Fix: Missing semicolon after debug statement
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer-timer.h>
46
47 #include "consumer.h"
48 #include "consumer-stream.h"
49 #include "consumer-testpoint.h"
50 #include "align.h"
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /*
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 * polling threads.
75 */
76 volatile int consumer_quit;
77
78 /*
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
82 */
83 static struct lttng_ht *metadata_ht;
84 static struct lttng_ht *data_ht;
85
86 /*
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
89 * call.
90 */
91 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
92 {
93 struct lttng_consumer_stream *null_stream = NULL;
94
95 assert(pipe);
96
97 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
98 }
99
100 static void notify_health_quit_pipe(int *pipe)
101 {
102 ssize_t ret;
103
104 ret = lttng_write(pipe[1], "4", 1);
105 if (ret < 1) {
106 PERROR("write consumer health quit");
107 }
108 }
109
110 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
111 struct lttng_consumer_channel *chan,
112 uint64_t key,
113 enum consumer_channel_action action)
114 {
115 struct consumer_channel_msg msg;
116 ssize_t ret;
117
118 memset(&msg, 0, sizeof(msg));
119
120 msg.action = action;
121 msg.chan = chan;
122 msg.key = key;
123 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 if (ret < sizeof(msg)) {
125 PERROR("notify_channel_pipe write error");
126 }
127 }
128
129 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
130 uint64_t key)
131 {
132 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
133 }
134
135 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
136 struct lttng_consumer_channel **chan,
137 uint64_t *key,
138 enum consumer_channel_action *action)
139 {
140 struct consumer_channel_msg msg;
141 ssize_t ret;
142
143 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
144 if (ret < sizeof(msg)) {
145 ret = -1;
146 goto error;
147 }
148 *action = msg.action;
149 *chan = msg.chan;
150 *key = msg.key;
151 error:
152 return (int) ret;
153 }
154
155 /*
156 * Cleanup the stream list of a channel. Those streams are not yet globally
157 * visible
158 */
159 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
160 {
161 struct lttng_consumer_stream *stream, *stmp;
162
163 assert(channel);
164
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
167 send_node) {
168 cds_list_del(&stream->send_node);
169 /*
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
173 * global hash table.
174 */
175 stream->monitor = 0;
176 consumer_stream_destroy(stream, NULL);
177 }
178 }
179
180 /*
181 * Find a stream. The consumer_data.lock must be locked during this
182 * call.
183 */
184 static struct lttng_consumer_stream *find_stream(uint64_t key,
185 struct lttng_ht *ht)
186 {
187 struct lttng_ht_iter iter;
188 struct lttng_ht_node_u64 *node;
189 struct lttng_consumer_stream *stream = NULL;
190
191 assert(ht);
192
193 /* -1ULL keys are lookup failures */
194 if (key == (uint64_t) -1ULL) {
195 return NULL;
196 }
197
198 rcu_read_lock();
199
200 lttng_ht_lookup(ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 stream = caa_container_of(node, struct lttng_consumer_stream, node);
204 }
205
206 rcu_read_unlock();
207
208 return stream;
209 }
210
211 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
212 {
213 struct lttng_consumer_stream *stream;
214
215 rcu_read_lock();
216 stream = find_stream(key, ht);
217 if (stream) {
218 stream->key = (uint64_t) -1ULL;
219 /*
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
223 */
224 stream->node.key = (uint64_t) -1ULL;
225 }
226 rcu_read_unlock();
227 }
228
229 /*
230 * Return a channel object for the given key.
231 *
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
234 */
235 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
236 {
237 struct lttng_ht_iter iter;
238 struct lttng_ht_node_u64 *node;
239 struct lttng_consumer_channel *channel = NULL;
240
241 /* -1ULL keys are lookup failures */
242 if (key == (uint64_t) -1ULL) {
243 return NULL;
244 }
245
246 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
247 node = lttng_ht_iter_get_node_u64(&iter);
248 if (node != NULL) {
249 channel = caa_container_of(node, struct lttng_consumer_channel, node);
250 }
251
252 return channel;
253 }
254
255 /*
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
260 *
261 * This function just nullifies the already existing channel key.
262 */
263 static void steal_channel_key(uint64_t key)
264 {
265 struct lttng_consumer_channel *channel;
266
267 rcu_read_lock();
268 channel = consumer_find_channel(key);
269 if (channel) {
270 channel->key = (uint64_t) -1ULL;
271 /*
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
274 * node key.
275 */
276 channel->node.key = (uint64_t) -1ULL;
277 }
278 rcu_read_unlock();
279 }
280
281 static void free_channel_rcu(struct rcu_head *head)
282 {
283 struct lttng_ht_node_u64 *node =
284 caa_container_of(head, struct lttng_ht_node_u64, head);
285 struct lttng_consumer_channel *channel =
286 caa_container_of(node, struct lttng_consumer_channel, node);
287
288 switch (consumer_data.type) {
289 case LTTNG_CONSUMER_KERNEL:
290 break;
291 case LTTNG_CONSUMER32_UST:
292 case LTTNG_CONSUMER64_UST:
293 lttng_ustconsumer_free_channel(channel);
294 break;
295 default:
296 ERR("Unknown consumer_data type");
297 abort();
298 }
299 free(channel);
300 }
301
302 /*
303 * RCU protected relayd socket pair free.
304 */
305 static void free_relayd_rcu(struct rcu_head *head)
306 {
307 struct lttng_ht_node_u64 *node =
308 caa_container_of(head, struct lttng_ht_node_u64, head);
309 struct consumer_relayd_sock_pair *relayd =
310 caa_container_of(node, struct consumer_relayd_sock_pair, node);
311
312 /*
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
315 * relayd object.
316 *
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
319 */
320 (void) relayd_close(&relayd->control_sock);
321 (void) relayd_close(&relayd->data_sock);
322
323 free(relayd);
324 }
325
326 /*
327 * Destroy and free relayd socket pair object.
328 */
329 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
330 {
331 int ret;
332 struct lttng_ht_iter iter;
333
334 if (relayd == NULL) {
335 return;
336 }
337
338 DBG("Consumer destroy and close relayd socket pair");
339
340 iter.iter.node = &relayd->node.node;
341 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
342 if (ret != 0) {
343 /* We assume the relayd is being or is destroyed */
344 return;
345 }
346
347 /* RCU free() call */
348 call_rcu(&relayd->node.head, free_relayd_rcu);
349 }
350
351 /*
352 * Remove a channel from the global list protected by a mutex. This function is
353 * also responsible for freeing its data structures.
354 */
355 void consumer_del_channel(struct lttng_consumer_channel *channel)
356 {
357 int ret;
358 struct lttng_ht_iter iter;
359
360 DBG("Consumer delete channel key %" PRIu64, channel->key);
361
362 pthread_mutex_lock(&consumer_data.lock);
363 pthread_mutex_lock(&channel->lock);
364
365 /* Destroy streams that might have been left in the stream list. */
366 clean_channel_stream_list(channel);
367
368 if (channel->live_timer_enabled == 1) {
369 consumer_timer_live_stop(channel);
370 }
371
372 switch (consumer_data.type) {
373 case LTTNG_CONSUMER_KERNEL:
374 break;
375 case LTTNG_CONSUMER32_UST:
376 case LTTNG_CONSUMER64_UST:
377 lttng_ustconsumer_del_channel(channel);
378 break;
379 default:
380 ERR("Unknown consumer_data type");
381 assert(0);
382 goto end;
383 }
384
385 rcu_read_lock();
386 iter.iter.node = &channel->node.node;
387 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
388 assert(!ret);
389 rcu_read_unlock();
390
391 call_rcu(&channel->node.head, free_channel_rcu);
392 end:
393 pthread_mutex_unlock(&channel->lock);
394 pthread_mutex_unlock(&consumer_data.lock);
395 }
396
397 /*
398 * Iterate over the relayd hash table and destroy each element. Finally,
399 * destroy the whole hash table.
400 */
401 static void cleanup_relayd_ht(void)
402 {
403 struct lttng_ht_iter iter;
404 struct consumer_relayd_sock_pair *relayd;
405
406 rcu_read_lock();
407
408 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
409 node.node) {
410 consumer_destroy_relayd(relayd);
411 }
412
413 rcu_read_unlock();
414
415 lttng_ht_destroy(consumer_data.relayd_ht);
416 }
417
418 /*
419 * Update the end point status of all streams having the given network sequence
420 * index (relayd index).
421 *
422 * It's atomically set without having the stream mutex locked which is fine
423 * because we handle the write/read race with a pipe wakeup for each thread.
424 */
425 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
426 enum consumer_endpoint_status status)
427 {
428 struct lttng_ht_iter iter;
429 struct lttng_consumer_stream *stream;
430
431 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
432
433 rcu_read_lock();
434
435 /* Let's begin with metadata */
436 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
437 if (stream->net_seq_idx == net_seq_idx) {
438 uatomic_set(&stream->endpoint_status, status);
439 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
440 }
441 }
442
443 /* Follow up by the data streams */
444 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
445 if (stream->net_seq_idx == net_seq_idx) {
446 uatomic_set(&stream->endpoint_status, status);
447 DBG("Delete flag set to data stream %d", stream->wait_fd);
448 }
449 }
450 rcu_read_unlock();
451 }
452
453 /*
454 * Cleanup a relayd object by flagging every associated streams for deletion,
455 * destroying the object meaning removing it from the relayd hash table,
456 * closing the sockets and freeing the memory in a RCU call.
457 *
458 * If a local data context is available, notify the threads that the streams'
459 * state have changed.
460 */
461 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
462 struct lttng_consumer_local_data *ctx)
463 {
464 uint64_t netidx;
465
466 assert(relayd);
467
468 DBG("Cleaning up relayd sockets");
469
470 /* Save the net sequence index before destroying the object */
471 netidx = relayd->net_seq_idx;
472
473 /*
474 * Delete the relayd from the relayd hash table, close the sockets and free
475 * the object in a RCU call.
476 */
477 consumer_destroy_relayd(relayd);
478
479 /* Set inactive endpoint to all streams */
480 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
481
482 /*
483 * With a local data context, notify the threads that the streams' state
484 * have changed. The write() action on the pipe acts as an "implicit"
485 * memory barrier ordering the updates of the end point status from the
486 * read of this status which happens AFTER receiving this notify.
487 */
488 if (ctx) {
489 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
490 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
491 }
492 }
493
494 /*
495 * Flag a relayd socket pair for destruction. Destroy it if the refcount
496 * reaches zero.
497 *
498 * RCU read side lock MUST be aquired before calling this function.
499 */
500 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
501 {
502 assert(relayd);
503
504 /* Set destroy flag for this object */
505 uatomic_set(&relayd->destroy_flag, 1);
506
507 /* Destroy the relayd if refcount is 0 */
508 if (uatomic_read(&relayd->refcount) == 0) {
509 consumer_destroy_relayd(relayd);
510 }
511 }
512
513 /*
514 * Completly destroy stream from every visiable data structure and the given
515 * hash table if one.
516 *
517 * One this call returns, the stream object is not longer usable nor visible.
518 */
519 void consumer_del_stream(struct lttng_consumer_stream *stream,
520 struct lttng_ht *ht)
521 {
522 consumer_stream_destroy(stream, ht);
523 }
524
525 /*
526 * XXX naming of del vs destroy is all mixed up.
527 */
528 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
529 {
530 consumer_stream_destroy(stream, data_ht);
531 }
532
533 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
534 {
535 consumer_stream_destroy(stream, metadata_ht);
536 }
537
538 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
539 uint64_t stream_key,
540 enum lttng_consumer_stream_state state,
541 const char *channel_name,
542 uid_t uid,
543 gid_t gid,
544 uint64_t relayd_id,
545 uint64_t session_id,
546 int cpu,
547 int *alloc_ret,
548 enum consumer_channel_type type,
549 unsigned int monitor)
550 {
551 int ret;
552 struct lttng_consumer_stream *stream;
553
554 stream = zmalloc(sizeof(*stream));
555 if (stream == NULL) {
556 PERROR("malloc struct lttng_consumer_stream");
557 ret = -ENOMEM;
558 goto end;
559 }
560
561 rcu_read_lock();
562
563 stream->key = stream_key;
564 stream->out_fd = -1;
565 stream->out_fd_offset = 0;
566 stream->output_written = 0;
567 stream->state = state;
568 stream->uid = uid;
569 stream->gid = gid;
570 stream->net_seq_idx = relayd_id;
571 stream->session_id = session_id;
572 stream->monitor = monitor;
573 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
574 stream->index_fd = -1;
575 pthread_mutex_init(&stream->lock, NULL);
576 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
577
578 /* If channel is the metadata, flag this stream as metadata. */
579 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
580 stream->metadata_flag = 1;
581 /* Metadata is flat out. */
582 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
583 /* Live rendez-vous point. */
584 pthread_cond_init(&stream->metadata_rdv, NULL);
585 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
586 } else {
587 /* Format stream name to <channel_name>_<cpu_number> */
588 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
589 channel_name, cpu);
590 if (ret < 0) {
591 PERROR("snprintf stream name");
592 goto error;
593 }
594 }
595
596 /* Key is always the wait_fd for streams. */
597 lttng_ht_node_init_u64(&stream->node, stream->key);
598
599 /* Init node per channel id key */
600 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
601
602 /* Init session id node with the stream session id */
603 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
604
605 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
606 " relayd_id %" PRIu64 ", session_id %" PRIu64,
607 stream->name, stream->key, channel_key,
608 stream->net_seq_idx, stream->session_id);
609
610 rcu_read_unlock();
611 return stream;
612
613 error:
614 rcu_read_unlock();
615 free(stream);
616 end:
617 if (alloc_ret) {
618 *alloc_ret = ret;
619 }
620 return NULL;
621 }
622
623 /*
624 * Add a stream to the global list protected by a mutex.
625 */
626 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
627 {
628 struct lttng_ht *ht = data_ht;
629 int ret = 0;
630
631 assert(stream);
632 assert(ht);
633
634 DBG3("Adding consumer stream %" PRIu64, stream->key);
635
636 pthread_mutex_lock(&consumer_data.lock);
637 pthread_mutex_lock(&stream->chan->lock);
638 pthread_mutex_lock(&stream->chan->timer_lock);
639 pthread_mutex_lock(&stream->lock);
640 rcu_read_lock();
641
642 /* Steal stream identifier to avoid having streams with the same key */
643 steal_stream_key(stream->key, ht);
644
645 lttng_ht_add_unique_u64(ht, &stream->node);
646
647 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
648 &stream->node_channel_id);
649
650 /*
651 * Add stream to the stream_list_ht of the consumer data. No need to steal
652 * the key since the HT does not use it and we allow to add redundant keys
653 * into this table.
654 */
655 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
656
657 /*
658 * When nb_init_stream_left reaches 0, we don't need to trigger any action
659 * in terms of destroying the associated channel, because the action that
660 * causes the count to become 0 also causes a stream to be added. The
661 * channel deletion will thus be triggered by the following removal of this
662 * stream.
663 */
664 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
665 /* Increment refcount before decrementing nb_init_stream_left */
666 cmm_smp_wmb();
667 uatomic_dec(&stream->chan->nb_init_stream_left);
668 }
669
670 /* Update consumer data once the node is inserted. */
671 consumer_data.stream_count++;
672 consumer_data.need_update = 1;
673
674 rcu_read_unlock();
675 pthread_mutex_unlock(&stream->lock);
676 pthread_mutex_unlock(&stream->chan->timer_lock);
677 pthread_mutex_unlock(&stream->chan->lock);
678 pthread_mutex_unlock(&consumer_data.lock);
679
680 return ret;
681 }
682
683 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
684 {
685 consumer_del_stream(stream, data_ht);
686 }
687
688 /*
689 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
690 * be acquired before calling this.
691 */
692 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
693 {
694 int ret = 0;
695 struct lttng_ht_node_u64 *node;
696 struct lttng_ht_iter iter;
697
698 assert(relayd);
699
700 lttng_ht_lookup(consumer_data.relayd_ht,
701 &relayd->net_seq_idx, &iter);
702 node = lttng_ht_iter_get_node_u64(&iter);
703 if (node != NULL) {
704 goto end;
705 }
706 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
707
708 end:
709 return ret;
710 }
711
712 /*
713 * Allocate and return a consumer relayd socket.
714 */
715 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
716 uint64_t net_seq_idx)
717 {
718 struct consumer_relayd_sock_pair *obj = NULL;
719
720 /* net sequence index of -1 is a failure */
721 if (net_seq_idx == (uint64_t) -1ULL) {
722 goto error;
723 }
724
725 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
726 if (obj == NULL) {
727 PERROR("zmalloc relayd sock");
728 goto error;
729 }
730
731 obj->net_seq_idx = net_seq_idx;
732 obj->refcount = 0;
733 obj->destroy_flag = 0;
734 obj->control_sock.sock.fd = -1;
735 obj->data_sock.sock.fd = -1;
736 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
737 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
738
739 error:
740 return obj;
741 }
742
743 /*
744 * Find a relayd socket pair in the global consumer data.
745 *
746 * Return the object if found else NULL.
747 * RCU read-side lock must be held across this call and while using the
748 * returned object.
749 */
750 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
751 {
752 struct lttng_ht_iter iter;
753 struct lttng_ht_node_u64 *node;
754 struct consumer_relayd_sock_pair *relayd = NULL;
755
756 /* Negative keys are lookup failures */
757 if (key == (uint64_t) -1ULL) {
758 goto error;
759 }
760
761 lttng_ht_lookup(consumer_data.relayd_ht, &key,
762 &iter);
763 node = lttng_ht_iter_get_node_u64(&iter);
764 if (node != NULL) {
765 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
766 }
767
768 error:
769 return relayd;
770 }
771
772 /*
773 * Find a relayd and send the stream
774 *
775 * Returns 0 on success, < 0 on error
776 */
777 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
778 char *path)
779 {
780 int ret = 0;
781 struct consumer_relayd_sock_pair *relayd;
782
783 assert(stream);
784 assert(stream->net_seq_idx != -1ULL);
785 assert(path);
786
787 /* The stream is not metadata. Get relayd reference if exists. */
788 rcu_read_lock();
789 relayd = consumer_find_relayd(stream->net_seq_idx);
790 if (relayd != NULL) {
791 /* Add stream on the relayd */
792 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
793 ret = relayd_add_stream(&relayd->control_sock, stream->name,
794 path, &stream->relayd_stream_id,
795 stream->chan->tracefile_size, stream->chan->tracefile_count);
796 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
797 if (ret < 0) {
798 goto end;
799 }
800
801 uatomic_inc(&relayd->refcount);
802 stream->sent_to_relayd = 1;
803 } else {
804 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
805 stream->key, stream->net_seq_idx);
806 ret = -1;
807 goto end;
808 }
809
810 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
811 stream->name, stream->key, stream->net_seq_idx);
812
813 end:
814 rcu_read_unlock();
815 return ret;
816 }
817
818 /*
819 * Find a relayd and send the streams sent message
820 *
821 * Returns 0 on success, < 0 on error
822 */
823 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
824 {
825 int ret = 0;
826 struct consumer_relayd_sock_pair *relayd;
827
828 assert(net_seq_idx != -1ULL);
829
830 /* The stream is not metadata. Get relayd reference if exists. */
831 rcu_read_lock();
832 relayd = consumer_find_relayd(net_seq_idx);
833 if (relayd != NULL) {
834 /* Add stream on the relayd */
835 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
836 ret = relayd_streams_sent(&relayd->control_sock);
837 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
838 if (ret < 0) {
839 goto end;
840 }
841 } else {
842 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
843 net_seq_idx);
844 ret = -1;
845 goto end;
846 }
847
848 ret = 0;
849 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
850
851 end:
852 rcu_read_unlock();
853 return ret;
854 }
855
856 /*
857 * Find a relayd and close the stream
858 */
859 void close_relayd_stream(struct lttng_consumer_stream *stream)
860 {
861 struct consumer_relayd_sock_pair *relayd;
862
863 /* The stream is not metadata. Get relayd reference if exists. */
864 rcu_read_lock();
865 relayd = consumer_find_relayd(stream->net_seq_idx);
866 if (relayd) {
867 consumer_stream_relayd_close(stream, relayd);
868 }
869 rcu_read_unlock();
870 }
871
872 /*
873 * Handle stream for relayd transmission if the stream applies for network
874 * streaming where the net sequence index is set.
875 *
876 * Return destination file descriptor or negative value on error.
877 */
878 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
879 size_t data_size, unsigned long padding,
880 struct consumer_relayd_sock_pair *relayd)
881 {
882 int outfd = -1, ret;
883 struct lttcomm_relayd_data_hdr data_hdr;
884
885 /* Safety net */
886 assert(stream);
887 assert(relayd);
888
889 /* Reset data header */
890 memset(&data_hdr, 0, sizeof(data_hdr));
891
892 if (stream->metadata_flag) {
893 /* Caller MUST acquire the relayd control socket lock */
894 ret = relayd_send_metadata(&relayd->control_sock, data_size);
895 if (ret < 0) {
896 goto error;
897 }
898
899 /* Metadata are always sent on the control socket. */
900 outfd = relayd->control_sock.sock.fd;
901 } else {
902 /* Set header with stream information */
903 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
904 data_hdr.data_size = htobe32(data_size);
905 data_hdr.padding_size = htobe32(padding);
906 /*
907 * Note that net_seq_num below is assigned with the *current* value of
908 * next_net_seq_num and only after that the next_net_seq_num will be
909 * increment. This is why when issuing a command on the relayd using
910 * this next value, 1 should always be substracted in order to compare
911 * the last seen sequence number on the relayd side to the last sent.
912 */
913 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
914 /* Other fields are zeroed previously */
915
916 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
917 sizeof(data_hdr));
918 if (ret < 0) {
919 goto error;
920 }
921
922 ++stream->next_net_seq_num;
923
924 /* Set to go on data socket */
925 outfd = relayd->data_sock.sock.fd;
926 }
927
928 error:
929 return outfd;
930 }
931
932 /*
933 * Allocate and return a new lttng_consumer_channel object using the given key
934 * to initialize the hash table node.
935 *
936 * On error, return NULL.
937 */
938 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
939 uint64_t session_id,
940 const char *pathname,
941 const char *name,
942 uid_t uid,
943 gid_t gid,
944 uint64_t relayd_id,
945 enum lttng_event_output output,
946 uint64_t tracefile_size,
947 uint64_t tracefile_count,
948 uint64_t session_id_per_pid,
949 unsigned int monitor,
950 unsigned int live_timer_interval)
951 {
952 struct lttng_consumer_channel *channel;
953
954 channel = zmalloc(sizeof(*channel));
955 if (channel == NULL) {
956 PERROR("malloc struct lttng_consumer_channel");
957 goto end;
958 }
959
960 channel->key = key;
961 channel->refcount = 0;
962 channel->session_id = session_id;
963 channel->session_id_per_pid = session_id_per_pid;
964 channel->uid = uid;
965 channel->gid = gid;
966 channel->relayd_id = relayd_id;
967 channel->tracefile_size = tracefile_size;
968 channel->tracefile_count = tracefile_count;
969 channel->monitor = monitor;
970 channel->live_timer_interval = live_timer_interval;
971 pthread_mutex_init(&channel->lock, NULL);
972 pthread_mutex_init(&channel->timer_lock, NULL);
973
974 switch (output) {
975 case LTTNG_EVENT_SPLICE:
976 channel->output = CONSUMER_CHANNEL_SPLICE;
977 break;
978 case LTTNG_EVENT_MMAP:
979 channel->output = CONSUMER_CHANNEL_MMAP;
980 break;
981 default:
982 assert(0);
983 free(channel);
984 channel = NULL;
985 goto end;
986 }
987
988 /*
989 * In monitor mode, the streams associated with the channel will be put in
990 * a special list ONLY owned by this channel. So, the refcount is set to 1
991 * here meaning that the channel itself has streams that are referenced.
992 *
993 * On a channel deletion, once the channel is no longer visible, the
994 * refcount is decremented and checked for a zero value to delete it. With
995 * streams in no monitor mode, it will now be safe to destroy the channel.
996 */
997 if (!channel->monitor) {
998 channel->refcount = 1;
999 }
1000
1001 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1002 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1003
1004 strncpy(channel->name, name, sizeof(channel->name));
1005 channel->name[sizeof(channel->name) - 1] = '\0';
1006
1007 lttng_ht_node_init_u64(&channel->node, channel->key);
1008
1009 channel->wait_fd = -1;
1010
1011 CDS_INIT_LIST_HEAD(&channel->streams.head);
1012
1013 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1014
1015 end:
1016 return channel;
1017 }
1018
1019 /*
1020 * Add a channel to the global list protected by a mutex.
1021 *
1022 * Always return 0 indicating success.
1023 */
1024 int consumer_add_channel(struct lttng_consumer_channel *channel,
1025 struct lttng_consumer_local_data *ctx)
1026 {
1027 pthread_mutex_lock(&consumer_data.lock);
1028 pthread_mutex_lock(&channel->lock);
1029 pthread_mutex_lock(&channel->timer_lock);
1030
1031 /*
1032 * This gives us a guarantee that the channel we are about to add to the
1033 * channel hash table will be unique. See this function comment on the why
1034 * we need to steel the channel key at this stage.
1035 */
1036 steal_channel_key(channel->key);
1037
1038 rcu_read_lock();
1039 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1040 rcu_read_unlock();
1041
1042 pthread_mutex_unlock(&channel->timer_lock);
1043 pthread_mutex_unlock(&channel->lock);
1044 pthread_mutex_unlock(&consumer_data.lock);
1045
1046 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1047 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1048 }
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * Allocate the pollfd structure and the local view of the out fds to avoid
1055 * doing a lookup in the linked list and concurrency issues when writing is
1056 * needed. Called with consumer_data.lock held.
1057 *
1058 * Returns the number of fds in the structures.
1059 */
1060 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1061 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1062 struct lttng_ht *ht)
1063 {
1064 int i = 0;
1065 struct lttng_ht_iter iter;
1066 struct lttng_consumer_stream *stream;
1067
1068 assert(ctx);
1069 assert(ht);
1070 assert(pollfd);
1071 assert(local_stream);
1072
1073 DBG("Updating poll fd array");
1074 rcu_read_lock();
1075 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1076 /*
1077 * Only active streams with an active end point can be added to the
1078 * poll set and local stream storage of the thread.
1079 *
1080 * There is a potential race here for endpoint_status to be updated
1081 * just after the check. However, this is OK since the stream(s) will
1082 * be deleted once the thread is notified that the end point state has
1083 * changed where this function will be called back again.
1084 */
1085 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1086 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1087 continue;
1088 }
1089 /*
1090 * This clobbers way too much the debug output. Uncomment that if you
1091 * need it for debugging purposes.
1092 *
1093 * DBG("Active FD %d", stream->wait_fd);
1094 */
1095 (*pollfd)[i].fd = stream->wait_fd;
1096 (*pollfd)[i].events = POLLIN | POLLPRI;
1097 local_stream[i] = stream;
1098 i++;
1099 }
1100 rcu_read_unlock();
1101
1102 /*
1103 * Insert the consumer_data_pipe at the end of the array and don't
1104 * increment i so nb_fd is the number of real FD.
1105 */
1106 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1107 (*pollfd)[i].events = POLLIN | POLLPRI;
1108
1109 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1110 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1111 return i;
1112 }
1113
1114 /*
1115 * Poll on the should_quit pipe and the command socket return -1 on
1116 * error, 1 if should exit, 0 if data is available on the command socket
1117 */
1118 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1119 {
1120 int num_rdy;
1121
1122 restart:
1123 num_rdy = poll(consumer_sockpoll, 2, -1);
1124 if (num_rdy == -1) {
1125 /*
1126 * Restart interrupted system call.
1127 */
1128 if (errno == EINTR) {
1129 goto restart;
1130 }
1131 PERROR("Poll error");
1132 return -1;
1133 }
1134 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1135 DBG("consumer_should_quit wake up");
1136 return 1;
1137 }
1138 return 0;
1139 }
1140
1141 /*
1142 * Set the error socket.
1143 */
1144 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1145 int sock)
1146 {
1147 ctx->consumer_error_socket = sock;
1148 }
1149
1150 /*
1151 * Set the command socket path.
1152 */
1153 void lttng_consumer_set_command_sock_path(
1154 struct lttng_consumer_local_data *ctx, char *sock)
1155 {
1156 ctx->consumer_command_sock_path = sock;
1157 }
1158
1159 /*
1160 * Send return code to the session daemon.
1161 * If the socket is not defined, we return 0, it is not a fatal error
1162 */
1163 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1164 {
1165 if (ctx->consumer_error_socket > 0) {
1166 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1167 sizeof(enum lttcomm_sessiond_command));
1168 }
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * Close all the tracefiles and stream fds and MUST be called when all
1175 * instances are destroyed i.e. when all threads were joined and are ended.
1176 */
1177 void lttng_consumer_cleanup(void)
1178 {
1179 struct lttng_ht_iter iter;
1180 struct lttng_consumer_channel *channel;
1181
1182 rcu_read_lock();
1183
1184 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1185 node.node) {
1186 consumer_del_channel(channel);
1187 }
1188
1189 rcu_read_unlock();
1190
1191 lttng_ht_destroy(consumer_data.channel_ht);
1192
1193 cleanup_relayd_ht();
1194
1195 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1196
1197 /*
1198 * This HT contains streams that are freed by either the metadata thread or
1199 * the data thread so we do *nothing* on the hash table and simply destroy
1200 * it.
1201 */
1202 lttng_ht_destroy(consumer_data.stream_list_ht);
1203 }
1204
1205 /*
1206 * Called from signal handler.
1207 */
1208 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1209 {
1210 ssize_t ret;
1211
1212 consumer_quit = 1;
1213 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1214 if (ret < 1) {
1215 PERROR("write consumer quit");
1216 }
1217
1218 DBG("Consumer flag that it should quit");
1219 }
1220
1221 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1222 off_t orig_offset)
1223 {
1224 int ret;
1225 int outfd = stream->out_fd;
1226
1227 /*
1228 * This does a blocking write-and-wait on any page that belongs to the
1229 * subbuffer prior to the one we just wrote.
1230 * Don't care about error values, as these are just hints and ways to
1231 * limit the amount of page cache used.
1232 */
1233 if (orig_offset < stream->max_sb_size) {
1234 return;
1235 }
1236 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1237 stream->max_sb_size,
1238 SYNC_FILE_RANGE_WAIT_BEFORE
1239 | SYNC_FILE_RANGE_WRITE
1240 | SYNC_FILE_RANGE_WAIT_AFTER);
1241 /*
1242 * Give hints to the kernel about how we access the file:
1243 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1244 * we write it.
1245 *
1246 * We need to call fadvise again after the file grows because the
1247 * kernel does not seem to apply fadvise to non-existing parts of the
1248 * file.
1249 *
1250 * Call fadvise _after_ having waited for the page writeback to
1251 * complete because the dirty page writeback semantic is not well
1252 * defined. So it can be expected to lead to lower throughput in
1253 * streaming.
1254 */
1255 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1256 stream->max_sb_size, POSIX_FADV_DONTNEED);
1257 if (ret && ret != -ENOSYS) {
1258 errno = ret;
1259 PERROR("posix_fadvise on fd %i", outfd);
1260 }
1261 }
1262
1263 /*
1264 * Initialise the necessary environnement :
1265 * - create a new context
1266 * - create the poll_pipe
1267 * - create the should_quit pipe (for signal handler)
1268 * - create the thread pipe (for splice)
1269 *
1270 * Takes a function pointer as argument, this function is called when data is
1271 * available on a buffer. This function is responsible to do the
1272 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1273 * buffer configuration and then kernctl_put_next_subbuf at the end.
1274 *
1275 * Returns a pointer to the new context or NULL on error.
1276 */
1277 struct lttng_consumer_local_data *lttng_consumer_create(
1278 enum lttng_consumer_type type,
1279 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1280 struct lttng_consumer_local_data *ctx),
1281 int (*recv_channel)(struct lttng_consumer_channel *channel),
1282 int (*recv_stream)(struct lttng_consumer_stream *stream),
1283 int (*update_stream)(uint64_t stream_key, uint32_t state))
1284 {
1285 int ret;
1286 struct lttng_consumer_local_data *ctx;
1287
1288 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1289 consumer_data.type == type);
1290 consumer_data.type = type;
1291
1292 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1293 if (ctx == NULL) {
1294 PERROR("allocating context");
1295 goto error;
1296 }
1297
1298 ctx->consumer_error_socket = -1;
1299 ctx->consumer_metadata_socket = -1;
1300 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1301 /* assign the callbacks */
1302 ctx->on_buffer_ready = buffer_ready;
1303 ctx->on_recv_channel = recv_channel;
1304 ctx->on_recv_stream = recv_stream;
1305 ctx->on_update_stream = update_stream;
1306
1307 ctx->consumer_data_pipe = lttng_pipe_open(0);
1308 if (!ctx->consumer_data_pipe) {
1309 goto error_poll_pipe;
1310 }
1311
1312 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1313 if (!ctx->consumer_wakeup_pipe) {
1314 goto error_wakeup_pipe;
1315 }
1316
1317 ret = pipe(ctx->consumer_should_quit);
1318 if (ret < 0) {
1319 PERROR("Error creating recv pipe");
1320 goto error_quit_pipe;
1321 }
1322
1323 ret = pipe(ctx->consumer_channel_pipe);
1324 if (ret < 0) {
1325 PERROR("Error creating channel pipe");
1326 goto error_channel_pipe;
1327 }
1328
1329 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1330 if (!ctx->consumer_metadata_pipe) {
1331 goto error_metadata_pipe;
1332 }
1333
1334 return ctx;
1335
1336 error_metadata_pipe:
1337 utils_close_pipe(ctx->consumer_channel_pipe);
1338 error_channel_pipe:
1339 utils_close_pipe(ctx->consumer_should_quit);
1340 error_quit_pipe:
1341 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1342 error_wakeup_pipe:
1343 lttng_pipe_destroy(ctx->consumer_data_pipe);
1344 error_poll_pipe:
1345 free(ctx);
1346 error:
1347 return NULL;
1348 }
1349
1350 /*
1351 * Iterate over all streams of the hashtable and free them properly.
1352 */
1353 static void destroy_data_stream_ht(struct lttng_ht *ht)
1354 {
1355 struct lttng_ht_iter iter;
1356 struct lttng_consumer_stream *stream;
1357
1358 if (ht == NULL) {
1359 return;
1360 }
1361
1362 rcu_read_lock();
1363 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1364 /*
1365 * Ignore return value since we are currently cleaning up so any error
1366 * can't be handled.
1367 */
1368 (void) consumer_del_stream(stream, ht);
1369 }
1370 rcu_read_unlock();
1371
1372 lttng_ht_destroy(ht);
1373 }
1374
1375 /*
1376 * Iterate over all streams of the metadata hashtable and free them
1377 * properly.
1378 */
1379 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1380 {
1381 struct lttng_ht_iter iter;
1382 struct lttng_consumer_stream *stream;
1383
1384 if (ht == NULL) {
1385 return;
1386 }
1387
1388 rcu_read_lock();
1389 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1390 /*
1391 * Ignore return value since we are currently cleaning up so any error
1392 * can't be handled.
1393 */
1394 (void) consumer_del_metadata_stream(stream, ht);
1395 }
1396 rcu_read_unlock();
1397
1398 lttng_ht_destroy(ht);
1399 }
1400
1401 /*
1402 * Close all fds associated with the instance and free the context.
1403 */
1404 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1405 {
1406 int ret;
1407
1408 DBG("Consumer destroying it. Closing everything.");
1409
1410 if (!ctx) {
1411 return;
1412 }
1413
1414 destroy_data_stream_ht(data_ht);
1415 destroy_metadata_stream_ht(metadata_ht);
1416
1417 ret = close(ctx->consumer_error_socket);
1418 if (ret) {
1419 PERROR("close");
1420 }
1421 ret = close(ctx->consumer_metadata_socket);
1422 if (ret) {
1423 PERROR("close");
1424 }
1425 utils_close_pipe(ctx->consumer_channel_pipe);
1426 lttng_pipe_destroy(ctx->consumer_data_pipe);
1427 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1428 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1429 utils_close_pipe(ctx->consumer_should_quit);
1430
1431 unlink(ctx->consumer_command_sock_path);
1432 free(ctx);
1433 }
1434
1435 /*
1436 * Write the metadata stream id on the specified file descriptor.
1437 */
1438 static int write_relayd_metadata_id(int fd,
1439 struct lttng_consumer_stream *stream,
1440 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1441 {
1442 ssize_t ret;
1443 struct lttcomm_relayd_metadata_payload hdr;
1444
1445 hdr.stream_id = htobe64(stream->relayd_stream_id);
1446 hdr.padding_size = htobe32(padding);
1447 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1448 if (ret < sizeof(hdr)) {
1449 /*
1450 * This error means that the fd's end is closed so ignore the perror
1451 * not to clubber the error output since this can happen in a normal
1452 * code path.
1453 */
1454 if (errno != EPIPE) {
1455 PERROR("write metadata stream id");
1456 }
1457 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1458 /*
1459 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1460 * handle writting the missing part so report that as an error and
1461 * don't lie to the caller.
1462 */
1463 ret = -1;
1464 goto end;
1465 }
1466 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1467 stream->relayd_stream_id, padding);
1468
1469 end:
1470 return (int) ret;
1471 }
1472
1473 /*
1474 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1475 * core function for writing trace buffers to either the local filesystem or
1476 * the network.
1477 *
1478 * It must be called with the stream lock held.
1479 *
1480 * Careful review MUST be put if any changes occur!
1481 *
1482 * Returns the number of bytes written
1483 */
1484 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1485 struct lttng_consumer_local_data *ctx,
1486 struct lttng_consumer_stream *stream, unsigned long len,
1487 unsigned long padding,
1488 struct ctf_packet_index *index)
1489 {
1490 unsigned long mmap_offset;
1491 void *mmap_base;
1492 ssize_t ret = 0;
1493 off_t orig_offset = stream->out_fd_offset;
1494 /* Default is on the disk */
1495 int outfd = stream->out_fd;
1496 struct consumer_relayd_sock_pair *relayd = NULL;
1497 unsigned int relayd_hang_up = 0;
1498
1499 /* RCU lock for the relayd pointer */
1500 rcu_read_lock();
1501
1502 /* Flag that the current stream if set for network streaming. */
1503 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1504 relayd = consumer_find_relayd(stream->net_seq_idx);
1505 if (relayd == NULL) {
1506 ret = -EPIPE;
1507 goto end;
1508 }
1509 }
1510
1511 /* get the offset inside the fd to mmap */
1512 switch (consumer_data.type) {
1513 case LTTNG_CONSUMER_KERNEL:
1514 mmap_base = stream->mmap_base;
1515 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1516 if (ret < 0) {
1517 ret = -errno;
1518 PERROR("tracer ctl get_mmap_read_offset");
1519 goto end;
1520 }
1521 break;
1522 case LTTNG_CONSUMER32_UST:
1523 case LTTNG_CONSUMER64_UST:
1524 mmap_base = lttng_ustctl_get_mmap_base(stream);
1525 if (!mmap_base) {
1526 ERR("read mmap get mmap base for stream %s", stream->name);
1527 ret = -EPERM;
1528 goto end;
1529 }
1530 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1531 if (ret != 0) {
1532 PERROR("tracer ctl get_mmap_read_offset");
1533 ret = -EINVAL;
1534 goto end;
1535 }
1536 break;
1537 default:
1538 ERR("Unknown consumer_data type");
1539 assert(0);
1540 }
1541
1542 /* Handle stream on the relayd if the output is on the network */
1543 if (relayd) {
1544 unsigned long netlen = len;
1545
1546 /*
1547 * Lock the control socket for the complete duration of the function
1548 * since from this point on we will use the socket.
1549 */
1550 if (stream->metadata_flag) {
1551 /* Metadata requires the control socket. */
1552 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1553 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1554 }
1555
1556 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1557 if (ret < 0) {
1558 relayd_hang_up = 1;
1559 goto write_error;
1560 }
1561 /* Use the returned socket. */
1562 outfd = ret;
1563
1564 /* Write metadata stream id before payload */
1565 if (stream->metadata_flag) {
1566 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1567 if (ret < 0) {
1568 relayd_hang_up = 1;
1569 goto write_error;
1570 }
1571 }
1572 } else {
1573 /* No streaming, we have to set the len with the full padding */
1574 len += padding;
1575
1576 /*
1577 * Check if we need to change the tracefile before writing the packet.
1578 */
1579 if (stream->chan->tracefile_size > 0 &&
1580 (stream->tracefile_size_current + len) >
1581 stream->chan->tracefile_size) {
1582 ret = utils_rotate_stream_file(stream->chan->pathname,
1583 stream->name, stream->chan->tracefile_size,
1584 stream->chan->tracefile_count, stream->uid, stream->gid,
1585 stream->out_fd, &(stream->tracefile_count_current),
1586 &stream->out_fd);
1587 if (ret < 0) {
1588 ERR("Rotating output file");
1589 goto end;
1590 }
1591 outfd = stream->out_fd;
1592
1593 if (stream->index_fd >= 0) {
1594 ret = close(stream->index_fd);
1595 if (ret < 0) {
1596 PERROR("Closing index");
1597 goto end;
1598 }
1599 stream->index_fd = -1;
1600 ret = index_create_file(stream->chan->pathname,
1601 stream->name, stream->uid, stream->gid,
1602 stream->chan->tracefile_size,
1603 stream->tracefile_count_current);
1604 if (ret < 0) {
1605 goto end;
1606 }
1607 stream->index_fd = ret;
1608 }
1609
1610 /* Reset current size because we just perform a rotation. */
1611 stream->tracefile_size_current = 0;
1612 stream->out_fd_offset = 0;
1613 orig_offset = 0;
1614 }
1615 stream->tracefile_size_current += len;
1616 if (index) {
1617 index->offset = htobe64(stream->out_fd_offset);
1618 }
1619 }
1620
1621 /*
1622 * This call guarantee that len or less is returned. It's impossible to
1623 * receive a ret value that is bigger than len.
1624 */
1625 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1626 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1627 if (ret < 0 || ((size_t) ret != len)) {
1628 /*
1629 * Report error to caller if nothing was written else at least send the
1630 * amount written.
1631 */
1632 if (ret < 0) {
1633 ret = -errno;
1634 }
1635 relayd_hang_up = 1;
1636
1637 /* Socket operation failed. We consider the relayd dead */
1638 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1639 /*
1640 * This is possible if the fd is closed on the other side
1641 * (outfd) or any write problem. It can be verbose a bit for a
1642 * normal execution if for instance the relayd is stopped
1643 * abruptly. This can happen so set this to a DBG statement.
1644 */
1645 DBG("Consumer mmap write detected relayd hang up");
1646 } else {
1647 /* Unhandled error, print it and stop function right now. */
1648 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1649 }
1650 goto write_error;
1651 }
1652 stream->output_written += ret;
1653
1654 /* This call is useless on a socket so better save a syscall. */
1655 if (!relayd) {
1656 /* This won't block, but will start writeout asynchronously */
1657 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1658 SYNC_FILE_RANGE_WRITE);
1659 stream->out_fd_offset += len;
1660 lttng_consumer_sync_trace_file(stream, orig_offset);
1661 }
1662
1663 write_error:
1664 /*
1665 * This is a special case that the relayd has closed its socket. Let's
1666 * cleanup the relayd object and all associated streams.
1667 */
1668 if (relayd && relayd_hang_up) {
1669 cleanup_relayd(relayd, ctx);
1670 }
1671
1672 end:
1673 /* Unlock only if ctrl socket used */
1674 if (relayd && stream->metadata_flag) {
1675 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1676 }
1677
1678 rcu_read_unlock();
1679 return ret;
1680 }
1681
1682 /*
1683 * Splice the data from the ring buffer to the tracefile.
1684 *
1685 * It must be called with the stream lock held.
1686 *
1687 * Returns the number of bytes spliced.
1688 */
1689 ssize_t lttng_consumer_on_read_subbuffer_splice(
1690 struct lttng_consumer_local_data *ctx,
1691 struct lttng_consumer_stream *stream, unsigned long len,
1692 unsigned long padding,
1693 struct ctf_packet_index *index)
1694 {
1695 ssize_t ret = 0, written = 0, ret_splice = 0;
1696 loff_t offset = 0;
1697 off_t orig_offset = stream->out_fd_offset;
1698 int fd = stream->wait_fd;
1699 /* Default is on the disk */
1700 int outfd = stream->out_fd;
1701 struct consumer_relayd_sock_pair *relayd = NULL;
1702 int *splice_pipe;
1703 unsigned int relayd_hang_up = 0;
1704
1705 switch (consumer_data.type) {
1706 case LTTNG_CONSUMER_KERNEL:
1707 break;
1708 case LTTNG_CONSUMER32_UST:
1709 case LTTNG_CONSUMER64_UST:
1710 /* Not supported for user space tracing */
1711 return -ENOSYS;
1712 default:
1713 ERR("Unknown consumer_data type");
1714 assert(0);
1715 }
1716
1717 /* RCU lock for the relayd pointer */
1718 rcu_read_lock();
1719
1720 /* Flag that the current stream if set for network streaming. */
1721 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1722 relayd = consumer_find_relayd(stream->net_seq_idx);
1723 if (relayd == NULL) {
1724 written = -ret;
1725 goto end;
1726 }
1727 }
1728 splice_pipe = stream->splice_pipe;
1729
1730 /* Write metadata stream id before payload */
1731 if (relayd) {
1732 unsigned long total_len = len;
1733
1734 if (stream->metadata_flag) {
1735 /*
1736 * Lock the control socket for the complete duration of the function
1737 * since from this point on we will use the socket.
1738 */
1739 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1740
1741 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1742 padding);
1743 if (ret < 0) {
1744 written = ret;
1745 relayd_hang_up = 1;
1746 goto write_error;
1747 }
1748
1749 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1750 }
1751
1752 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1753 if (ret < 0) {
1754 written = ret;
1755 relayd_hang_up = 1;
1756 goto write_error;
1757 }
1758 /* Use the returned socket. */
1759 outfd = ret;
1760 } else {
1761 /* No streaming, we have to set the len with the full padding */
1762 len += padding;
1763
1764 /*
1765 * Check if we need to change the tracefile before writing the packet.
1766 */
1767 if (stream->chan->tracefile_size > 0 &&
1768 (stream->tracefile_size_current + len) >
1769 stream->chan->tracefile_size) {
1770 ret = utils_rotate_stream_file(stream->chan->pathname,
1771 stream->name, stream->chan->tracefile_size,
1772 stream->chan->tracefile_count, stream->uid, stream->gid,
1773 stream->out_fd, &(stream->tracefile_count_current),
1774 &stream->out_fd);
1775 if (ret < 0) {
1776 written = ret;
1777 ERR("Rotating output file");
1778 goto end;
1779 }
1780 outfd = stream->out_fd;
1781
1782 if (stream->index_fd >= 0) {
1783 ret = close(stream->index_fd);
1784 if (ret < 0) {
1785 PERROR("Closing index");
1786 goto end;
1787 }
1788 stream->index_fd = -1;
1789 ret = index_create_file(stream->chan->pathname,
1790 stream->name, stream->uid, stream->gid,
1791 stream->chan->tracefile_size,
1792 stream->tracefile_count_current);
1793 if (ret < 0) {
1794 written = ret;
1795 goto end;
1796 }
1797 stream->index_fd = ret;
1798 }
1799
1800 /* Reset current size because we just perform a rotation. */
1801 stream->tracefile_size_current = 0;
1802 stream->out_fd_offset = 0;
1803 orig_offset = 0;
1804 }
1805 stream->tracefile_size_current += len;
1806 index->offset = htobe64(stream->out_fd_offset);
1807 }
1808
1809 while (len > 0) {
1810 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1811 (unsigned long)offset, len, fd, splice_pipe[1]);
1812 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1813 SPLICE_F_MOVE | SPLICE_F_MORE);
1814 DBG("splice chan to pipe, ret %zd", ret_splice);
1815 if (ret_splice < 0) {
1816 ret = errno;
1817 written = -ret;
1818 PERROR("Error in relay splice");
1819 goto splice_error;
1820 }
1821
1822 /* Handle stream on the relayd if the output is on the network */
1823 if (relayd && stream->metadata_flag) {
1824 size_t metadata_payload_size =
1825 sizeof(struct lttcomm_relayd_metadata_payload);
1826
1827 /* Update counter to fit the spliced data */
1828 ret_splice += metadata_payload_size;
1829 len += metadata_payload_size;
1830 /*
1831 * We do this so the return value can match the len passed as
1832 * argument to this function.
1833 */
1834 written -= metadata_payload_size;
1835 }
1836
1837 /* Splice data out */
1838 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1839 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1840 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1841 outfd, ret_splice);
1842 if (ret_splice < 0) {
1843 ret = errno;
1844 written = -ret;
1845 relayd_hang_up = 1;
1846 goto write_error;
1847 } else if (ret_splice > len) {
1848 /*
1849 * We don't expect this code path to be executed but you never know
1850 * so this is an extra protection agains a buggy splice().
1851 */
1852 ret = errno;
1853 written += ret_splice;
1854 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1855 len);
1856 goto splice_error;
1857 } else {
1858 /* All good, update current len and continue. */
1859 len -= ret_splice;
1860 }
1861
1862 /* This call is useless on a socket so better save a syscall. */
1863 if (!relayd) {
1864 /* This won't block, but will start writeout asynchronously */
1865 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1866 SYNC_FILE_RANGE_WRITE);
1867 stream->out_fd_offset += ret_splice;
1868 }
1869 stream->output_written += ret_splice;
1870 written += ret_splice;
1871 }
1872 if (!relayd) {
1873 lttng_consumer_sync_trace_file(stream, orig_offset);
1874 }
1875 goto end;
1876
1877 write_error:
1878 /*
1879 * This is a special case that the relayd has closed its socket. Let's
1880 * cleanup the relayd object and all associated streams.
1881 */
1882 if (relayd && relayd_hang_up) {
1883 cleanup_relayd(relayd, ctx);
1884 /* Skip splice error so the consumer does not fail */
1885 goto end;
1886 }
1887
1888 splice_error:
1889 /* send the appropriate error description to sessiond */
1890 switch (ret) {
1891 case EINVAL:
1892 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1893 break;
1894 case ENOMEM:
1895 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1896 break;
1897 case ESPIPE:
1898 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1899 break;
1900 }
1901
1902 end:
1903 if (relayd && stream->metadata_flag) {
1904 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1905 }
1906
1907 rcu_read_unlock();
1908 return written;
1909 }
1910
1911 /*
1912 * Take a snapshot for a specific fd
1913 *
1914 * Returns 0 on success, < 0 on error
1915 */
1916 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1917 {
1918 switch (consumer_data.type) {
1919 case LTTNG_CONSUMER_KERNEL:
1920 return lttng_kconsumer_take_snapshot(stream);
1921 case LTTNG_CONSUMER32_UST:
1922 case LTTNG_CONSUMER64_UST:
1923 return lttng_ustconsumer_take_snapshot(stream);
1924 default:
1925 ERR("Unknown consumer_data type");
1926 assert(0);
1927 return -ENOSYS;
1928 }
1929 }
1930
1931 /*
1932 * Get the produced position
1933 *
1934 * Returns 0 on success, < 0 on error
1935 */
1936 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1937 unsigned long *pos)
1938 {
1939 switch (consumer_data.type) {
1940 case LTTNG_CONSUMER_KERNEL:
1941 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1942 case LTTNG_CONSUMER32_UST:
1943 case LTTNG_CONSUMER64_UST:
1944 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1945 default:
1946 ERR("Unknown consumer_data type");
1947 assert(0);
1948 return -ENOSYS;
1949 }
1950 }
1951
1952 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1953 int sock, struct pollfd *consumer_sockpoll)
1954 {
1955 switch (consumer_data.type) {
1956 case LTTNG_CONSUMER_KERNEL:
1957 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1958 case LTTNG_CONSUMER32_UST:
1959 case LTTNG_CONSUMER64_UST:
1960 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1961 default:
1962 ERR("Unknown consumer_data type");
1963 assert(0);
1964 return -ENOSYS;
1965 }
1966 }
1967
1968 void lttng_consumer_close_all_metadata(void)
1969 {
1970 switch (consumer_data.type) {
1971 case LTTNG_CONSUMER_KERNEL:
1972 /*
1973 * The Kernel consumer has a different metadata scheme so we don't
1974 * close anything because the stream will be closed by the session
1975 * daemon.
1976 */
1977 break;
1978 case LTTNG_CONSUMER32_UST:
1979 case LTTNG_CONSUMER64_UST:
1980 /*
1981 * Close all metadata streams. The metadata hash table is passed and
1982 * this call iterates over it by closing all wakeup fd. This is safe
1983 * because at this point we are sure that the metadata producer is
1984 * either dead or blocked.
1985 */
1986 lttng_ustconsumer_close_all_metadata(metadata_ht);
1987 break;
1988 default:
1989 ERR("Unknown consumer_data type");
1990 assert(0);
1991 }
1992 }
1993
1994 /*
1995 * Clean up a metadata stream and free its memory.
1996 */
1997 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1998 struct lttng_ht *ht)
1999 {
2000 struct lttng_consumer_channel *free_chan = NULL;
2001
2002 assert(stream);
2003 /*
2004 * This call should NEVER receive regular stream. It must always be
2005 * metadata stream and this is crucial for data structure synchronization.
2006 */
2007 assert(stream->metadata_flag);
2008
2009 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2010
2011 pthread_mutex_lock(&consumer_data.lock);
2012 pthread_mutex_lock(&stream->chan->lock);
2013 pthread_mutex_lock(&stream->lock);
2014
2015 /* Remove any reference to that stream. */
2016 consumer_stream_delete(stream, ht);
2017
2018 /* Close down everything including the relayd if one. */
2019 consumer_stream_close(stream);
2020 /* Destroy tracer buffers of the stream. */
2021 consumer_stream_destroy_buffers(stream);
2022
2023 /* Atomically decrement channel refcount since other threads can use it. */
2024 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2025 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2026 /* Go for channel deletion! */
2027 free_chan = stream->chan;
2028 }
2029
2030 /*
2031 * Nullify the stream reference so it is not used after deletion. The
2032 * channel lock MUST be acquired before being able to check for a NULL
2033 * pointer value.
2034 */
2035 stream->chan->metadata_stream = NULL;
2036
2037 pthread_mutex_unlock(&stream->lock);
2038 pthread_mutex_unlock(&stream->chan->lock);
2039 pthread_mutex_unlock(&consumer_data.lock);
2040
2041 if (free_chan) {
2042 consumer_del_channel(free_chan);
2043 }
2044
2045 consumer_stream_free(stream);
2046 }
2047
2048 /*
2049 * Action done with the metadata stream when adding it to the consumer internal
2050 * data structures to handle it.
2051 */
2052 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2053 {
2054 struct lttng_ht *ht = metadata_ht;
2055 int ret = 0;
2056 struct lttng_ht_iter iter;
2057 struct lttng_ht_node_u64 *node;
2058
2059 assert(stream);
2060 assert(ht);
2061
2062 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2063
2064 pthread_mutex_lock(&consumer_data.lock);
2065 pthread_mutex_lock(&stream->chan->lock);
2066 pthread_mutex_lock(&stream->chan->timer_lock);
2067 pthread_mutex_lock(&stream->lock);
2068
2069 /*
2070 * From here, refcounts are updated so be _careful_ when returning an error
2071 * after this point.
2072 */
2073
2074 rcu_read_lock();
2075
2076 /*
2077 * Lookup the stream just to make sure it does not exist in our internal
2078 * state. This should NEVER happen.
2079 */
2080 lttng_ht_lookup(ht, &stream->key, &iter);
2081 node = lttng_ht_iter_get_node_u64(&iter);
2082 assert(!node);
2083
2084 /*
2085 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2086 * in terms of destroying the associated channel, because the action that
2087 * causes the count to become 0 also causes a stream to be added. The
2088 * channel deletion will thus be triggered by the following removal of this
2089 * stream.
2090 */
2091 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2092 /* Increment refcount before decrementing nb_init_stream_left */
2093 cmm_smp_wmb();
2094 uatomic_dec(&stream->chan->nb_init_stream_left);
2095 }
2096
2097 lttng_ht_add_unique_u64(ht, &stream->node);
2098
2099 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2100 &stream->node_channel_id);
2101
2102 /*
2103 * Add stream to the stream_list_ht of the consumer data. No need to steal
2104 * the key since the HT does not use it and we allow to add redundant keys
2105 * into this table.
2106 */
2107 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2108
2109 rcu_read_unlock();
2110
2111 pthread_mutex_unlock(&stream->lock);
2112 pthread_mutex_unlock(&stream->chan->lock);
2113 pthread_mutex_unlock(&stream->chan->timer_lock);
2114 pthread_mutex_unlock(&consumer_data.lock);
2115 return ret;
2116 }
2117
2118 /*
2119 * Delete data stream that are flagged for deletion (endpoint_status).
2120 */
2121 static void validate_endpoint_status_data_stream(void)
2122 {
2123 struct lttng_ht_iter iter;
2124 struct lttng_consumer_stream *stream;
2125
2126 DBG("Consumer delete flagged data stream");
2127
2128 rcu_read_lock();
2129 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2130 /* Validate delete flag of the stream */
2131 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2132 continue;
2133 }
2134 /* Delete it right now */
2135 consumer_del_stream(stream, data_ht);
2136 }
2137 rcu_read_unlock();
2138 }
2139
2140 /*
2141 * Delete metadata stream that are flagged for deletion (endpoint_status).
2142 */
2143 static void validate_endpoint_status_metadata_stream(
2144 struct lttng_poll_event *pollset)
2145 {
2146 struct lttng_ht_iter iter;
2147 struct lttng_consumer_stream *stream;
2148
2149 DBG("Consumer delete flagged metadata stream");
2150
2151 assert(pollset);
2152
2153 rcu_read_lock();
2154 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2155 /* Validate delete flag of the stream */
2156 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2157 continue;
2158 }
2159 /*
2160 * Remove from pollset so the metadata thread can continue without
2161 * blocking on a deleted stream.
2162 */
2163 lttng_poll_del(pollset, stream->wait_fd);
2164
2165 /* Delete it right now */
2166 consumer_del_metadata_stream(stream, metadata_ht);
2167 }
2168 rcu_read_unlock();
2169 }
2170
2171 /*
2172 * Thread polls on metadata file descriptor and write them on disk or on the
2173 * network.
2174 */
2175 void *consumer_thread_metadata_poll(void *data)
2176 {
2177 int ret, i, pollfd, err = -1;
2178 uint32_t revents, nb_fd;
2179 struct lttng_consumer_stream *stream = NULL;
2180 struct lttng_ht_iter iter;
2181 struct lttng_ht_node_u64 *node;
2182 struct lttng_poll_event events;
2183 struct lttng_consumer_local_data *ctx = data;
2184 ssize_t len;
2185
2186 rcu_register_thread();
2187
2188 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2189
2190 if (testpoint(consumerd_thread_metadata)) {
2191 goto error_testpoint;
2192 }
2193
2194 health_code_update();
2195
2196 DBG("Thread metadata poll started");
2197
2198 /* Size is set to 1 for the consumer_metadata pipe */
2199 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2200 if (ret < 0) {
2201 ERR("Poll set creation failed");
2202 goto end_poll;
2203 }
2204
2205 ret = lttng_poll_add(&events,
2206 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2207 if (ret < 0) {
2208 goto end;
2209 }
2210
2211 /* Main loop */
2212 DBG("Metadata main loop started");
2213
2214 while (1) {
2215 restart:
2216 health_code_update();
2217 health_poll_entry();
2218 DBG("Metadata poll wait");
2219 ret = lttng_poll_wait(&events, -1);
2220 DBG("Metadata poll return from wait with %d fd(s)",
2221 LTTNG_POLL_GETNB(&events));
2222 health_poll_exit();
2223 DBG("Metadata event caught in thread");
2224 if (ret < 0) {
2225 if (errno == EINTR) {
2226 ERR("Poll EINTR caught");
2227 goto restart;
2228 }
2229 if (LTTNG_POLL_GETNB(&events) == 0) {
2230 err = 0; /* All is OK */
2231 }
2232 goto end;
2233 }
2234
2235 nb_fd = ret;
2236
2237 /* From here, the event is a metadata wait fd */
2238 for (i = 0; i < nb_fd; i++) {
2239 health_code_update();
2240
2241 revents = LTTNG_POLL_GETEV(&events, i);
2242 pollfd = LTTNG_POLL_GETFD(&events, i);
2243
2244 if (!revents) {
2245 /* No activity for this FD (poll implementation). */
2246 continue;
2247 }
2248
2249 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2250 if (revents & LPOLLIN) {
2251 ssize_t pipe_len;
2252
2253 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2254 &stream, sizeof(stream));
2255 if (pipe_len < sizeof(stream)) {
2256 if (pipe_len < 0) {
2257 PERROR("read metadata stream");
2258 }
2259 /*
2260 * Remove the pipe from the poll set and continue the loop
2261 * since their might be data to consume.
2262 */
2263 lttng_poll_del(&events,
2264 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2265 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2266 continue;
2267 }
2268
2269 /* A NULL stream means that the state has changed. */
2270 if (stream == NULL) {
2271 /* Check for deleted streams. */
2272 validate_endpoint_status_metadata_stream(&events);
2273 goto restart;
2274 }
2275
2276 DBG("Adding metadata stream %d to poll set",
2277 stream->wait_fd);
2278
2279 /* Add metadata stream to the global poll events list */
2280 lttng_poll_add(&events, stream->wait_fd,
2281 LPOLLIN | LPOLLPRI | LPOLLHUP);
2282 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2283 DBG("Metadata thread pipe hung up");
2284 /*
2285 * Remove the pipe from the poll set and continue the loop
2286 * since their might be data to consume.
2287 */
2288 lttng_poll_del(&events,
2289 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2290 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2291 continue;
2292 } else {
2293 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2294 goto end;
2295 }
2296
2297 /* Handle other stream */
2298 continue;
2299 }
2300
2301 rcu_read_lock();
2302 {
2303 uint64_t tmp_id = (uint64_t) pollfd;
2304
2305 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2306 }
2307 node = lttng_ht_iter_get_node_u64(&iter);
2308 assert(node);
2309
2310 stream = caa_container_of(node, struct lttng_consumer_stream,
2311 node);
2312
2313 if (revents & (LPOLLIN | LPOLLPRI)) {
2314 /* Get the data out of the metadata file descriptor */
2315 DBG("Metadata available on fd %d", pollfd);
2316 assert(stream->wait_fd == pollfd);
2317
2318 do {
2319 health_code_update();
2320
2321 len = ctx->on_buffer_ready(stream, ctx);
2322 /*
2323 * We don't check the return value here since if we get
2324 * a negative len, it means an error occured thus we
2325 * simply remove it from the poll set and free the
2326 * stream.
2327 */
2328 } while (len > 0);
2329
2330 /* It's ok to have an unavailable sub-buffer */
2331 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2332 /* Clean up stream from consumer and free it. */
2333 lttng_poll_del(&events, stream->wait_fd);
2334 consumer_del_metadata_stream(stream, metadata_ht);
2335 }
2336 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2337 DBG("Metadata fd %d is hup|err.", pollfd);
2338 if (!stream->hangup_flush_done
2339 && (consumer_data.type == LTTNG_CONSUMER32_UST
2340 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2341 DBG("Attempting to flush and consume the UST buffers");
2342 lttng_ustconsumer_on_stream_hangup(stream);
2343
2344 /* We just flushed the stream now read it. */
2345 do {
2346 health_code_update();
2347
2348 len = ctx->on_buffer_ready(stream, ctx);
2349 /*
2350 * We don't check the return value here since if we get
2351 * a negative len, it means an error occured thus we
2352 * simply remove it from the poll set and free the
2353 * stream.
2354 */
2355 } while (len > 0);
2356 }
2357
2358 lttng_poll_del(&events, stream->wait_fd);
2359 /*
2360 * This call update the channel states, closes file descriptors
2361 * and securely free the stream.
2362 */
2363 consumer_del_metadata_stream(stream, metadata_ht);
2364 } else {
2365 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2366 rcu_read_unlock();
2367 goto end;
2368 }
2369 /* Release RCU lock for the stream looked up */
2370 rcu_read_unlock();
2371 }
2372 }
2373
2374 /* All is OK */
2375 err = 0;
2376 end:
2377 DBG("Metadata poll thread exiting");
2378
2379 lttng_poll_clean(&events);
2380 end_poll:
2381 error_testpoint:
2382 if (err) {
2383 health_error();
2384 ERR("Health error occurred in %s", __func__);
2385 }
2386 health_unregister(health_consumerd);
2387 rcu_unregister_thread();
2388 return NULL;
2389 }
2390
2391 /*
2392 * This thread polls the fds in the set to consume the data and write
2393 * it to tracefile if necessary.
2394 */
2395 void *consumer_thread_data_poll(void *data)
2396 {
2397 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2398 struct pollfd *pollfd = NULL;
2399 /* local view of the streams */
2400 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2401 /* local view of consumer_data.fds_count */
2402 int nb_fd = 0;
2403 struct lttng_consumer_local_data *ctx = data;
2404 ssize_t len;
2405
2406 rcu_register_thread();
2407
2408 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2409
2410 if (testpoint(consumerd_thread_data)) {
2411 goto error_testpoint;
2412 }
2413
2414 health_code_update();
2415
2416 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2417 if (local_stream == NULL) {
2418 PERROR("local_stream malloc");
2419 goto end;
2420 }
2421
2422 while (1) {
2423 health_code_update();
2424
2425 high_prio = 0;
2426 num_hup = 0;
2427
2428 /*
2429 * the fds set has been updated, we need to update our
2430 * local array as well
2431 */
2432 pthread_mutex_lock(&consumer_data.lock);
2433 if (consumer_data.need_update) {
2434 free(pollfd);
2435 pollfd = NULL;
2436
2437 free(local_stream);
2438 local_stream = NULL;
2439
2440 /*
2441 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2442 * wake up pipe.
2443 */
2444 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2445 if (pollfd == NULL) {
2446 PERROR("pollfd malloc");
2447 pthread_mutex_unlock(&consumer_data.lock);
2448 goto end;
2449 }
2450
2451 local_stream = zmalloc((consumer_data.stream_count + 2) *
2452 sizeof(struct lttng_consumer_stream *));
2453 if (local_stream == NULL) {
2454 PERROR("local_stream malloc");
2455 pthread_mutex_unlock(&consumer_data.lock);
2456 goto end;
2457 }
2458 ret = update_poll_array(ctx, &pollfd, local_stream,
2459 data_ht);
2460 if (ret < 0) {
2461 ERR("Error in allocating pollfd or local_outfds");
2462 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2463 pthread_mutex_unlock(&consumer_data.lock);
2464 goto end;
2465 }
2466 nb_fd = ret;
2467 consumer_data.need_update = 0;
2468 }
2469 pthread_mutex_unlock(&consumer_data.lock);
2470
2471 /* No FDs and consumer_quit, consumer_cleanup the thread */
2472 if (nb_fd == 0 && consumer_quit == 1) {
2473 err = 0; /* All is OK */
2474 goto end;
2475 }
2476 /* poll on the array of fds */
2477 restart:
2478 DBG("polling on %d fd", nb_fd + 2);
2479 health_poll_entry();
2480 num_rdy = poll(pollfd, nb_fd + 2, -1);
2481 health_poll_exit();
2482 DBG("poll num_rdy : %d", num_rdy);
2483 if (num_rdy == -1) {
2484 /*
2485 * Restart interrupted system call.
2486 */
2487 if (errno == EINTR) {
2488 goto restart;
2489 }
2490 PERROR("Poll error");
2491 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2492 goto end;
2493 } else if (num_rdy == 0) {
2494 DBG("Polling thread timed out");
2495 goto end;
2496 }
2497
2498 /*
2499 * If the consumer_data_pipe triggered poll go directly to the
2500 * beginning of the loop to update the array. We want to prioritize
2501 * array update over low-priority reads.
2502 */
2503 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2504 ssize_t pipe_readlen;
2505
2506 DBG("consumer_data_pipe wake up");
2507 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2508 &new_stream, sizeof(new_stream));
2509 if (pipe_readlen < sizeof(new_stream)) {
2510 PERROR("Consumer data pipe");
2511 /* Continue so we can at least handle the current stream(s). */
2512 continue;
2513 }
2514
2515 /*
2516 * If the stream is NULL, just ignore it. It's also possible that
2517 * the sessiond poll thread changed the consumer_quit state and is
2518 * waking us up to test it.
2519 */
2520 if (new_stream == NULL) {
2521 validate_endpoint_status_data_stream();
2522 continue;
2523 }
2524
2525 /* Continue to update the local streams and handle prio ones */
2526 continue;
2527 }
2528
2529 /* Handle wakeup pipe. */
2530 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2531 char dummy;
2532 ssize_t pipe_readlen;
2533
2534 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2535 sizeof(dummy));
2536 if (pipe_readlen < 0) {
2537 PERROR("Consumer data wakeup pipe");
2538 }
2539 /* We've been awakened to handle stream(s). */
2540 ctx->has_wakeup = 0;
2541 }
2542
2543 /* Take care of high priority channels first. */
2544 for (i = 0; i < nb_fd; i++) {
2545 health_code_update();
2546
2547 if (local_stream[i] == NULL) {
2548 continue;
2549 }
2550 if (pollfd[i].revents & POLLPRI) {
2551 DBG("Urgent read on fd %d", pollfd[i].fd);
2552 high_prio = 1;
2553 len = ctx->on_buffer_ready(local_stream[i], ctx);
2554 /* it's ok to have an unavailable sub-buffer */
2555 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2556 /* Clean the stream and free it. */
2557 consumer_del_stream(local_stream[i], data_ht);
2558 local_stream[i] = NULL;
2559 } else if (len > 0) {
2560 local_stream[i]->data_read = 1;
2561 }
2562 }
2563 }
2564
2565 /*
2566 * If we read high prio channel in this loop, try again
2567 * for more high prio data.
2568 */
2569 if (high_prio) {
2570 continue;
2571 }
2572
2573 /* Take care of low priority channels. */
2574 for (i = 0; i < nb_fd; i++) {
2575 health_code_update();
2576
2577 if (local_stream[i] == NULL) {
2578 continue;
2579 }
2580 if ((pollfd[i].revents & POLLIN) ||
2581 local_stream[i]->hangup_flush_done ||
2582 local_stream[i]->has_data) {
2583 DBG("Normal read on fd %d", pollfd[i].fd);
2584 len = ctx->on_buffer_ready(local_stream[i], ctx);
2585 /* it's ok to have an unavailable sub-buffer */
2586 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2587 /* Clean the stream and free it. */
2588 consumer_del_stream(local_stream[i], data_ht);
2589 local_stream[i] = NULL;
2590 } else if (len > 0) {
2591 local_stream[i]->data_read = 1;
2592 }
2593 }
2594 }
2595
2596 /* Handle hangup and errors */
2597 for (i = 0; i < nb_fd; i++) {
2598 health_code_update();
2599
2600 if (local_stream[i] == NULL) {
2601 continue;
2602 }
2603 if (!local_stream[i]->hangup_flush_done
2604 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2605 && (consumer_data.type == LTTNG_CONSUMER32_UST
2606 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2607 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2608 pollfd[i].fd);
2609 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2610 /* Attempt read again, for the data we just flushed. */
2611 local_stream[i]->data_read = 1;
2612 }
2613 /*
2614 * If the poll flag is HUP/ERR/NVAL and we have
2615 * read no data in this pass, we can remove the
2616 * stream from its hash table.
2617 */
2618 if ((pollfd[i].revents & POLLHUP)) {
2619 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2620 if (!local_stream[i]->data_read) {
2621 consumer_del_stream(local_stream[i], data_ht);
2622 local_stream[i] = NULL;
2623 num_hup++;
2624 }
2625 } else if (pollfd[i].revents & POLLERR) {
2626 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2627 if (!local_stream[i]->data_read) {
2628 consumer_del_stream(local_stream[i], data_ht);
2629 local_stream[i] = NULL;
2630 num_hup++;
2631 }
2632 } else if (pollfd[i].revents & POLLNVAL) {
2633 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2634 if (!local_stream[i]->data_read) {
2635 consumer_del_stream(local_stream[i], data_ht);
2636 local_stream[i] = NULL;
2637 num_hup++;
2638 }
2639 }
2640 if (local_stream[i] != NULL) {
2641 local_stream[i]->data_read = 0;
2642 }
2643 }
2644 }
2645 /* All is OK */
2646 err = 0;
2647 end:
2648 DBG("polling thread exiting");
2649 free(pollfd);
2650 free(local_stream);
2651
2652 /*
2653 * Close the write side of the pipe so epoll_wait() in
2654 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2655 * read side of the pipe. If we close them both, epoll_wait strangely does
2656 * not return and could create a endless wait period if the pipe is the
2657 * only tracked fd in the poll set. The thread will take care of closing
2658 * the read side.
2659 */
2660 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2661
2662 error_testpoint:
2663 if (err) {
2664 health_error();
2665 ERR("Health error occurred in %s", __func__);
2666 }
2667 health_unregister(health_consumerd);
2668
2669 rcu_unregister_thread();
2670 return NULL;
2671 }
2672
2673 /*
2674 * Close wake-up end of each stream belonging to the channel. This will
2675 * allow the poll() on the stream read-side to detect when the
2676 * write-side (application) finally closes them.
2677 */
2678 static
2679 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2680 {
2681 struct lttng_ht *ht;
2682 struct lttng_consumer_stream *stream;
2683 struct lttng_ht_iter iter;
2684
2685 ht = consumer_data.stream_per_chan_id_ht;
2686
2687 rcu_read_lock();
2688 cds_lfht_for_each_entry_duplicate(ht->ht,
2689 ht->hash_fct(&channel->key, lttng_ht_seed),
2690 ht->match_fct, &channel->key,
2691 &iter.iter, stream, node_channel_id.node) {
2692 /*
2693 * Protect against teardown with mutex.
2694 */
2695 pthread_mutex_lock(&stream->lock);
2696 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2697 goto next;
2698 }
2699 switch (consumer_data.type) {
2700 case LTTNG_CONSUMER_KERNEL:
2701 break;
2702 case LTTNG_CONSUMER32_UST:
2703 case LTTNG_CONSUMER64_UST:
2704 if (stream->metadata_flag) {
2705 /* Safe and protected by the stream lock. */
2706 lttng_ustconsumer_close_metadata(stream->chan);
2707 } else {
2708 /*
2709 * Note: a mutex is taken internally within
2710 * liblttng-ust-ctl to protect timer wakeup_fd
2711 * use from concurrent close.
2712 */
2713 lttng_ustconsumer_close_stream_wakeup(stream);
2714 }
2715 break;
2716 default:
2717 ERR("Unknown consumer_data type");
2718 assert(0);
2719 }
2720 next:
2721 pthread_mutex_unlock(&stream->lock);
2722 }
2723 rcu_read_unlock();
2724 }
2725
2726 static void destroy_channel_ht(struct lttng_ht *ht)
2727 {
2728 struct lttng_ht_iter iter;
2729 struct lttng_consumer_channel *channel;
2730 int ret;
2731
2732 if (ht == NULL) {
2733 return;
2734 }
2735
2736 rcu_read_lock();
2737 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2738 ret = lttng_ht_del(ht, &iter);
2739 assert(ret != 0);
2740 }
2741 rcu_read_unlock();
2742
2743 lttng_ht_destroy(ht);
2744 }
2745
2746 /*
2747 * This thread polls the channel fds to detect when they are being
2748 * closed. It closes all related streams if the channel is detected as
2749 * closed. It is currently only used as a shim layer for UST because the
2750 * consumerd needs to keep the per-stream wakeup end of pipes open for
2751 * periodical flush.
2752 */
2753 void *consumer_thread_channel_poll(void *data)
2754 {
2755 int ret, i, pollfd, err = -1;
2756 uint32_t revents, nb_fd;
2757 struct lttng_consumer_channel *chan = NULL;
2758 struct lttng_ht_iter iter;
2759 struct lttng_ht_node_u64 *node;
2760 struct lttng_poll_event events;
2761 struct lttng_consumer_local_data *ctx = data;
2762 struct lttng_ht *channel_ht;
2763
2764 rcu_register_thread();
2765
2766 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2767
2768 if (testpoint(consumerd_thread_channel)) {
2769 goto error_testpoint;
2770 }
2771
2772 health_code_update();
2773
2774 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2775 if (!channel_ht) {
2776 /* ENOMEM at this point. Better to bail out. */
2777 goto end_ht;
2778 }
2779
2780 DBG("Thread channel poll started");
2781
2782 /* Size is set to 1 for the consumer_channel pipe */
2783 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2784 if (ret < 0) {
2785 ERR("Poll set creation failed");
2786 goto end_poll;
2787 }
2788
2789 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2790 if (ret < 0) {
2791 goto end;
2792 }
2793
2794 /* Main loop */
2795 DBG("Channel main loop started");
2796
2797 while (1) {
2798 restart:
2799 health_code_update();
2800 DBG("Channel poll wait");
2801 health_poll_entry();
2802 ret = lttng_poll_wait(&events, -1);
2803 DBG("Channel poll return from wait with %d fd(s)",
2804 LTTNG_POLL_GETNB(&events));
2805 health_poll_exit();
2806 DBG("Channel event caught in thread");
2807 if (ret < 0) {
2808 if (errno == EINTR) {
2809 ERR("Poll EINTR caught");
2810 goto restart;
2811 }
2812 if (LTTNG_POLL_GETNB(&events) == 0) {
2813 err = 0; /* All is OK */
2814 }
2815 goto end;
2816 }
2817
2818 nb_fd = ret;
2819
2820 /* From here, the event is a channel wait fd */
2821 for (i = 0; i < nb_fd; i++) {
2822 health_code_update();
2823
2824 revents = LTTNG_POLL_GETEV(&events, i);
2825 pollfd = LTTNG_POLL_GETFD(&events, i);
2826
2827 if (!revents) {
2828 /* No activity for this FD (poll implementation). */
2829 continue;
2830 }
2831
2832 if (pollfd == ctx->consumer_channel_pipe[0]) {
2833 if (revents & LPOLLIN) {
2834 enum consumer_channel_action action;
2835 uint64_t key;
2836
2837 ret = read_channel_pipe(ctx, &chan, &key, &action);
2838 if (ret <= 0) {
2839 if (ret < 0) {
2840 ERR("Error reading channel pipe");
2841 }
2842 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2843 continue;
2844 }
2845
2846 switch (action) {
2847 case CONSUMER_CHANNEL_ADD:
2848 DBG("Adding channel %d to poll set",
2849 chan->wait_fd);
2850
2851 lttng_ht_node_init_u64(&chan->wait_fd_node,
2852 chan->wait_fd);
2853 rcu_read_lock();
2854 lttng_ht_add_unique_u64(channel_ht,
2855 &chan->wait_fd_node);
2856 rcu_read_unlock();
2857 /* Add channel to the global poll events list */
2858 lttng_poll_add(&events, chan->wait_fd,
2859 LPOLLERR | LPOLLHUP);
2860 break;
2861 case CONSUMER_CHANNEL_DEL:
2862 {
2863 /*
2864 * This command should never be called if the channel
2865 * has streams monitored by either the data or metadata
2866 * thread. The consumer only notify this thread with a
2867 * channel del. command if it receives a destroy
2868 * channel command from the session daemon that send it
2869 * if a command prior to the GET_CHANNEL failed.
2870 */
2871
2872 rcu_read_lock();
2873 chan = consumer_find_channel(key);
2874 if (!chan) {
2875 rcu_read_unlock();
2876 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2877 break;
2878 }
2879 lttng_poll_del(&events, chan->wait_fd);
2880 iter.iter.node = &chan->wait_fd_node.node;
2881 ret = lttng_ht_del(channel_ht, &iter);
2882 assert(ret == 0);
2883
2884 switch (consumer_data.type) {
2885 case LTTNG_CONSUMER_KERNEL:
2886 break;
2887 case LTTNG_CONSUMER32_UST:
2888 case LTTNG_CONSUMER64_UST:
2889 health_code_update();
2890 /* Destroy streams that might have been left in the stream list. */
2891 clean_channel_stream_list(chan);
2892 break;
2893 default:
2894 ERR("Unknown consumer_data type");
2895 assert(0);
2896 }
2897
2898 /*
2899 * Release our own refcount. Force channel deletion even if
2900 * streams were not initialized.
2901 */
2902 if (!uatomic_sub_return(&chan->refcount, 1)) {
2903 consumer_del_channel(chan);
2904 }
2905 rcu_read_unlock();
2906 goto restart;
2907 }
2908 case CONSUMER_CHANNEL_QUIT:
2909 /*
2910 * Remove the pipe from the poll set and continue the loop
2911 * since their might be data to consume.
2912 */
2913 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2914 continue;
2915 default:
2916 ERR("Unknown action");
2917 break;
2918 }
2919 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2920 DBG("Channel thread pipe hung up");
2921 /*
2922 * Remove the pipe from the poll set and continue the loop
2923 * since their might be data to consume.
2924 */
2925 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2926 continue;
2927 } else {
2928 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2929 goto end;
2930 }
2931
2932 /* Handle other stream */
2933 continue;
2934 }
2935
2936 rcu_read_lock();
2937 {
2938 uint64_t tmp_id = (uint64_t) pollfd;
2939
2940 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2941 }
2942 node = lttng_ht_iter_get_node_u64(&iter);
2943 assert(node);
2944
2945 chan = caa_container_of(node, struct lttng_consumer_channel,
2946 wait_fd_node);
2947
2948 /* Check for error event */
2949 if (revents & (LPOLLERR | LPOLLHUP)) {
2950 DBG("Channel fd %d is hup|err.", pollfd);
2951
2952 lttng_poll_del(&events, chan->wait_fd);
2953 ret = lttng_ht_del(channel_ht, &iter);
2954 assert(ret == 0);
2955
2956 /*
2957 * This will close the wait fd for each stream associated to
2958 * this channel AND monitored by the data/metadata thread thus
2959 * will be clean by the right thread.
2960 */
2961 consumer_close_channel_streams(chan);
2962
2963 /* Release our own refcount */
2964 if (!uatomic_sub_return(&chan->refcount, 1)
2965 && !uatomic_read(&chan->nb_init_stream_left)) {
2966 consumer_del_channel(chan);
2967 }
2968 } else {
2969 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2970 rcu_read_unlock();
2971 goto end;
2972 }
2973
2974 /* Release RCU lock for the channel looked up */
2975 rcu_read_unlock();
2976 }
2977 }
2978
2979 /* All is OK */
2980 err = 0;
2981 end:
2982 lttng_poll_clean(&events);
2983 end_poll:
2984 destroy_channel_ht(channel_ht);
2985 end_ht:
2986 error_testpoint:
2987 DBG("Channel poll thread exiting");
2988 if (err) {
2989 health_error();
2990 ERR("Health error occurred in %s", __func__);
2991 }
2992 health_unregister(health_consumerd);
2993 rcu_unregister_thread();
2994 return NULL;
2995 }
2996
2997 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2998 struct pollfd *sockpoll, int client_socket)
2999 {
3000 int ret;
3001
3002 assert(ctx);
3003 assert(sockpoll);
3004
3005 ret = lttng_consumer_poll_socket(sockpoll);
3006 if (ret) {
3007 goto error;
3008 }
3009 DBG("Metadata connection on client_socket");
3010
3011 /* Blocking call, waiting for transmission */
3012 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3013 if (ctx->consumer_metadata_socket < 0) {
3014 WARN("On accept metadata");
3015 ret = -1;
3016 goto error;
3017 }
3018 ret = 0;
3019
3020 error:
3021 return ret;
3022 }
3023
3024 /*
3025 * This thread listens on the consumerd socket and receives the file
3026 * descriptors from the session daemon.
3027 */
3028 void *consumer_thread_sessiond_poll(void *data)
3029 {
3030 int sock = -1, client_socket, ret, err = -1;
3031 /*
3032 * structure to poll for incoming data on communication socket avoids
3033 * making blocking sockets.
3034 */
3035 struct pollfd consumer_sockpoll[2];
3036 struct lttng_consumer_local_data *ctx = data;
3037
3038 rcu_register_thread();
3039
3040 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3041
3042 if (testpoint(consumerd_thread_sessiond)) {
3043 goto error_testpoint;
3044 }
3045
3046 health_code_update();
3047
3048 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3049 unlink(ctx->consumer_command_sock_path);
3050 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3051 if (client_socket < 0) {
3052 ERR("Cannot create command socket");
3053 goto end;
3054 }
3055
3056 ret = lttcomm_listen_unix_sock(client_socket);
3057 if (ret < 0) {
3058 goto end;
3059 }
3060
3061 DBG("Sending ready command to lttng-sessiond");
3062 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3063 /* return < 0 on error, but == 0 is not fatal */
3064 if (ret < 0) {
3065 ERR("Error sending ready command to lttng-sessiond");
3066 goto end;
3067 }
3068
3069 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3070 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3071 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3072 consumer_sockpoll[1].fd = client_socket;
3073 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3074
3075 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3076 if (ret) {
3077 if (ret > 0) {
3078 /* should exit */
3079 err = 0;
3080 }
3081 goto end;
3082 }
3083 DBG("Connection on client_socket");
3084
3085 /* Blocking call, waiting for transmission */
3086 sock = lttcomm_accept_unix_sock(client_socket);
3087 if (sock < 0) {
3088 WARN("On accept");
3089 goto end;
3090 }
3091
3092 /*
3093 * Setup metadata socket which is the second socket connection on the
3094 * command unix socket.
3095 */
3096 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3097 if (ret) {
3098 if (ret > 0) {
3099 /* should exit */
3100 err = 0;
3101 }
3102 goto end;
3103 }
3104
3105 /* This socket is not useful anymore. */
3106 ret = close(client_socket);
3107 if (ret < 0) {
3108 PERROR("close client_socket");
3109 }
3110 client_socket = -1;
3111
3112 /* update the polling structure to poll on the established socket */
3113 consumer_sockpoll[1].fd = sock;
3114 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3115
3116 while (1) {
3117 health_code_update();
3118
3119 health_poll_entry();
3120 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3121 health_poll_exit();
3122 if (ret) {
3123 if (ret > 0) {
3124 /* should exit */
3125 err = 0;
3126 }
3127 goto end;
3128 }
3129 DBG("Incoming command on sock");
3130 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3131 if (ret <= 0) {
3132 /*
3133 * This could simply be a session daemon quitting. Don't output
3134 * ERR() here.
3135 */
3136 DBG("Communication interrupted on command socket");
3137 err = 0;
3138 goto end;
3139 }
3140 if (consumer_quit) {
3141 DBG("consumer_thread_receive_fds received quit from signal");
3142 err = 0; /* All is OK */
3143 goto end;
3144 }
3145 DBG("received command on sock");
3146 }
3147 /* All is OK */
3148 err = 0;
3149
3150 end:
3151 DBG("Consumer thread sessiond poll exiting");
3152
3153 /*
3154 * Close metadata streams since the producer is the session daemon which
3155 * just died.
3156 *
3157 * NOTE: for now, this only applies to the UST tracer.
3158 */
3159 lttng_consumer_close_all_metadata();
3160
3161 /*
3162 * when all fds have hung up, the polling thread
3163 * can exit cleanly
3164 */
3165 consumer_quit = 1;
3166
3167 /*
3168 * Notify the data poll thread to poll back again and test the
3169 * consumer_quit state that we just set so to quit gracefully.
3170 */
3171 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3172
3173 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3174
3175 notify_health_quit_pipe(health_quit_pipe);
3176
3177 /* Cleaning up possibly open sockets. */
3178 if (sock >= 0) {
3179 ret = close(sock);
3180 if (ret < 0) {
3181 PERROR("close sock sessiond poll");
3182 }
3183 }
3184 if (client_socket >= 0) {
3185 ret = close(client_socket);
3186 if (ret < 0) {
3187 PERROR("close client_socket sessiond poll");
3188 }
3189 }
3190
3191 error_testpoint:
3192 if (err) {
3193 health_error();
3194 ERR("Health error occurred in %s", __func__);
3195 }
3196 health_unregister(health_consumerd);
3197
3198 rcu_unregister_thread();
3199 return NULL;
3200 }
3201
3202 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3203 struct lttng_consumer_local_data *ctx)
3204 {
3205 ssize_t ret;
3206
3207 pthread_mutex_lock(&stream->lock);
3208 if (stream->metadata_flag) {
3209 pthread_mutex_lock(&stream->metadata_rdv_lock);
3210 }
3211
3212 switch (consumer_data.type) {
3213 case LTTNG_CONSUMER_KERNEL:
3214 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3215 break;
3216 case LTTNG_CONSUMER32_UST:
3217 case LTTNG_CONSUMER64_UST:
3218 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3219 break;
3220 default:
3221 ERR("Unknown consumer_data type");
3222 assert(0);
3223 ret = -ENOSYS;
3224 break;
3225 }
3226
3227 if (stream->metadata_flag) {
3228 pthread_cond_broadcast(&stream->metadata_rdv);
3229 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3230 }
3231 pthread_mutex_unlock(&stream->lock);
3232 return ret;
3233 }
3234
3235 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3236 {
3237 switch (consumer_data.type) {
3238 case LTTNG_CONSUMER_KERNEL:
3239 return lttng_kconsumer_on_recv_stream(stream);
3240 case LTTNG_CONSUMER32_UST:
3241 case LTTNG_CONSUMER64_UST:
3242 return lttng_ustconsumer_on_recv_stream(stream);
3243 default:
3244 ERR("Unknown consumer_data type");
3245 assert(0);
3246 return -ENOSYS;
3247 }
3248 }
3249
3250 /*
3251 * Allocate and set consumer data hash tables.
3252 */
3253 int lttng_consumer_init(void)
3254 {
3255 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3256 if (!consumer_data.channel_ht) {
3257 goto error;
3258 }
3259
3260 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3261 if (!consumer_data.relayd_ht) {
3262 goto error;
3263 }
3264
3265 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3266 if (!consumer_data.stream_list_ht) {
3267 goto error;
3268 }
3269
3270 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3271 if (!consumer_data.stream_per_chan_id_ht) {
3272 goto error;
3273 }
3274
3275 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3276 if (!data_ht) {
3277 goto error;
3278 }
3279
3280 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3281 if (!metadata_ht) {
3282 goto error;
3283 }
3284
3285 return 0;
3286
3287 error:
3288 return -1;
3289 }
3290
3291 /*
3292 * Process the ADD_RELAYD command receive by a consumer.
3293 *
3294 * This will create a relayd socket pair and add it to the relayd hash table.
3295 * The caller MUST acquire a RCU read side lock before calling it.
3296 */
3297 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3298 struct lttng_consumer_local_data *ctx, int sock,
3299 struct pollfd *consumer_sockpoll,
3300 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3301 uint64_t relayd_session_id)
3302 {
3303 int fd = -1, ret = -1, relayd_created = 0;
3304 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3305 struct consumer_relayd_sock_pair *relayd = NULL;
3306
3307 assert(ctx);
3308 assert(relayd_sock);
3309
3310 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3311
3312 /* Get relayd reference if exists. */
3313 relayd = consumer_find_relayd(net_seq_idx);
3314 if (relayd == NULL) {
3315 assert(sock_type == LTTNG_STREAM_CONTROL);
3316 /* Not found. Allocate one. */
3317 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3318 if (relayd == NULL) {
3319 ret = -ENOMEM;
3320 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3321 goto error;
3322 } else {
3323 relayd->sessiond_session_id = sessiond_id;
3324 relayd_created = 1;
3325 }
3326
3327 /*
3328 * This code path MUST continue to the consumer send status message to
3329 * we can notify the session daemon and continue our work without
3330 * killing everything.
3331 */
3332 } else {
3333 /*
3334 * relayd key should never be found for control socket.
3335 */
3336 assert(sock_type != LTTNG_STREAM_CONTROL);
3337 }
3338
3339 /* First send a status message before receiving the fds. */
3340 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3341 if (ret < 0) {
3342 /* Somehow, the session daemon is not responding anymore. */
3343 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3344 goto error_nosignal;
3345 }
3346
3347 /* Poll on consumer socket. */
3348 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3349 if (ret) {
3350 /* Needing to exit in the middle of a command: error. */
3351 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3352 ret = -EINTR;
3353 goto error_nosignal;
3354 }
3355
3356 /* Get relayd socket from session daemon */
3357 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3358 if (ret != sizeof(fd)) {
3359 ret = -1;
3360 fd = -1; /* Just in case it gets set with an invalid value. */
3361
3362 /*
3363 * Failing to receive FDs might indicate a major problem such as
3364 * reaching a fd limit during the receive where the kernel returns a
3365 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3366 * don't take any chances and stop everything.
3367 *
3368 * XXX: Feature request #558 will fix that and avoid this possible
3369 * issue when reaching the fd limit.
3370 */
3371 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3372 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3373 goto error;
3374 }
3375
3376 /* Copy socket information and received FD */
3377 switch (sock_type) {
3378 case LTTNG_STREAM_CONTROL:
3379 /* Copy received lttcomm socket */
3380 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3381 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3382 /* Handle create_sock error. */
3383 if (ret < 0) {
3384 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3385 goto error;
3386 }
3387 /*
3388 * Close the socket created internally by
3389 * lttcomm_create_sock, so we can replace it by the one
3390 * received from sessiond.
3391 */
3392 if (close(relayd->control_sock.sock.fd)) {
3393 PERROR("close");
3394 }
3395
3396 /* Assign new file descriptor */
3397 relayd->control_sock.sock.fd = fd;
3398 fd = -1; /* For error path */
3399 /* Assign version values. */
3400 relayd->control_sock.major = relayd_sock->major;
3401 relayd->control_sock.minor = relayd_sock->minor;
3402
3403 relayd->relayd_session_id = relayd_session_id;
3404
3405 break;
3406 case LTTNG_STREAM_DATA:
3407 /* Copy received lttcomm socket */
3408 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3409 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3410 /* Handle create_sock error. */
3411 if (ret < 0) {
3412 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3413 goto error;
3414 }
3415 /*
3416 * Close the socket created internally by
3417 * lttcomm_create_sock, so we can replace it by the one
3418 * received from sessiond.
3419 */
3420 if (close(relayd->data_sock.sock.fd)) {
3421 PERROR("close");
3422 }
3423
3424 /* Assign new file descriptor */
3425 relayd->data_sock.sock.fd = fd;
3426 fd = -1; /* for eventual error paths */
3427 /* Assign version values. */
3428 relayd->data_sock.major = relayd_sock->major;
3429 relayd->data_sock.minor = relayd_sock->minor;
3430 break;
3431 default:
3432 ERR("Unknown relayd socket type (%d)", sock_type);
3433 ret = -1;
3434 ret_code = LTTCOMM_CONSUMERD_FATAL;
3435 goto error;
3436 }
3437
3438 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3439 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3440 relayd->net_seq_idx, fd);
3441
3442 /* We successfully added the socket. Send status back. */
3443 ret = consumer_send_status_msg(sock, ret_code);
3444 if (ret < 0) {
3445 /* Somehow, the session daemon is not responding anymore. */
3446 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3447 goto error_nosignal;
3448 }
3449
3450 /*
3451 * Add relayd socket pair to consumer data hashtable. If object already
3452 * exists or on error, the function gracefully returns.
3453 */
3454 add_relayd(relayd);
3455
3456 /* All good! */
3457 return 0;
3458
3459 error:
3460 if (consumer_send_status_msg(sock, ret_code) < 0) {
3461 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3462 }
3463
3464 error_nosignal:
3465 /* Close received socket if valid. */
3466 if (fd >= 0) {
3467 if (close(fd)) {
3468 PERROR("close received socket");
3469 }
3470 }
3471
3472 if (relayd_created) {
3473 free(relayd);
3474 }
3475
3476 return ret;
3477 }
3478
3479 /*
3480 * Try to lock the stream mutex.
3481 *
3482 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3483 */
3484 static int stream_try_lock(struct lttng_consumer_stream *stream)
3485 {
3486 int ret;
3487
3488 assert(stream);
3489
3490 /*
3491 * Try to lock the stream mutex. On failure, we know that the stream is
3492 * being used else where hence there is data still being extracted.
3493 */
3494 ret = pthread_mutex_trylock(&stream->lock);
3495 if (ret) {
3496 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3497 ret = 0;
3498 goto end;
3499 }
3500
3501 ret = 1;
3502
3503 end:
3504 return ret;
3505 }
3506
3507 /*
3508 * Search for a relayd associated to the session id and return the reference.
3509 *
3510 * A rcu read side lock MUST be acquire before calling this function and locked
3511 * until the relayd object is no longer necessary.
3512 */
3513 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3514 {
3515 struct lttng_ht_iter iter;
3516 struct consumer_relayd_sock_pair *relayd = NULL;
3517
3518 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3519 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3520 node.node) {
3521 /*
3522 * Check by sessiond id which is unique here where the relayd session
3523 * id might not be when having multiple relayd.
3524 */
3525 if (relayd->sessiond_session_id == id) {
3526 /* Found the relayd. There can be only one per id. */
3527 goto found;
3528 }
3529 }
3530
3531 return NULL;
3532
3533 found:
3534 return relayd;
3535 }
3536
3537 /*
3538 * Check if for a given session id there is still data needed to be extract
3539 * from the buffers.
3540 *
3541 * Return 1 if data is pending or else 0 meaning ready to be read.
3542 */
3543 int consumer_data_pending(uint64_t id)
3544 {
3545 int ret;
3546 struct lttng_ht_iter iter;
3547 struct lttng_ht *ht;
3548 struct lttng_consumer_stream *stream;
3549 struct consumer_relayd_sock_pair *relayd = NULL;
3550 int (*data_pending)(struct lttng_consumer_stream *);
3551
3552 DBG("Consumer data pending command on session id %" PRIu64, id);
3553
3554 rcu_read_lock();
3555 pthread_mutex_lock(&consumer_data.lock);
3556
3557 switch (consumer_data.type) {
3558 case LTTNG_CONSUMER_KERNEL:
3559 data_pending = lttng_kconsumer_data_pending;
3560 break;
3561 case LTTNG_CONSUMER32_UST:
3562 case LTTNG_CONSUMER64_UST:
3563 data_pending = lttng_ustconsumer_data_pending;
3564 break;
3565 default:
3566 ERR("Unknown consumer data type");
3567 assert(0);
3568 }
3569
3570 /* Ease our life a bit */
3571 ht = consumer_data.stream_list_ht;
3572
3573 relayd = find_relayd_by_session_id(id);
3574 if (relayd) {
3575 /* Send init command for data pending. */
3576 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3577 ret = relayd_begin_data_pending(&relayd->control_sock,
3578 relayd->relayd_session_id);
3579 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3580 if (ret < 0) {
3581 /* Communication error thus the relayd so no data pending. */
3582 goto data_not_pending;
3583 }
3584 }
3585
3586 cds_lfht_for_each_entry_duplicate(ht->ht,
3587 ht->hash_fct(&id, lttng_ht_seed),
3588 ht->match_fct, &id,
3589 &iter.iter, stream, node_session_id.node) {
3590 /* If this call fails, the stream is being used hence data pending. */
3591 ret = stream_try_lock(stream);
3592 if (!ret) {
3593 goto data_pending;
3594 }
3595
3596 /*
3597 * A removed node from the hash table indicates that the stream has
3598 * been deleted thus having a guarantee that the buffers are closed
3599 * on the consumer side. However, data can still be transmitted
3600 * over the network so don't skip the relayd check.
3601 */
3602 ret = cds_lfht_is_node_deleted(&stream->node.node);
3603 if (!ret) {
3604 /* Check the stream if there is data in the buffers. */
3605 ret = data_pending(stream);
3606 if (ret == 1) {
3607 pthread_mutex_unlock(&stream->lock);
3608 goto data_pending;
3609 }
3610 }
3611
3612 /* Relayd check */
3613 if (relayd) {
3614 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3615 if (stream->metadata_flag) {
3616 ret = relayd_quiescent_control(&relayd->control_sock,
3617 stream->relayd_stream_id);
3618 } else {
3619 ret = relayd_data_pending(&relayd->control_sock,
3620 stream->relayd_stream_id,
3621 stream->next_net_seq_num - 1);
3622 }
3623 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3624 if (ret == 1) {
3625 pthread_mutex_unlock(&stream->lock);
3626 goto data_pending;
3627 }
3628 }
3629 pthread_mutex_unlock(&stream->lock);
3630 }
3631
3632 if (relayd) {
3633 unsigned int is_data_inflight = 0;
3634
3635 /* Send init command for data pending. */
3636 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3637 ret = relayd_end_data_pending(&relayd->control_sock,
3638 relayd->relayd_session_id, &is_data_inflight);
3639 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3640 if (ret < 0) {
3641 goto data_not_pending;
3642 }
3643 if (is_data_inflight) {
3644 goto data_pending;
3645 }
3646 }
3647
3648 /*
3649 * Finding _no_ node in the hash table and no inflight data means that the
3650 * stream(s) have been removed thus data is guaranteed to be available for
3651 * analysis from the trace files.
3652 */
3653
3654 data_not_pending:
3655 /* Data is available to be read by a viewer. */
3656 pthread_mutex_unlock(&consumer_data.lock);
3657 rcu_read_unlock();
3658 return 0;
3659
3660 data_pending:
3661 /* Data is still being extracted from buffers. */
3662 pthread_mutex_unlock(&consumer_data.lock);
3663 rcu_read_unlock();
3664 return 1;
3665 }
3666
3667 /*
3668 * Send a ret code status message to the sessiond daemon.
3669 *
3670 * Return the sendmsg() return value.
3671 */
3672 int consumer_send_status_msg(int sock, int ret_code)
3673 {
3674 struct lttcomm_consumer_status_msg msg;
3675
3676 memset(&msg, 0, sizeof(msg));
3677 msg.ret_code = ret_code;
3678
3679 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3680 }
3681
3682 /*
3683 * Send a channel status message to the sessiond daemon.
3684 *
3685 * Return the sendmsg() return value.
3686 */
3687 int consumer_send_status_channel(int sock,
3688 struct lttng_consumer_channel *channel)
3689 {
3690 struct lttcomm_consumer_status_channel msg;
3691
3692 assert(sock >= 0);
3693
3694 memset(&msg, 0, sizeof(msg));
3695 if (!channel) {
3696 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3697 } else {
3698 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3699 msg.key = channel->key;
3700 msg.stream_count = channel->streams.count;
3701 }
3702
3703 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3704 }
3705
3706 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3707 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3708 uint64_t max_sb_size)
3709 {
3710 unsigned long start_pos;
3711
3712 if (!nb_packets_per_stream) {
3713 return consumed_pos; /* Grab everything */
3714 }
3715 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3716 start_pos -= max_sb_size * nb_packets_per_stream;
3717 if ((long) (start_pos - consumed_pos) < 0) {
3718 return consumed_pos; /* Grab everything */
3719 }
3720 return start_pos;
3721 }
This page took 0.105803 seconds and 4 git commands to generate.