ffbecf7163ef394b4ffce3b8bf6874d3b5b4375f
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
45
46 #include "consumer.h"
47 #include "consumer-stream.h"
48 #include "consumer-testpoint.h"
49
50 struct lttng_consumer_global_data consumer_data = {
51 .stream_count = 0,
52 .need_update = 1,
53 .type = LTTNG_CONSUMER_UNKNOWN,
54 };
55
56 enum consumer_channel_action {
57 CONSUMER_CHANNEL_ADD,
58 CONSUMER_CHANNEL_DEL,
59 CONSUMER_CHANNEL_QUIT,
60 };
61
62 struct consumer_channel_msg {
63 enum consumer_channel_action action;
64 struct lttng_consumer_channel *chan; /* add */
65 uint64_t key; /* del */
66 };
67
68 /*
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
72 * polling threads.
73 */
74 volatile int consumer_quit;
75
76 /*
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
80 */
81 static struct lttng_ht *metadata_ht;
82 static struct lttng_ht *data_ht;
83
84 /*
85 * Notify a thread lttng pipe to poll back again. This usually means that some
86 * global state has changed so we just send back the thread in a poll wait
87 * call.
88 */
89 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
90 {
91 struct lttng_consumer_stream *null_stream = NULL;
92
93 assert(pipe);
94
95 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
96 }
97
98 static void notify_health_quit_pipe(int *pipe)
99 {
100 ssize_t ret;
101
102 ret = lttng_write(pipe[1], "4", 1);
103 if (ret < 1) {
104 PERROR("write consumer health quit");
105 }
106 }
107
108 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
109 struct lttng_consumer_channel *chan,
110 uint64_t key,
111 enum consumer_channel_action action)
112 {
113 struct consumer_channel_msg msg;
114 ssize_t ret;
115
116 memset(&msg, 0, sizeof(msg));
117
118 msg.action = action;
119 msg.chan = chan;
120 msg.key = key;
121 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
122 if (ret < sizeof(msg)) {
123 PERROR("notify_channel_pipe write error");
124 }
125 }
126
127 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
128 uint64_t key)
129 {
130 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
131 }
132
133 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
134 struct lttng_consumer_channel **chan,
135 uint64_t *key,
136 enum consumer_channel_action *action)
137 {
138 struct consumer_channel_msg msg;
139 ssize_t ret;
140
141 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
142 if (ret < sizeof(msg)) {
143 ret = -1;
144 goto error;
145 }
146 *action = msg.action;
147 *chan = msg.chan;
148 *key = msg.key;
149 error:
150 return (int) ret;
151 }
152
153 /*
154 * Cleanup the stream list of a channel. Those streams are not yet globally
155 * visible
156 */
157 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
158 {
159 struct lttng_consumer_stream *stream, *stmp;
160
161 assert(channel);
162
163 /* Delete streams that might have been left in the stream list. */
164 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
165 send_node) {
166 cds_list_del(&stream->send_node);
167 /*
168 * Once a stream is added to this list, the buffers were created so we
169 * have a guarantee that this call will succeed. Setting the monitor
170 * mode to 0 so we don't lock nor try to delete the stream from the
171 * global hash table.
172 */
173 stream->monitor = 0;
174 consumer_stream_destroy(stream, NULL);
175 }
176 }
177
178 /*
179 * Find a stream. The consumer_data.lock must be locked during this
180 * call.
181 */
182 static struct lttng_consumer_stream *find_stream(uint64_t key,
183 struct lttng_ht *ht)
184 {
185 struct lttng_ht_iter iter;
186 struct lttng_ht_node_u64 *node;
187 struct lttng_consumer_stream *stream = NULL;
188
189 assert(ht);
190
191 /* -1ULL keys are lookup failures */
192 if (key == (uint64_t) -1ULL) {
193 return NULL;
194 }
195
196 rcu_read_lock();
197
198 lttng_ht_lookup(ht, &key, &iter);
199 node = lttng_ht_iter_get_node_u64(&iter);
200 if (node != NULL) {
201 stream = caa_container_of(node, struct lttng_consumer_stream, node);
202 }
203
204 rcu_read_unlock();
205
206 return stream;
207 }
208
209 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
210 {
211 struct lttng_consumer_stream *stream;
212
213 rcu_read_lock();
214 stream = find_stream(key, ht);
215 if (stream) {
216 stream->key = (uint64_t) -1ULL;
217 /*
218 * We don't want the lookup to match, but we still need
219 * to iterate on this stream when iterating over the hash table. Just
220 * change the node key.
221 */
222 stream->node.key = (uint64_t) -1ULL;
223 }
224 rcu_read_unlock();
225 }
226
227 /*
228 * Return a channel object for the given key.
229 *
230 * RCU read side lock MUST be acquired before calling this function and
231 * protects the channel ptr.
232 */
233 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
234 {
235 struct lttng_ht_iter iter;
236 struct lttng_ht_node_u64 *node;
237 struct lttng_consumer_channel *channel = NULL;
238
239 /* -1ULL keys are lookup failures */
240 if (key == (uint64_t) -1ULL) {
241 return NULL;
242 }
243
244 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
245 node = lttng_ht_iter_get_node_u64(&iter);
246 if (node != NULL) {
247 channel = caa_container_of(node, struct lttng_consumer_channel, node);
248 }
249
250 return channel;
251 }
252
253 static void free_channel_rcu(struct rcu_head *head)
254 {
255 struct lttng_ht_node_u64 *node =
256 caa_container_of(head, struct lttng_ht_node_u64, head);
257 struct lttng_consumer_channel *channel =
258 caa_container_of(node, struct lttng_consumer_channel, node);
259
260 free(channel);
261 }
262
263 /*
264 * RCU protected relayd socket pair free.
265 */
266 static void free_relayd_rcu(struct rcu_head *head)
267 {
268 struct lttng_ht_node_u64 *node =
269 caa_container_of(head, struct lttng_ht_node_u64, head);
270 struct consumer_relayd_sock_pair *relayd =
271 caa_container_of(node, struct consumer_relayd_sock_pair, node);
272
273 /*
274 * Close all sockets. This is done in the call RCU since we don't want the
275 * socket fds to be reassigned thus potentially creating bad state of the
276 * relayd object.
277 *
278 * We do not have to lock the control socket mutex here since at this stage
279 * there is no one referencing to this relayd object.
280 */
281 (void) relayd_close(&relayd->control_sock);
282 (void) relayd_close(&relayd->data_sock);
283
284 free(relayd);
285 }
286
287 /*
288 * Destroy and free relayd socket pair object.
289 */
290 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
291 {
292 int ret;
293 struct lttng_ht_iter iter;
294
295 if (relayd == NULL) {
296 return;
297 }
298
299 DBG("Consumer destroy and close relayd socket pair");
300
301 iter.iter.node = &relayd->node.node;
302 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
303 if (ret != 0) {
304 /* We assume the relayd is being or is destroyed */
305 return;
306 }
307
308 /* RCU free() call */
309 call_rcu(&relayd->node.head, free_relayd_rcu);
310 }
311
312 /*
313 * Remove a channel from the global list protected by a mutex. This function is
314 * also responsible for freeing its data structures.
315 */
316 void consumer_del_channel(struct lttng_consumer_channel *channel)
317 {
318 int ret;
319 struct lttng_ht_iter iter;
320
321 DBG("Consumer delete channel key %" PRIu64, channel->key);
322
323 pthread_mutex_lock(&consumer_data.lock);
324 pthread_mutex_lock(&channel->lock);
325
326 /* Destroy streams that might have been left in the stream list. */
327 clean_channel_stream_list(channel);
328
329 if (channel->live_timer_enabled == 1) {
330 consumer_timer_live_stop(channel);
331 }
332
333 switch (consumer_data.type) {
334 case LTTNG_CONSUMER_KERNEL:
335 break;
336 case LTTNG_CONSUMER32_UST:
337 case LTTNG_CONSUMER64_UST:
338 lttng_ustconsumer_del_channel(channel);
339 break;
340 default:
341 ERR("Unknown consumer_data type");
342 assert(0);
343 goto end;
344 }
345
346 rcu_read_lock();
347 iter.iter.node = &channel->node.node;
348 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
349 assert(!ret);
350 rcu_read_unlock();
351
352 call_rcu(&channel->node.head, free_channel_rcu);
353 end:
354 pthread_mutex_unlock(&channel->lock);
355 pthread_mutex_unlock(&consumer_data.lock);
356 }
357
358 /*
359 * Iterate over the relayd hash table and destroy each element. Finally,
360 * destroy the whole hash table.
361 */
362 static void cleanup_relayd_ht(void)
363 {
364 struct lttng_ht_iter iter;
365 struct consumer_relayd_sock_pair *relayd;
366
367 rcu_read_lock();
368
369 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
370 node.node) {
371 consumer_destroy_relayd(relayd);
372 }
373
374 rcu_read_unlock();
375
376 lttng_ht_destroy(consumer_data.relayd_ht);
377 }
378
379 /*
380 * Update the end point status of all streams having the given network sequence
381 * index (relayd index).
382 *
383 * It's atomically set without having the stream mutex locked which is fine
384 * because we handle the write/read race with a pipe wakeup for each thread.
385 */
386 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
387 enum consumer_endpoint_status status)
388 {
389 struct lttng_ht_iter iter;
390 struct lttng_consumer_stream *stream;
391
392 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
393
394 rcu_read_lock();
395
396 /* Let's begin with metadata */
397 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
398 if (stream->net_seq_idx == net_seq_idx) {
399 uatomic_set(&stream->endpoint_status, status);
400 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
401 }
402 }
403
404 /* Follow up by the data streams */
405 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
406 if (stream->net_seq_idx == net_seq_idx) {
407 uatomic_set(&stream->endpoint_status, status);
408 DBG("Delete flag set to data stream %d", stream->wait_fd);
409 }
410 }
411 rcu_read_unlock();
412 }
413
414 /*
415 * Cleanup a relayd object by flagging every associated streams for deletion,
416 * destroying the object meaning removing it from the relayd hash table,
417 * closing the sockets and freeing the memory in a RCU call.
418 *
419 * If a local data context is available, notify the threads that the streams'
420 * state have changed.
421 */
422 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
423 struct lttng_consumer_local_data *ctx)
424 {
425 uint64_t netidx;
426
427 assert(relayd);
428
429 DBG("Cleaning up relayd sockets");
430
431 /* Save the net sequence index before destroying the object */
432 netidx = relayd->net_seq_idx;
433
434 /*
435 * Delete the relayd from the relayd hash table, close the sockets and free
436 * the object in a RCU call.
437 */
438 consumer_destroy_relayd(relayd);
439
440 /* Set inactive endpoint to all streams */
441 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
442
443 /*
444 * With a local data context, notify the threads that the streams' state
445 * have changed. The write() action on the pipe acts as an "implicit"
446 * memory barrier ordering the updates of the end point status from the
447 * read of this status which happens AFTER receiving this notify.
448 */
449 if (ctx) {
450 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
451 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
452 }
453 }
454
455 /*
456 * Flag a relayd socket pair for destruction. Destroy it if the refcount
457 * reaches zero.
458 *
459 * RCU read side lock MUST be aquired before calling this function.
460 */
461 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
462 {
463 assert(relayd);
464
465 /* Set destroy flag for this object */
466 uatomic_set(&relayd->destroy_flag, 1);
467
468 /* Destroy the relayd if refcount is 0 */
469 if (uatomic_read(&relayd->refcount) == 0) {
470 consumer_destroy_relayd(relayd);
471 }
472 }
473
474 /*
475 * Completly destroy stream from every visiable data structure and the given
476 * hash table if one.
477 *
478 * One this call returns, the stream object is not longer usable nor visible.
479 */
480 void consumer_del_stream(struct lttng_consumer_stream *stream,
481 struct lttng_ht *ht)
482 {
483 consumer_stream_destroy(stream, ht);
484 }
485
486 /*
487 * XXX naming of del vs destroy is all mixed up.
488 */
489 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
490 {
491 consumer_stream_destroy(stream, data_ht);
492 }
493
494 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
495 {
496 consumer_stream_destroy(stream, metadata_ht);
497 }
498
499 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
500 uint64_t stream_key,
501 enum lttng_consumer_stream_state state,
502 const char *channel_name,
503 uid_t uid,
504 gid_t gid,
505 uint64_t relayd_id,
506 uint64_t session_id,
507 int cpu,
508 int *alloc_ret,
509 enum consumer_channel_type type,
510 unsigned int monitor)
511 {
512 int ret;
513 struct lttng_consumer_stream *stream;
514
515 stream = zmalloc(sizeof(*stream));
516 if (stream == NULL) {
517 PERROR("malloc struct lttng_consumer_stream");
518 ret = -ENOMEM;
519 goto end;
520 }
521
522 rcu_read_lock();
523
524 stream->key = stream_key;
525 stream->out_fd = -1;
526 stream->out_fd_offset = 0;
527 stream->output_written = 0;
528 stream->state = state;
529 stream->uid = uid;
530 stream->gid = gid;
531 stream->net_seq_idx = relayd_id;
532 stream->session_id = session_id;
533 stream->monitor = monitor;
534 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
535 stream->index_fd = -1;
536 pthread_mutex_init(&stream->lock, NULL);
537
538 /* If channel is the metadata, flag this stream as metadata. */
539 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
540 stream->metadata_flag = 1;
541 /* Metadata is flat out. */
542 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
543 /* Live rendez-vous point. */
544 pthread_cond_init(&stream->metadata_rdv, NULL);
545 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
546 } else {
547 /* Format stream name to <channel_name>_<cpu_number> */
548 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
549 channel_name, cpu);
550 if (ret < 0) {
551 PERROR("snprintf stream name");
552 goto error;
553 }
554 }
555
556 /* Key is always the wait_fd for streams. */
557 lttng_ht_node_init_u64(&stream->node, stream->key);
558
559 /* Init node per channel id key */
560 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
561
562 /* Init session id node with the stream session id */
563 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
564
565 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
566 " relayd_id %" PRIu64 ", session_id %" PRIu64,
567 stream->name, stream->key, channel_key,
568 stream->net_seq_idx, stream->session_id);
569
570 rcu_read_unlock();
571 return stream;
572
573 error:
574 rcu_read_unlock();
575 free(stream);
576 end:
577 if (alloc_ret) {
578 *alloc_ret = ret;
579 }
580 return NULL;
581 }
582
583 /*
584 * Add a stream to the global list protected by a mutex.
585 */
586 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
587 {
588 struct lttng_ht *ht = data_ht;
589 int ret = 0;
590
591 assert(stream);
592 assert(ht);
593
594 DBG3("Adding consumer stream %" PRIu64, stream->key);
595
596 pthread_mutex_lock(&consumer_data.lock);
597 pthread_mutex_lock(&stream->chan->lock);
598 pthread_mutex_lock(&stream->chan->timer_lock);
599 pthread_mutex_lock(&stream->lock);
600 rcu_read_lock();
601
602 /* Steal stream identifier to avoid having streams with the same key */
603 steal_stream_key(stream->key, ht);
604
605 lttng_ht_add_unique_u64(ht, &stream->node);
606
607 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
608 &stream->node_channel_id);
609
610 /*
611 * Add stream to the stream_list_ht of the consumer data. No need to steal
612 * the key since the HT does not use it and we allow to add redundant keys
613 * into this table.
614 */
615 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
616
617 /*
618 * When nb_init_stream_left reaches 0, we don't need to trigger any action
619 * in terms of destroying the associated channel, because the action that
620 * causes the count to become 0 also causes a stream to be added. The
621 * channel deletion will thus be triggered by the following removal of this
622 * stream.
623 */
624 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
625 /* Increment refcount before decrementing nb_init_stream_left */
626 cmm_smp_wmb();
627 uatomic_dec(&stream->chan->nb_init_stream_left);
628 }
629
630 /* Update consumer data once the node is inserted. */
631 consumer_data.stream_count++;
632 consumer_data.need_update = 1;
633
634 rcu_read_unlock();
635 pthread_mutex_unlock(&stream->lock);
636 pthread_mutex_unlock(&stream->chan->timer_lock);
637 pthread_mutex_unlock(&stream->chan->lock);
638 pthread_mutex_unlock(&consumer_data.lock);
639
640 return ret;
641 }
642
643 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
644 {
645 consumer_del_stream(stream, data_ht);
646 }
647
648 /*
649 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
650 * be acquired before calling this.
651 */
652 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
653 {
654 int ret = 0;
655 struct lttng_ht_node_u64 *node;
656 struct lttng_ht_iter iter;
657
658 assert(relayd);
659
660 lttng_ht_lookup(consumer_data.relayd_ht,
661 &relayd->net_seq_idx, &iter);
662 node = lttng_ht_iter_get_node_u64(&iter);
663 if (node != NULL) {
664 goto end;
665 }
666 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
667
668 end:
669 return ret;
670 }
671
672 /*
673 * Allocate and return a consumer relayd socket.
674 */
675 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
676 uint64_t net_seq_idx)
677 {
678 struct consumer_relayd_sock_pair *obj = NULL;
679
680 /* net sequence index of -1 is a failure */
681 if (net_seq_idx == (uint64_t) -1ULL) {
682 goto error;
683 }
684
685 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
686 if (obj == NULL) {
687 PERROR("zmalloc relayd sock");
688 goto error;
689 }
690
691 obj->net_seq_idx = net_seq_idx;
692 obj->refcount = 0;
693 obj->destroy_flag = 0;
694 obj->control_sock.sock.fd = -1;
695 obj->data_sock.sock.fd = -1;
696 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
697 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
698
699 error:
700 return obj;
701 }
702
703 /*
704 * Find a relayd socket pair in the global consumer data.
705 *
706 * Return the object if found else NULL.
707 * RCU read-side lock must be held across this call and while using the
708 * returned object.
709 */
710 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
711 {
712 struct lttng_ht_iter iter;
713 struct lttng_ht_node_u64 *node;
714 struct consumer_relayd_sock_pair *relayd = NULL;
715
716 /* Negative keys are lookup failures */
717 if (key == (uint64_t) -1ULL) {
718 goto error;
719 }
720
721 lttng_ht_lookup(consumer_data.relayd_ht, &key,
722 &iter);
723 node = lttng_ht_iter_get_node_u64(&iter);
724 if (node != NULL) {
725 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
726 }
727
728 error:
729 return relayd;
730 }
731
732 /*
733 * Find a relayd and send the stream
734 *
735 * Returns 0 on success, < 0 on error
736 */
737 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
738 char *path)
739 {
740 int ret = 0;
741 struct consumer_relayd_sock_pair *relayd;
742
743 assert(stream);
744 assert(stream->net_seq_idx != -1ULL);
745 assert(path);
746
747 /* The stream is not metadata. Get relayd reference if exists. */
748 rcu_read_lock();
749 relayd = consumer_find_relayd(stream->net_seq_idx);
750 if (relayd != NULL) {
751 /* Add stream on the relayd */
752 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
753 ret = relayd_add_stream(&relayd->control_sock, stream->name,
754 path, &stream->relayd_stream_id,
755 stream->chan->tracefile_size, stream->chan->tracefile_count);
756 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
757 if (ret < 0) {
758 goto end;
759 }
760
761 uatomic_inc(&relayd->refcount);
762 stream->sent_to_relayd = 1;
763 } else {
764 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
765 stream->key, stream->net_seq_idx);
766 ret = -1;
767 goto end;
768 }
769
770 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
771 stream->name, stream->key, stream->net_seq_idx);
772
773 end:
774 rcu_read_unlock();
775 return ret;
776 }
777
778 /*
779 * Find a relayd and send the streams sent message
780 *
781 * Returns 0 on success, < 0 on error
782 */
783 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
784 {
785 int ret = 0;
786 struct consumer_relayd_sock_pair *relayd;
787
788 assert(net_seq_idx != -1ULL);
789
790 /* The stream is not metadata. Get relayd reference if exists. */
791 rcu_read_lock();
792 relayd = consumer_find_relayd(net_seq_idx);
793 if (relayd != NULL) {
794 /* Add stream on the relayd */
795 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
796 ret = relayd_streams_sent(&relayd->control_sock);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801 } else {
802 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
803 net_seq_idx);
804 ret = -1;
805 goto end;
806 }
807
808 ret = 0;
809 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
810
811 end:
812 rcu_read_unlock();
813 return ret;
814 }
815
816 /*
817 * Find a relayd and close the stream
818 */
819 void close_relayd_stream(struct lttng_consumer_stream *stream)
820 {
821 struct consumer_relayd_sock_pair *relayd;
822
823 /* The stream is not metadata. Get relayd reference if exists. */
824 rcu_read_lock();
825 relayd = consumer_find_relayd(stream->net_seq_idx);
826 if (relayd) {
827 consumer_stream_relayd_close(stream, relayd);
828 }
829 rcu_read_unlock();
830 }
831
832 /*
833 * Handle stream for relayd transmission if the stream applies for network
834 * streaming where the net sequence index is set.
835 *
836 * Return destination file descriptor or negative value on error.
837 */
838 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
839 size_t data_size, unsigned long padding,
840 struct consumer_relayd_sock_pair *relayd)
841 {
842 int outfd = -1, ret;
843 struct lttcomm_relayd_data_hdr data_hdr;
844
845 /* Safety net */
846 assert(stream);
847 assert(relayd);
848
849 /* Reset data header */
850 memset(&data_hdr, 0, sizeof(data_hdr));
851
852 if (stream->metadata_flag) {
853 /* Caller MUST acquire the relayd control socket lock */
854 ret = relayd_send_metadata(&relayd->control_sock, data_size);
855 if (ret < 0) {
856 goto error;
857 }
858
859 /* Metadata are always sent on the control socket. */
860 outfd = relayd->control_sock.sock.fd;
861 } else {
862 /* Set header with stream information */
863 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
864 data_hdr.data_size = htobe32(data_size);
865 data_hdr.padding_size = htobe32(padding);
866 /*
867 * Note that net_seq_num below is assigned with the *current* value of
868 * next_net_seq_num and only after that the next_net_seq_num will be
869 * increment. This is why when issuing a command on the relayd using
870 * this next value, 1 should always be substracted in order to compare
871 * the last seen sequence number on the relayd side to the last sent.
872 */
873 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
874 /* Other fields are zeroed previously */
875
876 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
877 sizeof(data_hdr));
878 if (ret < 0) {
879 goto error;
880 }
881
882 ++stream->next_net_seq_num;
883
884 /* Set to go on data socket */
885 outfd = relayd->data_sock.sock.fd;
886 }
887
888 error:
889 return outfd;
890 }
891
892 /*
893 * Allocate and return a new lttng_consumer_channel object using the given key
894 * to initialize the hash table node.
895 *
896 * On error, return NULL.
897 */
898 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
899 uint64_t session_id,
900 const char *pathname,
901 const char *name,
902 uid_t uid,
903 gid_t gid,
904 uint64_t relayd_id,
905 enum lttng_event_output output,
906 uint64_t tracefile_size,
907 uint64_t tracefile_count,
908 uint64_t session_id_per_pid,
909 unsigned int monitor,
910 unsigned int live_timer_interval)
911 {
912 struct lttng_consumer_channel *channel;
913
914 channel = zmalloc(sizeof(*channel));
915 if (channel == NULL) {
916 PERROR("malloc struct lttng_consumer_channel");
917 goto end;
918 }
919
920 channel->key = key;
921 channel->refcount = 0;
922 channel->session_id = session_id;
923 channel->session_id_per_pid = session_id_per_pid;
924 channel->uid = uid;
925 channel->gid = gid;
926 channel->relayd_id = relayd_id;
927 channel->tracefile_size = tracefile_size;
928 channel->tracefile_count = tracefile_count;
929 channel->monitor = monitor;
930 channel->live_timer_interval = live_timer_interval;
931 pthread_mutex_init(&channel->lock, NULL);
932 pthread_mutex_init(&channel->timer_lock, NULL);
933
934 switch (output) {
935 case LTTNG_EVENT_SPLICE:
936 channel->output = CONSUMER_CHANNEL_SPLICE;
937 break;
938 case LTTNG_EVENT_MMAP:
939 channel->output = CONSUMER_CHANNEL_MMAP;
940 break;
941 default:
942 assert(0);
943 free(channel);
944 channel = NULL;
945 goto end;
946 }
947
948 /*
949 * In monitor mode, the streams associated with the channel will be put in
950 * a special list ONLY owned by this channel. So, the refcount is set to 1
951 * here meaning that the channel itself has streams that are referenced.
952 *
953 * On a channel deletion, once the channel is no longer visible, the
954 * refcount is decremented and checked for a zero value to delete it. With
955 * streams in no monitor mode, it will now be safe to destroy the channel.
956 */
957 if (!channel->monitor) {
958 channel->refcount = 1;
959 }
960
961 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
962 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
963
964 strncpy(channel->name, name, sizeof(channel->name));
965 channel->name[sizeof(channel->name) - 1] = '\0';
966
967 lttng_ht_node_init_u64(&channel->node, channel->key);
968
969 channel->wait_fd = -1;
970
971 CDS_INIT_LIST_HEAD(&channel->streams.head);
972
973 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
974
975 end:
976 return channel;
977 }
978
979 /*
980 * Add a channel to the global list protected by a mutex.
981 *
982 * On success 0 is returned else a negative value.
983 */
984 int consumer_add_channel(struct lttng_consumer_channel *channel,
985 struct lttng_consumer_local_data *ctx)
986 {
987 int ret = 0;
988 struct lttng_ht_node_u64 *node;
989 struct lttng_ht_iter iter;
990
991 pthread_mutex_lock(&consumer_data.lock);
992 pthread_mutex_lock(&channel->lock);
993 pthread_mutex_lock(&channel->timer_lock);
994 rcu_read_lock();
995
996 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
997 node = lttng_ht_iter_get_node_u64(&iter);
998 if (node != NULL) {
999 /* Channel already exist. Ignore the insertion */
1000 ERR("Consumer add channel key %" PRIu64 " already exists!",
1001 channel->key);
1002 ret = -EEXIST;
1003 goto end;
1004 }
1005
1006 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1007
1008 end:
1009 rcu_read_unlock();
1010 pthread_mutex_unlock(&channel->timer_lock);
1011 pthread_mutex_unlock(&channel->lock);
1012 pthread_mutex_unlock(&consumer_data.lock);
1013
1014 if (!ret && channel->wait_fd != -1 &&
1015 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1016 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1017 }
1018 return ret;
1019 }
1020
1021 /*
1022 * Allocate the pollfd structure and the local view of the out fds to avoid
1023 * doing a lookup in the linked list and concurrency issues when writing is
1024 * needed. Called with consumer_data.lock held.
1025 *
1026 * Returns the number of fds in the structures.
1027 */
1028 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1029 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1030 struct lttng_ht *ht)
1031 {
1032 int i = 0;
1033 struct lttng_ht_iter iter;
1034 struct lttng_consumer_stream *stream;
1035
1036 assert(ctx);
1037 assert(ht);
1038 assert(pollfd);
1039 assert(local_stream);
1040
1041 DBG("Updating poll fd array");
1042 rcu_read_lock();
1043 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1044 /*
1045 * Only active streams with an active end point can be added to the
1046 * poll set and local stream storage of the thread.
1047 *
1048 * There is a potential race here for endpoint_status to be updated
1049 * just after the check. However, this is OK since the stream(s) will
1050 * be deleted once the thread is notified that the end point state has
1051 * changed where this function will be called back again.
1052 */
1053 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1054 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1055 continue;
1056 }
1057 /*
1058 * This clobbers way too much the debug output. Uncomment that if you
1059 * need it for debugging purposes.
1060 *
1061 * DBG("Active FD %d", stream->wait_fd);
1062 */
1063 (*pollfd)[i].fd = stream->wait_fd;
1064 (*pollfd)[i].events = POLLIN | POLLPRI;
1065 local_stream[i] = stream;
1066 i++;
1067 }
1068 rcu_read_unlock();
1069
1070 /*
1071 * Insert the consumer_data_pipe at the end of the array and don't
1072 * increment i so nb_fd is the number of real FD.
1073 */
1074 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1075 (*pollfd)[i].events = POLLIN | POLLPRI;
1076 return i;
1077 }
1078
1079 /*
1080 * Poll on the should_quit pipe and the command socket return -1 on error and
1081 * should exit, 0 if data is available on the command socket
1082 */
1083 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1084 {
1085 int num_rdy;
1086
1087 restart:
1088 num_rdy = poll(consumer_sockpoll, 2, -1);
1089 if (num_rdy == -1) {
1090 /*
1091 * Restart interrupted system call.
1092 */
1093 if (errno == EINTR) {
1094 goto restart;
1095 }
1096 PERROR("Poll error");
1097 goto exit;
1098 }
1099 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1100 DBG("consumer_should_quit wake up");
1101 goto exit;
1102 }
1103 return 0;
1104
1105 exit:
1106 return -1;
1107 }
1108
1109 /*
1110 * Set the error socket.
1111 */
1112 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1113 int sock)
1114 {
1115 ctx->consumer_error_socket = sock;
1116 }
1117
1118 /*
1119 * Set the command socket path.
1120 */
1121 void lttng_consumer_set_command_sock_path(
1122 struct lttng_consumer_local_data *ctx, char *sock)
1123 {
1124 ctx->consumer_command_sock_path = sock;
1125 }
1126
1127 /*
1128 * Send return code to the session daemon.
1129 * If the socket is not defined, we return 0, it is not a fatal error
1130 */
1131 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1132 {
1133 if (ctx->consumer_error_socket > 0) {
1134 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1135 sizeof(enum lttcomm_sessiond_command));
1136 }
1137
1138 return 0;
1139 }
1140
1141 /*
1142 * Close all the tracefiles and stream fds and MUST be called when all
1143 * instances are destroyed i.e. when all threads were joined and are ended.
1144 */
1145 void lttng_consumer_cleanup(void)
1146 {
1147 struct lttng_ht_iter iter;
1148 struct lttng_consumer_channel *channel;
1149
1150 rcu_read_lock();
1151
1152 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1153 node.node) {
1154 consumer_del_channel(channel);
1155 }
1156
1157 rcu_read_unlock();
1158
1159 lttng_ht_destroy(consumer_data.channel_ht);
1160
1161 cleanup_relayd_ht();
1162
1163 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1164
1165 /*
1166 * This HT contains streams that are freed by either the metadata thread or
1167 * the data thread so we do *nothing* on the hash table and simply destroy
1168 * it.
1169 */
1170 lttng_ht_destroy(consumer_data.stream_list_ht);
1171 }
1172
1173 /*
1174 * Called from signal handler.
1175 */
1176 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1177 {
1178 ssize_t ret;
1179
1180 consumer_quit = 1;
1181 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1182 if (ret < 1) {
1183 PERROR("write consumer quit");
1184 }
1185
1186 DBG("Consumer flag that it should quit");
1187 }
1188
1189 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1190 off_t orig_offset)
1191 {
1192 int outfd = stream->out_fd;
1193
1194 /*
1195 * This does a blocking write-and-wait on any page that belongs to the
1196 * subbuffer prior to the one we just wrote.
1197 * Don't care about error values, as these are just hints and ways to
1198 * limit the amount of page cache used.
1199 */
1200 if (orig_offset < stream->max_sb_size) {
1201 return;
1202 }
1203 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1204 stream->max_sb_size,
1205 SYNC_FILE_RANGE_WAIT_BEFORE
1206 | SYNC_FILE_RANGE_WRITE
1207 | SYNC_FILE_RANGE_WAIT_AFTER);
1208 /*
1209 * Give hints to the kernel about how we access the file:
1210 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1211 * we write it.
1212 *
1213 * We need to call fadvise again after the file grows because the
1214 * kernel does not seem to apply fadvise to non-existing parts of the
1215 * file.
1216 *
1217 * Call fadvise _after_ having waited for the page writeback to
1218 * complete because the dirty page writeback semantic is not well
1219 * defined. So it can be expected to lead to lower throughput in
1220 * streaming.
1221 */
1222 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1223 stream->max_sb_size, POSIX_FADV_DONTNEED);
1224 }
1225
1226 /*
1227 * Initialise the necessary environnement :
1228 * - create a new context
1229 * - create the poll_pipe
1230 * - create the should_quit pipe (for signal handler)
1231 * - create the thread pipe (for splice)
1232 *
1233 * Takes a function pointer as argument, this function is called when data is
1234 * available on a buffer. This function is responsible to do the
1235 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1236 * buffer configuration and then kernctl_put_next_subbuf at the end.
1237 *
1238 * Returns a pointer to the new context or NULL on error.
1239 */
1240 struct lttng_consumer_local_data *lttng_consumer_create(
1241 enum lttng_consumer_type type,
1242 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1243 struct lttng_consumer_local_data *ctx),
1244 int (*recv_channel)(struct lttng_consumer_channel *channel),
1245 int (*recv_stream)(struct lttng_consumer_stream *stream),
1246 int (*update_stream)(uint64_t stream_key, uint32_t state))
1247 {
1248 int ret;
1249 struct lttng_consumer_local_data *ctx;
1250
1251 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1252 consumer_data.type == type);
1253 consumer_data.type = type;
1254
1255 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1256 if (ctx == NULL) {
1257 PERROR("allocating context");
1258 goto error;
1259 }
1260
1261 ctx->consumer_error_socket = -1;
1262 ctx->consumer_metadata_socket = -1;
1263 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1264 /* assign the callbacks */
1265 ctx->on_buffer_ready = buffer_ready;
1266 ctx->on_recv_channel = recv_channel;
1267 ctx->on_recv_stream = recv_stream;
1268 ctx->on_update_stream = update_stream;
1269
1270 ctx->consumer_data_pipe = lttng_pipe_open(0);
1271 if (!ctx->consumer_data_pipe) {
1272 goto error_poll_pipe;
1273 }
1274
1275 ret = pipe(ctx->consumer_should_quit);
1276 if (ret < 0) {
1277 PERROR("Error creating recv pipe");
1278 goto error_quit_pipe;
1279 }
1280
1281 ret = pipe(ctx->consumer_thread_pipe);
1282 if (ret < 0) {
1283 PERROR("Error creating thread pipe");
1284 goto error_thread_pipe;
1285 }
1286
1287 ret = pipe(ctx->consumer_channel_pipe);
1288 if (ret < 0) {
1289 PERROR("Error creating channel pipe");
1290 goto error_channel_pipe;
1291 }
1292
1293 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1294 if (!ctx->consumer_metadata_pipe) {
1295 goto error_metadata_pipe;
1296 }
1297
1298 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1299 if (ret < 0) {
1300 goto error_splice_pipe;
1301 }
1302
1303 return ctx;
1304
1305 error_splice_pipe:
1306 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1307 error_metadata_pipe:
1308 utils_close_pipe(ctx->consumer_channel_pipe);
1309 error_channel_pipe:
1310 utils_close_pipe(ctx->consumer_thread_pipe);
1311 error_thread_pipe:
1312 utils_close_pipe(ctx->consumer_should_quit);
1313 error_quit_pipe:
1314 lttng_pipe_destroy(ctx->consumer_data_pipe);
1315 error_poll_pipe:
1316 free(ctx);
1317 error:
1318 return NULL;
1319 }
1320
1321 /*
1322 * Iterate over all streams of the hashtable and free them properly.
1323 */
1324 static void destroy_data_stream_ht(struct lttng_ht *ht)
1325 {
1326 struct lttng_ht_iter iter;
1327 struct lttng_consumer_stream *stream;
1328
1329 if (ht == NULL) {
1330 return;
1331 }
1332
1333 rcu_read_lock();
1334 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1335 /*
1336 * Ignore return value since we are currently cleaning up so any error
1337 * can't be handled.
1338 */
1339 (void) consumer_del_stream(stream, ht);
1340 }
1341 rcu_read_unlock();
1342
1343 lttng_ht_destroy(ht);
1344 }
1345
1346 /*
1347 * Iterate over all streams of the metadata hashtable and free them
1348 * properly.
1349 */
1350 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1351 {
1352 struct lttng_ht_iter iter;
1353 struct lttng_consumer_stream *stream;
1354
1355 if (ht == NULL) {
1356 return;
1357 }
1358
1359 rcu_read_lock();
1360 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1361 /*
1362 * Ignore return value since we are currently cleaning up so any error
1363 * can't be handled.
1364 */
1365 (void) consumer_del_metadata_stream(stream, ht);
1366 }
1367 rcu_read_unlock();
1368
1369 lttng_ht_destroy(ht);
1370 }
1371
1372 /*
1373 * Close all fds associated with the instance and free the context.
1374 */
1375 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1376 {
1377 int ret;
1378
1379 DBG("Consumer destroying it. Closing everything.");
1380
1381 destroy_data_stream_ht(data_ht);
1382 destroy_metadata_stream_ht(metadata_ht);
1383
1384 ret = close(ctx->consumer_error_socket);
1385 if (ret) {
1386 PERROR("close");
1387 }
1388 ret = close(ctx->consumer_metadata_socket);
1389 if (ret) {
1390 PERROR("close");
1391 }
1392 utils_close_pipe(ctx->consumer_thread_pipe);
1393 utils_close_pipe(ctx->consumer_channel_pipe);
1394 lttng_pipe_destroy(ctx->consumer_data_pipe);
1395 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1396 utils_close_pipe(ctx->consumer_should_quit);
1397 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1398
1399 unlink(ctx->consumer_command_sock_path);
1400 free(ctx);
1401 }
1402
1403 /*
1404 * Write the metadata stream id on the specified file descriptor.
1405 */
1406 static int write_relayd_metadata_id(int fd,
1407 struct lttng_consumer_stream *stream,
1408 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1409 {
1410 ssize_t ret;
1411 struct lttcomm_relayd_metadata_payload hdr;
1412
1413 hdr.stream_id = htobe64(stream->relayd_stream_id);
1414 hdr.padding_size = htobe32(padding);
1415 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1416 if (ret < sizeof(hdr)) {
1417 /*
1418 * This error means that the fd's end is closed so ignore the perror
1419 * not to clubber the error output since this can happen in a normal
1420 * code path.
1421 */
1422 if (errno != EPIPE) {
1423 PERROR("write metadata stream id");
1424 }
1425 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1426 /*
1427 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1428 * handle writting the missing part so report that as an error and
1429 * don't lie to the caller.
1430 */
1431 ret = -1;
1432 goto end;
1433 }
1434 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1435 stream->relayd_stream_id, padding);
1436
1437 end:
1438 return (int) ret;
1439 }
1440
1441 /*
1442 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1443 * core function for writing trace buffers to either the local filesystem or
1444 * the network.
1445 *
1446 * It must be called with the stream lock held.
1447 *
1448 * Careful review MUST be put if any changes occur!
1449 *
1450 * Returns the number of bytes written
1451 */
1452 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1453 struct lttng_consumer_local_data *ctx,
1454 struct lttng_consumer_stream *stream, unsigned long len,
1455 unsigned long padding,
1456 struct ctf_packet_index *index)
1457 {
1458 unsigned long mmap_offset;
1459 void *mmap_base;
1460 ssize_t ret = 0;
1461 off_t orig_offset = stream->out_fd_offset;
1462 /* Default is on the disk */
1463 int outfd = stream->out_fd;
1464 struct consumer_relayd_sock_pair *relayd = NULL;
1465 unsigned int relayd_hang_up = 0;
1466
1467 /* RCU lock for the relayd pointer */
1468 rcu_read_lock();
1469
1470 /* Flag that the current stream if set for network streaming. */
1471 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1472 relayd = consumer_find_relayd(stream->net_seq_idx);
1473 if (relayd == NULL) {
1474 ret = -EPIPE;
1475 goto end;
1476 }
1477 }
1478
1479 /* get the offset inside the fd to mmap */
1480 switch (consumer_data.type) {
1481 case LTTNG_CONSUMER_KERNEL:
1482 mmap_base = stream->mmap_base;
1483 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1484 if (ret < 0) {
1485 ret = -errno;
1486 PERROR("tracer ctl get_mmap_read_offset");
1487 goto end;
1488 }
1489 break;
1490 case LTTNG_CONSUMER32_UST:
1491 case LTTNG_CONSUMER64_UST:
1492 mmap_base = lttng_ustctl_get_mmap_base(stream);
1493 if (!mmap_base) {
1494 ERR("read mmap get mmap base for stream %s", stream->name);
1495 ret = -EPERM;
1496 goto end;
1497 }
1498 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1499 if (ret != 0) {
1500 PERROR("tracer ctl get_mmap_read_offset");
1501 ret = -EINVAL;
1502 goto end;
1503 }
1504 break;
1505 default:
1506 ERR("Unknown consumer_data type");
1507 assert(0);
1508 }
1509
1510 /* Handle stream on the relayd if the output is on the network */
1511 if (relayd) {
1512 unsigned long netlen = len;
1513
1514 /*
1515 * Lock the control socket for the complete duration of the function
1516 * since from this point on we will use the socket.
1517 */
1518 if (stream->metadata_flag) {
1519 /* Metadata requires the control socket. */
1520 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1521 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1522 }
1523
1524 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1525 if (ret < 0) {
1526 relayd_hang_up = 1;
1527 goto write_error;
1528 }
1529 /* Use the returned socket. */
1530 outfd = ret;
1531
1532 /* Write metadata stream id before payload */
1533 if (stream->metadata_flag) {
1534 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1535 if (ret < 0) {
1536 relayd_hang_up = 1;
1537 goto write_error;
1538 }
1539 }
1540 } else {
1541 /* No streaming, we have to set the len with the full padding */
1542 len += padding;
1543
1544 /*
1545 * Check if we need to change the tracefile before writing the packet.
1546 */
1547 if (stream->chan->tracefile_size > 0 &&
1548 (stream->tracefile_size_current + len) >
1549 stream->chan->tracefile_size) {
1550 ret = utils_rotate_stream_file(stream->chan->pathname,
1551 stream->name, stream->chan->tracefile_size,
1552 stream->chan->tracefile_count, stream->uid, stream->gid,
1553 stream->out_fd, &(stream->tracefile_count_current),
1554 &stream->out_fd);
1555 if (ret < 0) {
1556 ERR("Rotating output file");
1557 goto end;
1558 }
1559 outfd = stream->out_fd;
1560
1561 if (stream->index_fd >= 0) {
1562 ret = index_create_file(stream->chan->pathname,
1563 stream->name, stream->uid, stream->gid,
1564 stream->chan->tracefile_size,
1565 stream->tracefile_count_current);
1566 if (ret < 0) {
1567 goto end;
1568 }
1569 stream->index_fd = ret;
1570 }
1571
1572 /* Reset current size because we just perform a rotation. */
1573 stream->tracefile_size_current = 0;
1574 stream->out_fd_offset = 0;
1575 orig_offset = 0;
1576 }
1577 stream->tracefile_size_current += len;
1578 if (index) {
1579 index->offset = htobe64(stream->out_fd_offset);
1580 }
1581 }
1582
1583 /*
1584 * This call guarantee that len or less is returned. It's impossible to
1585 * receive a ret value that is bigger than len.
1586 */
1587 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1588 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1589 if (ret < 0 || ((size_t) ret != len)) {
1590 /*
1591 * Report error to caller if nothing was written else at least send the
1592 * amount written.
1593 */
1594 if (ret < 0) {
1595 ret = -errno;
1596 }
1597 relayd_hang_up = 1;
1598
1599 /* Socket operation failed. We consider the relayd dead */
1600 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1601 /*
1602 * This is possible if the fd is closed on the other side
1603 * (outfd) or any write problem. It can be verbose a bit for a
1604 * normal execution if for instance the relayd is stopped
1605 * abruptly. This can happen so set this to a DBG statement.
1606 */
1607 DBG("Consumer mmap write detected relayd hang up");
1608 } else {
1609 /* Unhandled error, print it and stop function right now. */
1610 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1611 }
1612 goto write_error;
1613 }
1614 stream->output_written += ret;
1615
1616 /* This call is useless on a socket so better save a syscall. */
1617 if (!relayd) {
1618 /* This won't block, but will start writeout asynchronously */
1619 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1620 SYNC_FILE_RANGE_WRITE);
1621 stream->out_fd_offset += len;
1622 }
1623 lttng_consumer_sync_trace_file(stream, orig_offset);
1624
1625 write_error:
1626 /*
1627 * This is a special case that the relayd has closed its socket. Let's
1628 * cleanup the relayd object and all associated streams.
1629 */
1630 if (relayd && relayd_hang_up) {
1631 cleanup_relayd(relayd, ctx);
1632 }
1633
1634 end:
1635 /* Unlock only if ctrl socket used */
1636 if (relayd && stream->metadata_flag) {
1637 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1638 }
1639
1640 rcu_read_unlock();
1641 return ret;
1642 }
1643
1644 /*
1645 * Splice the data from the ring buffer to the tracefile.
1646 *
1647 * It must be called with the stream lock held.
1648 *
1649 * Returns the number of bytes spliced.
1650 */
1651 ssize_t lttng_consumer_on_read_subbuffer_splice(
1652 struct lttng_consumer_local_data *ctx,
1653 struct lttng_consumer_stream *stream, unsigned long len,
1654 unsigned long padding,
1655 struct ctf_packet_index *index)
1656 {
1657 ssize_t ret = 0, written = 0, ret_splice = 0;
1658 loff_t offset = 0;
1659 off_t orig_offset = stream->out_fd_offset;
1660 int fd = stream->wait_fd;
1661 /* Default is on the disk */
1662 int outfd = stream->out_fd;
1663 struct consumer_relayd_sock_pair *relayd = NULL;
1664 int *splice_pipe;
1665 unsigned int relayd_hang_up = 0;
1666
1667 switch (consumer_data.type) {
1668 case LTTNG_CONSUMER_KERNEL:
1669 break;
1670 case LTTNG_CONSUMER32_UST:
1671 case LTTNG_CONSUMER64_UST:
1672 /* Not supported for user space tracing */
1673 return -ENOSYS;
1674 default:
1675 ERR("Unknown consumer_data type");
1676 assert(0);
1677 }
1678
1679 /* RCU lock for the relayd pointer */
1680 rcu_read_lock();
1681
1682 /* Flag that the current stream if set for network streaming. */
1683 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1684 relayd = consumer_find_relayd(stream->net_seq_idx);
1685 if (relayd == NULL) {
1686 ret = -EPIPE;
1687 goto end;
1688 }
1689 }
1690
1691 /*
1692 * Choose right pipe for splice. Metadata and trace data are handled by
1693 * different threads hence the use of two pipes in order not to race or
1694 * corrupt the written data.
1695 */
1696 if (stream->metadata_flag) {
1697 splice_pipe = ctx->consumer_splice_metadata_pipe;
1698 } else {
1699 splice_pipe = ctx->consumer_thread_pipe;
1700 }
1701
1702 /* Write metadata stream id before payload */
1703 if (relayd) {
1704 int total_len = len;
1705
1706 if (stream->metadata_flag) {
1707 /*
1708 * Lock the control socket for the complete duration of the function
1709 * since from this point on we will use the socket.
1710 */
1711 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1712
1713 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1714 padding);
1715 if (ret < 0) {
1716 written = ret;
1717 /* Socket operation failed. We consider the relayd dead */
1718 if (ret == -EBADF) {
1719 WARN("Remote relayd disconnected. Stopping");
1720 relayd_hang_up = 1;
1721 goto write_error;
1722 }
1723 goto end;
1724 }
1725
1726 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1727 }
1728
1729 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1730 if (ret >= 0) {
1731 /* Use the returned socket. */
1732 outfd = ret;
1733 } else {
1734 /* Socket operation failed. We consider the relayd dead */
1735 if (ret == -EBADF) {
1736 WARN("Remote relayd disconnected. Stopping");
1737 relayd_hang_up = 1;
1738 goto write_error;
1739 }
1740 goto end;
1741 }
1742 } else {
1743 /* No streaming, we have to set the len with the full padding */
1744 len += padding;
1745
1746 /*
1747 * Check if we need to change the tracefile before writing the packet.
1748 */
1749 if (stream->chan->tracefile_size > 0 &&
1750 (stream->tracefile_size_current + len) >
1751 stream->chan->tracefile_size) {
1752 ret = utils_rotate_stream_file(stream->chan->pathname,
1753 stream->name, stream->chan->tracefile_size,
1754 stream->chan->tracefile_count, stream->uid, stream->gid,
1755 stream->out_fd, &(stream->tracefile_count_current),
1756 &stream->out_fd);
1757 if (ret < 0) {
1758 ERR("Rotating output file");
1759 goto end;
1760 }
1761 outfd = stream->out_fd;
1762
1763 if (stream->index_fd >= 0) {
1764 ret = index_create_file(stream->chan->pathname,
1765 stream->name, stream->uid, stream->gid,
1766 stream->chan->tracefile_size,
1767 stream->tracefile_count_current);
1768 if (ret < 0) {
1769 goto end;
1770 }
1771 stream->index_fd = ret;
1772 }
1773
1774 /* Reset current size because we just perform a rotation. */
1775 stream->tracefile_size_current = 0;
1776 stream->out_fd_offset = 0;
1777 orig_offset = 0;
1778 }
1779 stream->tracefile_size_current += len;
1780 index->offset = htobe64(stream->out_fd_offset);
1781 }
1782
1783 while (len > 0) {
1784 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1785 (unsigned long)offset, len, fd, splice_pipe[1]);
1786 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1787 SPLICE_F_MOVE | SPLICE_F_MORE);
1788 DBG("splice chan to pipe, ret %zd", ret_splice);
1789 if (ret_splice < 0) {
1790 ret = errno;
1791 if (written == 0) {
1792 written = ret_splice;
1793 }
1794 PERROR("Error in relay splice");
1795 goto splice_error;
1796 }
1797
1798 /* Handle stream on the relayd if the output is on the network */
1799 if (relayd) {
1800 if (stream->metadata_flag) {
1801 size_t metadata_payload_size =
1802 sizeof(struct lttcomm_relayd_metadata_payload);
1803
1804 /* Update counter to fit the spliced data */
1805 ret_splice += metadata_payload_size;
1806 len += metadata_payload_size;
1807 /*
1808 * We do this so the return value can match the len passed as
1809 * argument to this function.
1810 */
1811 written -= metadata_payload_size;
1812 }
1813 }
1814
1815 /* Splice data out */
1816 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1817 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1818 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1819 if (ret_splice < 0) {
1820 ret = errno;
1821 if (written == 0) {
1822 written = ret_splice;
1823 }
1824 /* Socket operation failed. We consider the relayd dead */
1825 if (errno == EBADF || errno == EPIPE || errno == ESPIPE) {
1826 WARN("Remote relayd disconnected. Stopping");
1827 relayd_hang_up = 1;
1828 goto write_error;
1829 }
1830 PERROR("Error in file splice");
1831 goto splice_error;
1832 } else if (ret_splice > len) {
1833 /*
1834 * We don't expect this code path to be executed but you never know
1835 * so this is an extra protection agains a buggy splice().
1836 */
1837 written += ret_splice;
1838 ret = errno;
1839 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1840 len);
1841 goto splice_error;
1842 } else {
1843 /* All good, update current len and continue. */
1844 len -= ret_splice;
1845 }
1846
1847 /* This call is useless on a socket so better save a syscall. */
1848 if (!relayd) {
1849 /* This won't block, but will start writeout asynchronously */
1850 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1851 SYNC_FILE_RANGE_WRITE);
1852 stream->out_fd_offset += ret_splice;
1853 }
1854 stream->output_written += ret_splice;
1855 written += ret_splice;
1856 }
1857 lttng_consumer_sync_trace_file(stream, orig_offset);
1858 goto end;
1859
1860 write_error:
1861 /*
1862 * This is a special case that the relayd has closed its socket. Let's
1863 * cleanup the relayd object and all associated streams.
1864 */
1865 if (relayd && relayd_hang_up) {
1866 cleanup_relayd(relayd, ctx);
1867 /* Skip splice error so the consumer does not fail */
1868 goto end;
1869 }
1870
1871 splice_error:
1872 /* send the appropriate error description to sessiond */
1873 switch (ret) {
1874 case EINVAL:
1875 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1876 break;
1877 case ENOMEM:
1878 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1879 break;
1880 case ESPIPE:
1881 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1882 break;
1883 }
1884
1885 end:
1886 if (relayd && stream->metadata_flag) {
1887 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1888 }
1889
1890 rcu_read_unlock();
1891 return written;
1892 }
1893
1894 /*
1895 * Take a snapshot for a specific fd
1896 *
1897 * Returns 0 on success, < 0 on error
1898 */
1899 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1900 {
1901 switch (consumer_data.type) {
1902 case LTTNG_CONSUMER_KERNEL:
1903 return lttng_kconsumer_take_snapshot(stream);
1904 case LTTNG_CONSUMER32_UST:
1905 case LTTNG_CONSUMER64_UST:
1906 return lttng_ustconsumer_take_snapshot(stream);
1907 default:
1908 ERR("Unknown consumer_data type");
1909 assert(0);
1910 return -ENOSYS;
1911 }
1912 }
1913
1914 /*
1915 * Get the produced position
1916 *
1917 * Returns 0 on success, < 0 on error
1918 */
1919 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1920 unsigned long *pos)
1921 {
1922 switch (consumer_data.type) {
1923 case LTTNG_CONSUMER_KERNEL:
1924 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1925 case LTTNG_CONSUMER32_UST:
1926 case LTTNG_CONSUMER64_UST:
1927 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1928 default:
1929 ERR("Unknown consumer_data type");
1930 assert(0);
1931 return -ENOSYS;
1932 }
1933 }
1934
1935 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1936 int sock, struct pollfd *consumer_sockpoll)
1937 {
1938 switch (consumer_data.type) {
1939 case LTTNG_CONSUMER_KERNEL:
1940 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1941 case LTTNG_CONSUMER32_UST:
1942 case LTTNG_CONSUMER64_UST:
1943 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1944 default:
1945 ERR("Unknown consumer_data type");
1946 assert(0);
1947 return -ENOSYS;
1948 }
1949 }
1950
1951 void lttng_consumer_close_all_metadata(void)
1952 {
1953 switch (consumer_data.type) {
1954 case LTTNG_CONSUMER_KERNEL:
1955 /*
1956 * The Kernel consumer has a different metadata scheme so we don't
1957 * close anything because the stream will be closed by the session
1958 * daemon.
1959 */
1960 break;
1961 case LTTNG_CONSUMER32_UST:
1962 case LTTNG_CONSUMER64_UST:
1963 /*
1964 * Close all metadata streams. The metadata hash table is passed and
1965 * this call iterates over it by closing all wakeup fd. This is safe
1966 * because at this point we are sure that the metadata producer is
1967 * either dead or blocked.
1968 */
1969 lttng_ustconsumer_close_all_metadata(metadata_ht);
1970 break;
1971 default:
1972 ERR("Unknown consumer_data type");
1973 assert(0);
1974 }
1975 }
1976
1977 /*
1978 * Clean up a metadata stream and free its memory.
1979 */
1980 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1981 struct lttng_ht *ht)
1982 {
1983 struct lttng_consumer_channel *free_chan = NULL;
1984
1985 assert(stream);
1986 /*
1987 * This call should NEVER receive regular stream. It must always be
1988 * metadata stream and this is crucial for data structure synchronization.
1989 */
1990 assert(stream->metadata_flag);
1991
1992 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1993
1994 pthread_mutex_lock(&consumer_data.lock);
1995 pthread_mutex_lock(&stream->chan->lock);
1996 pthread_mutex_lock(&stream->lock);
1997
1998 /* Remove any reference to that stream. */
1999 consumer_stream_delete(stream, ht);
2000
2001 /* Close down everything including the relayd if one. */
2002 consumer_stream_close(stream);
2003 /* Destroy tracer buffers of the stream. */
2004 consumer_stream_destroy_buffers(stream);
2005
2006 /* Atomically decrement channel refcount since other threads can use it. */
2007 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2008 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2009 /* Go for channel deletion! */
2010 free_chan = stream->chan;
2011 }
2012
2013 /*
2014 * Nullify the stream reference so it is not used after deletion. The
2015 * channel lock MUST be acquired before being able to check for a NULL
2016 * pointer value.
2017 */
2018 stream->chan->metadata_stream = NULL;
2019
2020 pthread_mutex_unlock(&stream->lock);
2021 pthread_mutex_unlock(&stream->chan->lock);
2022 pthread_mutex_unlock(&consumer_data.lock);
2023
2024 if (free_chan) {
2025 consumer_del_channel(free_chan);
2026 }
2027
2028 consumer_stream_free(stream);
2029 }
2030
2031 /*
2032 * Action done with the metadata stream when adding it to the consumer internal
2033 * data structures to handle it.
2034 */
2035 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2036 {
2037 struct lttng_ht *ht = metadata_ht;
2038 int ret = 0;
2039 struct lttng_ht_iter iter;
2040 struct lttng_ht_node_u64 *node;
2041
2042 assert(stream);
2043 assert(ht);
2044
2045 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2046
2047 pthread_mutex_lock(&consumer_data.lock);
2048 pthread_mutex_lock(&stream->chan->lock);
2049 pthread_mutex_lock(&stream->chan->timer_lock);
2050 pthread_mutex_lock(&stream->lock);
2051
2052 /*
2053 * From here, refcounts are updated so be _careful_ when returning an error
2054 * after this point.
2055 */
2056
2057 rcu_read_lock();
2058
2059 /*
2060 * Lookup the stream just to make sure it does not exist in our internal
2061 * state. This should NEVER happen.
2062 */
2063 lttng_ht_lookup(ht, &stream->key, &iter);
2064 node = lttng_ht_iter_get_node_u64(&iter);
2065 assert(!node);
2066
2067 /*
2068 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2069 * in terms of destroying the associated channel, because the action that
2070 * causes the count to become 0 also causes a stream to be added. The
2071 * channel deletion will thus be triggered by the following removal of this
2072 * stream.
2073 */
2074 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2075 /* Increment refcount before decrementing nb_init_stream_left */
2076 cmm_smp_wmb();
2077 uatomic_dec(&stream->chan->nb_init_stream_left);
2078 }
2079
2080 lttng_ht_add_unique_u64(ht, &stream->node);
2081
2082 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2083 &stream->node_channel_id);
2084
2085 /*
2086 * Add stream to the stream_list_ht of the consumer data. No need to steal
2087 * the key since the HT does not use it and we allow to add redundant keys
2088 * into this table.
2089 */
2090 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2091
2092 rcu_read_unlock();
2093
2094 pthread_mutex_unlock(&stream->lock);
2095 pthread_mutex_unlock(&stream->chan->lock);
2096 pthread_mutex_unlock(&stream->chan->timer_lock);
2097 pthread_mutex_unlock(&consumer_data.lock);
2098 return ret;
2099 }
2100
2101 /*
2102 * Delete data stream that are flagged for deletion (endpoint_status).
2103 */
2104 static void validate_endpoint_status_data_stream(void)
2105 {
2106 struct lttng_ht_iter iter;
2107 struct lttng_consumer_stream *stream;
2108
2109 DBG("Consumer delete flagged data stream");
2110
2111 rcu_read_lock();
2112 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2113 /* Validate delete flag of the stream */
2114 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2115 continue;
2116 }
2117 /* Delete it right now */
2118 consumer_del_stream(stream, data_ht);
2119 }
2120 rcu_read_unlock();
2121 }
2122
2123 /*
2124 * Delete metadata stream that are flagged for deletion (endpoint_status).
2125 */
2126 static void validate_endpoint_status_metadata_stream(
2127 struct lttng_poll_event *pollset)
2128 {
2129 struct lttng_ht_iter iter;
2130 struct lttng_consumer_stream *stream;
2131
2132 DBG("Consumer delete flagged metadata stream");
2133
2134 assert(pollset);
2135
2136 rcu_read_lock();
2137 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2138 /* Validate delete flag of the stream */
2139 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2140 continue;
2141 }
2142 /*
2143 * Remove from pollset so the metadata thread can continue without
2144 * blocking on a deleted stream.
2145 */
2146 lttng_poll_del(pollset, stream->wait_fd);
2147
2148 /* Delete it right now */
2149 consumer_del_metadata_stream(stream, metadata_ht);
2150 }
2151 rcu_read_unlock();
2152 }
2153
2154 /*
2155 * Thread polls on metadata file descriptor and write them on disk or on the
2156 * network.
2157 */
2158 void *consumer_thread_metadata_poll(void *data)
2159 {
2160 int ret, i, pollfd, err = -1;
2161 uint32_t revents, nb_fd;
2162 struct lttng_consumer_stream *stream = NULL;
2163 struct lttng_ht_iter iter;
2164 struct lttng_ht_node_u64 *node;
2165 struct lttng_poll_event events;
2166 struct lttng_consumer_local_data *ctx = data;
2167 ssize_t len;
2168
2169 rcu_register_thread();
2170
2171 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2172
2173 if (testpoint(consumerd_thread_metadata)) {
2174 goto error_testpoint;
2175 }
2176
2177 health_code_update();
2178
2179 DBG("Thread metadata poll started");
2180
2181 /* Size is set to 1 for the consumer_metadata pipe */
2182 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2183 if (ret < 0) {
2184 ERR("Poll set creation failed");
2185 goto end_poll;
2186 }
2187
2188 ret = lttng_poll_add(&events,
2189 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2190 if (ret < 0) {
2191 goto end;
2192 }
2193
2194 /* Main loop */
2195 DBG("Metadata main loop started");
2196
2197 while (1) {
2198 health_code_update();
2199
2200 /* Only the metadata pipe is set */
2201 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2202 err = 0; /* All is OK */
2203 goto end;
2204 }
2205
2206 restart:
2207 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2208 health_poll_entry();
2209 ret = lttng_poll_wait(&events, -1);
2210 health_poll_exit();
2211 DBG("Metadata event catched in thread");
2212 if (ret < 0) {
2213 if (errno == EINTR) {
2214 ERR("Poll EINTR catched");
2215 goto restart;
2216 }
2217 goto error;
2218 }
2219
2220 nb_fd = ret;
2221
2222 /* From here, the event is a metadata wait fd */
2223 for (i = 0; i < nb_fd; i++) {
2224 health_code_update();
2225
2226 revents = LTTNG_POLL_GETEV(&events, i);
2227 pollfd = LTTNG_POLL_GETFD(&events, i);
2228
2229 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2230 if (revents & (LPOLLERR | LPOLLHUP )) {
2231 DBG("Metadata thread pipe hung up");
2232 /*
2233 * Remove the pipe from the poll set and continue the loop
2234 * since their might be data to consume.
2235 */
2236 lttng_poll_del(&events,
2237 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2238 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2239 continue;
2240 } else if (revents & LPOLLIN) {
2241 ssize_t pipe_len;
2242
2243 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2244 &stream, sizeof(stream));
2245 if (pipe_len < sizeof(stream)) {
2246 PERROR("read metadata stream");
2247 /*
2248 * Continue here to handle the rest of the streams.
2249 */
2250 continue;
2251 }
2252
2253 /* A NULL stream means that the state has changed. */
2254 if (stream == NULL) {
2255 /* Check for deleted streams. */
2256 validate_endpoint_status_metadata_stream(&events);
2257 goto restart;
2258 }
2259
2260 DBG("Adding metadata stream %d to poll set",
2261 stream->wait_fd);
2262
2263 /* Add metadata stream to the global poll events list */
2264 lttng_poll_add(&events, stream->wait_fd,
2265 LPOLLIN | LPOLLPRI | LPOLLHUP);
2266 }
2267
2268 /* Handle other stream */
2269 continue;
2270 }
2271
2272 rcu_read_lock();
2273 {
2274 uint64_t tmp_id = (uint64_t) pollfd;
2275
2276 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2277 }
2278 node = lttng_ht_iter_get_node_u64(&iter);
2279 assert(node);
2280
2281 stream = caa_container_of(node, struct lttng_consumer_stream,
2282 node);
2283
2284 /* Check for error event */
2285 if (revents & (LPOLLERR | LPOLLHUP)) {
2286 DBG("Metadata fd %d is hup|err.", pollfd);
2287 if (!stream->hangup_flush_done
2288 && (consumer_data.type == LTTNG_CONSUMER32_UST
2289 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2290 DBG("Attempting to flush and consume the UST buffers");
2291 lttng_ustconsumer_on_stream_hangup(stream);
2292
2293 /* We just flushed the stream now read it. */
2294 do {
2295 health_code_update();
2296
2297 len = ctx->on_buffer_ready(stream, ctx);
2298 /*
2299 * We don't check the return value here since if we get
2300 * a negative len, it means an error occured thus we
2301 * simply remove it from the poll set and free the
2302 * stream.
2303 */
2304 } while (len > 0);
2305 }
2306
2307 lttng_poll_del(&events, stream->wait_fd);
2308 /*
2309 * This call update the channel states, closes file descriptors
2310 * and securely free the stream.
2311 */
2312 consumer_del_metadata_stream(stream, metadata_ht);
2313 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2314 /* Get the data out of the metadata file descriptor */
2315 DBG("Metadata available on fd %d", pollfd);
2316 assert(stream->wait_fd == pollfd);
2317
2318 do {
2319 health_code_update();
2320
2321 len = ctx->on_buffer_ready(stream, ctx);
2322 /*
2323 * We don't check the return value here since if we get
2324 * a negative len, it means an error occured thus we
2325 * simply remove it from the poll set and free the
2326 * stream.
2327 */
2328 } while (len > 0);
2329
2330 /* It's ok to have an unavailable sub-buffer */
2331 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2332 /* Clean up stream from consumer and free it. */
2333 lttng_poll_del(&events, stream->wait_fd);
2334 consumer_del_metadata_stream(stream, metadata_ht);
2335 }
2336 }
2337
2338 /* Release RCU lock for the stream looked up */
2339 rcu_read_unlock();
2340 }
2341 }
2342
2343 /* All is OK */
2344 err = 0;
2345 error:
2346 end:
2347 DBG("Metadata poll thread exiting");
2348
2349 lttng_poll_clean(&events);
2350 end_poll:
2351 error_testpoint:
2352 if (err) {
2353 health_error();
2354 ERR("Health error occurred in %s", __func__);
2355 }
2356 health_unregister(health_consumerd);
2357 rcu_unregister_thread();
2358 return NULL;
2359 }
2360
2361 /*
2362 * This thread polls the fds in the set to consume the data and write
2363 * it to tracefile if necessary.
2364 */
2365 void *consumer_thread_data_poll(void *data)
2366 {
2367 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2368 struct pollfd *pollfd = NULL;
2369 /* local view of the streams */
2370 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2371 /* local view of consumer_data.fds_count */
2372 int nb_fd = 0;
2373 struct lttng_consumer_local_data *ctx = data;
2374 ssize_t len;
2375
2376 rcu_register_thread();
2377
2378 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2379
2380 if (testpoint(consumerd_thread_data)) {
2381 goto error_testpoint;
2382 }
2383
2384 health_code_update();
2385
2386 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2387 if (local_stream == NULL) {
2388 PERROR("local_stream malloc");
2389 goto end;
2390 }
2391
2392 while (1) {
2393 health_code_update();
2394
2395 high_prio = 0;
2396 num_hup = 0;
2397
2398 /*
2399 * the fds set has been updated, we need to update our
2400 * local array as well
2401 */
2402 pthread_mutex_lock(&consumer_data.lock);
2403 if (consumer_data.need_update) {
2404 free(pollfd);
2405 pollfd = NULL;
2406
2407 free(local_stream);
2408 local_stream = NULL;
2409
2410 /* allocate for all fds + 1 for the consumer_data_pipe */
2411 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2412 if (pollfd == NULL) {
2413 PERROR("pollfd malloc");
2414 pthread_mutex_unlock(&consumer_data.lock);
2415 goto end;
2416 }
2417
2418 /* allocate for all fds + 1 for the consumer_data_pipe */
2419 local_stream = zmalloc((consumer_data.stream_count + 1) *
2420 sizeof(struct lttng_consumer_stream *));
2421 if (local_stream == NULL) {
2422 PERROR("local_stream malloc");
2423 pthread_mutex_unlock(&consumer_data.lock);
2424 goto end;
2425 }
2426 ret = update_poll_array(ctx, &pollfd, local_stream,
2427 data_ht);
2428 if (ret < 0) {
2429 ERR("Error in allocating pollfd or local_outfds");
2430 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2431 pthread_mutex_unlock(&consumer_data.lock);
2432 goto end;
2433 }
2434 nb_fd = ret;
2435 consumer_data.need_update = 0;
2436 }
2437 pthread_mutex_unlock(&consumer_data.lock);
2438
2439 /* No FDs and consumer_quit, consumer_cleanup the thread */
2440 if (nb_fd == 0 && consumer_quit == 1) {
2441 err = 0; /* All is OK */
2442 goto end;
2443 }
2444 /* poll on the array of fds */
2445 restart:
2446 DBG("polling on %d fd", nb_fd + 1);
2447 health_poll_entry();
2448 num_rdy = poll(pollfd, nb_fd + 1, -1);
2449 health_poll_exit();
2450 DBG("poll num_rdy : %d", num_rdy);
2451 if (num_rdy == -1) {
2452 /*
2453 * Restart interrupted system call.
2454 */
2455 if (errno == EINTR) {
2456 goto restart;
2457 }
2458 PERROR("Poll error");
2459 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2460 goto end;
2461 } else if (num_rdy == 0) {
2462 DBG("Polling thread timed out");
2463 goto end;
2464 }
2465
2466 /*
2467 * If the consumer_data_pipe triggered poll go directly to the
2468 * beginning of the loop to update the array. We want to prioritize
2469 * array update over low-priority reads.
2470 */
2471 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2472 ssize_t pipe_readlen;
2473
2474 DBG("consumer_data_pipe wake up");
2475 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2476 &new_stream, sizeof(new_stream));
2477 if (pipe_readlen < sizeof(new_stream)) {
2478 PERROR("Consumer data pipe");
2479 /* Continue so we can at least handle the current stream(s). */
2480 continue;
2481 }
2482
2483 /*
2484 * If the stream is NULL, just ignore it. It's also possible that
2485 * the sessiond poll thread changed the consumer_quit state and is
2486 * waking us up to test it.
2487 */
2488 if (new_stream == NULL) {
2489 validate_endpoint_status_data_stream();
2490 continue;
2491 }
2492
2493 /* Continue to update the local streams and handle prio ones */
2494 continue;
2495 }
2496
2497 /* Take care of high priority channels first. */
2498 for (i = 0; i < nb_fd; i++) {
2499 health_code_update();
2500
2501 if (local_stream[i] == NULL) {
2502 continue;
2503 }
2504 if (pollfd[i].revents & POLLPRI) {
2505 DBG("Urgent read on fd %d", pollfd[i].fd);
2506 high_prio = 1;
2507 len = ctx->on_buffer_ready(local_stream[i], ctx);
2508 /* it's ok to have an unavailable sub-buffer */
2509 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2510 /* Clean the stream and free it. */
2511 consumer_del_stream(local_stream[i], data_ht);
2512 local_stream[i] = NULL;
2513 } else if (len > 0) {
2514 local_stream[i]->data_read = 1;
2515 }
2516 }
2517 }
2518
2519 /*
2520 * If we read high prio channel in this loop, try again
2521 * for more high prio data.
2522 */
2523 if (high_prio) {
2524 continue;
2525 }
2526
2527 /* Take care of low priority channels. */
2528 for (i = 0; i < nb_fd; i++) {
2529 health_code_update();
2530
2531 if (local_stream[i] == NULL) {
2532 continue;
2533 }
2534 if ((pollfd[i].revents & POLLIN) ||
2535 local_stream[i]->hangup_flush_done) {
2536 DBG("Normal read on fd %d", pollfd[i].fd);
2537 len = ctx->on_buffer_ready(local_stream[i], ctx);
2538 /* it's ok to have an unavailable sub-buffer */
2539 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2540 /* Clean the stream and free it. */
2541 consumer_del_stream(local_stream[i], data_ht);
2542 local_stream[i] = NULL;
2543 } else if (len > 0) {
2544 local_stream[i]->data_read = 1;
2545 }
2546 }
2547 }
2548
2549 /* Handle hangup and errors */
2550 for (i = 0; i < nb_fd; i++) {
2551 health_code_update();
2552
2553 if (local_stream[i] == NULL) {
2554 continue;
2555 }
2556 if (!local_stream[i]->hangup_flush_done
2557 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2558 && (consumer_data.type == LTTNG_CONSUMER32_UST
2559 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2560 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2561 pollfd[i].fd);
2562 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2563 /* Attempt read again, for the data we just flushed. */
2564 local_stream[i]->data_read = 1;
2565 }
2566 /*
2567 * If the poll flag is HUP/ERR/NVAL and we have
2568 * read no data in this pass, we can remove the
2569 * stream from its hash table.
2570 */
2571 if ((pollfd[i].revents & POLLHUP)) {
2572 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2573 if (!local_stream[i]->data_read) {
2574 consumer_del_stream(local_stream[i], data_ht);
2575 local_stream[i] = NULL;
2576 num_hup++;
2577 }
2578 } else if (pollfd[i].revents & POLLERR) {
2579 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2580 if (!local_stream[i]->data_read) {
2581 consumer_del_stream(local_stream[i], data_ht);
2582 local_stream[i] = NULL;
2583 num_hup++;
2584 }
2585 } else if (pollfd[i].revents & POLLNVAL) {
2586 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2587 if (!local_stream[i]->data_read) {
2588 consumer_del_stream(local_stream[i], data_ht);
2589 local_stream[i] = NULL;
2590 num_hup++;
2591 }
2592 }
2593 if (local_stream[i] != NULL) {
2594 local_stream[i]->data_read = 0;
2595 }
2596 }
2597 }
2598 /* All is OK */
2599 err = 0;
2600 end:
2601 DBG("polling thread exiting");
2602 free(pollfd);
2603 free(local_stream);
2604
2605 /*
2606 * Close the write side of the pipe so epoll_wait() in
2607 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2608 * read side of the pipe. If we close them both, epoll_wait strangely does
2609 * not return and could create a endless wait period if the pipe is the
2610 * only tracked fd in the poll set. The thread will take care of closing
2611 * the read side.
2612 */
2613 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2614
2615 error_testpoint:
2616 if (err) {
2617 health_error();
2618 ERR("Health error occurred in %s", __func__);
2619 }
2620 health_unregister(health_consumerd);
2621
2622 rcu_unregister_thread();
2623 return NULL;
2624 }
2625
2626 /*
2627 * Close wake-up end of each stream belonging to the channel. This will
2628 * allow the poll() on the stream read-side to detect when the
2629 * write-side (application) finally closes them.
2630 */
2631 static
2632 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2633 {
2634 struct lttng_ht *ht;
2635 struct lttng_consumer_stream *stream;
2636 struct lttng_ht_iter iter;
2637
2638 ht = consumer_data.stream_per_chan_id_ht;
2639
2640 rcu_read_lock();
2641 cds_lfht_for_each_entry_duplicate(ht->ht,
2642 ht->hash_fct(&channel->key, lttng_ht_seed),
2643 ht->match_fct, &channel->key,
2644 &iter.iter, stream, node_channel_id.node) {
2645 /*
2646 * Protect against teardown with mutex.
2647 */
2648 pthread_mutex_lock(&stream->lock);
2649 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2650 goto next;
2651 }
2652 switch (consumer_data.type) {
2653 case LTTNG_CONSUMER_KERNEL:
2654 break;
2655 case LTTNG_CONSUMER32_UST:
2656 case LTTNG_CONSUMER64_UST:
2657 if (stream->metadata_flag) {
2658 /* Safe and protected by the stream lock. */
2659 lttng_ustconsumer_close_metadata(stream->chan);
2660 } else {
2661 /*
2662 * Note: a mutex is taken internally within
2663 * liblttng-ust-ctl to protect timer wakeup_fd
2664 * use from concurrent close.
2665 */
2666 lttng_ustconsumer_close_stream_wakeup(stream);
2667 }
2668 break;
2669 default:
2670 ERR("Unknown consumer_data type");
2671 assert(0);
2672 }
2673 next:
2674 pthread_mutex_unlock(&stream->lock);
2675 }
2676 rcu_read_unlock();
2677 }
2678
2679 static void destroy_channel_ht(struct lttng_ht *ht)
2680 {
2681 struct lttng_ht_iter iter;
2682 struct lttng_consumer_channel *channel;
2683 int ret;
2684
2685 if (ht == NULL) {
2686 return;
2687 }
2688
2689 rcu_read_lock();
2690 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2691 ret = lttng_ht_del(ht, &iter);
2692 assert(ret != 0);
2693 }
2694 rcu_read_unlock();
2695
2696 lttng_ht_destroy(ht);
2697 }
2698
2699 /*
2700 * This thread polls the channel fds to detect when they are being
2701 * closed. It closes all related streams if the channel is detected as
2702 * closed. It is currently only used as a shim layer for UST because the
2703 * consumerd needs to keep the per-stream wakeup end of pipes open for
2704 * periodical flush.
2705 */
2706 void *consumer_thread_channel_poll(void *data)
2707 {
2708 int ret, i, pollfd, err = -1;
2709 uint32_t revents, nb_fd;
2710 struct lttng_consumer_channel *chan = NULL;
2711 struct lttng_ht_iter iter;
2712 struct lttng_ht_node_u64 *node;
2713 struct lttng_poll_event events;
2714 struct lttng_consumer_local_data *ctx = data;
2715 struct lttng_ht *channel_ht;
2716
2717 rcu_register_thread();
2718
2719 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2720
2721 if (testpoint(consumerd_thread_channel)) {
2722 goto error_testpoint;
2723 }
2724
2725 health_code_update();
2726
2727 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2728 if (!channel_ht) {
2729 /* ENOMEM at this point. Better to bail out. */
2730 goto end_ht;
2731 }
2732
2733 DBG("Thread channel poll started");
2734
2735 /* Size is set to 1 for the consumer_channel pipe */
2736 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2737 if (ret < 0) {
2738 ERR("Poll set creation failed");
2739 goto end_poll;
2740 }
2741
2742 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2743 if (ret < 0) {
2744 goto end;
2745 }
2746
2747 /* Main loop */
2748 DBG("Channel main loop started");
2749
2750 while (1) {
2751 health_code_update();
2752
2753 /* Only the channel pipe is set */
2754 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2755 err = 0; /* All is OK */
2756 goto end;
2757 }
2758
2759 restart:
2760 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2761 health_poll_entry();
2762 ret = lttng_poll_wait(&events, -1);
2763 health_poll_exit();
2764 DBG("Channel event catched in thread");
2765 if (ret < 0) {
2766 if (errno == EINTR) {
2767 ERR("Poll EINTR catched");
2768 goto restart;
2769 }
2770 goto end;
2771 }
2772
2773 nb_fd = ret;
2774
2775 /* From here, the event is a channel wait fd */
2776 for (i = 0; i < nb_fd; i++) {
2777 health_code_update();
2778
2779 revents = LTTNG_POLL_GETEV(&events, i);
2780 pollfd = LTTNG_POLL_GETFD(&events, i);
2781
2782 /* Just don't waste time if no returned events for the fd */
2783 if (!revents) {
2784 continue;
2785 }
2786 if (pollfd == ctx->consumer_channel_pipe[0]) {
2787 if (revents & (LPOLLERR | LPOLLHUP)) {
2788 DBG("Channel thread pipe hung up");
2789 /*
2790 * Remove the pipe from the poll set and continue the loop
2791 * since their might be data to consume.
2792 */
2793 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2794 continue;
2795 } else if (revents & LPOLLIN) {
2796 enum consumer_channel_action action;
2797 uint64_t key;
2798
2799 ret = read_channel_pipe(ctx, &chan, &key, &action);
2800 if (ret <= 0) {
2801 ERR("Error reading channel pipe");
2802 continue;
2803 }
2804
2805 switch (action) {
2806 case CONSUMER_CHANNEL_ADD:
2807 DBG("Adding channel %d to poll set",
2808 chan->wait_fd);
2809
2810 lttng_ht_node_init_u64(&chan->wait_fd_node,
2811 chan->wait_fd);
2812 rcu_read_lock();
2813 lttng_ht_add_unique_u64(channel_ht,
2814 &chan->wait_fd_node);
2815 rcu_read_unlock();
2816 /* Add channel to the global poll events list */
2817 lttng_poll_add(&events, chan->wait_fd,
2818 LPOLLIN | LPOLLPRI);
2819 break;
2820 case CONSUMER_CHANNEL_DEL:
2821 {
2822 /*
2823 * This command should never be called if the channel
2824 * has streams monitored by either the data or metadata
2825 * thread. The consumer only notify this thread with a
2826 * channel del. command if it receives a destroy
2827 * channel command from the session daemon that send it
2828 * if a command prior to the GET_CHANNEL failed.
2829 */
2830
2831 rcu_read_lock();
2832 chan = consumer_find_channel(key);
2833 if (!chan) {
2834 rcu_read_unlock();
2835 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2836 break;
2837 }
2838 lttng_poll_del(&events, chan->wait_fd);
2839 iter.iter.node = &chan->wait_fd_node.node;
2840 ret = lttng_ht_del(channel_ht, &iter);
2841 assert(ret == 0);
2842
2843 switch (consumer_data.type) {
2844 case LTTNG_CONSUMER_KERNEL:
2845 break;
2846 case LTTNG_CONSUMER32_UST:
2847 case LTTNG_CONSUMER64_UST:
2848 health_code_update();
2849 /* Destroy streams that might have been left in the stream list. */
2850 clean_channel_stream_list(chan);
2851 break;
2852 default:
2853 ERR("Unknown consumer_data type");
2854 assert(0);
2855 }
2856
2857 /*
2858 * Release our own refcount. Force channel deletion even if
2859 * streams were not initialized.
2860 */
2861 if (!uatomic_sub_return(&chan->refcount, 1)) {
2862 consumer_del_channel(chan);
2863 }
2864 rcu_read_unlock();
2865 goto restart;
2866 }
2867 case CONSUMER_CHANNEL_QUIT:
2868 /*
2869 * Remove the pipe from the poll set and continue the loop
2870 * since their might be data to consume.
2871 */
2872 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2873 continue;
2874 default:
2875 ERR("Unknown action");
2876 break;
2877 }
2878 }
2879
2880 /* Handle other stream */
2881 continue;
2882 }
2883
2884 rcu_read_lock();
2885 {
2886 uint64_t tmp_id = (uint64_t) pollfd;
2887
2888 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2889 }
2890 node = lttng_ht_iter_get_node_u64(&iter);
2891 assert(node);
2892
2893 chan = caa_container_of(node, struct lttng_consumer_channel,
2894 wait_fd_node);
2895
2896 /* Check for error event */
2897 if (revents & (LPOLLERR | LPOLLHUP)) {
2898 DBG("Channel fd %d is hup|err.", pollfd);
2899
2900 lttng_poll_del(&events, chan->wait_fd);
2901 ret = lttng_ht_del(channel_ht, &iter);
2902 assert(ret == 0);
2903
2904 /*
2905 * This will close the wait fd for each stream associated to
2906 * this channel AND monitored by the data/metadata thread thus
2907 * will be clean by the right thread.
2908 */
2909 consumer_close_channel_streams(chan);
2910
2911 /* Release our own refcount */
2912 if (!uatomic_sub_return(&chan->refcount, 1)
2913 && !uatomic_read(&chan->nb_init_stream_left)) {
2914 consumer_del_channel(chan);
2915 }
2916 }
2917
2918 /* Release RCU lock for the channel looked up */
2919 rcu_read_unlock();
2920 }
2921 }
2922
2923 /* All is OK */
2924 err = 0;
2925 end:
2926 lttng_poll_clean(&events);
2927 end_poll:
2928 destroy_channel_ht(channel_ht);
2929 end_ht:
2930 error_testpoint:
2931 DBG("Channel poll thread exiting");
2932 if (err) {
2933 health_error();
2934 ERR("Health error occurred in %s", __func__);
2935 }
2936 health_unregister(health_consumerd);
2937 rcu_unregister_thread();
2938 return NULL;
2939 }
2940
2941 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2942 struct pollfd *sockpoll, int client_socket)
2943 {
2944 int ret;
2945
2946 assert(ctx);
2947 assert(sockpoll);
2948
2949 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2950 ret = -1;
2951 goto error;
2952 }
2953 DBG("Metadata connection on client_socket");
2954
2955 /* Blocking call, waiting for transmission */
2956 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2957 if (ctx->consumer_metadata_socket < 0) {
2958 WARN("On accept metadata");
2959 ret = -1;
2960 goto error;
2961 }
2962 ret = 0;
2963
2964 error:
2965 return ret;
2966 }
2967
2968 /*
2969 * This thread listens on the consumerd socket and receives the file
2970 * descriptors from the session daemon.
2971 */
2972 void *consumer_thread_sessiond_poll(void *data)
2973 {
2974 int sock = -1, client_socket, ret, err = -1;
2975 /*
2976 * structure to poll for incoming data on communication socket avoids
2977 * making blocking sockets.
2978 */
2979 struct pollfd consumer_sockpoll[2];
2980 struct lttng_consumer_local_data *ctx = data;
2981
2982 rcu_register_thread();
2983
2984 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
2985
2986 if (testpoint(consumerd_thread_sessiond)) {
2987 goto error_testpoint;
2988 }
2989
2990 health_code_update();
2991
2992 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2993 unlink(ctx->consumer_command_sock_path);
2994 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2995 if (client_socket < 0) {
2996 ERR("Cannot create command socket");
2997 goto end;
2998 }
2999
3000 ret = lttcomm_listen_unix_sock(client_socket);
3001 if (ret < 0) {
3002 goto end;
3003 }
3004
3005 DBG("Sending ready command to lttng-sessiond");
3006 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3007 /* return < 0 on error, but == 0 is not fatal */
3008 if (ret < 0) {
3009 ERR("Error sending ready command to lttng-sessiond");
3010 goto end;
3011 }
3012
3013 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3014 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3015 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3016 consumer_sockpoll[1].fd = client_socket;
3017 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3018
3019 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3020 goto end;
3021 }
3022 DBG("Connection on client_socket");
3023
3024 /* Blocking call, waiting for transmission */
3025 sock = lttcomm_accept_unix_sock(client_socket);
3026 if (sock < 0) {
3027 WARN("On accept");
3028 goto end;
3029 }
3030
3031 /*
3032 * Setup metadata socket which is the second socket connection on the
3033 * command unix socket.
3034 */
3035 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3036 if (ret < 0) {
3037 goto end;
3038 }
3039
3040 /* This socket is not useful anymore. */
3041 ret = close(client_socket);
3042 if (ret < 0) {
3043 PERROR("close client_socket");
3044 }
3045 client_socket = -1;
3046
3047 /* update the polling structure to poll on the established socket */
3048 consumer_sockpoll[1].fd = sock;
3049 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3050
3051 while (1) {
3052 health_code_update();
3053
3054 health_poll_entry();
3055 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3056 health_poll_exit();
3057 if (ret < 0) {
3058 goto end;
3059 }
3060 DBG("Incoming command on sock");
3061 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3062 if (ret == -ENOENT) {
3063 DBG("Received STOP command");
3064 goto end;
3065 }
3066 if (ret <= 0) {
3067 /*
3068 * This could simply be a session daemon quitting. Don't output
3069 * ERR() here.
3070 */
3071 DBG("Communication interrupted on command socket");
3072 err = 0;
3073 goto end;
3074 }
3075 if (consumer_quit) {
3076 DBG("consumer_thread_receive_fds received quit from signal");
3077 err = 0; /* All is OK */
3078 goto end;
3079 }
3080 DBG("received command on sock");
3081 }
3082 /* All is OK */
3083 err = 0;
3084
3085 end:
3086 DBG("Consumer thread sessiond poll exiting");
3087
3088 /*
3089 * Close metadata streams since the producer is the session daemon which
3090 * just died.
3091 *
3092 * NOTE: for now, this only applies to the UST tracer.
3093 */
3094 lttng_consumer_close_all_metadata();
3095
3096 /*
3097 * when all fds have hung up, the polling thread
3098 * can exit cleanly
3099 */
3100 consumer_quit = 1;
3101
3102 /*
3103 * Notify the data poll thread to poll back again and test the
3104 * consumer_quit state that we just set so to quit gracefully.
3105 */
3106 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3107
3108 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3109
3110 notify_health_quit_pipe(health_quit_pipe);
3111
3112 /* Cleaning up possibly open sockets. */
3113 if (sock >= 0) {
3114 ret = close(sock);
3115 if (ret < 0) {
3116 PERROR("close sock sessiond poll");
3117 }
3118 }
3119 if (client_socket >= 0) {
3120 ret = close(client_socket);
3121 if (ret < 0) {
3122 PERROR("close client_socket sessiond poll");
3123 }
3124 }
3125
3126 error_testpoint:
3127 if (err) {
3128 health_error();
3129 ERR("Health error occurred in %s", __func__);
3130 }
3131 health_unregister(health_consumerd);
3132
3133 rcu_unregister_thread();
3134 return NULL;
3135 }
3136
3137 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3138 struct lttng_consumer_local_data *ctx)
3139 {
3140 ssize_t ret;
3141
3142 pthread_mutex_lock(&stream->lock);
3143 if (stream->metadata_flag) {
3144 pthread_mutex_lock(&stream->metadata_rdv_lock);
3145 }
3146
3147 switch (consumer_data.type) {
3148 case LTTNG_CONSUMER_KERNEL:
3149 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3150 break;
3151 case LTTNG_CONSUMER32_UST:
3152 case LTTNG_CONSUMER64_UST:
3153 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3154 break;
3155 default:
3156 ERR("Unknown consumer_data type");
3157 assert(0);
3158 ret = -ENOSYS;
3159 break;
3160 }
3161
3162 if (stream->metadata_flag) {
3163 pthread_cond_broadcast(&stream->metadata_rdv);
3164 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3165 }
3166 pthread_mutex_unlock(&stream->lock);
3167 return ret;
3168 }
3169
3170 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3171 {
3172 switch (consumer_data.type) {
3173 case LTTNG_CONSUMER_KERNEL:
3174 return lttng_kconsumer_on_recv_stream(stream);
3175 case LTTNG_CONSUMER32_UST:
3176 case LTTNG_CONSUMER64_UST:
3177 return lttng_ustconsumer_on_recv_stream(stream);
3178 default:
3179 ERR("Unknown consumer_data type");
3180 assert(0);
3181 return -ENOSYS;
3182 }
3183 }
3184
3185 /*
3186 * Allocate and set consumer data hash tables.
3187 */
3188 int lttng_consumer_init(void)
3189 {
3190 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3191 if (!consumer_data.channel_ht) {
3192 goto error;
3193 }
3194
3195 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3196 if (!consumer_data.relayd_ht) {
3197 goto error;
3198 }
3199
3200 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3201 if (!consumer_data.stream_list_ht) {
3202 goto error;
3203 }
3204
3205 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3206 if (!consumer_data.stream_per_chan_id_ht) {
3207 goto error;
3208 }
3209
3210 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3211 if (!data_ht) {
3212 goto error;
3213 }
3214
3215 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3216 if (!metadata_ht) {
3217 goto error;
3218 }
3219
3220 return 0;
3221
3222 error:
3223 return -1;
3224 }
3225
3226 /*
3227 * Process the ADD_RELAYD command receive by a consumer.
3228 *
3229 * This will create a relayd socket pair and add it to the relayd hash table.
3230 * The caller MUST acquire a RCU read side lock before calling it.
3231 */
3232 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3233 struct lttng_consumer_local_data *ctx, int sock,
3234 struct pollfd *consumer_sockpoll,
3235 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3236 uint64_t relayd_session_id)
3237 {
3238 int fd = -1, ret = -1, relayd_created = 0;
3239 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3240 struct consumer_relayd_sock_pair *relayd = NULL;
3241
3242 assert(ctx);
3243 assert(relayd_sock);
3244
3245 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3246
3247 /* Get relayd reference if exists. */
3248 relayd = consumer_find_relayd(net_seq_idx);
3249 if (relayd == NULL) {
3250 assert(sock_type == LTTNG_STREAM_CONTROL);
3251 /* Not found. Allocate one. */
3252 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3253 if (relayd == NULL) {
3254 ret = -ENOMEM;
3255 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3256 goto error;
3257 } else {
3258 relayd->sessiond_session_id = sessiond_id;
3259 relayd_created = 1;
3260 }
3261
3262 /*
3263 * This code path MUST continue to the consumer send status message to
3264 * we can notify the session daemon and continue our work without
3265 * killing everything.
3266 */
3267 } else {
3268 /*
3269 * relayd key should never be found for control socket.
3270 */
3271 assert(sock_type != LTTNG_STREAM_CONTROL);
3272 }
3273
3274 /* First send a status message before receiving the fds. */
3275 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3276 if (ret < 0) {
3277 /* Somehow, the session daemon is not responding anymore. */
3278 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3279 goto error_nosignal;
3280 }
3281
3282 /* Poll on consumer socket. */
3283 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3284 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3285 ret = -EINTR;
3286 goto error_nosignal;
3287 }
3288
3289 /* Get relayd socket from session daemon */
3290 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3291 if (ret != sizeof(fd)) {
3292 ret = -1;
3293 fd = -1; /* Just in case it gets set with an invalid value. */
3294
3295 /*
3296 * Failing to receive FDs might indicate a major problem such as
3297 * reaching a fd limit during the receive where the kernel returns a
3298 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3299 * don't take any chances and stop everything.
3300 *
3301 * XXX: Feature request #558 will fix that and avoid this possible
3302 * issue when reaching the fd limit.
3303 */
3304 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3305 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3306 goto error;
3307 }
3308
3309 /* Copy socket information and received FD */
3310 switch (sock_type) {
3311 case LTTNG_STREAM_CONTROL:
3312 /* Copy received lttcomm socket */
3313 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3314 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3315 /* Handle create_sock error. */
3316 if (ret < 0) {
3317 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3318 goto error;
3319 }
3320 /*
3321 * Close the socket created internally by
3322 * lttcomm_create_sock, so we can replace it by the one
3323 * received from sessiond.
3324 */
3325 if (close(relayd->control_sock.sock.fd)) {
3326 PERROR("close");
3327 }
3328
3329 /* Assign new file descriptor */
3330 relayd->control_sock.sock.fd = fd;
3331 fd = -1; /* For error path */
3332 /* Assign version values. */
3333 relayd->control_sock.major = relayd_sock->major;
3334 relayd->control_sock.minor = relayd_sock->minor;
3335
3336 relayd->relayd_session_id = relayd_session_id;
3337
3338 break;
3339 case LTTNG_STREAM_DATA:
3340 /* Copy received lttcomm socket */
3341 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3342 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3343 /* Handle create_sock error. */
3344 if (ret < 0) {
3345 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3346 goto error;
3347 }
3348 /*
3349 * Close the socket created internally by
3350 * lttcomm_create_sock, so we can replace it by the one
3351 * received from sessiond.
3352 */
3353 if (close(relayd->data_sock.sock.fd)) {
3354 PERROR("close");
3355 }
3356
3357 /* Assign new file descriptor */
3358 relayd->data_sock.sock.fd = fd;
3359 fd = -1; /* for eventual error paths */
3360 /* Assign version values. */
3361 relayd->data_sock.major = relayd_sock->major;
3362 relayd->data_sock.minor = relayd_sock->minor;
3363 break;
3364 default:
3365 ERR("Unknown relayd socket type (%d)", sock_type);
3366 ret = -1;
3367 ret_code = LTTCOMM_CONSUMERD_FATAL;
3368 goto error;
3369 }
3370
3371 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3372 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3373 relayd->net_seq_idx, fd);
3374
3375 /* We successfully added the socket. Send status back. */
3376 ret = consumer_send_status_msg(sock, ret_code);
3377 if (ret < 0) {
3378 /* Somehow, the session daemon is not responding anymore. */
3379 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3380 goto error_nosignal;
3381 }
3382
3383 /*
3384 * Add relayd socket pair to consumer data hashtable. If object already
3385 * exists or on error, the function gracefully returns.
3386 */
3387 add_relayd(relayd);
3388
3389 /* All good! */
3390 return 0;
3391
3392 error:
3393 if (consumer_send_status_msg(sock, ret_code) < 0) {
3394 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3395 }
3396
3397 error_nosignal:
3398 /* Close received socket if valid. */
3399 if (fd >= 0) {
3400 if (close(fd)) {
3401 PERROR("close received socket");
3402 }
3403 }
3404
3405 if (relayd_created) {
3406 free(relayd);
3407 }
3408
3409 return ret;
3410 }
3411
3412 /*
3413 * Try to lock the stream mutex.
3414 *
3415 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3416 */
3417 static int stream_try_lock(struct lttng_consumer_stream *stream)
3418 {
3419 int ret;
3420
3421 assert(stream);
3422
3423 /*
3424 * Try to lock the stream mutex. On failure, we know that the stream is
3425 * being used else where hence there is data still being extracted.
3426 */
3427 ret = pthread_mutex_trylock(&stream->lock);
3428 if (ret) {
3429 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3430 ret = 0;
3431 goto end;
3432 }
3433
3434 ret = 1;
3435
3436 end:
3437 return ret;
3438 }
3439
3440 /*
3441 * Search for a relayd associated to the session id and return the reference.
3442 *
3443 * A rcu read side lock MUST be acquire before calling this function and locked
3444 * until the relayd object is no longer necessary.
3445 */
3446 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3447 {
3448 struct lttng_ht_iter iter;
3449 struct consumer_relayd_sock_pair *relayd = NULL;
3450
3451 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3452 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3453 node.node) {
3454 /*
3455 * Check by sessiond id which is unique here where the relayd session
3456 * id might not be when having multiple relayd.
3457 */
3458 if (relayd->sessiond_session_id == id) {
3459 /* Found the relayd. There can be only one per id. */
3460 goto found;
3461 }
3462 }
3463
3464 return NULL;
3465
3466 found:
3467 return relayd;
3468 }
3469
3470 /*
3471 * Check if for a given session id there is still data needed to be extract
3472 * from the buffers.
3473 *
3474 * Return 1 if data is pending or else 0 meaning ready to be read.
3475 */
3476 int consumer_data_pending(uint64_t id)
3477 {
3478 int ret;
3479 struct lttng_ht_iter iter;
3480 struct lttng_ht *ht;
3481 struct lttng_consumer_stream *stream;
3482 struct consumer_relayd_sock_pair *relayd = NULL;
3483 int (*data_pending)(struct lttng_consumer_stream *);
3484
3485 DBG("Consumer data pending command on session id %" PRIu64, id);
3486
3487 rcu_read_lock();
3488 pthread_mutex_lock(&consumer_data.lock);
3489
3490 switch (consumer_data.type) {
3491 case LTTNG_CONSUMER_KERNEL:
3492 data_pending = lttng_kconsumer_data_pending;
3493 break;
3494 case LTTNG_CONSUMER32_UST:
3495 case LTTNG_CONSUMER64_UST:
3496 data_pending = lttng_ustconsumer_data_pending;
3497 break;
3498 default:
3499 ERR("Unknown consumer data type");
3500 assert(0);
3501 }
3502
3503 /* Ease our life a bit */
3504 ht = consumer_data.stream_list_ht;
3505
3506 relayd = find_relayd_by_session_id(id);
3507 if (relayd) {
3508 /* Send init command for data pending. */
3509 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3510 ret = relayd_begin_data_pending(&relayd->control_sock,
3511 relayd->relayd_session_id);
3512 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3513 if (ret < 0) {
3514 /* Communication error thus the relayd so no data pending. */
3515 goto data_not_pending;
3516 }
3517 }
3518
3519 cds_lfht_for_each_entry_duplicate(ht->ht,
3520 ht->hash_fct(&id, lttng_ht_seed),
3521 ht->match_fct, &id,
3522 &iter.iter, stream, node_session_id.node) {
3523 /* If this call fails, the stream is being used hence data pending. */
3524 ret = stream_try_lock(stream);
3525 if (!ret) {
3526 goto data_pending;
3527 }
3528
3529 /*
3530 * A removed node from the hash table indicates that the stream has
3531 * been deleted thus having a guarantee that the buffers are closed
3532 * on the consumer side. However, data can still be transmitted
3533 * over the network so don't skip the relayd check.
3534 */
3535 ret = cds_lfht_is_node_deleted(&stream->node.node);
3536 if (!ret) {
3537 /*
3538 * An empty output file is not valid. We need at least one packet
3539 * generated per stream, even if it contains no event, so it
3540 * contains at least one packet header.
3541 */
3542 if (stream->output_written == 0) {
3543 pthread_mutex_unlock(&stream->lock);
3544 goto data_pending;
3545 }
3546 /* Check the stream if there is data in the buffers. */
3547 ret = data_pending(stream);
3548 if (ret == 1) {
3549 pthread_mutex_unlock(&stream->lock);
3550 goto data_pending;
3551 }
3552 }
3553
3554 /* Relayd check */
3555 if (relayd) {
3556 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3557 if (stream->metadata_flag) {
3558 ret = relayd_quiescent_control(&relayd->control_sock,
3559 stream->relayd_stream_id);
3560 } else {
3561 ret = relayd_data_pending(&relayd->control_sock,
3562 stream->relayd_stream_id,
3563 stream->next_net_seq_num - 1);
3564 }
3565 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3566 if (ret == 1) {
3567 pthread_mutex_unlock(&stream->lock);
3568 goto data_pending;
3569 }
3570 }
3571 pthread_mutex_unlock(&stream->lock);
3572 }
3573
3574 if (relayd) {
3575 unsigned int is_data_inflight = 0;
3576
3577 /* Send init command for data pending. */
3578 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3579 ret = relayd_end_data_pending(&relayd->control_sock,
3580 relayd->relayd_session_id, &is_data_inflight);
3581 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3582 if (ret < 0) {
3583 goto data_not_pending;
3584 }
3585 if (is_data_inflight) {
3586 goto data_pending;
3587 }
3588 }
3589
3590 /*
3591 * Finding _no_ node in the hash table and no inflight data means that the
3592 * stream(s) have been removed thus data is guaranteed to be available for
3593 * analysis from the trace files.
3594 */
3595
3596 data_not_pending:
3597 /* Data is available to be read by a viewer. */
3598 pthread_mutex_unlock(&consumer_data.lock);
3599 rcu_read_unlock();
3600 return 0;
3601
3602 data_pending:
3603 /* Data is still being extracted from buffers. */
3604 pthread_mutex_unlock(&consumer_data.lock);
3605 rcu_read_unlock();
3606 return 1;
3607 }
3608
3609 /*
3610 * Send a ret code status message to the sessiond daemon.
3611 *
3612 * Return the sendmsg() return value.
3613 */
3614 int consumer_send_status_msg(int sock, int ret_code)
3615 {
3616 struct lttcomm_consumer_status_msg msg;
3617
3618 msg.ret_code = ret_code;
3619
3620 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3621 }
3622
3623 /*
3624 * Send a channel status message to the sessiond daemon.
3625 *
3626 * Return the sendmsg() return value.
3627 */
3628 int consumer_send_status_channel(int sock,
3629 struct lttng_consumer_channel *channel)
3630 {
3631 struct lttcomm_consumer_status_channel msg;
3632
3633 assert(sock >= 0);
3634
3635 if (!channel) {
3636 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3637 } else {
3638 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3639 msg.key = channel->key;
3640 msg.stream_count = channel->streams.count;
3641 }
3642
3643 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3644 }
3645
3646 /*
3647 * Using a maximum stream size with the produced and consumed position of a
3648 * stream, computes the new consumed position to be as close as possible to the
3649 * maximum possible stream size.
3650 *
3651 * If maximum stream size is lower than the possible buffer size (produced -
3652 * consumed), the consumed_pos given is returned untouched else the new value
3653 * is returned.
3654 */
3655 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3656 unsigned long produced_pos, uint64_t max_stream_size)
3657 {
3658 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3659 /* Offset from the produced position to get the latest buffers. */
3660 return produced_pos - max_stream_size;
3661 }
3662
3663 return consumed_pos;
3664 }
This page took 0.156664 seconds and 3 git commands to generate.