Cleanup: remove ignored flags from poll events bitmasks
[lttng-tools.git] / src / common / consumer / consumer.cpp
1 /*
2 * Copyright (C) 2011 EfficiOS Inc.
3 * Copyright (C) 2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
5 *
6 * SPDX-License-Identifier: GPL-2.0-only
7 *
8 */
9
10 #define _LGPL_SOURCE
11 #include <inttypes.h>
12 #include <poll.h>
13 #include <pthread.h>
14 #include <signal.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <sys/mman.h>
18 #include <sys/socket.h>
19 #include <sys/types.h>
20 #include <unistd.h>
21
22 #include <bin/lttng-consumerd/health-consumerd.hpp>
23 #include <common/align.hpp>
24 #include <common/common.hpp>
25 #include <common/compat/endian.hpp>
26 #include <common/compat/poll.hpp>
27 #include <common/consumer/consumer-metadata-cache.hpp>
28 #include <common/consumer/consumer-stream.hpp>
29 #include <common/consumer/consumer-testpoint.hpp>
30 #include <common/consumer/consumer-timer.hpp>
31 #include <common/consumer/consumer.hpp>
32 #include <common/dynamic-array.hpp>
33 #include <common/index/ctf-index.hpp>
34 #include <common/index/index.hpp>
35 #include <common/kernel-consumer/kernel-consumer.hpp>
36 #include <common/kernel-ctl/kernel-ctl.hpp>
37 #include <common/relayd/relayd.hpp>
38 #include <common/sessiond-comm/relayd.hpp>
39 #include <common/sessiond-comm/sessiond-comm.hpp>
40 #include <common/string-utils/format.hpp>
41 #include <common/time.hpp>
42 #include <common/trace-chunk-registry.hpp>
43 #include <common/trace-chunk.hpp>
44 #include <common/ust-consumer/ust-consumer.hpp>
45 #include <common/utils.hpp>
46
47 lttng_consumer_global_data the_consumer_data;
48
49 enum consumer_channel_action {
50 CONSUMER_CHANNEL_ADD,
51 CONSUMER_CHANNEL_DEL,
52 CONSUMER_CHANNEL_QUIT,
53 };
54
55 namespace {
56 struct consumer_channel_msg {
57 enum consumer_channel_action action;
58 struct lttng_consumer_channel *chan; /* add */
59 uint64_t key; /* del */
60 };
61
62 /*
63 * Global hash table containing respectively metadata and data streams. The
64 * stream element in this ht should only be updated by the metadata poll thread
65 * for the metadata and the data poll thread for the data.
66 */
67 struct lttng_ht *metadata_ht;
68 struct lttng_ht *data_ht;
69 } /* namespace */
70
71 /* Flag used to temporarily pause data consumption from testpoints. */
72 int data_consumption_paused;
73
74 /*
75 * Flag to inform the polling thread to quit when all fd hung up. Updated by
76 * the consumer_thread_receive_fds when it notices that all fds has hung up.
77 * Also updated by the signal handler (consumer_should_exit()). Read by the
78 * polling threads.
79 */
80 int consumer_quit;
81
82 static const char *get_consumer_domain(void)
83 {
84 switch (the_consumer_data.type) {
85 case LTTNG_CONSUMER_KERNEL:
86 return DEFAULT_KERNEL_TRACE_DIR;
87 case LTTNG_CONSUMER64_UST:
88 /* Fall-through. */
89 case LTTNG_CONSUMER32_UST:
90 return DEFAULT_UST_TRACE_DIR;
91 default:
92 abort();
93 }
94 }
95
96 /*
97 * Notify a thread lttng pipe to poll back again. This usually means that some
98 * global state has changed so we just send back the thread in a poll wait
99 * call.
100 */
101 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
102 {
103 struct lttng_consumer_stream *null_stream = NULL;
104
105 LTTNG_ASSERT(pipe);
106
107 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
108 }
109
110 static void notify_health_quit_pipe(int *pipe)
111 {
112 ssize_t ret;
113
114 ret = lttng_write(pipe[1], "4", 1);
115 if (ret < 1) {
116 PERROR("write consumer health quit");
117 }
118 }
119
120 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
121 struct lttng_consumer_channel *chan,
122 uint64_t key,
123 enum consumer_channel_action action)
124 {
125 struct consumer_channel_msg msg;
126 ssize_t ret;
127
128 memset(&msg, 0, sizeof(msg));
129
130 msg.action = action;
131 msg.chan = chan;
132 msg.key = key;
133 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
134 if (ret < sizeof(msg)) {
135 PERROR("notify_channel_pipe write error");
136 }
137 }
138
139 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
140 uint64_t key)
141 {
142 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
143 }
144
145 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
146 struct lttng_consumer_channel **chan,
147 uint64_t *key,
148 enum consumer_channel_action *action)
149 {
150 struct consumer_channel_msg msg;
151 ssize_t ret;
152
153 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
154 if (ret < sizeof(msg)) {
155 ret = -1;
156 goto error;
157 }
158 *action = msg.action;
159 *chan = msg.chan;
160 *key = msg.key;
161 error:
162 return (int) ret;
163 }
164
165 /*
166 * Cleanup the stream list of a channel. Those streams are not yet globally
167 * visible
168 */
169 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
170 {
171 struct lttng_consumer_stream *stream, *stmp;
172
173 LTTNG_ASSERT(channel);
174
175 /* Delete streams that might have been left in the stream list. */
176 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
177 send_node) {
178 /*
179 * Once a stream is added to this list, the buffers were created so we
180 * have a guarantee that this call will succeed. Setting the monitor
181 * mode to 0 so we don't lock nor try to delete the stream from the
182 * global hash table.
183 */
184 stream->monitor = 0;
185 consumer_stream_destroy(stream, NULL);
186 }
187 }
188
189 /*
190 * Find a stream. The consumer_data.lock must be locked during this
191 * call.
192 */
193 static struct lttng_consumer_stream *find_stream(uint64_t key,
194 struct lttng_ht *ht)
195 {
196 struct lttng_ht_iter iter;
197 struct lttng_ht_node_u64 *node;
198 struct lttng_consumer_stream *stream = NULL;
199
200 LTTNG_ASSERT(ht);
201
202 /* -1ULL keys are lookup failures */
203 if (key == (uint64_t) -1ULL) {
204 return NULL;
205 }
206
207 rcu_read_lock();
208
209 lttng_ht_lookup(ht, &key, &iter);
210 node = lttng_ht_iter_get_node_u64(&iter);
211 if (node != NULL) {
212 stream = lttng::utils::container_of(node, &lttng_consumer_stream::node);
213 }
214
215 rcu_read_unlock();
216
217 return stream;
218 }
219
220 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
221 {
222 struct lttng_consumer_stream *stream;
223
224 rcu_read_lock();
225 stream = find_stream(key, ht);
226 if (stream) {
227 stream->key = (uint64_t) -1ULL;
228 /*
229 * We don't want the lookup to match, but we still need
230 * to iterate on this stream when iterating over the hash table. Just
231 * change the node key.
232 */
233 stream->node.key = (uint64_t) -1ULL;
234 }
235 rcu_read_unlock();
236 }
237
238 /*
239 * Return a channel object for the given key.
240 *
241 * RCU read side lock MUST be acquired before calling this function and
242 * protects the channel ptr.
243 */
244 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
245 {
246 struct lttng_ht_iter iter;
247 struct lttng_ht_node_u64 *node;
248 struct lttng_consumer_channel *channel = NULL;
249
250 ASSERT_RCU_READ_LOCKED();
251
252 /* -1ULL keys are lookup failures */
253 if (key == (uint64_t) -1ULL) {
254 return NULL;
255 }
256
257 lttng_ht_lookup(the_consumer_data.channel_ht, &key, &iter);
258 node = lttng_ht_iter_get_node_u64(&iter);
259 if (node != NULL) {
260 channel = lttng::utils::container_of(node, &lttng_consumer_channel::node);
261 }
262
263 return channel;
264 }
265
266 /*
267 * There is a possibility that the consumer does not have enough time between
268 * the close of the channel on the session daemon and the cleanup in here thus
269 * once we have a channel add with an existing key, we know for sure that this
270 * channel will eventually get cleaned up by all streams being closed.
271 *
272 * This function just nullifies the already existing channel key.
273 */
274 static void steal_channel_key(uint64_t key)
275 {
276 struct lttng_consumer_channel *channel;
277
278 rcu_read_lock();
279 channel = consumer_find_channel(key);
280 if (channel) {
281 channel->key = (uint64_t) -1ULL;
282 /*
283 * We don't want the lookup to match, but we still need to iterate on
284 * this channel when iterating over the hash table. Just change the
285 * node key.
286 */
287 channel->node.key = (uint64_t) -1ULL;
288 }
289 rcu_read_unlock();
290 }
291
292 static void free_channel_rcu(struct rcu_head *head)
293 {
294 struct lttng_ht_node_u64 *node =
295 lttng::utils::container_of(head, &lttng_ht_node_u64::head);
296 struct lttng_consumer_channel *channel =
297 lttng::utils::container_of(node, &lttng_consumer_channel::node);
298
299 switch (the_consumer_data.type) {
300 case LTTNG_CONSUMER_KERNEL:
301 break;
302 case LTTNG_CONSUMER32_UST:
303 case LTTNG_CONSUMER64_UST:
304 lttng_ustconsumer_free_channel(channel);
305 break;
306 default:
307 ERR("Unknown consumer_data type");
308 abort();
309 }
310 free(channel);
311 }
312
313 /*
314 * RCU protected relayd socket pair free.
315 */
316 static void free_relayd_rcu(struct rcu_head *head)
317 {
318 struct lttng_ht_node_u64 *node =
319 lttng::utils::container_of(head, &lttng_ht_node_u64::head);
320 struct consumer_relayd_sock_pair *relayd =
321 lttng::utils::container_of(node, &consumer_relayd_sock_pair::node);
322
323 /*
324 * Close all sockets. This is done in the call RCU since we don't want the
325 * socket fds to be reassigned thus potentially creating bad state of the
326 * relayd object.
327 *
328 * We do not have to lock the control socket mutex here since at this stage
329 * there is no one referencing to this relayd object.
330 */
331 (void) relayd_close(&relayd->control_sock);
332 (void) relayd_close(&relayd->data_sock);
333
334 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
335 free(relayd);
336 }
337
338 /*
339 * Destroy and free relayd socket pair object.
340 */
341 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
342 {
343 int ret;
344 struct lttng_ht_iter iter;
345
346 if (relayd == NULL) {
347 return;
348 }
349
350 DBG("Consumer destroy and close relayd socket pair");
351
352 iter.iter.node = &relayd->node.node;
353 ret = lttng_ht_del(the_consumer_data.relayd_ht, &iter);
354 if (ret != 0) {
355 /* We assume the relayd is being or is destroyed */
356 return;
357 }
358
359 /* RCU free() call */
360 call_rcu(&relayd->node.head, free_relayd_rcu);
361 }
362
363 /*
364 * Remove a channel from the global list protected by a mutex. This function is
365 * also responsible for freeing its data structures.
366 */
367 void consumer_del_channel(struct lttng_consumer_channel *channel)
368 {
369 struct lttng_ht_iter iter;
370
371 DBG("Consumer delete channel key %" PRIu64, channel->key);
372
373 pthread_mutex_lock(&the_consumer_data.lock);
374 pthread_mutex_lock(&channel->lock);
375
376 /* Destroy streams that might have been left in the stream list. */
377 clean_channel_stream_list(channel);
378
379 if (channel->live_timer_enabled == 1) {
380 consumer_timer_live_stop(channel);
381 }
382 if (channel->monitor_timer_enabled == 1) {
383 consumer_timer_monitor_stop(channel);
384 }
385
386 /*
387 * Send a last buffer statistics sample to the session daemon
388 * to ensure it tracks the amount of data consumed by this channel.
389 */
390 sample_and_send_channel_buffer_stats(channel);
391
392 switch (the_consumer_data.type) {
393 case LTTNG_CONSUMER_KERNEL:
394 break;
395 case LTTNG_CONSUMER32_UST:
396 case LTTNG_CONSUMER64_UST:
397 lttng_ustconsumer_del_channel(channel);
398 break;
399 default:
400 ERR("Unknown consumer_data type");
401 abort();
402 goto end;
403 }
404
405 lttng_trace_chunk_put(channel->trace_chunk);
406 channel->trace_chunk = NULL;
407
408 if (channel->is_published) {
409 int ret;
410
411 rcu_read_lock();
412 iter.iter.node = &channel->node.node;
413 ret = lttng_ht_del(the_consumer_data.channel_ht, &iter);
414 LTTNG_ASSERT(!ret);
415
416 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
417 ret = lttng_ht_del(the_consumer_data.channels_by_session_id_ht,
418 &iter);
419 LTTNG_ASSERT(!ret);
420 rcu_read_unlock();
421 }
422
423 channel->is_deleted = true;
424 call_rcu(&channel->node.head, free_channel_rcu);
425 end:
426 pthread_mutex_unlock(&channel->lock);
427 pthread_mutex_unlock(&the_consumer_data.lock);
428 }
429
430 /*
431 * Iterate over the relayd hash table and destroy each element. Finally,
432 * destroy the whole hash table.
433 */
434 static void cleanup_relayd_ht(void)
435 {
436 struct lttng_ht_iter iter;
437 struct consumer_relayd_sock_pair *relayd;
438
439 rcu_read_lock();
440
441 cds_lfht_for_each_entry(the_consumer_data.relayd_ht->ht, &iter.iter,
442 relayd, node.node) {
443 consumer_destroy_relayd(relayd);
444 }
445
446 rcu_read_unlock();
447
448 lttng_ht_destroy(the_consumer_data.relayd_ht);
449 }
450
451 /*
452 * Update the end point status of all streams having the given network sequence
453 * index (relayd index).
454 *
455 * It's atomically set without having the stream mutex locked which is fine
456 * because we handle the write/read race with a pipe wakeup for each thread.
457 */
458 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
459 enum consumer_endpoint_status status)
460 {
461 struct lttng_ht_iter iter;
462 struct lttng_consumer_stream *stream;
463
464 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
465
466 rcu_read_lock();
467
468 /* Let's begin with metadata */
469 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
470 if (stream->net_seq_idx == net_seq_idx) {
471 uatomic_set(&stream->endpoint_status, status);
472 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
473 }
474 }
475
476 /* Follow up by the data streams */
477 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
478 if (stream->net_seq_idx == net_seq_idx) {
479 uatomic_set(&stream->endpoint_status, status);
480 DBG("Delete flag set to data stream %d", stream->wait_fd);
481 }
482 }
483 rcu_read_unlock();
484 }
485
486 /*
487 * Cleanup a relayd object by flagging every associated streams for deletion,
488 * destroying the object meaning removing it from the relayd hash table,
489 * closing the sockets and freeing the memory in a RCU call.
490 *
491 * If a local data context is available, notify the threads that the streams'
492 * state have changed.
493 */
494 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
495 {
496 uint64_t netidx;
497
498 LTTNG_ASSERT(relayd);
499
500 DBG("Cleaning up relayd object ID %" PRIu64, relayd->net_seq_idx);
501
502 /* Save the net sequence index before destroying the object */
503 netidx = relayd->net_seq_idx;
504
505 /*
506 * Delete the relayd from the relayd hash table, close the sockets and free
507 * the object in a RCU call.
508 */
509 consumer_destroy_relayd(relayd);
510
511 /* Set inactive endpoint to all streams */
512 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
513
514 /*
515 * With a local data context, notify the threads that the streams' state
516 * have changed. The write() action on the pipe acts as an "implicit"
517 * memory barrier ordering the updates of the end point status from the
518 * read of this status which happens AFTER receiving this notify.
519 */
520 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
521 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
522 }
523
524 /*
525 * Flag a relayd socket pair for destruction. Destroy it if the refcount
526 * reaches zero.
527 *
528 * RCU read side lock MUST be aquired before calling this function.
529 */
530 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
531 {
532 LTTNG_ASSERT(relayd);
533 ASSERT_RCU_READ_LOCKED();
534
535 /* Set destroy flag for this object */
536 uatomic_set(&relayd->destroy_flag, 1);
537
538 /* Destroy the relayd if refcount is 0 */
539 if (uatomic_read(&relayd->refcount) == 0) {
540 consumer_destroy_relayd(relayd);
541 }
542 }
543
544 /*
545 * Completly destroy stream from every visiable data structure and the given
546 * hash table if one.
547 *
548 * One this call returns, the stream object is not longer usable nor visible.
549 */
550 void consumer_del_stream(struct lttng_consumer_stream *stream,
551 struct lttng_ht *ht)
552 {
553 consumer_stream_destroy(stream, ht);
554 }
555
556 /*
557 * XXX naming of del vs destroy is all mixed up.
558 */
559 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
560 {
561 consumer_stream_destroy(stream, data_ht);
562 }
563
564 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
565 {
566 consumer_stream_destroy(stream, metadata_ht);
567 }
568
569 void consumer_stream_update_channel_attributes(
570 struct lttng_consumer_stream *stream,
571 struct lttng_consumer_channel *channel)
572 {
573 stream->channel_read_only_attributes.tracefile_size =
574 channel->tracefile_size;
575 }
576
577 /*
578 * Add a stream to the global list protected by a mutex.
579 */
580 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
581 {
582 struct lttng_ht *ht = data_ht;
583
584 LTTNG_ASSERT(stream);
585 LTTNG_ASSERT(ht);
586
587 DBG3("Adding consumer stream %" PRIu64, stream->key);
588
589 pthread_mutex_lock(&the_consumer_data.lock);
590 pthread_mutex_lock(&stream->chan->lock);
591 pthread_mutex_lock(&stream->chan->timer_lock);
592 pthread_mutex_lock(&stream->lock);
593 rcu_read_lock();
594
595 /* Steal stream identifier to avoid having streams with the same key */
596 steal_stream_key(stream->key, ht);
597
598 lttng_ht_add_unique_u64(ht, &stream->node);
599
600 lttng_ht_add_u64(the_consumer_data.stream_per_chan_id_ht,
601 &stream->node_channel_id);
602
603 /*
604 * Add stream to the stream_list_ht of the consumer data. No need to steal
605 * the key since the HT does not use it and we allow to add redundant keys
606 * into this table.
607 */
608 lttng_ht_add_u64(the_consumer_data.stream_list_ht,
609 &stream->node_session_id);
610
611 /*
612 * When nb_init_stream_left reaches 0, we don't need to trigger any action
613 * in terms of destroying the associated channel, because the action that
614 * causes the count to become 0 also causes a stream to be added. The
615 * channel deletion will thus be triggered by the following removal of this
616 * stream.
617 */
618 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
619 /* Increment refcount before decrementing nb_init_stream_left */
620 cmm_smp_wmb();
621 uatomic_dec(&stream->chan->nb_init_stream_left);
622 }
623
624 /* Update consumer data once the node is inserted. */
625 the_consumer_data.stream_count++;
626 the_consumer_data.need_update = 1;
627
628 rcu_read_unlock();
629 pthread_mutex_unlock(&stream->lock);
630 pthread_mutex_unlock(&stream->chan->timer_lock);
631 pthread_mutex_unlock(&stream->chan->lock);
632 pthread_mutex_unlock(&the_consumer_data.lock);
633 }
634
635 /*
636 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
637 * be acquired before calling this.
638 */
639 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
640 {
641 int ret = 0;
642 struct lttng_ht_node_u64 *node;
643 struct lttng_ht_iter iter;
644
645 LTTNG_ASSERT(relayd);
646 ASSERT_RCU_READ_LOCKED();
647
648 lttng_ht_lookup(the_consumer_data.relayd_ht, &relayd->net_seq_idx,
649 &iter);
650 node = lttng_ht_iter_get_node_u64(&iter);
651 if (node != NULL) {
652 goto end;
653 }
654 lttng_ht_add_unique_u64(the_consumer_data.relayd_ht, &relayd->node);
655
656 end:
657 return ret;
658 }
659
660 /*
661 * Allocate and return a consumer relayd socket.
662 */
663 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
664 uint64_t net_seq_idx)
665 {
666 struct consumer_relayd_sock_pair *obj = NULL;
667
668 /* net sequence index of -1 is a failure */
669 if (net_seq_idx == (uint64_t) -1ULL) {
670 goto error;
671 }
672
673 obj = zmalloc<consumer_relayd_sock_pair>();
674 if (obj == NULL) {
675 PERROR("zmalloc relayd sock");
676 goto error;
677 }
678
679 obj->net_seq_idx = net_seq_idx;
680 obj->refcount = 0;
681 obj->destroy_flag = 0;
682 obj->control_sock.sock.fd = -1;
683 obj->data_sock.sock.fd = -1;
684 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
685 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
686
687 error:
688 return obj;
689 }
690
691 /*
692 * Find a relayd socket pair in the global consumer data.
693 *
694 * Return the object if found else NULL.
695 * RCU read-side lock must be held across this call and while using the
696 * returned object.
697 */
698 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
699 {
700 struct lttng_ht_iter iter;
701 struct lttng_ht_node_u64 *node;
702 struct consumer_relayd_sock_pair *relayd = NULL;
703
704 ASSERT_RCU_READ_LOCKED();
705
706 /* Negative keys are lookup failures */
707 if (key == (uint64_t) -1ULL) {
708 goto error;
709 }
710
711 lttng_ht_lookup(the_consumer_data.relayd_ht, &key, &iter);
712 node = lttng_ht_iter_get_node_u64(&iter);
713 if (node != NULL) {
714 relayd = lttng::utils::container_of(node, &consumer_relayd_sock_pair::node);
715 }
716
717 error:
718 return relayd;
719 }
720
721 /*
722 * Find a relayd and send the stream
723 *
724 * Returns 0 on success, < 0 on error
725 */
726 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
727 char *path)
728 {
729 int ret = 0;
730 struct consumer_relayd_sock_pair *relayd;
731
732 LTTNG_ASSERT(stream);
733 LTTNG_ASSERT(stream->net_seq_idx != -1ULL);
734 LTTNG_ASSERT(path);
735
736 /* The stream is not metadata. Get relayd reference if exists. */
737 rcu_read_lock();
738 relayd = consumer_find_relayd(stream->net_seq_idx);
739 if (relayd != NULL) {
740 /* Add stream on the relayd */
741 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
742 ret = relayd_add_stream(&relayd->control_sock, stream->name,
743 get_consumer_domain(), path, &stream->relayd_stream_id,
744 stream->chan->tracefile_size,
745 stream->chan->tracefile_count,
746 stream->trace_chunk);
747 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
748 if (ret < 0) {
749 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
750 lttng_consumer_cleanup_relayd(relayd);
751 goto end;
752 }
753
754 uatomic_inc(&relayd->refcount);
755 stream->sent_to_relayd = 1;
756 } else {
757 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
758 stream->key, stream->net_seq_idx);
759 ret = -1;
760 goto end;
761 }
762
763 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
764 stream->name, stream->key, stream->net_seq_idx);
765
766 end:
767 rcu_read_unlock();
768 return ret;
769 }
770
771 /*
772 * Find a relayd and send the streams sent message
773 *
774 * Returns 0 on success, < 0 on error
775 */
776 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
777 {
778 int ret = 0;
779 struct consumer_relayd_sock_pair *relayd;
780
781 LTTNG_ASSERT(net_seq_idx != -1ULL);
782
783 /* The stream is not metadata. Get relayd reference if exists. */
784 rcu_read_lock();
785 relayd = consumer_find_relayd(net_seq_idx);
786 if (relayd != NULL) {
787 /* Add stream on the relayd */
788 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
789 ret = relayd_streams_sent(&relayd->control_sock);
790 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
791 if (ret < 0) {
792 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
793 lttng_consumer_cleanup_relayd(relayd);
794 goto end;
795 }
796 } else {
797 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
798 net_seq_idx);
799 ret = -1;
800 goto end;
801 }
802
803 ret = 0;
804 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
805
806 end:
807 rcu_read_unlock();
808 return ret;
809 }
810
811 /*
812 * Find a relayd and close the stream
813 */
814 void close_relayd_stream(struct lttng_consumer_stream *stream)
815 {
816 struct consumer_relayd_sock_pair *relayd;
817
818 /* The stream is not metadata. Get relayd reference if exists. */
819 rcu_read_lock();
820 relayd = consumer_find_relayd(stream->net_seq_idx);
821 if (relayd) {
822 consumer_stream_relayd_close(stream, relayd);
823 }
824 rcu_read_unlock();
825 }
826
827 /*
828 * Handle stream for relayd transmission if the stream applies for network
829 * streaming where the net sequence index is set.
830 *
831 * Return destination file descriptor or negative value on error.
832 */
833 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
834 size_t data_size, unsigned long padding,
835 struct consumer_relayd_sock_pair *relayd)
836 {
837 int outfd = -1, ret;
838 struct lttcomm_relayd_data_hdr data_hdr;
839
840 /* Safety net */
841 LTTNG_ASSERT(stream);
842 LTTNG_ASSERT(relayd);
843
844 /* Reset data header */
845 memset(&data_hdr, 0, sizeof(data_hdr));
846
847 if (stream->metadata_flag) {
848 /* Caller MUST acquire the relayd control socket lock */
849 ret = relayd_send_metadata(&relayd->control_sock, data_size);
850 if (ret < 0) {
851 goto error;
852 }
853
854 /* Metadata are always sent on the control socket. */
855 outfd = relayd->control_sock.sock.fd;
856 } else {
857 /* Set header with stream information */
858 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
859 data_hdr.data_size = htobe32(data_size);
860 data_hdr.padding_size = htobe32(padding);
861
862 /*
863 * Note that net_seq_num below is assigned with the *current* value of
864 * next_net_seq_num and only after that the next_net_seq_num will be
865 * increment. This is why when issuing a command on the relayd using
866 * this next value, 1 should always be substracted in order to compare
867 * the last seen sequence number on the relayd side to the last sent.
868 */
869 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
870 /* Other fields are zeroed previously */
871
872 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
873 sizeof(data_hdr));
874 if (ret < 0) {
875 goto error;
876 }
877
878 ++stream->next_net_seq_num;
879
880 /* Set to go on data socket */
881 outfd = relayd->data_sock.sock.fd;
882 }
883
884 error:
885 return outfd;
886 }
887
888 /*
889 * Write a character on the metadata poll pipe to wake the metadata thread.
890 * Returns 0 on success, -1 on error.
891 */
892 int consumer_metadata_wakeup_pipe(const struct lttng_consumer_channel *channel)
893 {
894 int ret = 0;
895
896 DBG("Waking up metadata poll thread (writing to pipe): channel name = '%s'",
897 channel->name);
898 if (channel->monitor && channel->metadata_stream) {
899 const char dummy = 'c';
900 const ssize_t write_ret = lttng_write(
901 channel->metadata_stream->ust_metadata_poll_pipe[1],
902 &dummy, 1);
903
904 if (write_ret < 1) {
905 if (errno == EWOULDBLOCK) {
906 /*
907 * This is fine, the metadata poll thread
908 * is having a hard time keeping-up, but
909 * it will eventually wake-up and consume
910 * the available data.
911 */
912 ret = 0;
913 } else {
914 PERROR("Failed to write to UST metadata pipe while attempting to wake-up the metadata poll thread");
915 ret = -1;
916 goto end;
917 }
918 }
919 }
920
921 end:
922 return ret;
923 }
924
925 /*
926 * Trigger a dump of the metadata content. Following/during the succesful
927 * completion of this call, the metadata poll thread will start receiving
928 * metadata packets to consume.
929 *
930 * The caller must hold the channel and stream locks.
931 */
932 static
933 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
934 {
935 int ret;
936
937 ASSERT_LOCKED(stream->chan->lock);
938 ASSERT_LOCKED(stream->lock);
939 LTTNG_ASSERT(stream->metadata_flag);
940 LTTNG_ASSERT(stream->chan->trace_chunk);
941
942 switch (the_consumer_data.type) {
943 case LTTNG_CONSUMER_KERNEL:
944 /*
945 * Reset the position of what has been read from the
946 * metadata cache to 0 so we can dump it again.
947 */
948 ret = kernctl_metadata_cache_dump(stream->wait_fd);
949 break;
950 case LTTNG_CONSUMER32_UST:
951 case LTTNG_CONSUMER64_UST:
952 /*
953 * Reset the position pushed from the metadata cache so it
954 * will write from the beginning on the next push.
955 */
956 stream->ust_metadata_pushed = 0;
957 ret = consumer_metadata_wakeup_pipe(stream->chan);
958 break;
959 default:
960 ERR("Unknown consumer_data type");
961 abort();
962 }
963 if (ret < 0) {
964 ERR("Failed to dump the metadata cache");
965 }
966 return ret;
967 }
968
969 static
970 int lttng_consumer_channel_set_trace_chunk(
971 struct lttng_consumer_channel *channel,
972 struct lttng_trace_chunk *new_trace_chunk)
973 {
974 pthread_mutex_lock(&channel->lock);
975 if (channel->is_deleted) {
976 /*
977 * The channel has been logically deleted and should no longer
978 * be used. It has released its reference to its current trace
979 * chunk and should not acquire a new one.
980 *
981 * Return success as there is nothing for the caller to do.
982 */
983 goto end;
984 }
985
986 /*
987 * The acquisition of the reference cannot fail (barring
988 * a severe internal error) since a reference to the published
989 * chunk is already held by the caller.
990 */
991 if (new_trace_chunk) {
992 const bool acquired_reference = lttng_trace_chunk_get(
993 new_trace_chunk);
994
995 LTTNG_ASSERT(acquired_reference);
996 }
997
998 lttng_trace_chunk_put(channel->trace_chunk);
999 channel->trace_chunk = new_trace_chunk;
1000 end:
1001 pthread_mutex_unlock(&channel->lock);
1002 return 0;
1003 }
1004
1005 /*
1006 * Allocate and return a new lttng_consumer_channel object using the given key
1007 * to initialize the hash table node.
1008 *
1009 * On error, return NULL.
1010 */
1011 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1012 uint64_t session_id,
1013 const uint64_t *chunk_id,
1014 const char *pathname,
1015 const char *name,
1016 uint64_t relayd_id,
1017 enum lttng_event_output output,
1018 uint64_t tracefile_size,
1019 uint64_t tracefile_count,
1020 uint64_t session_id_per_pid,
1021 unsigned int monitor,
1022 unsigned int live_timer_interval,
1023 bool is_in_live_session,
1024 const char *root_shm_path,
1025 const char *shm_path)
1026 {
1027 struct lttng_consumer_channel *channel = NULL;
1028 struct lttng_trace_chunk *trace_chunk = NULL;
1029
1030 if (chunk_id) {
1031 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1032 the_consumer_data.chunk_registry, session_id,
1033 *chunk_id);
1034 if (!trace_chunk) {
1035 ERR("Failed to find trace chunk reference during creation of channel");
1036 goto end;
1037 }
1038 }
1039
1040 channel = zmalloc<lttng_consumer_channel>();
1041 if (channel == NULL) {
1042 PERROR("malloc struct lttng_consumer_channel");
1043 goto end;
1044 }
1045
1046 channel->key = key;
1047 channel->refcount = 0;
1048 channel->session_id = session_id;
1049 channel->session_id_per_pid = session_id_per_pid;
1050 channel->relayd_id = relayd_id;
1051 channel->tracefile_size = tracefile_size;
1052 channel->tracefile_count = tracefile_count;
1053 channel->monitor = monitor;
1054 channel->live_timer_interval = live_timer_interval;
1055 channel->is_live = is_in_live_session;
1056 pthread_mutex_init(&channel->lock, NULL);
1057 pthread_mutex_init(&channel->timer_lock, NULL);
1058
1059 switch (output) {
1060 case LTTNG_EVENT_SPLICE:
1061 channel->output = CONSUMER_CHANNEL_SPLICE;
1062 break;
1063 case LTTNG_EVENT_MMAP:
1064 channel->output = CONSUMER_CHANNEL_MMAP;
1065 break;
1066 default:
1067 abort();
1068 free(channel);
1069 channel = NULL;
1070 goto end;
1071 }
1072
1073 /*
1074 * In monitor mode, the streams associated with the channel will be put in
1075 * a special list ONLY owned by this channel. So, the refcount is set to 1
1076 * here meaning that the channel itself has streams that are referenced.
1077 *
1078 * On a channel deletion, once the channel is no longer visible, the
1079 * refcount is decremented and checked for a zero value to delete it. With
1080 * streams in no monitor mode, it will now be safe to destroy the channel.
1081 */
1082 if (!channel->monitor) {
1083 channel->refcount = 1;
1084 }
1085
1086 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1087 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1088
1089 strncpy(channel->name, name, sizeof(channel->name));
1090 channel->name[sizeof(channel->name) - 1] = '\0';
1091
1092 if (root_shm_path) {
1093 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1094 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1095 }
1096 if (shm_path) {
1097 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1098 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1099 }
1100
1101 lttng_ht_node_init_u64(&channel->node, channel->key);
1102 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1103 channel->session_id);
1104
1105 channel->wait_fd = -1;
1106 CDS_INIT_LIST_HEAD(&channel->streams.head);
1107
1108 if (trace_chunk) {
1109 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1110 trace_chunk);
1111 if (ret) {
1112 goto error;
1113 }
1114 }
1115
1116 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1117
1118 end:
1119 lttng_trace_chunk_put(trace_chunk);
1120 return channel;
1121 error:
1122 consumer_del_channel(channel);
1123 channel = NULL;
1124 goto end;
1125 }
1126
1127 /*
1128 * Add a channel to the global list protected by a mutex.
1129 *
1130 * Always return 0 indicating success.
1131 */
1132 int consumer_add_channel(struct lttng_consumer_channel *channel,
1133 struct lttng_consumer_local_data *ctx)
1134 {
1135 pthread_mutex_lock(&the_consumer_data.lock);
1136 pthread_mutex_lock(&channel->lock);
1137 pthread_mutex_lock(&channel->timer_lock);
1138
1139 /*
1140 * This gives us a guarantee that the channel we are about to add to the
1141 * channel hash table will be unique. See this function comment on the why
1142 * we need to steel the channel key at this stage.
1143 */
1144 steal_channel_key(channel->key);
1145
1146 rcu_read_lock();
1147 lttng_ht_add_unique_u64(the_consumer_data.channel_ht, &channel->node);
1148 lttng_ht_add_u64(the_consumer_data.channels_by_session_id_ht,
1149 &channel->channels_by_session_id_ht_node);
1150 rcu_read_unlock();
1151 channel->is_published = true;
1152
1153 pthread_mutex_unlock(&channel->timer_lock);
1154 pthread_mutex_unlock(&channel->lock);
1155 pthread_mutex_unlock(&the_consumer_data.lock);
1156
1157 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1158 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1159 }
1160
1161 return 0;
1162 }
1163
1164 /*
1165 * Allocate the pollfd structure and the local view of the out fds to avoid
1166 * doing a lookup in the linked list and concurrency issues when writing is
1167 * needed. Called with consumer_data.lock held.
1168 *
1169 * Returns the number of fds in the structures.
1170 */
1171 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1172 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1173 struct lttng_ht *ht, int *nb_inactive_fd)
1174 {
1175 int i = 0;
1176 struct lttng_ht_iter iter;
1177 struct lttng_consumer_stream *stream;
1178
1179 LTTNG_ASSERT(ctx);
1180 LTTNG_ASSERT(ht);
1181 LTTNG_ASSERT(pollfd);
1182 LTTNG_ASSERT(local_stream);
1183
1184 DBG("Updating poll fd array");
1185 *nb_inactive_fd = 0;
1186 rcu_read_lock();
1187 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1188 /*
1189 * Only active streams with an active end point can be added to the
1190 * poll set and local stream storage of the thread.
1191 *
1192 * There is a potential race here for endpoint_status to be updated
1193 * just after the check. However, this is OK since the stream(s) will
1194 * be deleted once the thread is notified that the end point state has
1195 * changed where this function will be called back again.
1196 *
1197 * We track the number of inactive FDs because they still need to be
1198 * closed by the polling thread after a wakeup on the data_pipe or
1199 * metadata_pipe.
1200 */
1201 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1202 (*nb_inactive_fd)++;
1203 continue;
1204 }
1205 /*
1206 * This clobbers way too much the debug output. Uncomment that if you
1207 * need it for debugging purposes.
1208 */
1209 (*pollfd)[i].fd = stream->wait_fd;
1210 (*pollfd)[i].events = POLLIN | POLLPRI;
1211 local_stream[i] = stream;
1212 i++;
1213 }
1214 rcu_read_unlock();
1215
1216 /*
1217 * Insert the consumer_data_pipe at the end of the array and don't
1218 * increment i so nb_fd is the number of real FD.
1219 */
1220 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1221 (*pollfd)[i].events = POLLIN | POLLPRI;
1222
1223 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1224 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1225 return i;
1226 }
1227
1228 /*
1229 * Poll on the should_quit pipe and the command socket return -1 on
1230 * error, 1 if should exit, 0 if data is available on the command socket
1231 */
1232 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1233 {
1234 int num_rdy;
1235
1236 restart:
1237 num_rdy = poll(consumer_sockpoll, 2, -1);
1238 if (num_rdy == -1) {
1239 /*
1240 * Restart interrupted system call.
1241 */
1242 if (errno == EINTR) {
1243 goto restart;
1244 }
1245 PERROR("Poll error");
1246 return -1;
1247 }
1248 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1249 DBG("consumer_should_quit wake up");
1250 return 1;
1251 }
1252 return 0;
1253 }
1254
1255 /*
1256 * Set the error socket.
1257 */
1258 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1259 int sock)
1260 {
1261 ctx->consumer_error_socket = sock;
1262 }
1263
1264 /*
1265 * Set the command socket path.
1266 */
1267 void lttng_consumer_set_command_sock_path(
1268 struct lttng_consumer_local_data *ctx, char *sock)
1269 {
1270 ctx->consumer_command_sock_path = sock;
1271 }
1272
1273 /*
1274 * Send return code to the session daemon.
1275 * If the socket is not defined, we return 0, it is not a fatal error
1276 */
1277 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1278 {
1279 if (ctx->consumer_error_socket > 0) {
1280 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1281 sizeof(enum lttcomm_sessiond_command));
1282 }
1283
1284 return 0;
1285 }
1286
1287 /*
1288 * Close all the tracefiles and stream fds and MUST be called when all
1289 * instances are destroyed i.e. when all threads were joined and are ended.
1290 */
1291 void lttng_consumer_cleanup(void)
1292 {
1293 struct lttng_ht_iter iter;
1294 struct lttng_consumer_channel *channel;
1295 unsigned int trace_chunks_left;
1296
1297 rcu_read_lock();
1298
1299 cds_lfht_for_each_entry(the_consumer_data.channel_ht->ht, &iter.iter,
1300 channel, node.node) {
1301 consumer_del_channel(channel);
1302 }
1303
1304 rcu_read_unlock();
1305
1306 lttng_ht_destroy(the_consumer_data.channel_ht);
1307 lttng_ht_destroy(the_consumer_data.channels_by_session_id_ht);
1308
1309 cleanup_relayd_ht();
1310
1311 lttng_ht_destroy(the_consumer_data.stream_per_chan_id_ht);
1312
1313 /*
1314 * This HT contains streams that are freed by either the metadata thread or
1315 * the data thread so we do *nothing* on the hash table and simply destroy
1316 * it.
1317 */
1318 lttng_ht_destroy(the_consumer_data.stream_list_ht);
1319
1320 /*
1321 * Trace chunks in the registry may still exist if the session
1322 * daemon has encountered an internal error and could not
1323 * tear down its sessions and/or trace chunks properly.
1324 *
1325 * Release the session daemon's implicit reference to any remaining
1326 * trace chunk and print an error if any trace chunk was found. Note
1327 * that there are _no_ legitimate cases for trace chunks to be left,
1328 * it is a leak. However, it can happen following a crash of the
1329 * session daemon and not emptying the registry would cause an assertion
1330 * to hit.
1331 */
1332 trace_chunks_left = lttng_trace_chunk_registry_put_each_chunk(
1333 the_consumer_data.chunk_registry);
1334 if (trace_chunks_left) {
1335 ERR("%u trace chunks are leaked by lttng-consumerd. "
1336 "This can be caused by an internal error of the session daemon.",
1337 trace_chunks_left);
1338 }
1339 /* Run all callbacks freeing each chunk. */
1340 rcu_barrier();
1341 lttng_trace_chunk_registry_destroy(the_consumer_data.chunk_registry);
1342 }
1343
1344 /*
1345 * Called from signal handler.
1346 */
1347 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1348 {
1349 ssize_t ret;
1350
1351 CMM_STORE_SHARED(consumer_quit, 1);
1352 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1353 if (ret < 1) {
1354 PERROR("write consumer quit");
1355 }
1356
1357 DBG("Consumer flag that it should quit");
1358 }
1359
1360
1361 /*
1362 * Flush pending writes to trace output disk file.
1363 */
1364 static
1365 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1366 off_t orig_offset)
1367 {
1368 int ret;
1369 int outfd = stream->out_fd;
1370
1371 /*
1372 * This does a blocking write-and-wait on any page that belongs to the
1373 * subbuffer prior to the one we just wrote.
1374 * Don't care about error values, as these are just hints and ways to
1375 * limit the amount of page cache used.
1376 */
1377 if (orig_offset < stream->max_sb_size) {
1378 return;
1379 }
1380 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1381 stream->max_sb_size,
1382 SYNC_FILE_RANGE_WAIT_BEFORE
1383 | SYNC_FILE_RANGE_WRITE
1384 | SYNC_FILE_RANGE_WAIT_AFTER);
1385 /*
1386 * Give hints to the kernel about how we access the file:
1387 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1388 * we write it.
1389 *
1390 * We need to call fadvise again after the file grows because the
1391 * kernel does not seem to apply fadvise to non-existing parts of the
1392 * file.
1393 *
1394 * Call fadvise _after_ having waited for the page writeback to
1395 * complete because the dirty page writeback semantic is not well
1396 * defined. So it can be expected to lead to lower throughput in
1397 * streaming.
1398 */
1399 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1400 stream->max_sb_size, POSIX_FADV_DONTNEED);
1401 if (ret && ret != -ENOSYS) {
1402 errno = ret;
1403 PERROR("posix_fadvise on fd %i", outfd);
1404 }
1405 }
1406
1407 /*
1408 * Initialise the necessary environnement :
1409 * - create a new context
1410 * - create the poll_pipe
1411 * - create the should_quit pipe (for signal handler)
1412 * - create the thread pipe (for splice)
1413 *
1414 * Takes a function pointer as argument, this function is called when data is
1415 * available on a buffer. This function is responsible to do the
1416 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1417 * buffer configuration and then kernctl_put_next_subbuf at the end.
1418 *
1419 * Returns a pointer to the new context or NULL on error.
1420 */
1421 struct lttng_consumer_local_data *lttng_consumer_create(
1422 enum lttng_consumer_type type,
1423 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1424 struct lttng_consumer_local_data *ctx, bool locked_by_caller),
1425 int (*recv_channel)(struct lttng_consumer_channel *channel),
1426 int (*recv_stream)(struct lttng_consumer_stream *stream),
1427 int (*update_stream)(uint64_t stream_key, uint32_t state))
1428 {
1429 int ret;
1430 struct lttng_consumer_local_data *ctx;
1431
1432 LTTNG_ASSERT(the_consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1433 the_consumer_data.type == type);
1434 the_consumer_data.type = type;
1435
1436 ctx = zmalloc<lttng_consumer_local_data>();
1437 if (ctx == NULL) {
1438 PERROR("allocating context");
1439 goto error;
1440 }
1441
1442 ctx->consumer_error_socket = -1;
1443 ctx->consumer_metadata_socket = -1;
1444 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1445 /* assign the callbacks */
1446 ctx->on_buffer_ready = buffer_ready;
1447 ctx->on_recv_channel = recv_channel;
1448 ctx->on_recv_stream = recv_stream;
1449 ctx->on_update_stream = update_stream;
1450
1451 ctx->consumer_data_pipe = lttng_pipe_open(0);
1452 if (!ctx->consumer_data_pipe) {
1453 goto error_poll_pipe;
1454 }
1455
1456 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1457 if (!ctx->consumer_wakeup_pipe) {
1458 goto error_wakeup_pipe;
1459 }
1460
1461 ret = pipe(ctx->consumer_should_quit);
1462 if (ret < 0) {
1463 PERROR("Error creating recv pipe");
1464 goto error_quit_pipe;
1465 }
1466
1467 ret = pipe(ctx->consumer_channel_pipe);
1468 if (ret < 0) {
1469 PERROR("Error creating channel pipe");
1470 goto error_channel_pipe;
1471 }
1472
1473 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1474 if (!ctx->consumer_metadata_pipe) {
1475 goto error_metadata_pipe;
1476 }
1477
1478 ctx->channel_monitor_pipe = -1;
1479
1480 return ctx;
1481
1482 error_metadata_pipe:
1483 utils_close_pipe(ctx->consumer_channel_pipe);
1484 error_channel_pipe:
1485 utils_close_pipe(ctx->consumer_should_quit);
1486 error_quit_pipe:
1487 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1488 error_wakeup_pipe:
1489 lttng_pipe_destroy(ctx->consumer_data_pipe);
1490 error_poll_pipe:
1491 free(ctx);
1492 error:
1493 return NULL;
1494 }
1495
1496 /*
1497 * Iterate over all streams of the hashtable and free them properly.
1498 */
1499 static void destroy_data_stream_ht(struct lttng_ht *ht)
1500 {
1501 struct lttng_ht_iter iter;
1502 struct lttng_consumer_stream *stream;
1503
1504 if (ht == NULL) {
1505 return;
1506 }
1507
1508 rcu_read_lock();
1509 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1510 /*
1511 * Ignore return value since we are currently cleaning up so any error
1512 * can't be handled.
1513 */
1514 (void) consumer_del_stream(stream, ht);
1515 }
1516 rcu_read_unlock();
1517
1518 lttng_ht_destroy(ht);
1519 }
1520
1521 /*
1522 * Iterate over all streams of the metadata hashtable and free them
1523 * properly.
1524 */
1525 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1526 {
1527 struct lttng_ht_iter iter;
1528 struct lttng_consumer_stream *stream;
1529
1530 if (ht == NULL) {
1531 return;
1532 }
1533
1534 rcu_read_lock();
1535 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1536 /*
1537 * Ignore return value since we are currently cleaning up so any error
1538 * can't be handled.
1539 */
1540 (void) consumer_del_metadata_stream(stream, ht);
1541 }
1542 rcu_read_unlock();
1543
1544 lttng_ht_destroy(ht);
1545 }
1546
1547 /*
1548 * Close all fds associated with the instance and free the context.
1549 */
1550 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1551 {
1552 int ret;
1553
1554 DBG("Consumer destroying it. Closing everything.");
1555
1556 if (!ctx) {
1557 return;
1558 }
1559
1560 destroy_data_stream_ht(data_ht);
1561 destroy_metadata_stream_ht(metadata_ht);
1562
1563 ret = close(ctx->consumer_error_socket);
1564 if (ret) {
1565 PERROR("close");
1566 }
1567 ret = close(ctx->consumer_metadata_socket);
1568 if (ret) {
1569 PERROR("close");
1570 }
1571 utils_close_pipe(ctx->consumer_channel_pipe);
1572 lttng_pipe_destroy(ctx->consumer_data_pipe);
1573 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1574 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1575 utils_close_pipe(ctx->consumer_should_quit);
1576
1577 unlink(ctx->consumer_command_sock_path);
1578 free(ctx);
1579 }
1580
1581 /*
1582 * Write the metadata stream id on the specified file descriptor.
1583 */
1584 static int write_relayd_metadata_id(int fd,
1585 struct lttng_consumer_stream *stream,
1586 unsigned long padding)
1587 {
1588 ssize_t ret;
1589 struct lttcomm_relayd_metadata_payload hdr;
1590
1591 hdr.stream_id = htobe64(stream->relayd_stream_id);
1592 hdr.padding_size = htobe32(padding);
1593 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1594 if (ret < sizeof(hdr)) {
1595 /*
1596 * This error means that the fd's end is closed so ignore the PERROR
1597 * not to clubber the error output since this can happen in a normal
1598 * code path.
1599 */
1600 if (errno != EPIPE) {
1601 PERROR("write metadata stream id");
1602 }
1603 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1604 /*
1605 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1606 * handle writting the missing part so report that as an error and
1607 * don't lie to the caller.
1608 */
1609 ret = -1;
1610 goto end;
1611 }
1612 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1613 stream->relayd_stream_id, padding);
1614
1615 end:
1616 return (int) ret;
1617 }
1618
1619 /*
1620 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1621 * core function for writing trace buffers to either the local filesystem or
1622 * the network.
1623 *
1624 * It must be called with the stream and the channel lock held.
1625 *
1626 * Careful review MUST be put if any changes occur!
1627 *
1628 * Returns the number of bytes written
1629 */
1630 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1631 struct lttng_consumer_stream *stream,
1632 const struct lttng_buffer_view *buffer,
1633 unsigned long padding)
1634 {
1635 ssize_t ret = 0;
1636 off_t orig_offset = stream->out_fd_offset;
1637 /* Default is on the disk */
1638 int outfd = stream->out_fd;
1639 struct consumer_relayd_sock_pair *relayd = NULL;
1640 unsigned int relayd_hang_up = 0;
1641 const size_t subbuf_content_size = buffer->size - padding;
1642 size_t write_len;
1643
1644 /* RCU lock for the relayd pointer */
1645 rcu_read_lock();
1646 LTTNG_ASSERT(stream->net_seq_idx != (uint64_t) -1ULL ||
1647 stream->trace_chunk);
1648
1649 /* Flag that the current stream if set for network streaming. */
1650 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1651 relayd = consumer_find_relayd(stream->net_seq_idx);
1652 if (relayd == NULL) {
1653 ret = -EPIPE;
1654 goto end;
1655 }
1656 }
1657
1658 /* Handle stream on the relayd if the output is on the network */
1659 if (relayd) {
1660 unsigned long netlen = subbuf_content_size;
1661
1662 /*
1663 * Lock the control socket for the complete duration of the function
1664 * since from this point on we will use the socket.
1665 */
1666 if (stream->metadata_flag) {
1667 /* Metadata requires the control socket. */
1668 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1669 if (stream->reset_metadata_flag) {
1670 ret = relayd_reset_metadata(&relayd->control_sock,
1671 stream->relayd_stream_id,
1672 stream->metadata_version);
1673 if (ret < 0) {
1674 relayd_hang_up = 1;
1675 goto write_error;
1676 }
1677 stream->reset_metadata_flag = 0;
1678 }
1679 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1680 }
1681
1682 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1683 if (ret < 0) {
1684 relayd_hang_up = 1;
1685 goto write_error;
1686 }
1687 /* Use the returned socket. */
1688 outfd = ret;
1689
1690 /* Write metadata stream id before payload */
1691 if (stream->metadata_flag) {
1692 ret = write_relayd_metadata_id(outfd, stream, padding);
1693 if (ret < 0) {
1694 relayd_hang_up = 1;
1695 goto write_error;
1696 }
1697 }
1698
1699 write_len = subbuf_content_size;
1700 } else {
1701 /* No streaming; we have to write the full padding. */
1702 if (stream->metadata_flag && stream->reset_metadata_flag) {
1703 ret = utils_truncate_stream_file(stream->out_fd, 0);
1704 if (ret < 0) {
1705 ERR("Reset metadata file");
1706 goto end;
1707 }
1708 stream->reset_metadata_flag = 0;
1709 }
1710
1711 /*
1712 * Check if we need to change the tracefile before writing the packet.
1713 */
1714 if (stream->chan->tracefile_size > 0 &&
1715 (stream->tracefile_size_current + buffer->size) >
1716 stream->chan->tracefile_size) {
1717 ret = consumer_stream_rotate_output_files(stream);
1718 if (ret) {
1719 goto end;
1720 }
1721 outfd = stream->out_fd;
1722 orig_offset = 0;
1723 }
1724 stream->tracefile_size_current += buffer->size;
1725 write_len = buffer->size;
1726 }
1727
1728 /*
1729 * This call guarantee that len or less is returned. It's impossible to
1730 * receive a ret value that is bigger than len.
1731 */
1732 ret = lttng_write(outfd, buffer->data, write_len);
1733 DBG("Consumer mmap write() ret %zd (len %zu)", ret, write_len);
1734 if (ret < 0 || ((size_t) ret != write_len)) {
1735 /*
1736 * Report error to caller if nothing was written else at least send the
1737 * amount written.
1738 */
1739 if (ret < 0) {
1740 ret = -errno;
1741 }
1742 relayd_hang_up = 1;
1743
1744 /* Socket operation failed. We consider the relayd dead */
1745 if (errno == EPIPE) {
1746 /*
1747 * This is possible if the fd is closed on the other side
1748 * (outfd) or any write problem. It can be verbose a bit for a
1749 * normal execution if for instance the relayd is stopped
1750 * abruptly. This can happen so set this to a DBG statement.
1751 */
1752 DBG("Consumer mmap write detected relayd hang up");
1753 } else {
1754 /* Unhandled error, print it and stop function right now. */
1755 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret,
1756 write_len);
1757 }
1758 goto write_error;
1759 }
1760 stream->output_written += ret;
1761
1762 /* This call is useless on a socket so better save a syscall. */
1763 if (!relayd) {
1764 /* This won't block, but will start writeout asynchronously */
1765 lttng_sync_file_range(outfd, stream->out_fd_offset, write_len,
1766 SYNC_FILE_RANGE_WRITE);
1767 stream->out_fd_offset += write_len;
1768 lttng_consumer_sync_trace_file(stream, orig_offset);
1769 }
1770
1771 write_error:
1772 /*
1773 * This is a special case that the relayd has closed its socket. Let's
1774 * cleanup the relayd object and all associated streams.
1775 */
1776 if (relayd && relayd_hang_up) {
1777 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1778 lttng_consumer_cleanup_relayd(relayd);
1779 }
1780
1781 end:
1782 /* Unlock only if ctrl socket used */
1783 if (relayd && stream->metadata_flag) {
1784 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1785 }
1786
1787 rcu_read_unlock();
1788 return ret;
1789 }
1790
1791 /*
1792 * Splice the data from the ring buffer to the tracefile.
1793 *
1794 * It must be called with the stream lock held.
1795 *
1796 * Returns the number of bytes spliced.
1797 */
1798 ssize_t lttng_consumer_on_read_subbuffer_splice(
1799 struct lttng_consumer_local_data *ctx,
1800 struct lttng_consumer_stream *stream, unsigned long len,
1801 unsigned long padding)
1802 {
1803 ssize_t ret = 0, written = 0, ret_splice = 0;
1804 loff_t offset = 0;
1805 off_t orig_offset = stream->out_fd_offset;
1806 int fd = stream->wait_fd;
1807 /* Default is on the disk */
1808 int outfd = stream->out_fd;
1809 struct consumer_relayd_sock_pair *relayd = NULL;
1810 int *splice_pipe;
1811 unsigned int relayd_hang_up = 0;
1812
1813 switch (the_consumer_data.type) {
1814 case LTTNG_CONSUMER_KERNEL:
1815 break;
1816 case LTTNG_CONSUMER32_UST:
1817 case LTTNG_CONSUMER64_UST:
1818 /* Not supported for user space tracing */
1819 return -ENOSYS;
1820 default:
1821 ERR("Unknown consumer_data type");
1822 abort();
1823 }
1824
1825 /* RCU lock for the relayd pointer */
1826 rcu_read_lock();
1827
1828 /* Flag that the current stream if set for network streaming. */
1829 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1830 relayd = consumer_find_relayd(stream->net_seq_idx);
1831 if (relayd == NULL) {
1832 written = -ret;
1833 goto end;
1834 }
1835 }
1836 splice_pipe = stream->splice_pipe;
1837
1838 /* Write metadata stream id before payload */
1839 if (relayd) {
1840 unsigned long total_len = len;
1841
1842 if (stream->metadata_flag) {
1843 /*
1844 * Lock the control socket for the complete duration of the function
1845 * since from this point on we will use the socket.
1846 */
1847 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1848
1849 if (stream->reset_metadata_flag) {
1850 ret = relayd_reset_metadata(&relayd->control_sock,
1851 stream->relayd_stream_id,
1852 stream->metadata_version);
1853 if (ret < 0) {
1854 relayd_hang_up = 1;
1855 goto write_error;
1856 }
1857 stream->reset_metadata_flag = 0;
1858 }
1859 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1860 padding);
1861 if (ret < 0) {
1862 written = ret;
1863 relayd_hang_up = 1;
1864 goto write_error;
1865 }
1866
1867 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1868 }
1869
1870 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1871 if (ret < 0) {
1872 written = ret;
1873 relayd_hang_up = 1;
1874 goto write_error;
1875 }
1876 /* Use the returned socket. */
1877 outfd = ret;
1878 } else {
1879 /* No streaming, we have to set the len with the full padding */
1880 len += padding;
1881
1882 if (stream->metadata_flag && stream->reset_metadata_flag) {
1883 ret = utils_truncate_stream_file(stream->out_fd, 0);
1884 if (ret < 0) {
1885 ERR("Reset metadata file");
1886 goto end;
1887 }
1888 stream->reset_metadata_flag = 0;
1889 }
1890 /*
1891 * Check if we need to change the tracefile before writing the packet.
1892 */
1893 if (stream->chan->tracefile_size > 0 &&
1894 (stream->tracefile_size_current + len) >
1895 stream->chan->tracefile_size) {
1896 ret = consumer_stream_rotate_output_files(stream);
1897 if (ret < 0) {
1898 written = ret;
1899 goto end;
1900 }
1901 outfd = stream->out_fd;
1902 orig_offset = 0;
1903 }
1904 stream->tracefile_size_current += len;
1905 }
1906
1907 while (len > 0) {
1908 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1909 (unsigned long)offset, len, fd, splice_pipe[1]);
1910 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1911 SPLICE_F_MOVE | SPLICE_F_MORE);
1912 DBG("splice chan to pipe, ret %zd", ret_splice);
1913 if (ret_splice < 0) {
1914 ret = errno;
1915 written = -ret;
1916 PERROR("Error in relay splice");
1917 goto splice_error;
1918 }
1919
1920 /* Handle stream on the relayd if the output is on the network */
1921 if (relayd && stream->metadata_flag) {
1922 size_t metadata_payload_size =
1923 sizeof(struct lttcomm_relayd_metadata_payload);
1924
1925 /* Update counter to fit the spliced data */
1926 ret_splice += metadata_payload_size;
1927 len += metadata_payload_size;
1928 /*
1929 * We do this so the return value can match the len passed as
1930 * argument to this function.
1931 */
1932 written -= metadata_payload_size;
1933 }
1934
1935 /* Splice data out */
1936 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1937 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1938 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1939 outfd, ret_splice);
1940 if (ret_splice < 0) {
1941 ret = errno;
1942 written = -ret;
1943 relayd_hang_up = 1;
1944 goto write_error;
1945 } else if (ret_splice > len) {
1946 /*
1947 * We don't expect this code path to be executed but you never know
1948 * so this is an extra protection agains a buggy splice().
1949 */
1950 ret = errno;
1951 written += ret_splice;
1952 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1953 len);
1954 goto splice_error;
1955 } else {
1956 /* All good, update current len and continue. */
1957 len -= ret_splice;
1958 }
1959
1960 /* This call is useless on a socket so better save a syscall. */
1961 if (!relayd) {
1962 /* This won't block, but will start writeout asynchronously */
1963 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1964 SYNC_FILE_RANGE_WRITE);
1965 stream->out_fd_offset += ret_splice;
1966 }
1967 stream->output_written += ret_splice;
1968 written += ret_splice;
1969 }
1970 if (!relayd) {
1971 lttng_consumer_sync_trace_file(stream, orig_offset);
1972 }
1973 goto end;
1974
1975 write_error:
1976 /*
1977 * This is a special case that the relayd has closed its socket. Let's
1978 * cleanup the relayd object and all associated streams.
1979 */
1980 if (relayd && relayd_hang_up) {
1981 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1982 lttng_consumer_cleanup_relayd(relayd);
1983 /* Skip splice error so the consumer does not fail */
1984 goto end;
1985 }
1986
1987 splice_error:
1988 /* send the appropriate error description to sessiond */
1989 switch (ret) {
1990 case EINVAL:
1991 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1992 break;
1993 case ENOMEM:
1994 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1995 break;
1996 case ESPIPE:
1997 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1998 break;
1999 }
2000
2001 end:
2002 if (relayd && stream->metadata_flag) {
2003 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2004 }
2005
2006 rcu_read_unlock();
2007 return written;
2008 }
2009
2010 /*
2011 * Sample the snapshot positions for a specific fd
2012 *
2013 * Returns 0 on success, < 0 on error
2014 */
2015 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2016 {
2017 switch (the_consumer_data.type) {
2018 case LTTNG_CONSUMER_KERNEL:
2019 return lttng_kconsumer_sample_snapshot_positions(stream);
2020 case LTTNG_CONSUMER32_UST:
2021 case LTTNG_CONSUMER64_UST:
2022 return lttng_ustconsumer_sample_snapshot_positions(stream);
2023 default:
2024 ERR("Unknown consumer_data type");
2025 abort();
2026 return -ENOSYS;
2027 }
2028 }
2029 /*
2030 * Take a snapshot for a specific fd
2031 *
2032 * Returns 0 on success, < 0 on error
2033 */
2034 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2035 {
2036 switch (the_consumer_data.type) {
2037 case LTTNG_CONSUMER_KERNEL:
2038 return lttng_kconsumer_take_snapshot(stream);
2039 case LTTNG_CONSUMER32_UST:
2040 case LTTNG_CONSUMER64_UST:
2041 return lttng_ustconsumer_take_snapshot(stream);
2042 default:
2043 ERR("Unknown consumer_data type");
2044 abort();
2045 return -ENOSYS;
2046 }
2047 }
2048
2049 /*
2050 * Get the produced position
2051 *
2052 * Returns 0 on success, < 0 on error
2053 */
2054 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2055 unsigned long *pos)
2056 {
2057 switch (the_consumer_data.type) {
2058 case LTTNG_CONSUMER_KERNEL:
2059 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2060 case LTTNG_CONSUMER32_UST:
2061 case LTTNG_CONSUMER64_UST:
2062 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2063 default:
2064 ERR("Unknown consumer_data type");
2065 abort();
2066 return -ENOSYS;
2067 }
2068 }
2069
2070 /*
2071 * Get the consumed position (free-running counter position in bytes).
2072 *
2073 * Returns 0 on success, < 0 on error
2074 */
2075 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2076 unsigned long *pos)
2077 {
2078 switch (the_consumer_data.type) {
2079 case LTTNG_CONSUMER_KERNEL:
2080 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2081 case LTTNG_CONSUMER32_UST:
2082 case LTTNG_CONSUMER64_UST:
2083 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2084 default:
2085 ERR("Unknown consumer_data type");
2086 abort();
2087 return -ENOSYS;
2088 }
2089 }
2090
2091 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2092 int sock, struct pollfd *consumer_sockpoll)
2093 {
2094 switch (the_consumer_data.type) {
2095 case LTTNG_CONSUMER_KERNEL:
2096 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2097 case LTTNG_CONSUMER32_UST:
2098 case LTTNG_CONSUMER64_UST:
2099 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2100 default:
2101 ERR("Unknown consumer_data type");
2102 abort();
2103 return -ENOSYS;
2104 }
2105 }
2106
2107 static
2108 void lttng_consumer_close_all_metadata(void)
2109 {
2110 switch (the_consumer_data.type) {
2111 case LTTNG_CONSUMER_KERNEL:
2112 /*
2113 * The Kernel consumer has a different metadata scheme so we don't
2114 * close anything because the stream will be closed by the session
2115 * daemon.
2116 */
2117 break;
2118 case LTTNG_CONSUMER32_UST:
2119 case LTTNG_CONSUMER64_UST:
2120 /*
2121 * Close all metadata streams. The metadata hash table is passed and
2122 * this call iterates over it by closing all wakeup fd. This is safe
2123 * because at this point we are sure that the metadata producer is
2124 * either dead or blocked.
2125 */
2126 lttng_ustconsumer_close_all_metadata(metadata_ht);
2127 break;
2128 default:
2129 ERR("Unknown consumer_data type");
2130 abort();
2131 }
2132 }
2133
2134 /*
2135 * Clean up a metadata stream and free its memory.
2136 */
2137 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2138 struct lttng_ht *ht)
2139 {
2140 struct lttng_consumer_channel *channel = NULL;
2141 bool free_channel = false;
2142
2143 LTTNG_ASSERT(stream);
2144 /*
2145 * This call should NEVER receive regular stream. It must always be
2146 * metadata stream and this is crucial for data structure synchronization.
2147 */
2148 LTTNG_ASSERT(stream->metadata_flag);
2149
2150 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2151
2152 pthread_mutex_lock(&the_consumer_data.lock);
2153 /*
2154 * Note that this assumes that a stream's channel is never changed and
2155 * that the stream's lock doesn't need to be taken to sample its
2156 * channel.
2157 */
2158 channel = stream->chan;
2159 pthread_mutex_lock(&channel->lock);
2160 pthread_mutex_lock(&stream->lock);
2161 if (channel->metadata_cache) {
2162 /* Only applicable to userspace consumers. */
2163 pthread_mutex_lock(&channel->metadata_cache->lock);
2164 }
2165
2166 /* Remove any reference to that stream. */
2167 consumer_stream_delete(stream, ht);
2168
2169 /* Close down everything including the relayd if one. */
2170 consumer_stream_close_output(stream);
2171 /* Destroy tracer buffers of the stream. */
2172 consumer_stream_destroy_buffers(stream);
2173
2174 /* Atomically decrement channel refcount since other threads can use it. */
2175 if (!uatomic_sub_return(&channel->refcount, 1)
2176 && !uatomic_read(&channel->nb_init_stream_left)) {
2177 /* Go for channel deletion! */
2178 free_channel = true;
2179 }
2180 stream->chan = NULL;
2181
2182 /*
2183 * Nullify the stream reference so it is not used after deletion. The
2184 * channel lock MUST be acquired before being able to check for a NULL
2185 * pointer value.
2186 */
2187 channel->metadata_stream = NULL;
2188
2189 if (channel->metadata_cache) {
2190 pthread_mutex_unlock(&channel->metadata_cache->lock);
2191 }
2192 pthread_mutex_unlock(&stream->lock);
2193 pthread_mutex_unlock(&channel->lock);
2194 pthread_mutex_unlock(&the_consumer_data.lock);
2195
2196 if (free_channel) {
2197 consumer_del_channel(channel);
2198 }
2199
2200 lttng_trace_chunk_put(stream->trace_chunk);
2201 stream->trace_chunk = NULL;
2202 consumer_stream_free(stream);
2203 }
2204
2205 /*
2206 * Action done with the metadata stream when adding it to the consumer internal
2207 * data structures to handle it.
2208 */
2209 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2210 {
2211 struct lttng_ht *ht = metadata_ht;
2212 struct lttng_ht_iter iter;
2213 struct lttng_ht_node_u64 *node;
2214
2215 LTTNG_ASSERT(stream);
2216 LTTNG_ASSERT(ht);
2217
2218 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2219
2220 pthread_mutex_lock(&the_consumer_data.lock);
2221 pthread_mutex_lock(&stream->chan->lock);
2222 pthread_mutex_lock(&stream->chan->timer_lock);
2223 pthread_mutex_lock(&stream->lock);
2224
2225 /*
2226 * From here, refcounts are updated so be _careful_ when returning an error
2227 * after this point.
2228 */
2229
2230 rcu_read_lock();
2231
2232 /*
2233 * Lookup the stream just to make sure it does not exist in our internal
2234 * state. This should NEVER happen.
2235 */
2236 lttng_ht_lookup(ht, &stream->key, &iter);
2237 node = lttng_ht_iter_get_node_u64(&iter);
2238 LTTNG_ASSERT(!node);
2239
2240 /*
2241 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2242 * in terms of destroying the associated channel, because the action that
2243 * causes the count to become 0 also causes a stream to be added. The
2244 * channel deletion will thus be triggered by the following removal of this
2245 * stream.
2246 */
2247 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2248 /* Increment refcount before decrementing nb_init_stream_left */
2249 cmm_smp_wmb();
2250 uatomic_dec(&stream->chan->nb_init_stream_left);
2251 }
2252
2253 lttng_ht_add_unique_u64(ht, &stream->node);
2254
2255 lttng_ht_add_u64(the_consumer_data.stream_per_chan_id_ht,
2256 &stream->node_channel_id);
2257
2258 /*
2259 * Add stream to the stream_list_ht of the consumer data. No need to steal
2260 * the key since the HT does not use it and we allow to add redundant keys
2261 * into this table.
2262 */
2263 lttng_ht_add_u64(the_consumer_data.stream_list_ht,
2264 &stream->node_session_id);
2265
2266 rcu_read_unlock();
2267
2268 pthread_mutex_unlock(&stream->lock);
2269 pthread_mutex_unlock(&stream->chan->lock);
2270 pthread_mutex_unlock(&stream->chan->timer_lock);
2271 pthread_mutex_unlock(&the_consumer_data.lock);
2272 }
2273
2274 /*
2275 * Delete data stream that are flagged for deletion (endpoint_status).
2276 */
2277 static void validate_endpoint_status_data_stream(void)
2278 {
2279 struct lttng_ht_iter iter;
2280 struct lttng_consumer_stream *stream;
2281
2282 DBG("Consumer delete flagged data stream");
2283
2284 rcu_read_lock();
2285 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2286 /* Validate delete flag of the stream */
2287 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2288 continue;
2289 }
2290 /* Delete it right now */
2291 consumer_del_stream(stream, data_ht);
2292 }
2293 rcu_read_unlock();
2294 }
2295
2296 /*
2297 * Delete metadata stream that are flagged for deletion (endpoint_status).
2298 */
2299 static void validate_endpoint_status_metadata_stream(
2300 struct lttng_poll_event *pollset)
2301 {
2302 struct lttng_ht_iter iter;
2303 struct lttng_consumer_stream *stream;
2304
2305 DBG("Consumer delete flagged metadata stream");
2306
2307 LTTNG_ASSERT(pollset);
2308
2309 rcu_read_lock();
2310 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2311 /* Validate delete flag of the stream */
2312 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2313 continue;
2314 }
2315 /*
2316 * Remove from pollset so the metadata thread can continue without
2317 * blocking on a deleted stream.
2318 */
2319 lttng_poll_del(pollset, stream->wait_fd);
2320
2321 /* Delete it right now */
2322 consumer_del_metadata_stream(stream, metadata_ht);
2323 }
2324 rcu_read_unlock();
2325 }
2326
2327 /*
2328 * Thread polls on metadata file descriptor and write them on disk or on the
2329 * network.
2330 */
2331 void *consumer_thread_metadata_poll(void *data)
2332 {
2333 int ret, i, pollfd, err = -1;
2334 uint32_t revents, nb_fd;
2335 struct lttng_consumer_stream *stream = NULL;
2336 struct lttng_ht_iter iter;
2337 struct lttng_ht_node_u64 *node;
2338 struct lttng_poll_event events;
2339 struct lttng_consumer_local_data *ctx = (lttng_consumer_local_data *) data;
2340 ssize_t len;
2341
2342 rcu_register_thread();
2343
2344 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2345
2346 if (testpoint(consumerd_thread_metadata)) {
2347 goto error_testpoint;
2348 }
2349
2350 health_code_update();
2351
2352 DBG("Thread metadata poll started");
2353
2354 /* Size is set to 1 for the consumer_metadata pipe */
2355 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2356 if (ret < 0) {
2357 ERR("Poll set creation failed");
2358 goto end_poll;
2359 }
2360
2361 ret = lttng_poll_add(&events,
2362 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2363 if (ret < 0) {
2364 goto end;
2365 }
2366
2367 /* Main loop */
2368 DBG("Metadata main loop started");
2369
2370 while (1) {
2371 restart:
2372 health_code_update();
2373 health_poll_entry();
2374 DBG("Metadata poll wait");
2375 ret = lttng_poll_wait(&events, -1);
2376 DBG("Metadata poll return from wait with %d fd(s)",
2377 LTTNG_POLL_GETNB(&events));
2378 health_poll_exit();
2379 DBG("Metadata event caught in thread");
2380 if (ret < 0) {
2381 if (errno == EINTR) {
2382 ERR("Poll EINTR caught");
2383 goto restart;
2384 }
2385 if (LTTNG_POLL_GETNB(&events) == 0) {
2386 err = 0; /* All is OK */
2387 }
2388 goto end;
2389 }
2390
2391 nb_fd = ret;
2392
2393 /* From here, the event is a metadata wait fd */
2394 for (i = 0; i < nb_fd; i++) {
2395 health_code_update();
2396
2397 revents = LTTNG_POLL_GETEV(&events, i);
2398 pollfd = LTTNG_POLL_GETFD(&events, i);
2399
2400 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2401 if (revents & LPOLLIN) {
2402 ssize_t pipe_len;
2403
2404 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2405 &stream, sizeof(stream));
2406 if (pipe_len < sizeof(stream)) {
2407 if (pipe_len < 0) {
2408 PERROR("read metadata stream");
2409 }
2410 /*
2411 * Remove the pipe from the poll set and continue the loop
2412 * since their might be data to consume.
2413 */
2414 lttng_poll_del(&events,
2415 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2416 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2417 continue;
2418 }
2419
2420 /* A NULL stream means that the state has changed. */
2421 if (stream == NULL) {
2422 /* Check for deleted streams. */
2423 validate_endpoint_status_metadata_stream(&events);
2424 goto restart;
2425 }
2426
2427 DBG("Adding metadata stream %d to poll set",
2428 stream->wait_fd);
2429
2430 /* Add metadata stream to the global poll events list */
2431 lttng_poll_add(&events, stream->wait_fd, LPOLLIN | LPOLLPRI);
2432 }else if (revents & (LPOLLERR | LPOLLHUP)) {
2433 DBG("Metadata thread pipe hung up");
2434 /*
2435 * Remove the pipe from the poll set and continue the loop
2436 * since their might be data to consume.
2437 */
2438 lttng_poll_del(&events,
2439 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2440 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2441 continue;
2442 } else {
2443 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2444 goto end;
2445 }
2446
2447 /* Handle other stream */
2448 continue;
2449 }
2450
2451 rcu_read_lock();
2452 {
2453 uint64_t tmp_id = (uint64_t) pollfd;
2454
2455 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2456 }
2457 node = lttng_ht_iter_get_node_u64(&iter);
2458 LTTNG_ASSERT(node);
2459
2460 stream = caa_container_of(node, struct lttng_consumer_stream,
2461 node);
2462
2463 if (revents & (LPOLLIN | LPOLLPRI)) {
2464 /* Get the data out of the metadata file descriptor */
2465 DBG("Metadata available on fd %d", pollfd);
2466 LTTNG_ASSERT(stream->wait_fd == pollfd);
2467
2468 do {
2469 health_code_update();
2470
2471 len = ctx->on_buffer_ready(stream, ctx, false);
2472 /*
2473 * We don't check the return value here since if we get
2474 * a negative len, it means an error occurred thus we
2475 * simply remove it from the poll set and free the
2476 * stream.
2477 */
2478 } while (len > 0);
2479
2480 /* It's ok to have an unavailable sub-buffer */
2481 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2482 /* Clean up stream from consumer and free it. */
2483 lttng_poll_del(&events, stream->wait_fd);
2484 consumer_del_metadata_stream(stream, metadata_ht);
2485 }
2486 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2487 DBG("Metadata fd %d is hup|err.", pollfd);
2488 if (!stream->hangup_flush_done &&
2489 (the_consumer_data.type == LTTNG_CONSUMER32_UST ||
2490 the_consumer_data.type ==
2491 LTTNG_CONSUMER64_UST)) {
2492 DBG("Attempting to flush and consume the UST buffers");
2493 lttng_ustconsumer_on_stream_hangup(stream);
2494
2495 /* We just flushed the stream now read it. */
2496 do {
2497 health_code_update();
2498
2499 len = ctx->on_buffer_ready(stream, ctx, false);
2500 /*
2501 * We don't check the return value here since if we get
2502 * a negative len, it means an error occurred thus we
2503 * simply remove it from the poll set and free the
2504 * stream.
2505 */
2506 } while (len > 0);
2507 }
2508
2509 lttng_poll_del(&events, stream->wait_fd);
2510 /*
2511 * This call update the channel states, closes file descriptors
2512 * and securely free the stream.
2513 */
2514 consumer_del_metadata_stream(stream, metadata_ht);
2515 } else {
2516 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2517 rcu_read_unlock();
2518 goto end;
2519 }
2520 /* Release RCU lock for the stream looked up */
2521 rcu_read_unlock();
2522 }
2523 }
2524
2525 /* All is OK */
2526 err = 0;
2527 end:
2528 DBG("Metadata poll thread exiting");
2529
2530 lttng_poll_clean(&events);
2531 end_poll:
2532 error_testpoint:
2533 if (err) {
2534 health_error();
2535 ERR("Health error occurred in %s", __func__);
2536 }
2537 health_unregister(health_consumerd);
2538 rcu_unregister_thread();
2539 return NULL;
2540 }
2541
2542 /*
2543 * This thread polls the fds in the set to consume the data and write
2544 * it to tracefile if necessary.
2545 */
2546 void *consumer_thread_data_poll(void *data)
2547 {
2548 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2549 struct pollfd *pollfd = NULL;
2550 /* local view of the streams */
2551 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2552 /* local view of consumer_data.fds_count */
2553 int nb_fd = 0;
2554 /* 2 for the consumer_data_pipe and wake up pipe */
2555 const int nb_pipes_fd = 2;
2556 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2557 int nb_inactive_fd = 0;
2558 struct lttng_consumer_local_data *ctx = (lttng_consumer_local_data *) data;
2559 ssize_t len;
2560
2561 rcu_register_thread();
2562
2563 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2564
2565 if (testpoint(consumerd_thread_data)) {
2566 goto error_testpoint;
2567 }
2568
2569 health_code_update();
2570
2571 local_stream = zmalloc<lttng_consumer_stream *>();
2572 if (local_stream == NULL) {
2573 PERROR("local_stream malloc");
2574 goto end;
2575 }
2576
2577 while (1) {
2578 health_code_update();
2579
2580 high_prio = 0;
2581 num_hup = 0;
2582
2583 /*
2584 * the fds set has been updated, we need to update our
2585 * local array as well
2586 */
2587 pthread_mutex_lock(&the_consumer_data.lock);
2588 if (the_consumer_data.need_update) {
2589 free(pollfd);
2590 pollfd = NULL;
2591
2592 free(local_stream);
2593 local_stream = NULL;
2594
2595 /* Allocate for all fds */
2596 pollfd = calloc<struct pollfd>(the_consumer_data.stream_count + nb_pipes_fd);
2597 if (pollfd == NULL) {
2598 PERROR("pollfd malloc");
2599 pthread_mutex_unlock(&the_consumer_data.lock);
2600 goto end;
2601 }
2602
2603 local_stream = calloc<lttng_consumer_stream *>(the_consumer_data.stream_count + nb_pipes_fd);
2604 if (local_stream == NULL) {
2605 PERROR("local_stream malloc");
2606 pthread_mutex_unlock(&the_consumer_data.lock);
2607 goto end;
2608 }
2609 ret = update_poll_array(ctx, &pollfd, local_stream,
2610 data_ht, &nb_inactive_fd);
2611 if (ret < 0) {
2612 ERR("Error in allocating pollfd or local_outfds");
2613 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2614 pthread_mutex_unlock(&the_consumer_data.lock);
2615 goto end;
2616 }
2617 nb_fd = ret;
2618 the_consumer_data.need_update = 0;
2619 }
2620 pthread_mutex_unlock(&the_consumer_data.lock);
2621
2622 /* No FDs and consumer_quit, consumer_cleanup the thread */
2623 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2624 CMM_LOAD_SHARED(consumer_quit) == 1) {
2625 err = 0; /* All is OK */
2626 goto end;
2627 }
2628 /* poll on the array of fds */
2629 restart:
2630 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2631 if (testpoint(consumerd_thread_data_poll)) {
2632 goto end;
2633 }
2634 health_poll_entry();
2635 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2636 health_poll_exit();
2637 DBG("poll num_rdy : %d", num_rdy);
2638 if (num_rdy == -1) {
2639 /*
2640 * Restart interrupted system call.
2641 */
2642 if (errno == EINTR) {
2643 goto restart;
2644 }
2645 PERROR("Poll error");
2646 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2647 goto end;
2648 } else if (num_rdy == 0) {
2649 DBG("Polling thread timed out");
2650 goto end;
2651 }
2652
2653 if (caa_unlikely(data_consumption_paused)) {
2654 DBG("Data consumption paused, sleeping...");
2655 sleep(1);
2656 goto restart;
2657 }
2658
2659 /*
2660 * If the consumer_data_pipe triggered poll go directly to the
2661 * beginning of the loop to update the array. We want to prioritize
2662 * array update over low-priority reads.
2663 */
2664 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2665 ssize_t pipe_readlen;
2666
2667 DBG("consumer_data_pipe wake up");
2668 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2669 &new_stream, sizeof(new_stream));
2670 if (pipe_readlen < sizeof(new_stream)) {
2671 PERROR("Consumer data pipe");
2672 /* Continue so we can at least handle the current stream(s). */
2673 continue;
2674 }
2675
2676 /*
2677 * If the stream is NULL, just ignore it. It's also possible that
2678 * the sessiond poll thread changed the consumer_quit state and is
2679 * waking us up to test it.
2680 */
2681 if (new_stream == NULL) {
2682 validate_endpoint_status_data_stream();
2683 continue;
2684 }
2685
2686 /* Continue to update the local streams and handle prio ones */
2687 continue;
2688 }
2689
2690 /* Handle wakeup pipe. */
2691 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2692 char dummy;
2693 ssize_t pipe_readlen;
2694
2695 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2696 sizeof(dummy));
2697 if (pipe_readlen < 0) {
2698 PERROR("Consumer data wakeup pipe");
2699 }
2700 /* We've been awakened to handle stream(s). */
2701 ctx->has_wakeup = 0;
2702 }
2703
2704 /* Take care of high priority channels first. */
2705 for (i = 0; i < nb_fd; i++) {
2706 health_code_update();
2707
2708 if (local_stream[i] == NULL) {
2709 continue;
2710 }
2711 if (pollfd[i].revents & POLLPRI) {
2712 DBG("Urgent read on fd %d", pollfd[i].fd);
2713 high_prio = 1;
2714 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2715 /* it's ok to have an unavailable sub-buffer */
2716 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2717 /* Clean the stream and free it. */
2718 consumer_del_stream(local_stream[i], data_ht);
2719 local_stream[i] = NULL;
2720 } else if (len > 0) {
2721 local_stream[i]->has_data_left_to_be_read_before_teardown = 1;
2722 }
2723 }
2724 }
2725
2726 /*
2727 * If we read high prio channel in this loop, try again
2728 * for more high prio data.
2729 */
2730 if (high_prio) {
2731 continue;
2732 }
2733
2734 /* Take care of low priority channels. */
2735 for (i = 0; i < nb_fd; i++) {
2736 health_code_update();
2737
2738 if (local_stream[i] == NULL) {
2739 continue;
2740 }
2741 if ((pollfd[i].revents & POLLIN) ||
2742 local_stream[i]->hangup_flush_done ||
2743 local_stream[i]->has_data) {
2744 DBG("Normal read on fd %d", pollfd[i].fd);
2745 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2746 /* it's ok to have an unavailable sub-buffer */
2747 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2748 /* Clean the stream and free it. */
2749 consumer_del_stream(local_stream[i], data_ht);
2750 local_stream[i] = NULL;
2751 } else if (len > 0) {
2752 local_stream[i]->has_data_left_to_be_read_before_teardown = 1;
2753 }
2754 }
2755 }
2756
2757 /* Handle hangup and errors */
2758 for (i = 0; i < nb_fd; i++) {
2759 health_code_update();
2760
2761 if (local_stream[i] == NULL) {
2762 continue;
2763 }
2764 if (!local_stream[i]->hangup_flush_done
2765 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2766 && (the_consumer_data.type == LTTNG_CONSUMER32_UST
2767 || the_consumer_data.type == LTTNG_CONSUMER64_UST)) {
2768 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2769 pollfd[i].fd);
2770 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2771 /* Attempt read again, for the data we just flushed. */
2772 local_stream[i]->has_data_left_to_be_read_before_teardown = 1;
2773 }
2774 /*
2775 * When a stream's pipe dies (hup/err/nval), an "inactive producer" flush is
2776 * performed. This type of flush ensures that a new packet is produced no
2777 * matter the consumed/produced positions are.
2778 *
2779 * This, in turn, causes the next pass to see that data available for the
2780 * stream. When we come back here, we can be assured that all available
2781 * data has been consumed and we can finally destroy the stream.
2782 *
2783 * If the poll flag is HUP/ERR/NVAL and we have
2784 * read no data in this pass, we can remove the
2785 * stream from its hash table.
2786 */
2787 if ((pollfd[i].revents & POLLHUP)) {
2788 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2789 if (!local_stream[i]->has_data_left_to_be_read_before_teardown) {
2790 consumer_del_stream(local_stream[i], data_ht);
2791 local_stream[i] = NULL;
2792 num_hup++;
2793 }
2794 } else if (pollfd[i].revents & POLLERR) {
2795 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2796 if (!local_stream[i]->has_data_left_to_be_read_before_teardown) {
2797 consumer_del_stream(local_stream[i], data_ht);
2798 local_stream[i] = NULL;
2799 num_hup++;
2800 }
2801 } else if (pollfd[i].revents & POLLNVAL) {
2802 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2803 if (!local_stream[i]->has_data_left_to_be_read_before_teardown) {
2804 consumer_del_stream(local_stream[i], data_ht);
2805 local_stream[i] = NULL;
2806 num_hup++;
2807 }
2808 }
2809 if (local_stream[i] != NULL) {
2810 local_stream[i]->has_data_left_to_be_read_before_teardown = 0;
2811 }
2812 }
2813 }
2814 /* All is OK */
2815 err = 0;
2816 end:
2817 DBG("polling thread exiting");
2818 free(pollfd);
2819 free(local_stream);
2820
2821 /*
2822 * Close the write side of the pipe so epoll_wait() in
2823 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2824 * read side of the pipe. If we close them both, epoll_wait strangely does
2825 * not return and could create a endless wait period if the pipe is the
2826 * only tracked fd in the poll set. The thread will take care of closing
2827 * the read side.
2828 */
2829 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2830
2831 error_testpoint:
2832 if (err) {
2833 health_error();
2834 ERR("Health error occurred in %s", __func__);
2835 }
2836 health_unregister(health_consumerd);
2837
2838 rcu_unregister_thread();
2839 return NULL;
2840 }
2841
2842 /*
2843 * Close wake-up end of each stream belonging to the channel. This will
2844 * allow the poll() on the stream read-side to detect when the
2845 * write-side (application) finally closes them.
2846 */
2847 static
2848 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2849 {
2850 struct lttng_ht *ht;
2851 struct lttng_consumer_stream *stream;
2852 struct lttng_ht_iter iter;
2853
2854 ht = the_consumer_data.stream_per_chan_id_ht;
2855
2856 rcu_read_lock();
2857 cds_lfht_for_each_entry_duplicate(ht->ht,
2858 ht->hash_fct(&channel->key, lttng_ht_seed),
2859 ht->match_fct, &channel->key,
2860 &iter.iter, stream, node_channel_id.node) {
2861 /*
2862 * Protect against teardown with mutex.
2863 */
2864 pthread_mutex_lock(&stream->lock);
2865 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2866 goto next;
2867 }
2868 switch (the_consumer_data.type) {
2869 case LTTNG_CONSUMER_KERNEL:
2870 break;
2871 case LTTNG_CONSUMER32_UST:
2872 case LTTNG_CONSUMER64_UST:
2873 if (stream->metadata_flag) {
2874 /* Safe and protected by the stream lock. */
2875 lttng_ustconsumer_close_metadata(stream->chan);
2876 } else {
2877 /*
2878 * Note: a mutex is taken internally within
2879 * liblttng-ust-ctl to protect timer wakeup_fd
2880 * use from concurrent close.
2881 */
2882 lttng_ustconsumer_close_stream_wakeup(stream);
2883 }
2884 break;
2885 default:
2886 ERR("Unknown consumer_data type");
2887 abort();
2888 }
2889 next:
2890 pthread_mutex_unlock(&stream->lock);
2891 }
2892 rcu_read_unlock();
2893 }
2894
2895 static void destroy_channel_ht(struct lttng_ht *ht)
2896 {
2897 struct lttng_ht_iter iter;
2898 struct lttng_consumer_channel *channel;
2899 int ret;
2900
2901 if (ht == NULL) {
2902 return;
2903 }
2904
2905 rcu_read_lock();
2906 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2907 ret = lttng_ht_del(ht, &iter);
2908 LTTNG_ASSERT(ret != 0);
2909 }
2910 rcu_read_unlock();
2911
2912 lttng_ht_destroy(ht);
2913 }
2914
2915 /*
2916 * This thread polls the channel fds to detect when they are being
2917 * closed. It closes all related streams if the channel is detected as
2918 * closed. It is currently only used as a shim layer for UST because the
2919 * consumerd needs to keep the per-stream wakeup end of pipes open for
2920 * periodical flush.
2921 */
2922 void *consumer_thread_channel_poll(void *data)
2923 {
2924 int ret, i, pollfd, err = -1;
2925 uint32_t revents, nb_fd;
2926 struct lttng_consumer_channel *chan = NULL;
2927 struct lttng_ht_iter iter;
2928 struct lttng_ht_node_u64 *node;
2929 struct lttng_poll_event events;
2930 struct lttng_consumer_local_data *ctx = (lttng_consumer_local_data *) data;
2931 struct lttng_ht *channel_ht;
2932
2933 rcu_register_thread();
2934
2935 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2936
2937 if (testpoint(consumerd_thread_channel)) {
2938 goto error_testpoint;
2939 }
2940
2941 health_code_update();
2942
2943 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2944 if (!channel_ht) {
2945 /* ENOMEM at this point. Better to bail out. */
2946 goto end_ht;
2947 }
2948
2949 DBG("Thread channel poll started");
2950
2951 /* Size is set to 1 for the consumer_channel pipe */
2952 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2953 if (ret < 0) {
2954 ERR("Poll set creation failed");
2955 goto end_poll;
2956 }
2957
2958 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2959 if (ret < 0) {
2960 goto end;
2961 }
2962
2963 /* Main loop */
2964 DBG("Channel main loop started");
2965
2966 while (1) {
2967 restart:
2968 health_code_update();
2969 DBG("Channel poll wait");
2970 health_poll_entry();
2971 ret = lttng_poll_wait(&events, -1);
2972 DBG("Channel poll return from wait with %d fd(s)",
2973 LTTNG_POLL_GETNB(&events));
2974 health_poll_exit();
2975 DBG("Channel event caught in thread");
2976 if (ret < 0) {
2977 if (errno == EINTR) {
2978 ERR("Poll EINTR caught");
2979 goto restart;
2980 }
2981 if (LTTNG_POLL_GETNB(&events) == 0) {
2982 err = 0; /* All is OK */
2983 }
2984 goto end;
2985 }
2986
2987 nb_fd = ret;
2988
2989 /* From here, the event is a channel wait fd */
2990 for (i = 0; i < nb_fd; i++) {
2991 health_code_update();
2992
2993 revents = LTTNG_POLL_GETEV(&events, i);
2994 pollfd = LTTNG_POLL_GETFD(&events, i);
2995
2996 if (pollfd == ctx->consumer_channel_pipe[0]) {
2997 if (revents & LPOLLIN) {
2998 enum consumer_channel_action action;
2999 uint64_t key;
3000
3001 ret = read_channel_pipe(ctx, &chan, &key, &action);
3002 if (ret <= 0) {
3003 if (ret < 0) {
3004 ERR("Error reading channel pipe");
3005 }
3006 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3007 continue;
3008 }
3009
3010 switch (action) {
3011 case CONSUMER_CHANNEL_ADD:
3012 DBG("Adding channel %d to poll set",
3013 chan->wait_fd);
3014
3015 lttng_ht_node_init_u64(&chan->wait_fd_node,
3016 chan->wait_fd);
3017 rcu_read_lock();
3018 lttng_ht_add_unique_u64(channel_ht,
3019 &chan->wait_fd_node);
3020 rcu_read_unlock();
3021 /* Add channel to the global poll events list */
3022 // FIXME: Empty flag on a pipe pollset, this might hang on FreeBSD.
3023 lttng_poll_add(&events, chan->wait_fd, 0);
3024 break;
3025 case CONSUMER_CHANNEL_DEL:
3026 {
3027 /*
3028 * This command should never be called if the channel
3029 * has streams monitored by either the data or metadata
3030 * thread. The consumer only notify this thread with a
3031 * channel del. command if it receives a destroy
3032 * channel command from the session daemon that send it
3033 * if a command prior to the GET_CHANNEL failed.
3034 */
3035
3036 rcu_read_lock();
3037 chan = consumer_find_channel(key);
3038 if (!chan) {
3039 rcu_read_unlock();
3040 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3041 break;
3042 }
3043 lttng_poll_del(&events, chan->wait_fd);
3044 iter.iter.node = &chan->wait_fd_node.node;
3045 ret = lttng_ht_del(channel_ht, &iter);
3046 LTTNG_ASSERT(ret == 0);
3047
3048 switch (the_consumer_data.type) {
3049 case LTTNG_CONSUMER_KERNEL:
3050 break;
3051 case LTTNG_CONSUMER32_UST:
3052 case LTTNG_CONSUMER64_UST:
3053 health_code_update();
3054 /* Destroy streams that might have been left in the stream list. */
3055 clean_channel_stream_list(chan);
3056 break;
3057 default:
3058 ERR("Unknown consumer_data type");
3059 abort();
3060 }
3061
3062 /*
3063 * Release our own refcount. Force channel deletion even if
3064 * streams were not initialized.
3065 */
3066 if (!uatomic_sub_return(&chan->refcount, 1)) {
3067 consumer_del_channel(chan);
3068 }
3069 rcu_read_unlock();
3070 goto restart;
3071 }
3072 case CONSUMER_CHANNEL_QUIT:
3073 /*
3074 * Remove the pipe from the poll set and continue the loop
3075 * since their might be data to consume.
3076 */
3077 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3078 continue;
3079 default:
3080 ERR("Unknown action");
3081 break;
3082 }
3083 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3084 DBG("Channel thread pipe hung up");
3085 /*
3086 * Remove the pipe from the poll set and continue the loop
3087 * since their might be data to consume.
3088 */
3089 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3090 continue;
3091 } else {
3092 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3093 goto end;
3094 }
3095
3096 /* Handle other stream */
3097 continue;
3098 }
3099
3100 rcu_read_lock();
3101 {
3102 uint64_t tmp_id = (uint64_t) pollfd;
3103
3104 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3105 }
3106 node = lttng_ht_iter_get_node_u64(&iter);
3107 LTTNG_ASSERT(node);
3108
3109 chan = caa_container_of(node, struct lttng_consumer_channel,
3110 wait_fd_node);
3111
3112 /* Check for error event */
3113 if (revents & (LPOLLERR | LPOLLHUP)) {
3114 DBG("Channel fd %d is hup|err.", pollfd);
3115
3116 lttng_poll_del(&events, chan->wait_fd);
3117 ret = lttng_ht_del(channel_ht, &iter);
3118 LTTNG_ASSERT(ret == 0);
3119
3120 /*
3121 * This will close the wait fd for each stream associated to
3122 * this channel AND monitored by the data/metadata thread thus
3123 * will be clean by the right thread.
3124 */
3125 consumer_close_channel_streams(chan);
3126
3127 /* Release our own refcount */
3128 if (!uatomic_sub_return(&chan->refcount, 1)
3129 && !uatomic_read(&chan->nb_init_stream_left)) {
3130 consumer_del_channel(chan);
3131 }
3132 } else {
3133 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3134 rcu_read_unlock();
3135 goto end;
3136 }
3137
3138 /* Release RCU lock for the channel looked up */
3139 rcu_read_unlock();
3140 }
3141 }
3142
3143 /* All is OK */
3144 err = 0;
3145 end:
3146 lttng_poll_clean(&events);
3147 end_poll:
3148 destroy_channel_ht(channel_ht);
3149 end_ht:
3150 error_testpoint:
3151 DBG("Channel poll thread exiting");
3152 if (err) {
3153 health_error();
3154 ERR("Health error occurred in %s", __func__);
3155 }
3156 health_unregister(health_consumerd);
3157 rcu_unregister_thread();
3158 return NULL;
3159 }
3160
3161 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3162 struct pollfd *sockpoll, int client_socket)
3163 {
3164 int ret;
3165
3166 LTTNG_ASSERT(ctx);
3167 LTTNG_ASSERT(sockpoll);
3168
3169 ret = lttng_consumer_poll_socket(sockpoll);
3170 if (ret) {
3171 goto error;
3172 }
3173 DBG("Metadata connection on client_socket");
3174
3175 /* Blocking call, waiting for transmission */
3176 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3177 if (ctx->consumer_metadata_socket < 0) {
3178 WARN("On accept metadata");
3179 ret = -1;
3180 goto error;
3181 }
3182 ret = 0;
3183
3184 error:
3185 return ret;
3186 }
3187
3188 /*
3189 * This thread listens on the consumerd socket and receives the file
3190 * descriptors from the session daemon.
3191 */
3192 void *consumer_thread_sessiond_poll(void *data)
3193 {
3194 int sock = -1, client_socket, ret, err = -1;
3195 /*
3196 * structure to poll for incoming data on communication socket avoids
3197 * making blocking sockets.
3198 */
3199 struct pollfd consumer_sockpoll[2];
3200 struct lttng_consumer_local_data *ctx = (lttng_consumer_local_data *) data;
3201
3202 rcu_register_thread();
3203
3204 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3205
3206 if (testpoint(consumerd_thread_sessiond)) {
3207 goto error_testpoint;
3208 }
3209
3210 health_code_update();
3211
3212 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3213 unlink(ctx->consumer_command_sock_path);
3214 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3215 if (client_socket < 0) {
3216 ERR("Cannot create command socket");
3217 goto end;
3218 }
3219
3220 ret = lttcomm_listen_unix_sock(client_socket);
3221 if (ret < 0) {
3222 goto end;
3223 }
3224
3225 DBG("Sending ready command to lttng-sessiond");
3226 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3227 /* return < 0 on error, but == 0 is not fatal */
3228 if (ret < 0) {
3229 ERR("Error sending ready command to lttng-sessiond");
3230 goto end;
3231 }
3232
3233 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3234 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3235 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3236 consumer_sockpoll[1].fd = client_socket;
3237 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3238
3239 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3240 if (ret) {
3241 if (ret > 0) {
3242 /* should exit */
3243 err = 0;
3244 }
3245 goto end;
3246 }
3247 DBG("Connection on client_socket");
3248
3249 /* Blocking call, waiting for transmission */
3250 sock = lttcomm_accept_unix_sock(client_socket);
3251 if (sock < 0) {
3252 WARN("On accept");
3253 goto end;
3254 }
3255
3256 /*
3257 * Setup metadata socket which is the second socket connection on the
3258 * command unix socket.
3259 */
3260 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3261 if (ret) {
3262 if (ret > 0) {
3263 /* should exit */
3264 err = 0;
3265 }
3266 goto end;
3267 }
3268
3269 /* This socket is not useful anymore. */
3270 ret = close(client_socket);
3271 if (ret < 0) {
3272 PERROR("close client_socket");
3273 }
3274 client_socket = -1;
3275
3276 /* update the polling structure to poll on the established socket */
3277 consumer_sockpoll[1].fd = sock;
3278 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3279
3280 while (1) {
3281 health_code_update();
3282
3283 health_poll_entry();
3284 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3285 health_poll_exit();
3286 if (ret) {
3287 if (ret > 0) {
3288 /* should exit */
3289 err = 0;
3290 }
3291 goto end;
3292 }
3293 DBG("Incoming command on sock");
3294 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3295 if (ret <= 0) {
3296 /*
3297 * This could simply be a session daemon quitting. Don't output
3298 * ERR() here.
3299 */
3300 DBG("Communication interrupted on command socket");
3301 err = 0;
3302 goto end;
3303 }
3304 if (CMM_LOAD_SHARED(consumer_quit)) {
3305 DBG("consumer_thread_receive_fds received quit from signal");
3306 err = 0; /* All is OK */
3307 goto end;
3308 }
3309 DBG("Received command on sock");
3310 }
3311 /* All is OK */
3312 err = 0;
3313
3314 end:
3315 DBG("Consumer thread sessiond poll exiting");
3316
3317 /*
3318 * Close metadata streams since the producer is the session daemon which
3319 * just died.
3320 *
3321 * NOTE: for now, this only applies to the UST tracer.
3322 */
3323 lttng_consumer_close_all_metadata();
3324
3325 /*
3326 * when all fds have hung up, the polling thread
3327 * can exit cleanly
3328 */
3329 CMM_STORE_SHARED(consumer_quit, 1);
3330
3331 /*
3332 * Notify the data poll thread to poll back again and test the
3333 * consumer_quit state that we just set so to quit gracefully.
3334 */
3335 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3336
3337 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3338
3339 notify_health_quit_pipe(health_quit_pipe);
3340
3341 /* Cleaning up possibly open sockets. */
3342 if (sock >= 0) {
3343 ret = close(sock);
3344 if (ret < 0) {
3345 PERROR("close sock sessiond poll");
3346 }
3347 }
3348 if (client_socket >= 0) {
3349 ret = close(client_socket);
3350 if (ret < 0) {
3351 PERROR("close client_socket sessiond poll");
3352 }
3353 }
3354
3355 error_testpoint:
3356 if (err) {
3357 health_error();
3358 ERR("Health error occurred in %s", __func__);
3359 }
3360 health_unregister(health_consumerd);
3361
3362 rcu_unregister_thread();
3363 return NULL;
3364 }
3365
3366 static int post_consume(struct lttng_consumer_stream *stream,
3367 const struct stream_subbuffer *subbuffer,
3368 struct lttng_consumer_local_data *ctx)
3369 {
3370 size_t i;
3371 int ret = 0;
3372 const size_t count = lttng_dynamic_array_get_count(
3373 &stream->read_subbuffer_ops.post_consume_cbs);
3374
3375 for (i = 0; i < count; i++) {
3376 const post_consume_cb op = *(post_consume_cb *) lttng_dynamic_array_get_element(
3377 &stream->read_subbuffer_ops.post_consume_cbs,
3378 i);
3379
3380 ret = op(stream, subbuffer, ctx);
3381 if (ret) {
3382 goto end;
3383 }
3384 }
3385 end:
3386 return ret;
3387 }
3388
3389 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3390 struct lttng_consumer_local_data *ctx,
3391 bool locked_by_caller)
3392 {
3393 ssize_t ret, written_bytes = 0;
3394 int rotation_ret;
3395 struct stream_subbuffer subbuffer = {};
3396 enum get_next_subbuffer_status get_next_status;
3397
3398 if (!locked_by_caller) {
3399 stream->read_subbuffer_ops.lock(stream);
3400 } else {
3401 stream->read_subbuffer_ops.assert_locked(stream);
3402 }
3403
3404 if (stream->read_subbuffer_ops.on_wake_up) {
3405 ret = stream->read_subbuffer_ops.on_wake_up(stream);
3406 if (ret) {
3407 goto end;
3408 }
3409 }
3410
3411 /*
3412 * If the stream was flagged to be ready for rotation before we extract
3413 * the next packet, rotate it now.
3414 */
3415 if (stream->rotate_ready) {
3416 DBG("Rotate stream before consuming data");
3417 ret = lttng_consumer_rotate_stream(stream);
3418 if (ret < 0) {
3419 ERR("Stream rotation error before consuming data");
3420 goto end;
3421 }
3422 }
3423
3424 get_next_status = stream->read_subbuffer_ops.get_next_subbuffer(
3425 stream, &subbuffer);
3426 switch (get_next_status) {
3427 case GET_NEXT_SUBBUFFER_STATUS_OK:
3428 break;
3429 case GET_NEXT_SUBBUFFER_STATUS_NO_DATA:
3430 /* Not an error. */
3431 ret = 0;
3432 goto sleep_stream;
3433 case GET_NEXT_SUBBUFFER_STATUS_ERROR:
3434 ret = -1;
3435 goto end;
3436 default:
3437 abort();
3438 }
3439
3440 ret = stream->read_subbuffer_ops.pre_consume_subbuffer(
3441 stream, &subbuffer);
3442 if (ret) {
3443 goto error_put_subbuf;
3444 }
3445
3446 written_bytes = stream->read_subbuffer_ops.consume_subbuffer(
3447 ctx, stream, &subbuffer);
3448 if (written_bytes <= 0) {
3449 ERR("Error consuming subbuffer: (%zd)", written_bytes);
3450 ret = (int) written_bytes;
3451 goto error_put_subbuf;
3452 }
3453
3454 ret = stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3455 if (ret) {
3456 goto end;
3457 }
3458
3459 ret = post_consume(stream, &subbuffer, ctx);
3460 if (ret) {
3461 goto end;
3462 }
3463
3464 /*
3465 * After extracting the packet, we check if the stream is now ready to
3466 * be rotated and perform the action immediately.
3467 *
3468 * Don't overwrite `ret` as callers expect the number of bytes
3469 * consumed to be returned on success.
3470 */
3471 rotation_ret = lttng_consumer_stream_is_rotate_ready(stream);
3472 if (rotation_ret == 1) {
3473 rotation_ret = lttng_consumer_rotate_stream(stream);
3474 if (rotation_ret < 0) {
3475 ret = rotation_ret;
3476 ERR("Stream rotation error after consuming data");
3477 goto end;
3478 }
3479
3480 } else if (rotation_ret < 0) {
3481 ret = rotation_ret;
3482 ERR("Failed to check if stream was ready to rotate after consuming data");
3483 goto end;
3484 }
3485
3486 sleep_stream:
3487 if (stream->read_subbuffer_ops.on_sleep) {
3488 stream->read_subbuffer_ops.on_sleep(stream, ctx);
3489 }
3490
3491 ret = written_bytes;
3492 end:
3493 if (!locked_by_caller) {
3494 stream->read_subbuffer_ops.unlock(stream);
3495 }
3496
3497 return ret;
3498 error_put_subbuf:
3499 (void) stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3500 goto end;
3501 }
3502
3503 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3504 {
3505 switch (the_consumer_data.type) {
3506 case LTTNG_CONSUMER_KERNEL:
3507 return lttng_kconsumer_on_recv_stream(stream);
3508 case LTTNG_CONSUMER32_UST:
3509 case LTTNG_CONSUMER64_UST:
3510 return lttng_ustconsumer_on_recv_stream(stream);
3511 default:
3512 ERR("Unknown consumer_data type");
3513 abort();
3514 return -ENOSYS;
3515 }
3516 }
3517
3518 /*
3519 * Allocate and set consumer data hash tables.
3520 */
3521 int lttng_consumer_init(void)
3522 {
3523 the_consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3524 if (!the_consumer_data.channel_ht) {
3525 goto error;
3526 }
3527
3528 the_consumer_data.channels_by_session_id_ht =
3529 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3530 if (!the_consumer_data.channels_by_session_id_ht) {
3531 goto error;
3532 }
3533
3534 the_consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3535 if (!the_consumer_data.relayd_ht) {
3536 goto error;
3537 }
3538
3539 the_consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3540 if (!the_consumer_data.stream_list_ht) {
3541 goto error;
3542 }
3543
3544 the_consumer_data.stream_per_chan_id_ht =
3545 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3546 if (!the_consumer_data.stream_per_chan_id_ht) {
3547 goto error;
3548 }
3549
3550 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3551 if (!data_ht) {
3552 goto error;
3553 }
3554
3555 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3556 if (!metadata_ht) {
3557 goto error;
3558 }
3559
3560 the_consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3561 if (!the_consumer_data.chunk_registry) {
3562 goto error;
3563 }
3564
3565 return 0;
3566
3567 error:
3568 return -1;
3569 }
3570
3571 /*
3572 * Process the ADD_RELAYD command receive by a consumer.
3573 *
3574 * This will create a relayd socket pair and add it to the relayd hash table.
3575 * The caller MUST acquire a RCU read side lock before calling it.
3576 */
3577 void consumer_add_relayd_socket(uint64_t net_seq_idx,
3578 int sock_type,
3579 struct lttng_consumer_local_data *ctx,
3580 int sock,
3581 struct pollfd *consumer_sockpoll,
3582 uint64_t sessiond_id,
3583 uint64_t relayd_session_id,
3584 uint32_t relayd_version_major,
3585 uint32_t relayd_version_minor,
3586 enum lttcomm_sock_proto relayd_socket_protocol)
3587 {
3588 int fd = -1, ret = -1, relayd_created = 0;
3589 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3590 struct consumer_relayd_sock_pair *relayd = NULL;
3591
3592 LTTNG_ASSERT(ctx);
3593 LTTNG_ASSERT(sock >= 0);
3594 ASSERT_RCU_READ_LOCKED();
3595
3596 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3597
3598 /* Get relayd reference if exists. */
3599 relayd = consumer_find_relayd(net_seq_idx);
3600 if (relayd == NULL) {
3601 LTTNG_ASSERT(sock_type == LTTNG_STREAM_CONTROL);
3602 /* Not found. Allocate one. */
3603 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3604 if (relayd == NULL) {
3605 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3606 goto error;
3607 } else {
3608 relayd->sessiond_session_id = sessiond_id;
3609 relayd_created = 1;
3610 }
3611
3612 /*
3613 * This code path MUST continue to the consumer send status message to
3614 * we can notify the session daemon and continue our work without
3615 * killing everything.
3616 */
3617 } else {
3618 /*
3619 * relayd key should never be found for control socket.
3620 */
3621 LTTNG_ASSERT(sock_type != LTTNG_STREAM_CONTROL);
3622 }
3623
3624 /* First send a status message before receiving the fds. */
3625 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3626 if (ret < 0) {
3627 /* Somehow, the session daemon is not responding anymore. */
3628 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3629 goto error_nosignal;
3630 }
3631
3632 /* Poll on consumer socket. */
3633 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3634 if (ret) {
3635 /* Needing to exit in the middle of a command: error. */
3636 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3637 goto error_nosignal;
3638 }
3639
3640 /* Get relayd socket from session daemon */
3641 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3642 if (ret != sizeof(fd)) {
3643 fd = -1; /* Just in case it gets set with an invalid value. */
3644
3645 /*
3646 * Failing to receive FDs might indicate a major problem such as
3647 * reaching a fd limit during the receive where the kernel returns a
3648 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3649 * don't take any chances and stop everything.
3650 *
3651 * XXX: Feature request #558 will fix that and avoid this possible
3652 * issue when reaching the fd limit.
3653 */
3654 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3655 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3656 goto error;
3657 }
3658
3659 /* Copy socket information and received FD */
3660 switch (sock_type) {
3661 case LTTNG_STREAM_CONTROL:
3662 /* Copy received lttcomm socket */
3663 ret = lttcomm_populate_sock_from_open_socket(
3664 &relayd->control_sock.sock, fd,
3665 relayd_socket_protocol);
3666
3667 /* Assign version values. */
3668 relayd->control_sock.major = relayd_version_major;
3669 relayd->control_sock.minor = relayd_version_minor;
3670
3671 relayd->relayd_session_id = relayd_session_id;
3672
3673 break;
3674 case LTTNG_STREAM_DATA:
3675 /* Copy received lttcomm socket */
3676 ret = lttcomm_populate_sock_from_open_socket(
3677 &relayd->data_sock.sock, fd,
3678 relayd_socket_protocol);
3679 /* Assign version values. */
3680 relayd->data_sock.major = relayd_version_major;
3681 relayd->data_sock.minor = relayd_version_minor;
3682 break;
3683 default:
3684 ERR("Unknown relayd socket type (%d)", sock_type);
3685 ret_code = LTTCOMM_CONSUMERD_FATAL;
3686 goto error;
3687 }
3688
3689 if (ret < 0) {
3690 ret_code = LTTCOMM_CONSUMERD_FATAL;
3691 goto error;
3692 }
3693
3694 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3695 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3696 relayd->net_seq_idx, fd);
3697 /*
3698 * We gave the ownership of the fd to the relayd structure. Set the
3699 * fd to -1 so we don't call close() on it in the error path below.
3700 */
3701 fd = -1;
3702
3703 /* We successfully added the socket. Send status back. */
3704 ret = consumer_send_status_msg(sock, ret_code);
3705 if (ret < 0) {
3706 /* Somehow, the session daemon is not responding anymore. */
3707 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3708 goto error_nosignal;
3709 }
3710
3711 /*
3712 * Add relayd socket pair to consumer data hashtable. If object already
3713 * exists or on error, the function gracefully returns.
3714 */
3715 relayd->ctx = ctx;
3716 add_relayd(relayd);
3717
3718 /* All good! */
3719 return;
3720
3721 error:
3722 if (consumer_send_status_msg(sock, ret_code) < 0) {
3723 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3724 }
3725
3726 error_nosignal:
3727 /* Close received socket if valid. */
3728 if (fd >= 0) {
3729 if (close(fd)) {
3730 PERROR("close received socket");
3731 }
3732 }
3733
3734 if (relayd_created) {
3735 free(relayd);
3736 }
3737 }
3738
3739 /*
3740 * Search for a relayd associated to the session id and return the reference.
3741 *
3742 * A rcu read side lock MUST be acquire before calling this function and locked
3743 * until the relayd object is no longer necessary.
3744 */
3745 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3746 {
3747 struct lttng_ht_iter iter;
3748 struct consumer_relayd_sock_pair *relayd = NULL;
3749
3750 ASSERT_RCU_READ_LOCKED();
3751
3752 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3753 cds_lfht_for_each_entry(the_consumer_data.relayd_ht->ht, &iter.iter,
3754 relayd, node.node) {
3755 /*
3756 * Check by sessiond id which is unique here where the relayd session
3757 * id might not be when having multiple relayd.
3758 */
3759 if (relayd->sessiond_session_id == id) {
3760 /* Found the relayd. There can be only one per id. */
3761 goto found;
3762 }
3763 }
3764
3765 return NULL;
3766
3767 found:
3768 return relayd;
3769 }
3770
3771 /*
3772 * Check if for a given session id there is still data needed to be extract
3773 * from the buffers.
3774 *
3775 * Return 1 if data is pending or else 0 meaning ready to be read.
3776 */
3777 int consumer_data_pending(uint64_t id)
3778 {
3779 int ret;
3780 struct lttng_ht_iter iter;
3781 struct lttng_ht *ht;
3782 struct lttng_consumer_stream *stream;
3783 struct consumer_relayd_sock_pair *relayd = NULL;
3784 int (*data_pending)(struct lttng_consumer_stream *);
3785
3786 DBG("Consumer data pending command on session id %" PRIu64, id);
3787
3788 rcu_read_lock();
3789 pthread_mutex_lock(&the_consumer_data.lock);
3790
3791 switch (the_consumer_data.type) {
3792 case LTTNG_CONSUMER_KERNEL:
3793 data_pending = lttng_kconsumer_data_pending;
3794 break;
3795 case LTTNG_CONSUMER32_UST:
3796 case LTTNG_CONSUMER64_UST:
3797 data_pending = lttng_ustconsumer_data_pending;
3798 break;
3799 default:
3800 ERR("Unknown consumer data type");
3801 abort();
3802 }
3803
3804 /* Ease our life a bit */
3805 ht = the_consumer_data.stream_list_ht;
3806
3807 cds_lfht_for_each_entry_duplicate(ht->ht,
3808 ht->hash_fct(&id, lttng_ht_seed),
3809 ht->match_fct, &id,
3810 &iter.iter, stream, node_session_id.node) {
3811 pthread_mutex_lock(&stream->lock);
3812
3813 /*
3814 * A removed node from the hash table indicates that the stream has
3815 * been deleted thus having a guarantee that the buffers are closed
3816 * on the consumer side. However, data can still be transmitted
3817 * over the network so don't skip the relayd check.
3818 */
3819 ret = cds_lfht_is_node_deleted(&stream->node.node);
3820 if (!ret) {
3821 /* Check the stream if there is data in the buffers. */
3822 ret = data_pending(stream);
3823 if (ret == 1) {
3824 pthread_mutex_unlock(&stream->lock);
3825 goto data_pending;
3826 }
3827 }
3828
3829 pthread_mutex_unlock(&stream->lock);
3830 }
3831
3832 relayd = find_relayd_by_session_id(id);
3833 if (relayd) {
3834 unsigned int is_data_inflight = 0;
3835
3836 /* Send init command for data pending. */
3837 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3838 ret = relayd_begin_data_pending(&relayd->control_sock,
3839 relayd->relayd_session_id);
3840 if (ret < 0) {
3841 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3842 /* Communication error thus the relayd so no data pending. */
3843 goto data_not_pending;
3844 }
3845
3846 cds_lfht_for_each_entry_duplicate(ht->ht,
3847 ht->hash_fct(&id, lttng_ht_seed),
3848 ht->match_fct, &id,
3849 &iter.iter, stream, node_session_id.node) {
3850 if (stream->metadata_flag) {
3851 ret = relayd_quiescent_control(&relayd->control_sock,
3852 stream->relayd_stream_id);
3853 } else {
3854 ret = relayd_data_pending(&relayd->control_sock,
3855 stream->relayd_stream_id,
3856 stream->next_net_seq_num - 1);
3857 }
3858
3859 if (ret == 1) {
3860 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3861 goto data_pending;
3862 } else if (ret < 0) {
3863 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3864 lttng_consumer_cleanup_relayd(relayd);
3865 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3866 goto data_not_pending;
3867 }
3868 }
3869
3870 /* Send end command for data pending. */
3871 ret = relayd_end_data_pending(&relayd->control_sock,
3872 relayd->relayd_session_id, &is_data_inflight);
3873 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3874 if (ret < 0) {
3875 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3876 lttng_consumer_cleanup_relayd(relayd);
3877 goto data_not_pending;
3878 }
3879 if (is_data_inflight) {
3880 goto data_pending;
3881 }
3882 }
3883
3884 /*
3885 * Finding _no_ node in the hash table and no inflight data means that the
3886 * stream(s) have been removed thus data is guaranteed to be available for
3887 * analysis from the trace files.
3888 */
3889
3890 data_not_pending:
3891 /* Data is available to be read by a viewer. */
3892 pthread_mutex_unlock(&the_consumer_data.lock);
3893 rcu_read_unlock();
3894 return 0;
3895
3896 data_pending:
3897 /* Data is still being extracted from buffers. */
3898 pthread_mutex_unlock(&the_consumer_data.lock);
3899 rcu_read_unlock();
3900 return 1;
3901 }
3902
3903 /*
3904 * Send a ret code status message to the sessiond daemon.
3905 *
3906 * Return the sendmsg() return value.
3907 */
3908 int consumer_send_status_msg(int sock, int ret_code)
3909 {
3910 struct lttcomm_consumer_status_msg msg;
3911
3912 memset(&msg, 0, sizeof(msg));
3913 msg.ret_code = (lttcomm_return_code) ret_code;
3914
3915 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3916 }
3917
3918 /*
3919 * Send a channel status message to the sessiond daemon.
3920 *
3921 * Return the sendmsg() return value.
3922 */
3923 int consumer_send_status_channel(int sock,
3924 struct lttng_consumer_channel *channel)
3925 {
3926 struct lttcomm_consumer_status_channel msg;
3927
3928 LTTNG_ASSERT(sock >= 0);
3929
3930 memset(&msg, 0, sizeof(msg));
3931 if (!channel) {
3932 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3933 } else {
3934 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3935 msg.key = channel->key;
3936 msg.stream_count = channel->streams.count;
3937 }
3938
3939 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3940 }
3941
3942 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3943 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3944 uint64_t max_sb_size)
3945 {
3946 unsigned long start_pos;
3947
3948 if (!nb_packets_per_stream) {
3949 return consumed_pos; /* Grab everything */
3950 }
3951 start_pos = produced_pos - lttng_offset_align_floor(produced_pos, max_sb_size);
3952 start_pos -= max_sb_size * nb_packets_per_stream;
3953 if ((long) (start_pos - consumed_pos) < 0) {
3954 return consumed_pos; /* Grab everything */
3955 }
3956 return start_pos;
3957 }
3958
3959 /* Stream lock must be held by the caller. */
3960 static int sample_stream_positions(struct lttng_consumer_stream *stream,
3961 unsigned long *produced, unsigned long *consumed)
3962 {
3963 int ret;
3964
3965 ASSERT_LOCKED(stream->lock);
3966
3967 ret = lttng_consumer_sample_snapshot_positions(stream);
3968 if (ret < 0) {
3969 ERR("Failed to sample snapshot positions");
3970 goto end;
3971 }
3972
3973 ret = lttng_consumer_get_produced_snapshot(stream, produced);
3974 if (ret < 0) {
3975 ERR("Failed to sample produced position");
3976 goto end;
3977 }
3978
3979 ret = lttng_consumer_get_consumed_snapshot(stream, consumed);
3980 if (ret < 0) {
3981 ERR("Failed to sample consumed position");
3982 goto end;
3983 }
3984
3985 end:
3986 return ret;
3987 }
3988
3989 /*
3990 * Sample the rotate position for all the streams of a channel. If a stream
3991 * is already at the rotate position (produced == consumed), we flag it as
3992 * ready for rotation. The rotation of ready streams occurs after we have
3993 * replied to the session daemon that we have finished sampling the positions.
3994 * Must be called with RCU read-side lock held to ensure existence of channel.
3995 *
3996 * Returns 0 on success, < 0 on error
3997 */
3998 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
3999 uint64_t key, uint64_t relayd_id)
4000 {
4001 int ret;
4002 struct lttng_consumer_stream *stream;
4003 struct lttng_ht_iter iter;
4004 struct lttng_ht *ht = the_consumer_data.stream_per_chan_id_ht;
4005 struct lttng_dynamic_array stream_rotation_positions;
4006 uint64_t next_chunk_id, stream_count = 0;
4007 enum lttng_trace_chunk_status chunk_status;
4008 const bool is_local_trace = relayd_id == -1ULL;
4009 struct consumer_relayd_sock_pair *relayd = NULL;
4010 bool rotating_to_new_chunk = true;
4011 /* Array of `struct lttng_consumer_stream *` */
4012 struct lttng_dynamic_pointer_array streams_packet_to_open;
4013 size_t stream_idx;
4014
4015 ASSERT_RCU_READ_LOCKED();
4016
4017 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4018
4019 lttng_dynamic_array_init(&stream_rotation_positions,
4020 sizeof(struct relayd_stream_rotation_position), NULL);
4021 lttng_dynamic_pointer_array_init(&streams_packet_to_open, NULL);
4022
4023 rcu_read_lock();
4024
4025 pthread_mutex_lock(&channel->lock);
4026 LTTNG_ASSERT(channel->trace_chunk);
4027 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
4028 &next_chunk_id);
4029 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4030 ret = -1;
4031 goto end_unlock_channel;
4032 }
4033
4034 cds_lfht_for_each_entry_duplicate(ht->ht,
4035 ht->hash_fct(&channel->key, lttng_ht_seed),
4036 ht->match_fct, &channel->key, &iter.iter,
4037 stream, node_channel_id.node) {
4038 unsigned long produced_pos = 0, consumed_pos = 0;
4039
4040 health_code_update();
4041
4042 /*
4043 * Lock stream because we are about to change its state.
4044 */
4045 pthread_mutex_lock(&stream->lock);
4046
4047 if (stream->trace_chunk == stream->chan->trace_chunk) {
4048 rotating_to_new_chunk = false;
4049 }
4050
4051 /*
4052 * Do not flush a packet when rotating from a NULL trace
4053 * chunk. The stream has no means to output data, and the prior
4054 * rotation which rotated to NULL performed that side-effect
4055 * already. No new data can be produced when a stream has no
4056 * associated trace chunk (e.g. a stop followed by a rotate).
4057 */
4058 if (stream->trace_chunk) {
4059 bool flush_active;
4060
4061 if (stream->metadata_flag) {
4062 /*
4063 * Don't produce an empty metadata packet,
4064 * simply close the current one.
4065 *
4066 * Metadata is regenerated on every trace chunk
4067 * switch; there is no concern that no data was
4068 * produced.
4069 */
4070 flush_active = true;
4071 } else {
4072 /*
4073 * Only flush an empty packet if the "packet
4074 * open" could not be performed on transition
4075 * to a new trace chunk and no packets were
4076 * consumed within the chunk's lifetime.
4077 */
4078 if (stream->opened_packet_in_current_trace_chunk) {
4079 flush_active = true;
4080 } else {
4081 /*
4082 * Stream could have been full at the
4083 * time of rotation, but then have had
4084 * no activity at all.
4085 *
4086 * It is important to flush a packet
4087 * to prevent 0-length files from being
4088 * produced as most viewers choke on
4089 * them.
4090 *
4091 * Unfortunately viewers will not be
4092 * able to know that tracing was active
4093 * for this stream during this trace
4094 * chunk's lifetime.
4095 */
4096 ret = sample_stream_positions(stream, &produced_pos, &consumed_pos);
4097 if (ret) {
4098 goto end_unlock_stream;
4099 }
4100
4101 /*
4102 * Don't flush an empty packet if data
4103 * was produced; it will be consumed
4104 * before the rotation completes.
4105 */
4106 flush_active = produced_pos != consumed_pos;
4107 if (!flush_active) {
4108 const char *trace_chunk_name;
4109 uint64_t trace_chunk_id;
4110
4111 chunk_status = lttng_trace_chunk_get_name(
4112 stream->trace_chunk,
4113 &trace_chunk_name,
4114 NULL);
4115 if (chunk_status == LTTNG_TRACE_CHUNK_STATUS_NONE) {
4116 trace_chunk_name = "none";
4117 }
4118
4119 /*
4120 * Consumer trace chunks are
4121 * never anonymous.
4122 */
4123 chunk_status = lttng_trace_chunk_get_id(
4124 stream->trace_chunk,
4125 &trace_chunk_id);
4126 LTTNG_ASSERT(chunk_status ==
4127 LTTNG_TRACE_CHUNK_STATUS_OK);
4128
4129 DBG("Unable to open packet for stream during trace chunk's lifetime. "
4130 "Flushing an empty packet to prevent an empty file from being created: "
4131 "stream id = %" PRIu64 ", trace chunk name = `%s`, trace chunk id = %" PRIu64,
4132 stream->key, trace_chunk_name, trace_chunk_id);
4133 }
4134 }
4135 }
4136
4137 /*
4138 * Close the current packet before sampling the
4139 * ring buffer positions.
4140 */
4141 ret = consumer_stream_flush_buffer(stream, flush_active);
4142 if (ret < 0) {
4143 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4144 stream->key);
4145 goto end_unlock_stream;
4146 }
4147 }
4148
4149 ret = lttng_consumer_take_snapshot(stream);
4150 if (ret < 0 && ret != -ENODATA && ret != -EAGAIN) {
4151 ERR("Failed to sample snapshot position during channel rotation");
4152 goto end_unlock_stream;
4153 }
4154 if (!ret) {
4155 ret = lttng_consumer_get_produced_snapshot(stream,
4156 &produced_pos);
4157 if (ret < 0) {
4158 ERR("Failed to sample produced position during channel rotation");
4159 goto end_unlock_stream;
4160 }
4161
4162 ret = lttng_consumer_get_consumed_snapshot(stream,
4163 &consumed_pos);
4164 if (ret < 0) {
4165 ERR("Failed to sample consumed position during channel rotation");
4166 goto end_unlock_stream;
4167 }
4168 }
4169 /*
4170 * Align produced position on the start-of-packet boundary of the first
4171 * packet going into the next trace chunk.
4172 */
4173 produced_pos = lttng_align_floor(produced_pos, stream->max_sb_size);
4174 if (consumed_pos == produced_pos) {
4175 DBG("Set rotate ready for stream %" PRIu64 " produced = %lu consumed = %lu",
4176 stream->key, produced_pos, consumed_pos);
4177 stream->rotate_ready = true;
4178 } else {
4179 DBG("Different consumed and produced positions "
4180 "for stream %" PRIu64 " produced = %lu consumed = %lu",
4181 stream->key, produced_pos, consumed_pos);
4182 }
4183 /*
4184 * The rotation position is based on the packet_seq_num of the
4185 * packet following the last packet that was consumed for this
4186 * stream, incremented by the offset between produced and
4187 * consumed positions. This rotation position is a lower bound
4188 * (inclusive) at which the next trace chunk starts. Since it
4189 * is a lower bound, it is OK if the packet_seq_num does not
4190 * correspond exactly to the same packet identified by the
4191 * consumed_pos, which can happen in overwrite mode.
4192 */
4193 if (stream->sequence_number_unavailable) {
4194 /*
4195 * Rotation should never be performed on a session which
4196 * interacts with a pre-2.8 lttng-modules, which does
4197 * not implement packet sequence number.
4198 */
4199 ERR("Failure to rotate stream %" PRIu64 ": sequence number unavailable",
4200 stream->key);
4201 ret = -1;
4202 goto end_unlock_stream;
4203 }
4204 stream->rotate_position = stream->last_sequence_number + 1 +
4205 ((produced_pos - consumed_pos) / stream->max_sb_size);
4206 DBG("Set rotation position for stream %" PRIu64 " at position %" PRIu64,
4207 stream->key, stream->rotate_position);
4208
4209 if (!is_local_trace) {
4210 /*
4211 * The relay daemon control protocol expects a rotation
4212 * position as "the sequence number of the first packet
4213 * _after_ the current trace chunk".
4214 */
4215 const struct relayd_stream_rotation_position position = {
4216 .stream_id = stream->relayd_stream_id,
4217 .rotate_at_seq_num = stream->rotate_position,
4218 };
4219
4220 ret = lttng_dynamic_array_add_element(
4221 &stream_rotation_positions,
4222 &position);
4223 if (ret) {
4224 ERR("Failed to allocate stream rotation position");
4225 goto end_unlock_stream;
4226 }
4227 stream_count++;
4228 }
4229
4230 stream->opened_packet_in_current_trace_chunk = false;
4231
4232 if (rotating_to_new_chunk && !stream->metadata_flag) {
4233 /*
4234 * Attempt to flush an empty packet as close to the
4235 * rotation point as possible. In the event where a
4236 * stream remains inactive after the rotation point,
4237 * this ensures that the new trace chunk has a
4238 * beginning timestamp set at the begining of the
4239 * trace chunk instead of only creating an empty
4240 * packet when the trace chunk is stopped.
4241 *
4242 * This indicates to the viewers that the stream
4243 * was being recorded, but more importantly it
4244 * allows viewers to determine a useable trace
4245 * intersection.
4246 *
4247 * This presents a problem in the case where the
4248 * ring-buffer is completely full.
4249 *
4250 * Consider the following scenario:
4251 * - The consumption of data is slow (slow network,
4252 * for instance),
4253 * - The ring buffer is full,
4254 * - A rotation is initiated,
4255 * - The flush below does nothing (no space left to
4256 * open a new packet),
4257 * - The other streams rotate very soon, and new
4258 * data is produced in the new chunk,
4259 * - This stream completes its rotation long after the
4260 * rotation was initiated
4261 * - The session is stopped before any event can be
4262 * produced in this stream's buffers.
4263 *
4264 * The resulting trace chunk will have a single packet
4265 * temporaly at the end of the trace chunk for this
4266 * stream making the stream intersection more narrow
4267 * than it should be.
4268 *
4269 * To work-around this, an empty flush is performed
4270 * after the first consumption of a packet during a
4271 * rotation if open_packet fails. The idea is that
4272 * consuming a packet frees enough space to switch
4273 * packets in this scenario and allows the tracer to
4274 * "stamp" the beginning of the new trace chunk at the
4275 * earliest possible point.
4276 *
4277 * The packet open is performed after the channel
4278 * rotation to ensure that no attempt to open a packet
4279 * is performed in a stream that has no active trace
4280 * chunk.
4281 */
4282 ret = lttng_dynamic_pointer_array_add_pointer(
4283 &streams_packet_to_open, stream);
4284 if (ret) {
4285 PERROR("Failed to add a stream pointer to array of streams in which to open a packet");
4286 ret = -1;
4287 goto end_unlock_stream;
4288 }
4289 }
4290
4291 pthread_mutex_unlock(&stream->lock);
4292 }
4293 stream = NULL;
4294
4295 if (!is_local_trace) {
4296 relayd = consumer_find_relayd(relayd_id);
4297 if (!relayd) {
4298 ERR("Failed to find relayd %" PRIu64, relayd_id);
4299 ret = -1;
4300 goto end_unlock_channel;
4301 }
4302
4303 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4304 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4305 rotating_to_new_chunk ? &next_chunk_id : NULL,
4306 (const struct relayd_stream_rotation_position *)
4307 stream_rotation_positions.buffer
4308 .data);
4309 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4310 if (ret < 0) {
4311 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4312 relayd->net_seq_idx);
4313 lttng_consumer_cleanup_relayd(relayd);
4314 goto end_unlock_channel;
4315 }
4316 }
4317
4318 for (stream_idx = 0;
4319 stream_idx < lttng_dynamic_pointer_array_get_count(
4320 &streams_packet_to_open);
4321 stream_idx++) {
4322 enum consumer_stream_open_packet_status status;
4323
4324 stream = (lttng_consumer_stream *) lttng_dynamic_pointer_array_get_pointer(
4325 &streams_packet_to_open, stream_idx);
4326
4327 pthread_mutex_lock(&stream->lock);
4328 status = consumer_stream_open_packet(stream);
4329 pthread_mutex_unlock(&stream->lock);
4330 switch (status) {
4331 case CONSUMER_STREAM_OPEN_PACKET_STATUS_OPENED:
4332 DBG("Opened a packet after a rotation: stream id = %" PRIu64
4333 ", channel name = %s, session id = %" PRIu64,
4334 stream->key, stream->chan->name,
4335 stream->chan->session_id);
4336 break;
4337 case CONSUMER_STREAM_OPEN_PACKET_STATUS_NO_SPACE:
4338 /*
4339 * Can't open a packet as there is no space left
4340 * in the buffer. A new packet will be opened
4341 * once one has been consumed.
4342 */
4343 DBG("No space left to open a packet after a rotation: stream id = %" PRIu64
4344 ", channel name = %s, session id = %" PRIu64,
4345 stream->key, stream->chan->name,
4346 stream->chan->session_id);
4347 break;
4348 case CONSUMER_STREAM_OPEN_PACKET_STATUS_ERROR:
4349 /* Logged by callee. */
4350 ret = -1;
4351 goto end_unlock_channel;
4352 default:
4353 abort();
4354 }
4355 }
4356
4357 pthread_mutex_unlock(&channel->lock);
4358 ret = 0;
4359 goto end;
4360
4361 end_unlock_stream:
4362 pthread_mutex_unlock(&stream->lock);
4363 end_unlock_channel:
4364 pthread_mutex_unlock(&channel->lock);
4365 end:
4366 rcu_read_unlock();
4367 lttng_dynamic_array_reset(&stream_rotation_positions);
4368 lttng_dynamic_pointer_array_reset(&streams_packet_to_open);
4369 return ret;
4370 }
4371
4372 static
4373 int consumer_clear_buffer(struct lttng_consumer_stream *stream)
4374 {
4375 int ret = 0;
4376 unsigned long consumed_pos_before, consumed_pos_after;
4377
4378 ret = lttng_consumer_sample_snapshot_positions(stream);
4379 if (ret < 0) {
4380 ERR("Taking snapshot positions");
4381 goto end;
4382 }
4383
4384 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_before);
4385 if (ret < 0) {
4386 ERR("Consumed snapshot position");
4387 goto end;
4388 }
4389
4390 switch (the_consumer_data.type) {
4391 case LTTNG_CONSUMER_KERNEL:
4392 ret = kernctl_buffer_clear(stream->wait_fd);
4393 if (ret < 0) {
4394 ERR("Failed to clear kernel stream (ret = %d)", ret);
4395 goto end;
4396 }
4397 break;
4398 case LTTNG_CONSUMER32_UST:
4399 case LTTNG_CONSUMER64_UST:
4400 ret = lttng_ustconsumer_clear_buffer(stream);
4401 if (ret < 0) {
4402 ERR("Failed to clear ust stream (ret = %d)", ret);
4403 goto end;
4404 }
4405 break;
4406 default:
4407 ERR("Unknown consumer_data type");
4408 abort();
4409 }
4410
4411 ret = lttng_consumer_sample_snapshot_positions(stream);
4412 if (ret < 0) {
4413 ERR("Taking snapshot positions");
4414 goto end;
4415 }
4416 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_after);
4417 if (ret < 0) {
4418 ERR("Consumed snapshot position");
4419 goto end;
4420 }
4421 DBG("clear: before: %lu after: %lu", consumed_pos_before, consumed_pos_after);
4422 end:
4423 return ret;
4424 }
4425
4426 static
4427 int consumer_clear_stream(struct lttng_consumer_stream *stream)
4428 {
4429 int ret;
4430
4431 ret = consumer_stream_flush_buffer(stream, 1);
4432 if (ret < 0) {
4433 ERR("Failed to flush stream %" PRIu64 " during channel clear",
4434 stream->key);
4435 ret = LTTCOMM_CONSUMERD_FATAL;
4436 goto error;
4437 }
4438
4439 ret = consumer_clear_buffer(stream);
4440 if (ret < 0) {
4441 ERR("Failed to clear stream %" PRIu64 " during channel clear",
4442 stream->key);
4443 ret = LTTCOMM_CONSUMERD_FATAL;
4444 goto error;
4445 }
4446
4447 ret = LTTCOMM_CONSUMERD_SUCCESS;
4448 error:
4449 return ret;
4450 }
4451
4452 static
4453 int consumer_clear_unmonitored_channel(struct lttng_consumer_channel *channel)
4454 {
4455 int ret;
4456 struct lttng_consumer_stream *stream;
4457
4458 rcu_read_lock();
4459 pthread_mutex_lock(&channel->lock);
4460 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
4461 health_code_update();
4462 pthread_mutex_lock(&stream->lock);
4463 ret = consumer_clear_stream(stream);
4464 if (ret) {
4465 goto error_unlock;
4466 }
4467 pthread_mutex_unlock(&stream->lock);
4468 }
4469 pthread_mutex_unlock(&channel->lock);
4470 rcu_read_unlock();
4471 return 0;
4472
4473 error_unlock:
4474 pthread_mutex_unlock(&stream->lock);
4475 pthread_mutex_unlock(&channel->lock);
4476 rcu_read_unlock();
4477 return ret;
4478 }
4479
4480 /*
4481 * Check if a stream is ready to be rotated after extracting it.
4482 *
4483 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4484 * error. Stream lock must be held.
4485 */
4486 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4487 {
4488 DBG("Check is rotate ready for stream %" PRIu64
4489 " ready %u rotate_position %" PRIu64
4490 " last_sequence_number %" PRIu64,
4491 stream->key, stream->rotate_ready,
4492 stream->rotate_position, stream->last_sequence_number);
4493 if (stream->rotate_ready) {
4494 return 1;
4495 }
4496
4497 /*
4498 * If packet seq num is unavailable, it means we are interacting
4499 * with a pre-2.8 lttng-modules which does not implement the
4500 * sequence number. Rotation should never be used by sessiond in this
4501 * scenario.
4502 */
4503 if (stream->sequence_number_unavailable) {
4504 ERR("Internal error: rotation used on stream %" PRIu64
4505 " with unavailable sequence number",
4506 stream->key);
4507 return -1;
4508 }
4509
4510 if (stream->rotate_position == -1ULL ||
4511 stream->last_sequence_number == -1ULL) {
4512 return 0;
4513 }
4514
4515 /*
4516 * Rotate position not reached yet. The stream rotate position is
4517 * the position of the next packet belonging to the next trace chunk,
4518 * but consumerd considers rotation ready when reaching the last
4519 * packet of the current chunk, hence the "rotate_position - 1".
4520 */
4521
4522 DBG("Check is rotate ready for stream %" PRIu64
4523 " last_sequence_number %" PRIu64
4524 " rotate_position %" PRIu64,
4525 stream->key, stream->last_sequence_number,
4526 stream->rotate_position);
4527 if (stream->last_sequence_number >= stream->rotate_position - 1) {
4528 return 1;
4529 }
4530
4531 return 0;
4532 }
4533
4534 /*
4535 * Reset the state for a stream after a rotation occurred.
4536 */
4537 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4538 {
4539 DBG("lttng_consumer_reset_stream_rotate_state for stream %" PRIu64,
4540 stream->key);
4541 stream->rotate_position = -1ULL;
4542 stream->rotate_ready = false;
4543 }
4544
4545 /*
4546 * Perform the rotation a local stream file.
4547 */
4548 static
4549 int rotate_local_stream(struct lttng_consumer_stream *stream)
4550 {
4551 int ret = 0;
4552
4553 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4554 stream->key,
4555 stream->chan->key);
4556 stream->tracefile_size_current = 0;
4557 stream->tracefile_count_current = 0;
4558
4559 if (stream->out_fd >= 0) {
4560 ret = close(stream->out_fd);
4561 if (ret) {
4562 PERROR("Failed to close stream out_fd of channel \"%s\"",
4563 stream->chan->name);
4564 }
4565 stream->out_fd = -1;
4566 }
4567
4568 if (stream->index_file) {
4569 lttng_index_file_put(stream->index_file);
4570 stream->index_file = NULL;
4571 }
4572
4573 if (!stream->trace_chunk) {
4574 goto end;
4575 }
4576
4577 ret = consumer_stream_create_output_files(stream, true);
4578 end:
4579 return ret;
4580 }
4581
4582 /*
4583 * Performs the stream rotation for the rotate session feature if needed.
4584 * It must be called with the channel and stream locks held.
4585 *
4586 * Return 0 on success, a negative number of error.
4587 */
4588 int lttng_consumer_rotate_stream(struct lttng_consumer_stream *stream)
4589 {
4590 int ret;
4591
4592 DBG("Consumer rotate stream %" PRIu64, stream->key);
4593
4594 /*
4595 * Update the stream's 'current' chunk to the session's (channel)
4596 * now-current chunk.
4597 */
4598 lttng_trace_chunk_put(stream->trace_chunk);
4599 if (stream->chan->trace_chunk == stream->trace_chunk) {
4600 /*
4601 * A channel can be rotated and not have a "next" chunk
4602 * to transition to. In that case, the channel's "current chunk"
4603 * has not been closed yet, but it has not been updated to
4604 * a "next" trace chunk either. Hence, the stream, like its
4605 * parent channel, becomes part of no chunk and can't output
4606 * anything until a new trace chunk is created.
4607 */
4608 stream->trace_chunk = NULL;
4609 } else if (stream->chan->trace_chunk &&
4610 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4611 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4612 ret = -1;
4613 goto error;
4614 } else {
4615 /*
4616 * Update the stream's trace chunk to its parent channel's
4617 * current trace chunk.
4618 */
4619 stream->trace_chunk = stream->chan->trace_chunk;
4620 }
4621
4622 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4623 ret = rotate_local_stream(stream);
4624 if (ret < 0) {
4625 ERR("Failed to rotate stream, ret = %i", ret);
4626 goto error;
4627 }
4628 }
4629
4630 if (stream->metadata_flag && stream->trace_chunk) {
4631 /*
4632 * If the stream has transitioned to a new trace
4633 * chunk, the metadata should be re-dumped to the
4634 * newest chunk.
4635 *
4636 * However, it is possible for a stream to transition to
4637 * a "no-chunk" state. This can happen if a rotation
4638 * occurs on an inactive session. In such cases, the metadata
4639 * regeneration will happen when the next trace chunk is
4640 * created.
4641 */
4642 ret = consumer_metadata_stream_dump(stream);
4643 if (ret) {
4644 goto error;
4645 }
4646 }
4647 lttng_consumer_reset_stream_rotate_state(stream);
4648
4649 ret = 0;
4650
4651 error:
4652 return ret;
4653 }
4654
4655 /*
4656 * Rotate all the ready streams now.
4657 *
4658 * This is especially important for low throughput streams that have already
4659 * been consumed, we cannot wait for their next packet to perform the
4660 * rotation.
4661 * Need to be called with RCU read-side lock held to ensure existence of
4662 * channel.
4663 *
4664 * Returns 0 on success, < 0 on error
4665 */
4666 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4667 uint64_t key)
4668 {
4669 int ret;
4670 struct lttng_consumer_stream *stream;
4671 struct lttng_ht_iter iter;
4672 struct lttng_ht *ht = the_consumer_data.stream_per_chan_id_ht;
4673
4674 ASSERT_RCU_READ_LOCKED();
4675
4676 rcu_read_lock();
4677
4678 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4679
4680 cds_lfht_for_each_entry_duplicate(ht->ht,
4681 ht->hash_fct(&channel->key, lttng_ht_seed),
4682 ht->match_fct, &channel->key, &iter.iter,
4683 stream, node_channel_id.node) {
4684 health_code_update();
4685
4686 pthread_mutex_lock(&stream->chan->lock);
4687 pthread_mutex_lock(&stream->lock);
4688
4689 if (!stream->rotate_ready) {
4690 pthread_mutex_unlock(&stream->lock);
4691 pthread_mutex_unlock(&stream->chan->lock);
4692 continue;
4693 }
4694 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4695
4696 ret = lttng_consumer_rotate_stream(stream);
4697 pthread_mutex_unlock(&stream->lock);
4698 pthread_mutex_unlock(&stream->chan->lock);
4699 if (ret) {
4700 goto end;
4701 }
4702 }
4703
4704 ret = 0;
4705
4706 end:
4707 rcu_read_unlock();
4708 return ret;
4709 }
4710
4711 enum lttcomm_return_code lttng_consumer_init_command(
4712 struct lttng_consumer_local_data *ctx,
4713 const lttng_uuid& sessiond_uuid)
4714 {
4715 enum lttcomm_return_code ret;
4716 char uuid_str[LTTNG_UUID_STR_LEN];
4717
4718 if (ctx->sessiond_uuid.is_set) {
4719 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4720 goto end;
4721 }
4722
4723 ctx->sessiond_uuid.is_set = true;
4724 ctx->sessiond_uuid.value = sessiond_uuid;
4725 ret = LTTCOMM_CONSUMERD_SUCCESS;
4726 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4727 DBG("Received session daemon UUID: %s", uuid_str);
4728 end:
4729 return ret;
4730 }
4731
4732 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4733 const uint64_t *relayd_id, uint64_t session_id,
4734 uint64_t chunk_id,
4735 time_t chunk_creation_timestamp,
4736 const char *chunk_override_name,
4737 const struct lttng_credentials *credentials,
4738 struct lttng_directory_handle *chunk_directory_handle)
4739 {
4740 int ret;
4741 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4742 struct lttng_trace_chunk *created_chunk = NULL, *published_chunk = NULL;
4743 enum lttng_trace_chunk_status chunk_status;
4744 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4745 char creation_timestamp_buffer[ISO8601_STR_LEN];
4746 const char *relayd_id_str = "(none)";
4747 const char *creation_timestamp_str;
4748 struct lttng_ht_iter iter;
4749 struct lttng_consumer_channel *channel;
4750
4751 if (relayd_id) {
4752 /* Only used for logging purposes. */
4753 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4754 "%" PRIu64, *relayd_id);
4755 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4756 relayd_id_str = relayd_id_buffer;
4757 } else {
4758 relayd_id_str = "(formatting error)";
4759 }
4760 }
4761
4762 /* Local protocol error. */
4763 LTTNG_ASSERT(chunk_creation_timestamp);
4764 ret = time_to_iso8601_str(chunk_creation_timestamp,
4765 creation_timestamp_buffer,
4766 sizeof(creation_timestamp_buffer));
4767 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4768 "(formatting error)";
4769
4770 DBG("Consumer create trace chunk command: relay_id = %s"
4771 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4772 ", chunk_override_name = %s"
4773 ", chunk_creation_timestamp = %s",
4774 relayd_id_str, session_id, chunk_id,
4775 chunk_override_name ? : "(none)",
4776 creation_timestamp_str);
4777
4778 /*
4779 * The trace chunk registry, as used by the consumer daemon, implicitly
4780 * owns the trace chunks. This is only needed in the consumer since
4781 * the consumer has no notion of a session beyond session IDs being
4782 * used to identify other objects.
4783 *
4784 * The lttng_trace_chunk_registry_publish() call below provides a
4785 * reference which is not released; it implicitly becomes the session
4786 * daemon's reference to the chunk in the consumer daemon.
4787 *
4788 * The lifetime of trace chunks in the consumer daemon is managed by
4789 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4790 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4791 */
4792 created_chunk = lttng_trace_chunk_create(chunk_id,
4793 chunk_creation_timestamp, NULL);
4794 if (!created_chunk) {
4795 ERR("Failed to create trace chunk");
4796 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4797 goto error;
4798 }
4799
4800 if (chunk_override_name) {
4801 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4802 chunk_override_name);
4803 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4804 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4805 goto error;
4806 }
4807 }
4808
4809 if (chunk_directory_handle) {
4810 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4811 credentials);
4812 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4813 ERR("Failed to set trace chunk credentials");
4814 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4815 goto error;
4816 }
4817 /*
4818 * The consumer daemon has no ownership of the chunk output
4819 * directory.
4820 */
4821 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4822 chunk_directory_handle);
4823 chunk_directory_handle = NULL;
4824 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4825 ERR("Failed to set trace chunk's directory handle");
4826 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4827 goto error;
4828 }
4829 }
4830
4831 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4832 the_consumer_data.chunk_registry, session_id,
4833 created_chunk);
4834 lttng_trace_chunk_put(created_chunk);
4835 created_chunk = NULL;
4836 if (!published_chunk) {
4837 ERR("Failed to publish trace chunk");
4838 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4839 goto error;
4840 }
4841
4842 rcu_read_lock();
4843 cds_lfht_for_each_entry_duplicate(
4844 the_consumer_data.channels_by_session_id_ht->ht,
4845 the_consumer_data.channels_by_session_id_ht->hash_fct(
4846 &session_id, lttng_ht_seed),
4847 the_consumer_data.channels_by_session_id_ht->match_fct,
4848 &session_id, &iter.iter, channel,
4849 channels_by_session_id_ht_node.node) {
4850 ret = lttng_consumer_channel_set_trace_chunk(channel,
4851 published_chunk);
4852 if (ret) {
4853 /*
4854 * Roll-back the creation of this chunk.
4855 *
4856 * This is important since the session daemon will
4857 * assume that the creation of this chunk failed and
4858 * will never ask for it to be closed, resulting
4859 * in a leak and an inconsistent state for some
4860 * channels.
4861 */
4862 enum lttcomm_return_code close_ret;
4863 char path[LTTNG_PATH_MAX];
4864
4865 DBG("Failed to set new trace chunk on existing channels, rolling back");
4866 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4867 session_id, chunk_id,
4868 chunk_creation_timestamp, NULL,
4869 path);
4870 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4871 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4872 session_id, chunk_id);
4873 }
4874
4875 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4876 break;
4877 }
4878 }
4879
4880 if (relayd_id) {
4881 struct consumer_relayd_sock_pair *relayd;
4882
4883 relayd = consumer_find_relayd(*relayd_id);
4884 if (relayd) {
4885 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4886 ret = relayd_create_trace_chunk(
4887 &relayd->control_sock, published_chunk);
4888 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4889 } else {
4890 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4891 }
4892
4893 if (!relayd || ret) {
4894 enum lttcomm_return_code close_ret;
4895 char path[LTTNG_PATH_MAX];
4896
4897 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4898 session_id,
4899 chunk_id,
4900 chunk_creation_timestamp,
4901 NULL, path);
4902 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4903 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4904 session_id,
4905 chunk_id);
4906 }
4907
4908 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4909 goto error_unlock;
4910 }
4911 }
4912 error_unlock:
4913 rcu_read_unlock();
4914 error:
4915 /* Release the reference returned by the "publish" operation. */
4916 lttng_trace_chunk_put(published_chunk);
4917 lttng_trace_chunk_put(created_chunk);
4918 return ret_code;
4919 }
4920
4921 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4922 const uint64_t *relayd_id, uint64_t session_id,
4923 uint64_t chunk_id, time_t chunk_close_timestamp,
4924 const enum lttng_trace_chunk_command_type *close_command,
4925 char *path)
4926 {
4927 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4928 struct lttng_trace_chunk *chunk;
4929 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4930 const char *relayd_id_str = "(none)";
4931 const char *close_command_name = "none";
4932 struct lttng_ht_iter iter;
4933 struct lttng_consumer_channel *channel;
4934 enum lttng_trace_chunk_status chunk_status;
4935
4936 if (relayd_id) {
4937 int ret;
4938
4939 /* Only used for logging purposes. */
4940 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4941 "%" PRIu64, *relayd_id);
4942 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4943 relayd_id_str = relayd_id_buffer;
4944 } else {
4945 relayd_id_str = "(formatting error)";
4946 }
4947 }
4948 if (close_command) {
4949 close_command_name = lttng_trace_chunk_command_type_get_name(
4950 *close_command);
4951 }
4952
4953 DBG("Consumer close trace chunk command: relayd_id = %s"
4954 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4955 ", close command = %s",
4956 relayd_id_str, session_id, chunk_id,
4957 close_command_name);
4958
4959 chunk = lttng_trace_chunk_registry_find_chunk(
4960 the_consumer_data.chunk_registry, session_id, chunk_id);
4961 if (!chunk) {
4962 ERR("Failed to find chunk: session_id = %" PRIu64
4963 ", chunk_id = %" PRIu64,
4964 session_id, chunk_id);
4965 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4966 goto end;
4967 }
4968
4969 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4970 chunk_close_timestamp);
4971 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4972 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4973 goto end;
4974 }
4975
4976 if (close_command) {
4977 chunk_status = lttng_trace_chunk_set_close_command(
4978 chunk, *close_command);
4979 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4980 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4981 goto end;
4982 }
4983 }
4984
4985 /*
4986 * chunk is now invalid to access as we no longer hold a reference to
4987 * it; it is only kept around to compare it (by address) to the
4988 * current chunk found in the session's channels.
4989 */
4990 rcu_read_lock();
4991 cds_lfht_for_each_entry(the_consumer_data.channel_ht->ht, &iter.iter,
4992 channel, node.node) {
4993 int ret;
4994
4995 /*
4996 * Only change the channel's chunk to NULL if it still
4997 * references the chunk being closed. The channel may
4998 * reference a newer channel in the case of a session
4999 * rotation. When a session rotation occurs, the "next"
5000 * chunk is created before the "current" chunk is closed.
5001 */
5002 if (channel->trace_chunk != chunk) {
5003 continue;
5004 }
5005 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
5006 if (ret) {
5007 /*
5008 * Attempt to close the chunk on as many channels as
5009 * possible.
5010 */
5011 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
5012 }
5013 }
5014
5015 if (relayd_id) {
5016 int ret;
5017 struct consumer_relayd_sock_pair *relayd;
5018
5019 relayd = consumer_find_relayd(*relayd_id);
5020 if (relayd) {
5021 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
5022 ret = relayd_close_trace_chunk(
5023 &relayd->control_sock, chunk,
5024 path);
5025 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
5026 } else {
5027 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
5028 *relayd_id);
5029 }
5030
5031 if (!relayd || ret) {
5032 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
5033 goto error_unlock;
5034 }
5035 }
5036 error_unlock:
5037 rcu_read_unlock();
5038 end:
5039 /*
5040 * Release the reference returned by the "find" operation and
5041 * the session daemon's implicit reference to the chunk.
5042 */
5043 lttng_trace_chunk_put(chunk);
5044 lttng_trace_chunk_put(chunk);
5045
5046 return ret_code;
5047 }
5048
5049 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
5050 const uint64_t *relayd_id, uint64_t session_id,
5051 uint64_t chunk_id)
5052 {
5053 int ret;
5054 enum lttcomm_return_code ret_code;
5055 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
5056 const char *relayd_id_str = "(none)";
5057 const bool is_local_trace = !relayd_id;
5058 struct consumer_relayd_sock_pair *relayd = NULL;
5059 bool chunk_exists_local, chunk_exists_remote;
5060
5061 if (relayd_id) {
5062 /* Only used for logging purposes. */
5063 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
5064 "%" PRIu64, *relayd_id);
5065 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
5066 relayd_id_str = relayd_id_buffer;
5067 } else {
5068 relayd_id_str = "(formatting error)";
5069 }
5070 }
5071
5072 DBG("Consumer trace chunk exists command: relayd_id = %s"
5073 ", chunk_id = %" PRIu64, relayd_id_str,
5074 chunk_id);
5075 ret = lttng_trace_chunk_registry_chunk_exists(
5076 the_consumer_data.chunk_registry, session_id, chunk_id,
5077 &chunk_exists_local);
5078 if (ret) {
5079 /* Internal error. */
5080 ERR("Failed to query the existence of a trace chunk");
5081 ret_code = LTTCOMM_CONSUMERD_FATAL;
5082 goto end;
5083 }
5084 DBG("Trace chunk %s locally",
5085 chunk_exists_local ? "exists" : "does not exist");
5086 if (chunk_exists_local) {
5087 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
5088 goto end;
5089 } else if (is_local_trace) {
5090 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
5091 goto end;
5092 }
5093
5094 rcu_read_lock();
5095 relayd = consumer_find_relayd(*relayd_id);
5096 if (!relayd) {
5097 ERR("Failed to find relayd %" PRIu64, *relayd_id);
5098 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
5099 goto end_rcu_unlock;
5100 }
5101 DBG("Looking up existence of trace chunk on relay daemon");
5102 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
5103 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
5104 &chunk_exists_remote);
5105 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
5106 if (ret < 0) {
5107 ERR("Failed to look-up the existence of trace chunk on relay daemon");
5108 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
5109 goto end_rcu_unlock;
5110 }
5111
5112 ret_code = chunk_exists_remote ?
5113 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
5114 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
5115 DBG("Trace chunk %s on relay daemon",
5116 chunk_exists_remote ? "exists" : "does not exist");
5117
5118 end_rcu_unlock:
5119 rcu_read_unlock();
5120 end:
5121 return ret_code;
5122 }
5123
5124 static
5125 int consumer_clear_monitored_channel(struct lttng_consumer_channel *channel)
5126 {
5127 struct lttng_ht *ht;
5128 struct lttng_consumer_stream *stream;
5129 struct lttng_ht_iter iter;
5130 int ret;
5131
5132 ht = the_consumer_data.stream_per_chan_id_ht;
5133
5134 rcu_read_lock();
5135 cds_lfht_for_each_entry_duplicate(ht->ht,
5136 ht->hash_fct(&channel->key, lttng_ht_seed),
5137 ht->match_fct, &channel->key,
5138 &iter.iter, stream, node_channel_id.node) {
5139 /*
5140 * Protect against teardown with mutex.
5141 */
5142 pthread_mutex_lock(&stream->lock);
5143 if (cds_lfht_is_node_deleted(&stream->node.node)) {
5144 goto next;
5145 }
5146 ret = consumer_clear_stream(stream);
5147 if (ret) {
5148 goto error_unlock;
5149 }
5150 next:
5151 pthread_mutex_unlock(&stream->lock);
5152 }
5153 rcu_read_unlock();
5154 return LTTCOMM_CONSUMERD_SUCCESS;
5155
5156 error_unlock:
5157 pthread_mutex_unlock(&stream->lock);
5158 rcu_read_unlock();
5159 return ret;
5160 }
5161
5162 int lttng_consumer_clear_channel(struct lttng_consumer_channel *channel)
5163 {
5164 int ret;
5165
5166 DBG("Consumer clear channel %" PRIu64, channel->key);
5167
5168 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
5169 /*
5170 * Nothing to do for the metadata channel/stream.
5171 * Snapshot mechanism already take care of the metadata
5172 * handling/generation, and monitored channels only need to
5173 * have their data stream cleared..
5174 */
5175 ret = LTTCOMM_CONSUMERD_SUCCESS;
5176 goto end;
5177 }
5178
5179 if (!channel->monitor) {
5180 ret = consumer_clear_unmonitored_channel(channel);
5181 } else {
5182 ret = consumer_clear_monitored_channel(channel);
5183 }
5184 end:
5185 return ret;
5186 }
5187
5188 enum lttcomm_return_code lttng_consumer_open_channel_packets(
5189 struct lttng_consumer_channel *channel)
5190 {
5191 struct lttng_consumer_stream *stream;
5192 enum lttcomm_return_code ret = LTTCOMM_CONSUMERD_SUCCESS;
5193
5194 if (channel->metadata_stream) {
5195 ERR("Open channel packets command attempted on a metadata channel");
5196 ret = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
5197 goto end;
5198 }
5199
5200 rcu_read_lock();
5201 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
5202 enum consumer_stream_open_packet_status status;
5203
5204 pthread_mutex_lock(&stream->lock);
5205 if (cds_lfht_is_node_deleted(&stream->node.node)) {
5206 goto next;
5207 }
5208
5209 status = consumer_stream_open_packet(stream);
5210 switch (status) {
5211 case CONSUMER_STREAM_OPEN_PACKET_STATUS_OPENED:
5212 DBG("Opened a packet in \"open channel packets\" command: stream id = %" PRIu64
5213 ", channel name = %s, session id = %" PRIu64,
5214 stream->key, stream->chan->name,
5215 stream->chan->session_id);
5216 stream->opened_packet_in_current_trace_chunk = true;
5217 break;
5218 case CONSUMER_STREAM_OPEN_PACKET_STATUS_NO_SPACE:
5219 DBG("No space left to open a packet in \"open channel packets\" command: stream id = %" PRIu64
5220 ", channel name = %s, session id = %" PRIu64,
5221 stream->key, stream->chan->name,
5222 stream->chan->session_id);
5223 break;
5224 case CONSUMER_STREAM_OPEN_PACKET_STATUS_ERROR:
5225 /*
5226 * Only unexpected internal errors can lead to this
5227 * failing. Report an unknown error.
5228 */
5229 ERR("Failed to flush empty buffer in \"open channel packets\" command: stream id = %" PRIu64
5230 ", channel id = %" PRIu64
5231 ", channel name = %s"
5232 ", session id = %" PRIu64,
5233 stream->key, channel->key,
5234 channel->name, channel->session_id);
5235 ret = LTTCOMM_CONSUMERD_UNKNOWN_ERROR;
5236 goto error_unlock;
5237 default:
5238 abort();
5239 }
5240
5241 next:
5242 pthread_mutex_unlock(&stream->lock);
5243 }
5244
5245 end_rcu_unlock:
5246 rcu_read_unlock();
5247 end:
5248 return ret;
5249
5250 error_unlock:
5251 pthread_mutex_unlock(&stream->lock);
5252 goto end_rcu_unlock;
5253 }
5254
5255 void lttng_consumer_sigbus_handle(void *addr)
5256 {
5257 lttng_ustconsumer_sigbus_handle(addr);
5258 }
This page took 0.201047 seconds and 4 git commands to generate.