->begin, chan);
1793 /* Note: old points to the next subbuf at offset 0 */
1794 offsets->end = offsets->begin;
1795 return 0;
1796 }
1797
1798 /*
1799 * Force a sub-buffer switch. This operation is completely reentrant : can be
1800 * called while tracing is active with absolutely no lock held.
1801 *
1802 * Note, however, that as a v_cmpxchg is used for some atomic
1803 * operations, this function must be called from the CPU which owns the buffer
1804 * for a ACTIVE flush.
1805 */
1806 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1807 {
1808 struct channel *chan = buf->backend.chan;
1809 const struct lib_ring_buffer_config *config = &chan->backend.config;
1810 struct switch_offsets offsets;
1811 unsigned long oldidx;
1812 u64 tsc;
1813
1814 offsets.size = 0;
1815
1816 /*
1817 * Perform retryable operations.
1818 */
1819 do {
1820 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1821 &tsc))
1822 return; /* Switch not needed */
1823 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1824 != offsets.old);
1825
1826 /*
1827 * Atomically update last_tsc. This update races against concurrent
1828 * atomic updates, but the race will always cause supplementary full TSC
1829 * records, never the opposite (missing a full TSC record when it would
1830 * be needed).
1831 */
1832 save_last_tsc(config, buf, tsc);
1833
1834 /*
1835 * Push the reader if necessary
1836 */
1837 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1838
1839 oldidx = subbuf_index(offsets.old, chan);
1840 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1841
1842 /*
1843 * May need to populate header start on SWITCH_FLUSH.
1844 */
1845 if (offsets.switch_old_start) {
1846 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1847 offsets.old += config->cb.subbuffer_header_size();
1848 }
1849
1850 /*
1851 * Switch old subbuffer.
1852 */
1853 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1854 }
1855 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1856
1857 struct switch_param {
1858 struct lib_ring_buffer *buf;
1859 enum switch_mode mode;
1860 };
1861
1862 static void remote_switch(void *info)
1863 {
1864 struct switch_param *param = info;
1865 struct lib_ring_buffer *buf = param->buf;
1866
1867 lib_ring_buffer_switch_slow(buf, param->mode);
1868 }
1869
1870 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1871 enum switch_mode mode)
1872 {
1873 struct channel *chan = buf->backend.chan;
1874 const struct lib_ring_buffer_config *config = &chan->backend.config;
1875 int ret;
1876 struct switch_param param;
1877
1878 /*
1879 * With global synchronization we don't need to use the IPI scheme.
1880 */
1881 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1882 lib_ring_buffer_switch_slow(buf, mode);
1883 return;
1884 }
1885
1886 /*
1887 * Disabling preemption ensures two things: first, that the
1888 * target cpu is not taken concurrently offline while we are within
1889 * smp_call_function_single(). Secondly, if it happens that the
1890 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1891 * needs to be protected from CPU hotplug handlers, which can
1892 * also perform a remote subbuffer switch.
1893 */
1894 preempt_disable();
1895 param.buf = buf;
1896 param.mode = mode;
1897 ret = smp_call_function_single(buf->backend.cpu,
1898 remote_switch, &param, 1);
1899 if (ret) {
1900 /* Remote CPU is offline, do it ourself. */
1901 lib_ring_buffer_switch_slow(buf, mode);
1902 }
1903 preempt_enable();
1904 }
1905
1906 /* Switch sub-buffer if current sub-buffer is non-empty. */
1907 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1908 {
1909 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1910 }
1911 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1912
1913 /* Switch sub-buffer even if current sub-buffer is empty. */
1914 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1915 {
1916 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1917 }
1918 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1919
1920 /*
1921 * Returns :
1922 * 0 if ok
1923 * -ENOSPC if event size is too large for packet.
1924 * -ENOBUFS if there is currently not enough space in buffer for the event.
1925 * -EIO if data cannot be written into the buffer for any other reason.
1926 */
1927 static
1928 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1929 struct channel *chan,
1930 struct switch_offsets *offsets,
1931 struct lib_ring_buffer_ctx *ctx,
1932 void *client_ctx)
1933 {
1934 const struct lib_ring_buffer_config *config = &chan->backend.config;
1935 unsigned long reserve_commit_diff, offset_cmp;
1936
1937 retry:
1938 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1939 offsets->old = offsets->begin;
1940 offsets->switch_new_start = 0;
1941 offsets->switch_new_end = 0;
1942 offsets->switch_old_end = 0;
1943 offsets->pre_header_padding = 0;
1944
1945 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1946 if ((int64_t) ctx->tsc == -EIO)
1947 return -EIO;
1948
1949 if (last_tsc_overflow(config, buf, ctx->tsc))
1950 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1951
1952 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1953 offsets->switch_new_start = 1; /* For offsets->begin */
1954 } else {
1955 offsets->size = config->cb.record_header_size(config, chan,
1956 offsets->begin,
1957 &offsets->pre_header_padding,
1958 ctx, client_ctx);
1959 offsets->size +=
1960 lib_ring_buffer_align(offsets->begin + offsets->size,
1961 ctx->largest_align)
1962 + ctx->data_size;
1963 if (unlikely(subbuf_offset(offsets->begin, chan) +
1964 offsets->size > chan->backend.subbuf_size)) {
1965 offsets->switch_old_end = 1; /* For offsets->old */
1966 offsets->switch_new_start = 1; /* For offsets->begin */
1967 }
1968 }
1969 if (unlikely(offsets->switch_new_start)) {
1970 unsigned long sb_index, commit_count;
1971
1972 /*
1973 * We are typically not filling the previous buffer completely.
1974 */
1975 if (likely(offsets->switch_old_end))
1976 offsets->begin = subbuf_align(offsets->begin, chan);
1977 offsets->begin = offsets->begin
1978 + config->cb.subbuffer_header_size();
1979 /* Test new buffer integrity */
1980 sb_index = subbuf_index(offsets->begin, chan);
1981 /*
1982 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1983 * lib_ring_buffer_check_deliver() has the matching
1984 * memory barriers required around commit_cold cc_sb
1985 * updates to ensure reserve and commit counter updates
1986 * are not seen reordered when updated by another CPU.
1987 */
1988 smp_rmb();
1989 commit_count = v_read(config,
1990 &buf->commit_cold[sb_index].cc_sb);
1991 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1992 smp_rmb();
1993 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1994 /*
1995 * The reserve counter have been concurrently updated
1996 * while we read the commit counter. This means the
1997 * commit counter we read might not match buf->offset
1998 * due to concurrent update. We therefore need to retry.
1999 */
2000 goto retry;
2001 }
2002 reserve_commit_diff =
2003 (buf_trunc(offsets->begin, chan)
2004 >> chan->backend.num_subbuf_order)
2005 - (commit_count & chan->commit_count_mask);
2006 if (likely(reserve_commit_diff == 0)) {
2007 /* Next subbuffer not being written to. */
2008 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2009 subbuf_trunc(offsets->begin, chan)
2010 - subbuf_trunc((unsigned long)
2011 atomic_long_read(&buf->consumed), chan)
2012 >= chan->backend.buf_size)) {
2013 /*
2014 * We do not overwrite non consumed buffers
2015 * and we are full : record is lost.
2016 */
2017 v_inc(config, &buf->records_lost_full);
2018 return -ENOBUFS;
2019 } else {
2020 /*
2021 * Next subbuffer not being written to, and we
2022 * are either in overwrite mode or the buffer is
2023 * not full. It's safe to write in this new
2024 * subbuffer.
2025 */
2026 }
2027 } else {
2028 /*
2029 * Next subbuffer reserve offset does not match the
2030 * commit offset, and this did not involve update to the
2031 * reserve counter. Drop record in producer-consumer and
2032 * overwrite mode. Caused by either a writer OOPS or
2033 * too many nested writes over a reserve/commit pair.
2034 */
2035 v_inc(config, &buf->records_lost_wrap);
2036 return -EIO;
2037 }
2038 offsets->size =
2039 config->cb.record_header_size(config, chan,
2040 offsets->begin,
2041 &offsets->pre_header_padding,
2042 ctx, client_ctx);
2043 offsets->size +=
2044 lib_ring_buffer_align(offsets->begin + offsets->size,
2045 ctx->largest_align)
2046 + ctx->data_size;
2047 if (unlikely(subbuf_offset(offsets->begin, chan)
2048 + offsets->size > chan->backend.subbuf_size)) {
2049 /*
2050 * Record too big for subbuffers, report error, don't
2051 * complete the sub-buffer switch.
2052 */
2053 v_inc(config, &buf->records_lost_big);
2054 return -ENOSPC;
2055 } else {
2056 /*
2057 * We just made a successful buffer switch and the
2058 * record fits in the new subbuffer. Let's write.
2059 */
2060 }
2061 } else {
2062 /*
2063 * Record fits in the current buffer and we are not on a switch
2064 * boundary. It's safe to write.
2065 */
2066 }
2067 offsets->end = offsets->begin + offsets->size;
2068
2069 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2070 /*
2071 * The offset_end will fall at the very beginning of the next
2072 * subbuffer.
2073 */
2074 offsets->switch_new_end = 1; /* For offsets->begin */
2075 }
2076 return 0;
2077 }
2078
2079 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2080 {
2081 const struct lib_ring_buffer_config *config = &chan->backend.config;
2082
2083 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2084 return per_cpu_ptr(chan->backend.buf, cpu);
2085 else
2086 return chan->backend.buf;
2087 }
2088
2089 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2090 {
2091 const struct lib_ring_buffer_config *config = &chan->backend.config;
2092 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2093
2094 v_inc(config, &buf->records_lost_big);
2095 }
2096 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2097
2098 /**
2099 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2100 * @ctx: ring buffer context.
2101 *
2102 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2103 * -EIO for other errors, else returns 0.
2104 * It will take care of sub-buffer switching.
2105 */
2106 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx,
2107 void *client_ctx)
2108 {
2109 struct channel *chan = ctx->chan;
2110 const struct lib_ring_buffer_config *config = &chan->backend.config;
2111 struct lib_ring_buffer *buf;
2112 struct switch_offsets offsets;
2113 int ret;
2114
2115 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2116 offsets.size = 0;
2117
2118 do {
2119 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2120 ctx, client_ctx);
2121 if (unlikely(ret))
2122 return ret;
2123 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2124 offsets.end)
2125 != offsets.old));
2126
2127 /*
2128 * Atomically update last_tsc. This update races against concurrent
2129 * atomic updates, but the race will always cause supplementary full TSC
2130 * records, never the opposite (missing a full TSC record when it would
2131 * be needed).
2132 */
2133 save_last_tsc(config, buf, ctx->tsc);
2134
2135 /*
2136 * Push the reader if necessary
2137 */
2138 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2139
2140 /*
2141 * Clear noref flag for this subbuffer.
2142 */
2143 lib_ring_buffer_clear_noref(config, &buf->backend,
2144 subbuf_index(offsets.end - 1, chan));
2145
2146 /*
2147 * Switch old subbuffer if needed.
2148 */
2149 if (unlikely(offsets.switch_old_end)) {
2150 lib_ring_buffer_clear_noref(config, &buf->backend,
2151 subbuf_index(offsets.old - 1, chan));
2152 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2153 }
2154
2155 /*
2156 * Populate new subbuffer.
2157 */
2158 if (unlikely(offsets.switch_new_start))
2159 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2160
2161 if (unlikely(offsets.switch_new_end))
2162 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2163
2164 ctx->slot_size = offsets.size;
2165 ctx->pre_offset = offsets.begin;
2166 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2167 return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2170
2171 static
2172 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2173 struct lib_ring_buffer *buf,
2174 unsigned long commit_count,
2175 unsigned long idx)
2176 {
2177 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2178 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2179 }
2180
2181 /*
2182 * The ring buffer can count events recorded and overwritten per buffer,
2183 * but it is disabled by default due to its performance overhead.
2184 */
2185 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2186 static
2187 void deliver_count_events(const struct lib_ring_buffer_config *config,
2188 struct lib_ring_buffer *buf,
2189 unsigned long idx)
2190 {
2191 v_add(config, subbuffer_get_records_count(config,
2192 &buf->backend, idx),
2193 &buf->records_count);
2194 v_add(config, subbuffer_count_records_overrun(config,
2195 &buf->backend, idx),
2196 &buf->records_overrun);
2197 }
2198 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2199 static
2200 void deliver_count_events(const struct lib_ring_buffer_config *config,
2201 struct lib_ring_buffer *buf,
2202 unsigned long idx)
2203 {
2204 }
2205 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2206
2207
2208 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2209 struct lib_ring_buffer *buf,
2210 struct channel *chan,
2211 unsigned long offset,
2212 unsigned long commit_count,
2213 unsigned long idx,
2214 u64 tsc)
2215 {
2216 unsigned long old_commit_count = commit_count
2217 - chan->backend.subbuf_size;
2218
2219 /*
2220 * If we succeeded at updating cc_sb below, we are the subbuffer
2221 * writer delivering the subbuffer. Deals with concurrent
2222 * updates of the "cc" value without adding a add_return atomic
2223 * operation to the fast path.
2224 *
2225 * We are doing the delivery in two steps:
2226 * - First, we cmpxchg() cc_sb to the new value
2227 * old_commit_count + 1. This ensures that we are the only
2228 * subbuffer user successfully filling the subbuffer, but we
2229 * do _not_ set the cc_sb value to "commit_count" yet.
2230 * Therefore, other writers that would wrap around the ring
2231 * buffer and try to start writing to our subbuffer would
2232 * have to drop records, because it would appear as
2233 * non-filled.
2234 * We therefore have exclusive access to the subbuffer control
2235 * structures. This mutual exclusion with other writers is
2236 * crucially important to perform record overruns count in
2237 * flight recorder mode locklessly.
2238 * - When we are ready to release the subbuffer (either for
2239 * reading or for overrun by other writers), we simply set the
2240 * cc_sb value to "commit_count" and perform delivery.
2241 *
2242 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2243 * This guarantees that old_commit_count + 1 != commit_count.
2244 */
2245
2246 /*
2247 * Order prior updates to reserve count prior to the
2248 * commit_cold cc_sb update.
2249 */
2250 smp_wmb();
2251 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2252 old_commit_count, old_commit_count + 1)
2253 == old_commit_count)) {
2254 /*
2255 * Start of exclusive subbuffer access. We are
2256 * guaranteed to be the last writer in this subbuffer
2257 * and any other writer trying to access this subbuffer
2258 * in this state is required to drop records.
2259 */
2260 deliver_count_events(config, buf, idx);
2261 config->cb.buffer_end(buf, tsc, idx,
2262 lib_ring_buffer_get_data_size(config,
2263 buf,
2264 idx));
2265
2266 /*
2267 * Increment the packet counter while we have exclusive
2268 * access.
2269 */
2270 subbuffer_inc_packet_count(config, &buf->backend, idx);
2271
2272 /*
2273 * Set noref flag and offset for this subbuffer id.
2274 * Contains a memory barrier that ensures counter stores
2275 * are ordered before set noref and offset.
2276 */
2277 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2278 buf_trunc_val(offset, chan));
2279
2280 /*
2281 * Order set_noref and record counter updates before the
2282 * end of subbuffer exclusive access. Orders with
2283 * respect to writers coming into the subbuffer after
2284 * wrap around, and also order wrt concurrent readers.
2285 */
2286 smp_mb();
2287 /* End of exclusive subbuffer access */
2288 v_set(config, &buf->commit_cold[idx].cc_sb,
2289 commit_count);
2290 /*
2291 * Order later updates to reserve count after
2292 * the commit_cold cc_sb update.
2293 */
2294 smp_wmb();
2295 lib_ring_buffer_vmcore_check_deliver(config, buf,
2296 commit_count, idx);
2297
2298 /*
2299 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2300 */
2301 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2302 && atomic_long_read(&buf->active_readers)
2303 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2304 wake_up_interruptible(&buf->read_wait);
2305 wake_up_interruptible(&chan->read_wait);
2306 }
2307
2308 }
2309 }
2310 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2311
2312 int __init init_lib_ring_buffer_frontend(void)
2313 {
2314 int cpu;
2315
2316 for_each_possible_cpu(cpu)
2317 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2318 return 0;
2319 }
2320
2321 module_init(init_lib_ring_buffer_frontend);
2322
2323 void __exit exit_lib_ring_buffer_frontend(void)
2324 {
2325 }
2326
2327 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.114912 seconds and 4 git commands to generate.