Fix: sample discarded events count before reserve
[lttng-modules.git] / src / lib / ringbuffer / ring_buffer_frontend.c
1 /* SPDX-License-Identifier: (GPL-2.0-only OR LGPL-2.1-only)
2 *
3 * ring_buffer_frontend.c
4 *
5 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
6 *
7 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
8 * recorder (overwrite) modes. See thesis:
9 *
10 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
11 * dissertation, Ecole Polytechnique de Montreal.
12 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
13 *
14 * - Algorithm presentation in Chapter 5:
15 * "Lockless Multi-Core High-Throughput Buffering".
16 * - Algorithm formal verification in Section 8.6:
17 * "Formal verification of LTTng"
18 *
19 * Author:
20 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
21 *
22 * Inspired from LTT and RelayFS:
23 * Karim Yaghmour <karim@opersys.com>
24 * Tom Zanussi <zanussi@us.ibm.com>
25 * Bob Wisniewski <bob@watson.ibm.com>
26 * And from K42 :
27 * Bob Wisniewski <bob@watson.ibm.com>
28 *
29 * Buffer reader semantic :
30 *
31 * - get_subbuf_size
32 * while buffer is not finalized and empty
33 * - get_subbuf
34 * - if return value != 0, continue
35 * - splice one subbuffer worth of data to a pipe
36 * - splice the data from pipe to disk/network
37 * - put_subbuf
38 */
39
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/percpu.h>
43 #include <asm/cacheflush.h>
44
45 #include <ringbuffer/config.h>
46 #include <ringbuffer/backend.h>
47 #include <ringbuffer/frontend.h>
48 #include <ringbuffer/iterator.h>
49 #include <ringbuffer/nohz.h>
50 #include <wrapper/atomic.h>
51 #include <wrapper/cpu.h>
52 #include <wrapper/kref.h>
53 #include <wrapper/percpu-defs.h>
54 #include <wrapper/timer.h>
55 #include <wrapper/vmalloc.h>
56
57 /*
58 * Internal structure representing offsets to use at a sub-buffer switch.
59 */
60 struct switch_offsets {
61 unsigned long begin, end, old;
62 size_t pre_header_padding, size;
63 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
64 switch_old_end:1;
65 };
66
67 #ifdef CONFIG_NO_HZ
68 enum tick_nohz_val {
69 TICK_NOHZ_STOP,
70 TICK_NOHZ_FLUSH,
71 TICK_NOHZ_RESTART,
72 };
73
74 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
75 #endif /* CONFIG_NO_HZ */
76
77 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
78
79 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
80 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
81
82 static
83 void lib_ring_buffer_print_errors(struct lttng_kernel_ring_buffer_channel *chan,
84 struct lttng_kernel_ring_buffer *buf, int cpu);
85 static
86 void _lib_ring_buffer_switch_remote(struct lttng_kernel_ring_buffer *buf,
87 enum switch_mode mode);
88
89 static
90 int lib_ring_buffer_poll_deliver(const struct lttng_kernel_ring_buffer_config *config,
91 struct lttng_kernel_ring_buffer *buf,
92 struct lttng_kernel_ring_buffer_channel *chan)
93 {
94 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
95
96 consumed_old = atomic_long_read(&buf->consumed);
97 consumed_idx = subbuf_index(consumed_old, chan);
98 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
99 /*
100 * No memory barrier here, since we are only interested
101 * in a statistically correct polling result. The next poll will
102 * get the data is we are racing. The mb() that ensures correct
103 * memory order is in get_subbuf.
104 */
105 write_offset = v_read(config, &buf->offset);
106
107 /*
108 * Check that the subbuffer we are trying to consume has been
109 * already fully committed.
110 */
111
112 if (((commit_count - chan->backend.subbuf_size)
113 & chan->commit_count_mask)
114 - (buf_trunc(consumed_old, chan)
115 >> chan->backend.num_subbuf_order)
116 != 0)
117 return 0;
118
119 /*
120 * Check that we are not about to read the same subbuffer in
121 * which the writer head is.
122 */
123 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
124 == 0)
125 return 0;
126
127 return 1;
128 }
129
130 /*
131 * Must be called under cpu hotplug protection.
132 */
133 void lib_ring_buffer_free(struct lttng_kernel_ring_buffer *buf)
134 {
135 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
136
137 irq_work_sync(&buf->wakeup_pending);
138
139 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
140 lttng_kvfree(buf->commit_hot);
141 lttng_kvfree(buf->commit_cold);
142 lttng_kvfree(buf->ts_end);
143
144 lib_ring_buffer_backend_free(&buf->backend);
145 }
146
147 /**
148 * lib_ring_buffer_reset - Reset ring buffer to initial values.
149 * @buf: Ring buffer.
150 *
151 * Effectively empty the ring buffer. Should be called when the buffer is not
152 * used for writing. The ring buffer can be opened for reading, but the reader
153 * should not be using the iterator concurrently with reset. The previous
154 * current iterator record is reset.
155 */
156 void lib_ring_buffer_reset(struct lttng_kernel_ring_buffer *buf)
157 {
158 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
159 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
160 unsigned int i;
161
162 /*
163 * Reset iterator first. It will put the subbuffer if it currently holds
164 * it.
165 */
166 lib_ring_buffer_iterator_reset(buf);
167 v_set(config, &buf->offset, 0);
168 for (i = 0; i < chan->backend.num_subbuf; i++) {
169 v_set(config, &buf->commit_hot[i].cc, 0);
170 v_set(config, &buf->commit_hot[i].seq, 0);
171 v_set(config, &buf->commit_cold[i].cc_sb, 0);
172 buf->ts_end[i] = 0;
173 }
174 atomic_long_set(&buf->consumed, 0);
175 atomic_set(&buf->record_disabled, 0);
176 v_set(config, &buf->last_tsc, 0);
177 lib_ring_buffer_backend_reset(&buf->backend);
178 /* Don't reset number of active readers */
179 v_set(config, &buf->records_lost_full, 0);
180 v_set(config, &buf->records_lost_wrap, 0);
181 v_set(config, &buf->records_lost_big, 0);
182 v_set(config, &buf->records_count, 0);
183 v_set(config, &buf->records_overrun, 0);
184 buf->finalized = 0;
185 }
186 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
187
188 /**
189 * channel_reset - Reset channel to initial values.
190 * @chan: Channel.
191 *
192 * Effectively empty the channel. Should be called when the channel is not used
193 * for writing. The channel can be opened for reading, but the reader should not
194 * be using the iterator concurrently with reset. The previous current iterator
195 * record is reset.
196 */
197 void channel_reset(struct lttng_kernel_ring_buffer_channel *chan)
198 {
199 /*
200 * Reset iterators first. Will put the subbuffer if held for reading.
201 */
202 channel_iterator_reset(chan);
203 atomic_set(&chan->record_disabled, 0);
204 /* Don't reset commit_count_mask, still valid */
205 channel_backend_reset(&chan->backend);
206 /* Don't reset switch/read timer interval */
207 /* Don't reset notifiers and notifier enable bits */
208 /* Don't reset reader reference count */
209 }
210 EXPORT_SYMBOL_GPL(channel_reset);
211
212 static void lib_ring_buffer_pending_wakeup_buf(struct irq_work *entry)
213 {
214 struct lttng_kernel_ring_buffer *buf = container_of(entry, struct lttng_kernel_ring_buffer,
215 wakeup_pending);
216 wake_up_interruptible(&buf->read_wait);
217 }
218
219 static void lib_ring_buffer_pending_wakeup_chan(struct irq_work *entry)
220 {
221 struct lttng_kernel_ring_buffer_channel *chan = container_of(entry, struct lttng_kernel_ring_buffer_channel, wakeup_pending);
222 wake_up_interruptible(&chan->read_wait);
223 }
224
225 /*
226 * Must be called under cpu hotplug protection.
227 */
228 int lib_ring_buffer_create(struct lttng_kernel_ring_buffer *buf,
229 struct channel_backend *chanb, int cpu)
230 {
231 const struct lttng_kernel_ring_buffer_config *config = &chanb->config;
232 struct lttng_kernel_ring_buffer_channel *chan = container_of(chanb, struct lttng_kernel_ring_buffer_channel, backend);
233 void *priv = chanb->priv;
234 size_t subbuf_header_size;
235 u64 tsc;
236 int ret;
237
238 /* Test for cpu hotplug */
239 if (buf->backend.allocated)
240 return 0;
241
242 /*
243 * Paranoia: per cpu dynamic allocation is not officially documented as
244 * zeroing the memory, so let's do it here too, just in case.
245 */
246 memset(buf, 0, sizeof(*buf));
247
248 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
249 if (ret)
250 return ret;
251
252 buf->commit_hot =
253 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
254 * chan->backend.num_subbuf,
255 1 << INTERNODE_CACHE_SHIFT),
256 GFP_KERNEL | __GFP_NOWARN,
257 cpu_to_node(max(cpu, 0)));
258 if (!buf->commit_hot) {
259 ret = -ENOMEM;
260 goto free_chanbuf;
261 }
262
263 buf->commit_cold =
264 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
265 * chan->backend.num_subbuf,
266 1 << INTERNODE_CACHE_SHIFT),
267 GFP_KERNEL | __GFP_NOWARN,
268 cpu_to_node(max(cpu, 0)));
269 if (!buf->commit_cold) {
270 ret = -ENOMEM;
271 goto free_commit;
272 }
273
274 buf->ts_end =
275 lttng_kvzalloc_node(ALIGN(sizeof(*buf->ts_end)
276 * chan->backend.num_subbuf,
277 1 << INTERNODE_CACHE_SHIFT),
278 GFP_KERNEL | __GFP_NOWARN,
279 cpu_to_node(max(cpu, 0)));
280 if (!buf->ts_end) {
281 ret = -ENOMEM;
282 goto free_commit_cold;
283 }
284
285 init_waitqueue_head(&buf->read_wait);
286 init_waitqueue_head(&buf->write_wait);
287 init_irq_work(&buf->wakeup_pending, lib_ring_buffer_pending_wakeup_buf);
288 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
289
290 /*
291 * Write the subbuffer header for first subbuffer so we know the total
292 * duration of data gathering.
293 */
294 subbuf_header_size = config->cb.subbuffer_header_size();
295 v_set(config, &buf->offset, subbuf_header_size);
296 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
297 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
298 config->cb.buffer_begin(buf, tsc, 0);
299 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
300
301 if (config->cb.buffer_create) {
302 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
303 if (ret)
304 goto free_init;
305 }
306
307 /*
308 * Ensure the buffer is ready before setting it to allocated and setting
309 * the cpumask.
310 * Used for cpu hotplug vs cpumask iteration.
311 */
312 smp_wmb();
313 buf->backend.allocated = 1;
314
315 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
316 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
317 chan->backend.cpumask));
318 cpumask_set_cpu(cpu, chan->backend.cpumask);
319 }
320
321 return 0;
322
323 /* Error handling */
324 free_init:
325 lttng_kvfree(buf->ts_end);
326 free_commit_cold:
327 lttng_kvfree(buf->commit_cold);
328 free_commit:
329 lttng_kvfree(buf->commit_hot);
330 free_chanbuf:
331 lib_ring_buffer_backend_free(&buf->backend);
332 return ret;
333 }
334
335 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
336 {
337 struct lttng_kernel_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
338 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
339 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
340
341 /*
342 * Only flush buffers periodically if readers are active.
343 */
344 if (atomic_long_read(&buf->active_readers))
345 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
346
347 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
348 lttng_mod_timer_pinned(&buf->switch_timer,
349 jiffies + chan->switch_timer_interval);
350 else
351 mod_timer(&buf->switch_timer,
352 jiffies + chan->switch_timer_interval);
353 }
354
355 /*
356 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
357 */
358 static void lib_ring_buffer_start_switch_timer(struct lttng_kernel_ring_buffer *buf)
359 {
360 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
361 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
362 unsigned int flags = 0;
363
364 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
365 return;
366
367 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
368 flags = LTTNG_TIMER_PINNED;
369
370 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
371 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
372
373 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
374 add_timer_on(&buf->switch_timer, buf->backend.cpu);
375 else
376 add_timer(&buf->switch_timer);
377
378 buf->switch_timer_enabled = 1;
379 }
380
381 /*
382 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
383 */
384 static void lib_ring_buffer_stop_switch_timer(struct lttng_kernel_ring_buffer *buf)
385 {
386 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
387
388 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
389 return;
390
391 del_timer_sync(&buf->switch_timer);
392 buf->switch_timer_enabled = 0;
393 }
394
395 /*
396 * Polling timer to check the channels for data.
397 */
398 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
399 {
400 struct lttng_kernel_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
401 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
402 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
403
404 CHAN_WARN_ON(chan, !buf->backend.allocated);
405
406 if (atomic_long_read(&buf->active_readers)
407 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
408 wake_up_interruptible(&buf->read_wait);
409 wake_up_interruptible(&chan->read_wait);
410 }
411
412 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
413 lttng_mod_timer_pinned(&buf->read_timer,
414 jiffies + chan->read_timer_interval);
415 else
416 mod_timer(&buf->read_timer,
417 jiffies + chan->read_timer_interval);
418 }
419
420 /*
421 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
422 */
423 static void lib_ring_buffer_start_read_timer(struct lttng_kernel_ring_buffer *buf)
424 {
425 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
426 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
427 unsigned int flags = 0;
428
429 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
430 || !chan->read_timer_interval
431 || buf->read_timer_enabled)
432 return;
433
434 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
435 flags = LTTNG_TIMER_PINNED;
436
437 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
438 buf->read_timer.expires = jiffies + chan->read_timer_interval;
439
440 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
441 add_timer_on(&buf->read_timer, buf->backend.cpu);
442 else
443 add_timer(&buf->read_timer);
444
445 buf->read_timer_enabled = 1;
446 }
447
448 /*
449 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
450 */
451 static void lib_ring_buffer_stop_read_timer(struct lttng_kernel_ring_buffer *buf)
452 {
453 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
454 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
455
456 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
457 || !chan->read_timer_interval
458 || !buf->read_timer_enabled)
459 return;
460
461 del_timer_sync(&buf->read_timer);
462 /*
463 * do one more check to catch data that has been written in the last
464 * timer period.
465 */
466 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
467 wake_up_interruptible(&buf->read_wait);
468 wake_up_interruptible(&chan->read_wait);
469 }
470 buf->read_timer_enabled = 0;
471 }
472
473 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
474
475 enum cpuhp_state lttng_rb_hp_prepare;
476 enum cpuhp_state lttng_rb_hp_online;
477
478 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
479 {
480 lttng_rb_hp_prepare = val;
481 }
482 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
483
484 void lttng_rb_set_hp_online(enum cpuhp_state val)
485 {
486 lttng_rb_hp_online = val;
487 }
488 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
489
490 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
491 struct lttng_cpuhp_node *node)
492 {
493 struct lttng_kernel_ring_buffer_channel *chan = container_of(node, struct lttng_kernel_ring_buffer_channel,
494 cpuhp_prepare);
495 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
496 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
497
498 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
499
500 /*
501 * Performing a buffer switch on a remote CPU. Performed by
502 * the CPU responsible for doing the hotunplug after the target
503 * CPU stopped running completely. Ensures that all data
504 * from that remote CPU is flushed.
505 */
506 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
507 return 0;
508 }
509 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
510
511 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
512 struct lttng_cpuhp_node *node)
513 {
514 struct lttng_kernel_ring_buffer_channel *chan = container_of(node, struct lttng_kernel_ring_buffer_channel,
515 cpuhp_online);
516 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
517 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
518
519 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
520
521 wake_up_interruptible(&chan->hp_wait);
522 lib_ring_buffer_start_switch_timer(buf);
523 lib_ring_buffer_start_read_timer(buf);
524 return 0;
525 }
526 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
527
528 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
529 struct lttng_cpuhp_node *node)
530 {
531 struct lttng_kernel_ring_buffer_channel *chan = container_of(node, struct lttng_kernel_ring_buffer_channel,
532 cpuhp_online);
533 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
534 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
535
536 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
537
538 lib_ring_buffer_stop_switch_timer(buf);
539 lib_ring_buffer_stop_read_timer(buf);
540 return 0;
541 }
542 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
543
544 #else /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
545
546 #ifdef CONFIG_HOTPLUG_CPU
547
548 /**
549 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
550 * @nb: notifier block
551 * @action: hotplug action to take
552 * @hcpu: CPU number
553 *
554 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
555 */
556 static
557 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
558 unsigned long action,
559 void *hcpu)
560 {
561 unsigned int cpu = (unsigned long)hcpu;
562 struct lttng_kernel_ring_buffer_channel *chan = container_of(nb, struct lttng_kernel_ring_buffer_channel,
563 cpu_hp_notifier);
564 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
565 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
566
567 if (!chan->cpu_hp_enable)
568 return NOTIFY_DONE;
569
570 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
571
572 switch (action) {
573 case CPU_DOWN_FAILED:
574 case CPU_DOWN_FAILED_FROZEN:
575 case CPU_ONLINE:
576 case CPU_ONLINE_FROZEN:
577 wake_up_interruptible(&chan->hp_wait);
578 lib_ring_buffer_start_switch_timer(buf);
579 lib_ring_buffer_start_read_timer(buf);
580 return NOTIFY_OK;
581
582 case CPU_DOWN_PREPARE:
583 case CPU_DOWN_PREPARE_FROZEN:
584 lib_ring_buffer_stop_switch_timer(buf);
585 lib_ring_buffer_stop_read_timer(buf);
586 return NOTIFY_OK;
587
588 case CPU_DEAD:
589 case CPU_DEAD_FROZEN:
590 /*
591 * Performing a buffer switch on a remote CPU. Performed by
592 * the CPU responsible for doing the hotunplug after the target
593 * CPU stopped running completely. Ensures that all data
594 * from that remote CPU is flushed.
595 */
596 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
597 return NOTIFY_OK;
598
599 default:
600 return NOTIFY_DONE;
601 }
602 }
603
604 #endif
605
606 #endif /* #else #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
607
608 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
609 /*
610 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
611 * that wake-up-tracing generated events are flushed before going idle (in
612 * tick_nohz). We test if the spinlock is locked to deal with the race where
613 * readers try to sample the ring buffer before we perform the switch. We let
614 * the readers retry in that case. If there is data in the buffer, the wake up
615 * is going to forbid the CPU running the reader thread from going idle.
616 */
617 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
618 unsigned long val,
619 void *data)
620 {
621 struct lttng_kernel_ring_buffer_channel *chan = container_of(nb, struct lttng_kernel_ring_buffer_channel,
622 tick_nohz_notifier);
623 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
624 struct lttng_kernel_ring_buffer *buf;
625 int cpu = smp_processor_id();
626
627 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
628 /*
629 * We don't support keeping the system idle with global buffers
630 * and streaming active. In order to do so, we would need to
631 * sample a non-nohz-cpumask racelessly with the nohz updates
632 * without adding synchronization overhead to nohz. Leave this
633 * use-case out for now.
634 */
635 return 0;
636 }
637
638 buf = channel_get_ring_buffer(config, chan, cpu);
639 switch (val) {
640 case TICK_NOHZ_FLUSH:
641 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
642 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
643 && chan->read_timer_interval
644 && atomic_long_read(&buf->active_readers)
645 && (lib_ring_buffer_poll_deliver(config, buf, chan)
646 || lib_ring_buffer_pending_data(config, buf, chan))) {
647 wake_up_interruptible(&buf->read_wait);
648 wake_up_interruptible(&chan->read_wait);
649 }
650 if (chan->switch_timer_interval)
651 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
652 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
653 break;
654 case TICK_NOHZ_STOP:
655 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
656 lib_ring_buffer_stop_switch_timer(buf);
657 lib_ring_buffer_stop_read_timer(buf);
658 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
659 break;
660 case TICK_NOHZ_RESTART:
661 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
662 lib_ring_buffer_start_read_timer(buf);
663 lib_ring_buffer_start_switch_timer(buf);
664 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
665 break;
666 }
667
668 return 0;
669 }
670
671 void notrace lib_ring_buffer_tick_nohz_flush(void)
672 {
673 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
674 NULL);
675 }
676
677 void notrace lib_ring_buffer_tick_nohz_stop(void)
678 {
679 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
680 NULL);
681 }
682
683 void notrace lib_ring_buffer_tick_nohz_restart(void)
684 {
685 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
686 NULL);
687 }
688 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
689
690 /*
691 * Holds CPU hotplug.
692 */
693 static void channel_unregister_notifiers(struct lttng_kernel_ring_buffer_channel *chan)
694 {
695 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
696
697 channel_iterator_unregister_notifiers(chan);
698 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
699 #ifdef CONFIG_NO_HZ
700 /*
701 * Remove the nohz notifier first, so we are certain we stop
702 * the timers.
703 */
704 atomic_notifier_chain_unregister(&tick_nohz_notifier,
705 &chan->tick_nohz_notifier);
706 /*
707 * ring_buffer_nohz_lock will not be needed below, because
708 * we just removed the notifiers, which were the only source of
709 * concurrency.
710 */
711 #endif /* CONFIG_NO_HZ */
712 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
713 {
714 int ret;
715
716 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
717 &chan->cpuhp_online.node);
718 WARN_ON(ret);
719 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
720 &chan->cpuhp_prepare.node);
721 WARN_ON(ret);
722 }
723 #else /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
724 {
725 int cpu;
726
727 #ifdef CONFIG_HOTPLUG_CPU
728 lttng_cpus_read_lock();
729 chan->cpu_hp_enable = 0;
730 for_each_online_cpu(cpu) {
731 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
732 cpu);
733 lib_ring_buffer_stop_switch_timer(buf);
734 lib_ring_buffer_stop_read_timer(buf);
735 }
736 lttng_cpus_read_unlock();
737 unregister_cpu_notifier(&chan->cpu_hp_notifier);
738 #else
739 for_each_possible_cpu(cpu) {
740 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
741 cpu);
742 lib_ring_buffer_stop_switch_timer(buf);
743 lib_ring_buffer_stop_read_timer(buf);
744 }
745 #endif
746 }
747 #endif /* #else #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
748 } else {
749 struct lttng_kernel_ring_buffer *buf = chan->backend.buf;
750
751 lib_ring_buffer_stop_switch_timer(buf);
752 lib_ring_buffer_stop_read_timer(buf);
753 }
754 channel_backend_unregister_notifiers(&chan->backend);
755 }
756
757 static void lib_ring_buffer_set_quiescent(struct lttng_kernel_ring_buffer *buf)
758 {
759 if (!buf->quiescent) {
760 buf->quiescent = true;
761 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
762 }
763 }
764
765 static void lib_ring_buffer_clear_quiescent(struct lttng_kernel_ring_buffer *buf)
766 {
767 buf->quiescent = false;
768 }
769
770 void lib_ring_buffer_set_quiescent_channel(struct lttng_kernel_ring_buffer_channel *chan)
771 {
772 int cpu;
773 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
774
775 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
776 lttng_cpus_read_lock();
777 for_each_channel_cpu(cpu, chan) {
778 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
779 cpu);
780
781 lib_ring_buffer_set_quiescent(buf);
782 }
783 lttng_cpus_read_unlock();
784 } else {
785 struct lttng_kernel_ring_buffer *buf = chan->backend.buf;
786
787 lib_ring_buffer_set_quiescent(buf);
788 }
789 }
790 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
791
792 void lib_ring_buffer_clear_quiescent_channel(struct lttng_kernel_ring_buffer_channel *chan)
793 {
794 int cpu;
795 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
796
797 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
798 lttng_cpus_read_lock();
799 for_each_channel_cpu(cpu, chan) {
800 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
801 cpu);
802
803 lib_ring_buffer_clear_quiescent(buf);
804 }
805 lttng_cpus_read_unlock();
806 } else {
807 struct lttng_kernel_ring_buffer *buf = chan->backend.buf;
808
809 lib_ring_buffer_clear_quiescent(buf);
810 }
811 }
812 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
813
814 static void channel_free(struct lttng_kernel_ring_buffer_channel *chan)
815 {
816 if (chan->backend.release_priv_ops) {
817 chan->backend.release_priv_ops(chan->backend.priv_ops);
818 }
819 channel_iterator_free(chan);
820 channel_backend_free(&chan->backend);
821 kfree(chan);
822 }
823
824 /**
825 * channel_create - Create channel.
826 * @config: ring buffer instance configuration
827 * @name: name of the channel
828 * @priv: ring buffer client private data
829 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
830 * address mapping. It is used only by RING_BUFFER_STATIC
831 * configuration. It can be set to NULL for other backends.
832 * @subbuf_size: subbuffer size
833 * @num_subbuf: number of subbuffers
834 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
835 * padding to let readers get those sub-buffers.
836 * Used for live streaming.
837 * @read_timer_interval: Time interval (in us) to wake up pending readers.
838 *
839 * Holds cpu hotplug.
840 * Returns NULL on failure.
841 */
842 struct lttng_kernel_ring_buffer_channel *channel_create(const struct lttng_kernel_ring_buffer_config *config,
843 const char *name, void *priv, void *buf_addr,
844 size_t subbuf_size,
845 size_t num_subbuf, unsigned int switch_timer_interval,
846 unsigned int read_timer_interval)
847 {
848 int ret;
849 struct lttng_kernel_ring_buffer_channel *chan;
850
851 if (lib_ring_buffer_check_config(config, switch_timer_interval,
852 read_timer_interval))
853 return NULL;
854
855 chan = kzalloc(sizeof(struct lttng_kernel_ring_buffer_channel), GFP_KERNEL);
856 if (!chan)
857 return NULL;
858
859 ret = channel_backend_init(&chan->backend, name, config, priv,
860 subbuf_size, num_subbuf);
861 if (ret)
862 goto error;
863
864 ret = channel_iterator_init(chan);
865 if (ret)
866 goto error_free_backend;
867
868 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
869 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
870 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
871 kref_init(&chan->ref);
872 init_waitqueue_head(&chan->read_wait);
873 init_waitqueue_head(&chan->hp_wait);
874 init_irq_work(&chan->wakeup_pending, lib_ring_buffer_pending_wakeup_chan);
875
876 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
877 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
878 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
879 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
880 &chan->cpuhp_prepare.node);
881 if (ret)
882 goto cpuhp_prepare_error;
883
884 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
885 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
886 &chan->cpuhp_online.node);
887 if (ret)
888 goto cpuhp_online_error;
889 #else /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
890 {
891 int cpu;
892 /*
893 * In case of non-hotplug cpu, if the ring-buffer is allocated
894 * in early initcall, it will not be notified of secondary cpus.
895 * In that off case, we need to allocate for all possible cpus.
896 */
897 #ifdef CONFIG_HOTPLUG_CPU
898 chan->cpu_hp_notifier.notifier_call =
899 lib_ring_buffer_cpu_hp_callback;
900 chan->cpu_hp_notifier.priority = 6;
901 register_cpu_notifier(&chan->cpu_hp_notifier);
902
903 lttng_cpus_read_lock();
904 for_each_online_cpu(cpu) {
905 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
906 cpu);
907 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
908 lib_ring_buffer_start_switch_timer(buf);
909 lib_ring_buffer_start_read_timer(buf);
910 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
911 }
912 chan->cpu_hp_enable = 1;
913 lttng_cpus_read_unlock();
914 #else
915 for_each_possible_cpu(cpu) {
916 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
917 cpu);
918 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
919 lib_ring_buffer_start_switch_timer(buf);
920 lib_ring_buffer_start_read_timer(buf);
921 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
922 }
923 #endif
924 }
925 #endif /* #else #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
926
927 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
928 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
929 chan->tick_nohz_notifier.notifier_call =
930 ring_buffer_tick_nohz_callback;
931 chan->tick_nohz_notifier.priority = ~0U;
932 atomic_notifier_chain_register(&tick_nohz_notifier,
933 &chan->tick_nohz_notifier);
934 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
935
936 } else {
937 struct lttng_kernel_ring_buffer *buf = chan->backend.buf;
938
939 lib_ring_buffer_start_switch_timer(buf);
940 lib_ring_buffer_start_read_timer(buf);
941 }
942
943 return chan;
944
945 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
946 cpuhp_online_error:
947 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
948 &chan->cpuhp_prepare.node);
949 WARN_ON(ret);
950 cpuhp_prepare_error:
951 #endif /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
952 error_free_backend:
953 channel_backend_free(&chan->backend);
954 error:
955 kfree(chan);
956 return NULL;
957 }
958 EXPORT_SYMBOL_GPL(channel_create);
959
960 static
961 void channel_release(struct kref *kref)
962 {
963 struct lttng_kernel_ring_buffer_channel *chan = container_of(kref, struct lttng_kernel_ring_buffer_channel, ref);
964 channel_free(chan);
965 }
966
967 /**
968 * channel_destroy - Finalize, wait for q.s. and destroy channel.
969 * @chan: channel to destroy
970 *
971 * Holds cpu hotplug.
972 * Call "destroy" callback, finalize channels, and then decrement the
973 * channel reference count. Note that when readers have completed data
974 * consumption of finalized channels, get_subbuf() will return -ENODATA.
975 * They should release their handle at that point. Returns the private
976 * data pointer.
977 */
978 void *channel_destroy(struct lttng_kernel_ring_buffer_channel *chan)
979 {
980 int cpu;
981 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
982 void *priv;
983
984 irq_work_sync(&chan->wakeup_pending);
985
986 channel_unregister_notifiers(chan);
987
988 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
989 /*
990 * No need to hold cpu hotplug, because all notifiers have been
991 * unregistered.
992 */
993 for_each_channel_cpu(cpu, chan) {
994 struct lttng_kernel_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
995 cpu);
996
997 if (config->cb.buffer_finalize)
998 config->cb.buffer_finalize(buf,
999 chan->backend.priv,
1000 cpu);
1001 /*
1002 * Perform flush before writing to finalized.
1003 */
1004 smp_wmb();
1005 WRITE_ONCE(buf->finalized, 1);
1006 wake_up_interruptible(&buf->read_wait);
1007 }
1008 } else {
1009 struct lttng_kernel_ring_buffer *buf = chan->backend.buf;
1010
1011 if (config->cb.buffer_finalize)
1012 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
1013 /*
1014 * Perform flush before writing to finalized.
1015 */
1016 smp_wmb();
1017 WRITE_ONCE(buf->finalized, 1);
1018 wake_up_interruptible(&buf->read_wait);
1019 }
1020 WRITE_ONCE(chan->finalized, 1);
1021 wake_up_interruptible(&chan->hp_wait);
1022 wake_up_interruptible(&chan->read_wait);
1023 priv = chan->backend.priv;
1024 kref_put(&chan->ref, channel_release);
1025 return priv;
1026 }
1027 EXPORT_SYMBOL_GPL(channel_destroy);
1028
1029 struct lttng_kernel_ring_buffer *channel_get_ring_buffer(
1030 const struct lttng_kernel_ring_buffer_config *config,
1031 struct lttng_kernel_ring_buffer_channel *chan, int cpu)
1032 {
1033 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1034 return chan->backend.buf;
1035 else
1036 return per_cpu_ptr(chan->backend.buf, cpu);
1037 }
1038 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1039
1040 int lib_ring_buffer_open_read(struct lttng_kernel_ring_buffer *buf)
1041 {
1042 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1043
1044 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1045 return -EBUSY;
1046 if (!lttng_kref_get(&chan->ref)) {
1047 atomic_long_dec(&buf->active_readers);
1048 return -EOVERFLOW;
1049 }
1050 lttng_smp_mb__after_atomic();
1051 return 0;
1052 }
1053 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1054
1055 void lib_ring_buffer_release_read(struct lttng_kernel_ring_buffer *buf)
1056 {
1057 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1058
1059 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1060 lttng_smp_mb__before_atomic();
1061 atomic_long_dec(&buf->active_readers);
1062 kref_put(&chan->ref, channel_release);
1063 }
1064 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1065
1066 /*
1067 * Promote compiler barrier to a smp_mb().
1068 * For the specific ring buffer case, this IPI call should be removed if the
1069 * architecture does not reorder writes. This should eventually be provided by
1070 * a separate architecture-specific infrastructure.
1071 */
1072 static void remote_mb(void *info)
1073 {
1074 smp_mb();
1075 }
1076
1077 /**
1078 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1079 * @buf: ring buffer
1080 * @consumed: consumed count indicating the position where to read
1081 * @produced: produced count, indicates position when to stop reading
1082 *
1083 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1084 * data to read at consumed position, or 0 if the get operation succeeds.
1085 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1086 */
1087
1088 int lib_ring_buffer_snapshot(struct lttng_kernel_ring_buffer *buf,
1089 unsigned long *consumed, unsigned long *produced)
1090 {
1091 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1092 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1093 unsigned long consumed_cur, write_offset;
1094 int finalized;
1095
1096 retry:
1097 finalized = LTTNG_READ_ONCE(buf->finalized);
1098 /*
1099 * Read finalized before counters.
1100 */
1101 smp_rmb();
1102 consumed_cur = atomic_long_read(&buf->consumed);
1103 /*
1104 * No need to issue a memory barrier between consumed count read and
1105 * write offset read, because consumed count can only change
1106 * concurrently in overwrite mode, and we keep a sequence counter
1107 * identifier derived from the write offset to check we are getting
1108 * the same sub-buffer we are expecting (the sub-buffers are atomically
1109 * "tagged" upon writes, tags are checked upon read).
1110 */
1111 write_offset = v_read(config, &buf->offset);
1112
1113 /*
1114 * Check that we are not about to read the same subbuffer in
1115 * which the writer head is.
1116 */
1117 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1118 == 0)
1119 goto nodata;
1120
1121 *consumed = consumed_cur;
1122 *produced = subbuf_trunc(write_offset, chan);
1123
1124 return 0;
1125
1126 nodata:
1127 /*
1128 * The memory barriers __wait_event()/wake_up_interruptible() take care
1129 * of "raw_spin_is_locked" memory ordering.
1130 */
1131 if (finalized)
1132 return -ENODATA;
1133 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1134 goto retry;
1135 else
1136 return -EAGAIN;
1137 }
1138 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1139
1140 /**
1141 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1142 * are saved regardless of whether the consumed and produced positions are
1143 * in the same subbuffer.
1144 * @buf: ring buffer
1145 * @consumed: consumed byte count indicating the last position read
1146 * @produced: produced byte count indicating the last position written
1147 *
1148 * This function is meant to provide information on the exact producer and
1149 * consumer positions without regard for the "snapshot" feature.
1150 */
1151 int lib_ring_buffer_snapshot_sample_positions(struct lttng_kernel_ring_buffer *buf,
1152 unsigned long *consumed, unsigned long *produced)
1153 {
1154 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1155 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1156
1157 smp_rmb();
1158 *consumed = atomic_long_read(&buf->consumed);
1159 /*
1160 * No need to issue a memory barrier between consumed count read and
1161 * write offset read, because consumed count can only change
1162 * concurrently in overwrite mode, and we keep a sequence counter
1163 * identifier derived from the write offset to check we are getting
1164 * the same sub-buffer we are expecting (the sub-buffers are atomically
1165 * "tagged" upon writes, tags are checked upon read).
1166 */
1167 *produced = v_read(config, &buf->offset);
1168 return 0;
1169 }
1170
1171 /**
1172 * lib_ring_buffer_put_snapshot - move consumed counter forward
1173 *
1174 * Should only be called from consumer context.
1175 * @buf: ring buffer
1176 * @consumed_new: new consumed count value
1177 */
1178 void lib_ring_buffer_move_consumer(struct lttng_kernel_ring_buffer *buf,
1179 unsigned long consumed_new)
1180 {
1181 struct lttng_kernel_ring_buffer_backend *bufb = &buf->backend;
1182 struct lttng_kernel_ring_buffer_channel *chan = bufb->chan;
1183 unsigned long consumed;
1184
1185 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1186
1187 /*
1188 * Only push the consumed value forward.
1189 * If the consumed cmpxchg fails, this is because we have been pushed by
1190 * the writer in flight recorder mode.
1191 */
1192 consumed = atomic_long_read(&buf->consumed);
1193 while ((long) consumed - (long) consumed_new < 0)
1194 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1195 consumed_new);
1196 /* Wake-up the metadata producer */
1197 wake_up_interruptible(&buf->write_wait);
1198 }
1199 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1200
1201 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1202 static void lib_ring_buffer_flush_read_subbuf_dcache(
1203 const struct lttng_kernel_ring_buffer_config *config,
1204 struct lttng_kernel_ring_buffer_channel *chan,
1205 struct lttng_kernel_ring_buffer *buf)
1206 {
1207 struct lttng_kernel_ring_buffer_backend_pages *pages;
1208 unsigned long sb_bindex, id, i, nr_pages;
1209
1210 if (config->output != RING_BUFFER_MMAP)
1211 return;
1212
1213 /*
1214 * Architectures with caches aliased on virtual addresses may
1215 * use different cache lines for the linear mapping vs
1216 * user-space memory mapping. Given that the ring buffer is
1217 * based on the kernel linear mapping, aligning it with the
1218 * user-space mapping is not straightforward, and would require
1219 * extra TLB entries. Therefore, simply flush the dcache for the
1220 * entire sub-buffer before reading it.
1221 */
1222 id = buf->backend.buf_rsb.id;
1223 sb_bindex = subbuffer_id_get_index(config, id);
1224 pages = buf->backend.array[sb_bindex];
1225 nr_pages = buf->backend.num_pages_per_subbuf;
1226 for (i = 0; i < nr_pages; i++) {
1227 struct lttng_kernel_ring_buffer_backend_page *backend_page;
1228
1229 backend_page = &pages->p[i];
1230 flush_dcache_page(pfn_to_page(backend_page->pfn));
1231 }
1232 }
1233 #else
1234 static void lib_ring_buffer_flush_read_subbuf_dcache(
1235 const struct lttng_kernel_ring_buffer_config *config,
1236 struct lttng_kernel_ring_buffer_channel *chan,
1237 struct lttng_kernel_ring_buffer *buf)
1238 {
1239 }
1240 #endif
1241
1242 /**
1243 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1244 * @buf: ring buffer
1245 * @consumed: consumed count indicating the position where to read
1246 *
1247 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1248 * data to read at consumed position, or 0 if the get operation succeeds.
1249 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1250 */
1251 int lib_ring_buffer_get_subbuf(struct lttng_kernel_ring_buffer *buf,
1252 unsigned long consumed)
1253 {
1254 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1255 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1256 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1257 int ret;
1258 int finalized;
1259
1260 if (buf->get_subbuf) {
1261 /*
1262 * Reader is trying to get a subbuffer twice.
1263 */
1264 CHAN_WARN_ON(chan, 1);
1265 return -EBUSY;
1266 }
1267 retry:
1268 finalized = LTTNG_READ_ONCE(buf->finalized);
1269 /*
1270 * Read finalized before counters.
1271 */
1272 smp_rmb();
1273 consumed_cur = atomic_long_read(&buf->consumed);
1274 consumed_idx = subbuf_index(consumed, chan);
1275 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1276 /*
1277 * Make sure we read the commit count before reading the buffer
1278 * data and the write offset. Correct consumed offset ordering
1279 * wrt commit count is insured by the use of cmpxchg to update
1280 * the consumed offset.
1281 * smp_call_function_single can fail if the remote CPU is offline,
1282 * this is OK because then there is no wmb to execute there.
1283 * If our thread is executing on the same CPU as the on the buffers
1284 * belongs to, we don't have to synchronize it at all. If we are
1285 * migrated, the scheduler will take care of the memory barriers.
1286 * Normally, smp_call_function_single() should ensure program order when
1287 * executing the remote function, which implies that it surrounds the
1288 * function execution with :
1289 * smp_mb()
1290 * send IPI
1291 * csd_lock_wait
1292 * recv IPI
1293 * smp_mb()
1294 * exec. function
1295 * smp_mb()
1296 * csd unlock
1297 * smp_mb()
1298 *
1299 * However, smp_call_function_single() does not seem to clearly execute
1300 * such barriers. It depends on spinlock semantic to provide the barrier
1301 * before executing the IPI and, when busy-looping, csd_lock_wait only
1302 * executes smp_mb() when it has to wait for the other CPU.
1303 *
1304 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1305 * required ourself, even if duplicated. It has no performance impact
1306 * anyway.
1307 *
1308 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1309 * read and write vs write. They do not ensure core synchronization. We
1310 * really have to ensure total order between the 3 barriers running on
1311 * the 2 CPUs.
1312 */
1313 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1314 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1315 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1316 if (raw_smp_processor_id() != buf->backend.cpu) {
1317 /* Total order with IPI handler smp_mb() */
1318 smp_mb();
1319 smp_call_function_single(buf->backend.cpu,
1320 remote_mb, NULL, 1);
1321 /* Total order with IPI handler smp_mb() */
1322 smp_mb();
1323 }
1324 } else {
1325 /* Total order with IPI handler smp_mb() */
1326 smp_mb();
1327 smp_call_function(remote_mb, NULL, 1);
1328 /* Total order with IPI handler smp_mb() */
1329 smp_mb();
1330 }
1331 } else {
1332 /*
1333 * Local rmb to match the remote wmb to read the commit count
1334 * before the buffer data and the write offset.
1335 */
1336 smp_rmb();
1337 }
1338
1339 write_offset = v_read(config, &buf->offset);
1340
1341 /*
1342 * Check that the buffer we are getting is after or at consumed_cur
1343 * position.
1344 */
1345 if ((long) subbuf_trunc(consumed, chan)
1346 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1347 goto nodata;
1348
1349 /*
1350 * Check that the subbuffer we are trying to consume has been
1351 * already fully committed.
1352 */
1353 if (((commit_count - chan->backend.subbuf_size)
1354 & chan->commit_count_mask)
1355 - (buf_trunc(consumed, chan)
1356 >> chan->backend.num_subbuf_order)
1357 != 0)
1358 goto nodata;
1359
1360 /*
1361 * Check that we are not about to read the same subbuffer in
1362 * which the writer head is.
1363 */
1364 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1365 == 0)
1366 goto nodata;
1367
1368 /*
1369 * Failure to get the subbuffer causes a busy-loop retry without going
1370 * to a wait queue. These are caused by short-lived race windows where
1371 * the writer is getting access to a subbuffer we were trying to get
1372 * access to. Also checks that the "consumed" buffer count we are
1373 * looking for matches the one contained in the subbuffer id.
1374 */
1375 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1376 consumed_idx, buf_trunc_val(consumed, chan));
1377 if (ret)
1378 goto retry;
1379 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1380
1381 buf->get_subbuf_consumed = consumed;
1382 buf->get_subbuf = 1;
1383
1384 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1385
1386 return 0;
1387
1388 nodata:
1389 /*
1390 * The memory barriers __wait_event()/wake_up_interruptible() take care
1391 * of "raw_spin_is_locked" memory ordering.
1392 */
1393 if (finalized)
1394 return -ENODATA;
1395 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1396 goto retry;
1397 else
1398 return -EAGAIN;
1399 }
1400 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1401
1402 /**
1403 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1404 * @buf: ring buffer
1405 */
1406 void lib_ring_buffer_put_subbuf(struct lttng_kernel_ring_buffer *buf)
1407 {
1408 struct lttng_kernel_ring_buffer_backend *bufb = &buf->backend;
1409 struct lttng_kernel_ring_buffer_channel *chan = bufb->chan;
1410 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1411 unsigned long read_sb_bindex, consumed_idx, consumed;
1412
1413 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1414
1415 if (!buf->get_subbuf) {
1416 /*
1417 * Reader puts a subbuffer it did not get.
1418 */
1419 CHAN_WARN_ON(chan, 1);
1420 return;
1421 }
1422 consumed = buf->get_subbuf_consumed;
1423 buf->get_subbuf = 0;
1424
1425 /*
1426 * Clear the records_unread counter. (overruns counter)
1427 * Can still be non-zero if a file reader simply grabbed the data
1428 * without using iterators.
1429 * Can be below zero if an iterator is used on a snapshot more than
1430 * once.
1431 */
1432 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1433 v_add(config, v_read(config,
1434 &bufb->array[read_sb_bindex]->records_unread),
1435 &bufb->records_read);
1436 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1437 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1438 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1439 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1440
1441 /*
1442 * Exchange the reader subbuffer with the one we put in its place in the
1443 * writer subbuffer table. Expect the original consumed count. If
1444 * update_read_sb_index fails, this is because the writer updated the
1445 * subbuffer concurrently. We should therefore keep the subbuffer we
1446 * currently have: it has become invalid to try reading this sub-buffer
1447 * consumed count value anyway.
1448 */
1449 consumed_idx = subbuf_index(consumed, chan);
1450 update_read_sb_index(config, &buf->backend, &chan->backend,
1451 consumed_idx, buf_trunc_val(consumed, chan));
1452 /*
1453 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1454 * if the writer concurrently updated it.
1455 */
1456 }
1457 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1458
1459 /*
1460 * cons_offset is an iterator on all subbuffer offsets between the reader
1461 * position and the writer position. (inclusive)
1462 */
1463 static
1464 void lib_ring_buffer_print_subbuffer_errors(struct lttng_kernel_ring_buffer *buf,
1465 struct lttng_kernel_ring_buffer_channel *chan,
1466 unsigned long cons_offset,
1467 int cpu)
1468 {
1469 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1470 unsigned long cons_idx, commit_count, commit_count_sb;
1471
1472 cons_idx = subbuf_index(cons_offset, chan);
1473 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1474 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1475
1476 if (subbuf_offset(commit_count, chan) != 0)
1477 printk(KERN_WARNING
1478 "LTTng: ring buffer %s, cpu %d: "
1479 "commit count in subbuffer %lu,\n"
1480 "expecting multiples of %lu bytes\n"
1481 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1482 chan->backend.name, cpu, cons_idx,
1483 chan->backend.subbuf_size,
1484 commit_count, commit_count_sb);
1485
1486 printk(KERN_DEBUG "LTTng: ring buffer: %s, cpu %d: %lu bytes committed\n",
1487 chan->backend.name, cpu, commit_count);
1488 }
1489
1490 static
1491 void lib_ring_buffer_print_buffer_errors(struct lttng_kernel_ring_buffer *buf,
1492 struct lttng_kernel_ring_buffer_channel *chan,
1493 void *priv, int cpu)
1494 {
1495 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1496 unsigned long write_offset, cons_offset;
1497
1498 /*
1499 * No need to order commit_count, write_offset and cons_offset reads
1500 * because we execute at teardown when no more writer nor reader
1501 * references are left.
1502 */
1503 write_offset = v_read(config, &buf->offset);
1504 cons_offset = atomic_long_read(&buf->consumed);
1505 if (write_offset != cons_offset)
1506 printk(KERN_DEBUG
1507 "LTTng: ring buffer %s, cpu %d: "
1508 "non-consumed data\n"
1509 " [ %lu bytes written, %lu bytes read ]\n",
1510 chan->backend.name, cpu, write_offset, cons_offset);
1511
1512 for (cons_offset = atomic_long_read(&buf->consumed);
1513 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1514 chan)
1515 - cons_offset) > 0;
1516 cons_offset = subbuf_align(cons_offset, chan))
1517 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1518 cpu);
1519 }
1520
1521 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
1522 static
1523 void lib_ring_buffer_print_records_count(struct lttng_kernel_ring_buffer_channel *chan,
1524 struct lttng_kernel_ring_buffer *buf,
1525 int cpu)
1526 {
1527 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1528
1529 if (!strcmp(chan->backend.name, "relay-metadata")) {
1530 printk(KERN_DEBUG "LTTng: ring buffer %s: %lu records written, "
1531 "%lu records overrun\n",
1532 chan->backend.name,
1533 v_read(config, &buf->records_count),
1534 v_read(config, &buf->records_overrun));
1535 } else {
1536 printk(KERN_DEBUG "LTTng: ring buffer %s, cpu %d: %lu records written, "
1537 "%lu records overrun\n",
1538 chan->backend.name, cpu,
1539 v_read(config, &buf->records_count),
1540 v_read(config, &buf->records_overrun));
1541 }
1542 }
1543 #else
1544 static
1545 void lib_ring_buffer_print_records_count(struct lttng_kernel_ring_buffer_channel *chan,
1546 struct lttng_kernel_ring_buffer *buf,
1547 int cpu)
1548 {
1549 }
1550 #endif
1551
1552 static
1553 void lib_ring_buffer_print_errors(struct lttng_kernel_ring_buffer_channel *chan,
1554 struct lttng_kernel_ring_buffer *buf, int cpu)
1555 {
1556 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1557 void *priv = chan->backend.priv;
1558
1559 lib_ring_buffer_print_records_count(chan, buf, cpu);
1560 if (strcmp(chan->backend.name, "relay-metadata")) {
1561 if (v_read(config, &buf->records_lost_full)
1562 || v_read(config, &buf->records_lost_wrap)
1563 || v_read(config, &buf->records_lost_big))
1564 printk(KERN_WARNING
1565 "LTTng: ring buffer %s, cpu %d: records were lost. Caused by:\n"
1566 " [ %lu buffer full, %lu nest buffer wrap-around, "
1567 "%lu event too big ]\n",
1568 chan->backend.name, cpu,
1569 v_read(config, &buf->records_lost_full),
1570 v_read(config, &buf->records_lost_wrap),
1571 v_read(config, &buf->records_lost_big));
1572 }
1573 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1574 }
1575
1576 /*
1577 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1578 *
1579 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1580 */
1581 static
1582 void lib_ring_buffer_switch_old_start(struct lttng_kernel_ring_buffer *buf,
1583 struct lttng_kernel_ring_buffer_channel *chan,
1584 struct switch_offsets *offsets,
1585 const struct lttng_kernel_ring_buffer_ctx *ctx)
1586 {
1587 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1588 unsigned long oldidx = subbuf_index(offsets->old, chan);
1589 unsigned long commit_count;
1590 struct commit_counters_hot *cc_hot;
1591
1592 config->cb.buffer_begin(buf, ctx->priv.tsc, oldidx);
1593
1594 /*
1595 * Order all writes to buffer before the commit count update that will
1596 * determine that the subbuffer is full.
1597 */
1598 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1599 /*
1600 * Must write slot data before incrementing commit count. This
1601 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1602 * by get_subbuf().
1603 */
1604 barrier();
1605 } else
1606 smp_wmb();
1607 cc_hot = &buf->commit_hot[oldidx];
1608 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1609 commit_count = v_read(config, &cc_hot->cc);
1610 /* Check if the written buffer has to be delivered */
1611 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1612 commit_count, oldidx, ctx);
1613 lib_ring_buffer_write_commit_counter(config, buf, chan,
1614 offsets->old + config->cb.subbuffer_header_size(),
1615 commit_count, cc_hot);
1616 }
1617
1618 /*
1619 * lib_ring_buffer_switch_old_end: switch old subbuffer
1620 *
1621 * Note : offset_old should never be 0 here. It is ok, because we never perform
1622 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1623 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1624 * subbuffer.
1625 */
1626 static
1627 void lib_ring_buffer_switch_old_end(struct lttng_kernel_ring_buffer *buf,
1628 struct lttng_kernel_ring_buffer_channel *chan,
1629 struct switch_offsets *offsets,
1630 const struct lttng_kernel_ring_buffer_ctx *ctx)
1631 {
1632 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1633 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1634 unsigned long commit_count, padding_size, data_size;
1635 struct commit_counters_hot *cc_hot;
1636 u64 *ts_end;
1637
1638 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1639 padding_size = chan->backend.subbuf_size - data_size;
1640 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1641
1642 ts_end = &buf->ts_end[oldidx];
1643 /*
1644 * This is the last space reservation in that sub-buffer before
1645 * it gets delivered. This provides exclusive access to write to
1646 * this sub-buffer's ts_end. There are also no concurrent
1647 * readers of that ts_end because delivery of that sub-buffer is
1648 * postponed until the commit counter is incremented for the
1649 * current space reservation.
1650 */
1651 *ts_end = ctx->priv.tsc;
1652
1653 /*
1654 * Order all writes to buffer and store to ts_end before the commit
1655 * count update that will determine that the subbuffer is full.
1656 */
1657 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1658 /*
1659 * Must write slot data before incrementing commit count. This
1660 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1661 * by get_subbuf().
1662 */
1663 barrier();
1664 } else
1665 smp_wmb();
1666 cc_hot = &buf->commit_hot[oldidx];
1667 v_add(config, padding_size, &cc_hot->cc);
1668 commit_count = v_read(config, &cc_hot->cc);
1669 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1670 commit_count, oldidx, ctx);
1671 lib_ring_buffer_write_commit_counter(config, buf, chan,
1672 offsets->old + padding_size, commit_count,
1673 cc_hot);
1674 }
1675
1676 /*
1677 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1678 *
1679 * This code can be executed unordered : writers may already have written to the
1680 * sub-buffer before this code gets executed, caution. The commit makes sure
1681 * that this code is executed before the deliver of this sub-buffer.
1682 */
1683 static
1684 void lib_ring_buffer_switch_new_start(struct lttng_kernel_ring_buffer *buf,
1685 struct lttng_kernel_ring_buffer_channel *chan,
1686 struct switch_offsets *offsets,
1687 const struct lttng_kernel_ring_buffer_ctx *ctx)
1688 {
1689 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1690 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1691 unsigned long commit_count;
1692 struct commit_counters_hot *cc_hot;
1693
1694 config->cb.buffer_begin(buf, ctx->priv.tsc, beginidx);
1695
1696 /*
1697 * Order all writes to buffer before the commit count update that will
1698 * determine that the subbuffer is full.
1699 */
1700 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1701 /*
1702 * Must write slot data before incrementing commit count. This
1703 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1704 * by get_subbuf().
1705 */
1706 barrier();
1707 } else
1708 smp_wmb();
1709 cc_hot = &buf->commit_hot[beginidx];
1710 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1711 commit_count = v_read(config, &cc_hot->cc);
1712 /* Check if the written buffer has to be delivered */
1713 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1714 commit_count, beginidx, ctx);
1715 lib_ring_buffer_write_commit_counter(config, buf, chan,
1716 offsets->begin + config->cb.subbuffer_header_size(),
1717 commit_count, cc_hot);
1718 }
1719
1720 /*
1721 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1722 *
1723 * Calls subbuffer_set_data_size() to set the data size of the current
1724 * sub-buffer. We do not need to perform check_deliver nor commit here,
1725 * since this task will be done by the "commit" of the event for which
1726 * we are currently doing the space reservation.
1727 */
1728 static
1729 void lib_ring_buffer_switch_new_end(struct lttng_kernel_ring_buffer *buf,
1730 struct lttng_kernel_ring_buffer_channel *chan,
1731 struct switch_offsets *offsets,
1732 const struct lttng_kernel_ring_buffer_ctx *ctx)
1733 {
1734 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1735 unsigned long endidx, data_size;
1736 u64 *ts_end;
1737
1738 endidx = subbuf_index(offsets->end - 1, chan);
1739 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1740 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1741 ts_end = &buf->ts_end[endidx];
1742 /*
1743 * This is the last space reservation in that sub-buffer before
1744 * it gets delivered. This provides exclusive access to write to
1745 * this sub-buffer's ts_end. There are also no concurrent
1746 * readers of that ts_end because delivery of that sub-buffer is
1747 * postponed until the commit counter is incremented for the
1748 * current space reservation.
1749 */
1750 *ts_end = ctx->priv.tsc;
1751 }
1752
1753 /*
1754 * Returns :
1755 * 0 if ok
1756 * !0 if execution must be aborted.
1757 */
1758 static
1759 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1760 struct lttng_kernel_ring_buffer *buf,
1761 struct lttng_kernel_ring_buffer_channel *chan,
1762 struct switch_offsets *offsets,
1763 struct lttng_kernel_ring_buffer_ctx *ctx)
1764 {
1765 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1766 unsigned long off, reserve_commit_diff;
1767
1768 offsets->begin = v_read(config, &buf->offset);
1769 offsets->old = offsets->begin;
1770 offsets->switch_old_start = 0;
1771 off = subbuf_offset(offsets->begin, chan);
1772
1773 ctx->priv.tsc = config->cb.ring_buffer_clock_read(chan);
1774
1775 /*
1776 * Ensure we flush the header of an empty subbuffer when doing the
1777 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1778 * total data gathering duration even if there were no records saved
1779 * after the last buffer switch.
1780 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1781 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1782 * subbuffer header as appropriate.
1783 * The next record that reserves space will be responsible for
1784 * populating the following subbuffer header. We choose not to populate
1785 * the next subbuffer header here because we want to be able to use
1786 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1787 * buffer flush, which must guarantee that all the buffer content
1788 * (records and header timestamps) are visible to the reader. This is
1789 * required for quiescence guarantees for the fusion merge.
1790 */
1791 if (mode != SWITCH_FLUSH && !off)
1792 return -1; /* we do not have to switch : buffer is empty */
1793
1794 if (unlikely(off == 0)) {
1795 unsigned long sb_index, commit_count;
1796
1797 /*
1798 * We are performing a SWITCH_FLUSH. At this stage, there are no
1799 * concurrent writes into the buffer.
1800 *
1801 * The client does not save any header information. Don't
1802 * switch empty subbuffer on finalize, because it is invalid to
1803 * deliver a completely empty subbuffer.
1804 */
1805 if (!config->cb.subbuffer_header_size())
1806 return -1;
1807
1808 /* Test new buffer integrity */
1809 sb_index = subbuf_index(offsets->begin, chan);
1810 commit_count = v_read(config,
1811 &buf->commit_cold[sb_index].cc_sb);
1812 reserve_commit_diff =
1813 (buf_trunc(offsets->begin, chan)
1814 >> chan->backend.num_subbuf_order)
1815 - (commit_count & chan->commit_count_mask);
1816 if (likely(reserve_commit_diff == 0)) {
1817 /* Next subbuffer not being written to. */
1818 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1819 subbuf_trunc(offsets->begin, chan)
1820 - subbuf_trunc((unsigned long)
1821 atomic_long_read(&buf->consumed), chan)
1822 >= chan->backend.buf_size)) {
1823 /*
1824 * We do not overwrite non consumed buffers
1825 * and we are full : don't switch.
1826 */
1827 return -1;
1828 } else {
1829 /*
1830 * Next subbuffer not being written to, and we
1831 * are either in overwrite mode or the buffer is
1832 * not full. It's safe to write in this new
1833 * subbuffer.
1834 */
1835 }
1836 } else {
1837 /*
1838 * Next subbuffer reserve offset does not match the
1839 * commit offset. Don't perform switch in
1840 * producer-consumer and overwrite mode. Caused by
1841 * either a writer OOPS or too many nested writes over a
1842 * reserve/commit pair.
1843 */
1844 return -1;
1845 }
1846
1847 /*
1848 * Need to write the subbuffer start header on finalize.
1849 */
1850 offsets->switch_old_start = 1;
1851 }
1852 offsets->begin = subbuf_align(offsets->begin, chan);
1853 /* Note: old points to the next subbuf at offset 0 */
1854 offsets->end = offsets->begin;
1855 /*
1856 * Populate the records lost counters prior to performing a
1857 * sub-buffer switch.
1858 */
1859 ctx->priv.records_lost_full = v_read(config, &buf->records_lost_full);
1860 ctx->priv.records_lost_wrap = v_read(config, &buf->records_lost_wrap);
1861 ctx->priv.records_lost_big = v_read(config, &buf->records_lost_big);
1862 return 0;
1863 }
1864
1865 /*
1866 * Force a sub-buffer switch. This operation is completely reentrant : can be
1867 * called while tracing is active with absolutely no lock held.
1868 *
1869 * Note, however, that as a v_cmpxchg is used for some atomic
1870 * operations, this function must be called from the CPU which owns the buffer
1871 * for a ACTIVE flush.
1872 */
1873 void lib_ring_buffer_switch_slow(struct lttng_kernel_ring_buffer *buf, enum switch_mode mode)
1874 {
1875 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1876 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1877 struct lttng_kernel_ring_buffer_ctx ctx;
1878 struct switch_offsets offsets;
1879 unsigned long oldidx;
1880
1881 offsets.size = 0;
1882
1883 /*
1884 * Perform retryable operations.
1885 */
1886 do {
1887 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1888 &ctx))
1889 return; /* Switch not needed */
1890 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1891 != offsets.old);
1892
1893 /*
1894 * Atomically update last_tsc. This update races against concurrent
1895 * atomic updates, but the race will always cause supplementary full TSC
1896 * records, never the opposite (missing a full TSC record when it would
1897 * be needed).
1898 */
1899 save_last_tsc(config, buf, ctx.priv.tsc);
1900
1901 /*
1902 * Push the reader if necessary
1903 */
1904 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1905
1906 oldidx = subbuf_index(offsets.old, chan);
1907 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1908
1909 /*
1910 * May need to populate header start on SWITCH_FLUSH.
1911 */
1912 if (offsets.switch_old_start) {
1913 lib_ring_buffer_switch_old_start(buf, chan, &offsets, &ctx);
1914 offsets.old += config->cb.subbuffer_header_size();
1915 }
1916
1917 /*
1918 * Switch old subbuffer.
1919 */
1920 lib_ring_buffer_switch_old_end(buf, chan, &offsets, &ctx);
1921 }
1922 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1923
1924 struct switch_param {
1925 struct lttng_kernel_ring_buffer *buf;
1926 enum switch_mode mode;
1927 };
1928
1929 static void remote_switch(void *info)
1930 {
1931 struct switch_param *param = info;
1932 struct lttng_kernel_ring_buffer *buf = param->buf;
1933
1934 lib_ring_buffer_switch_slow(buf, param->mode);
1935 }
1936
1937 static void _lib_ring_buffer_switch_remote(struct lttng_kernel_ring_buffer *buf,
1938 enum switch_mode mode)
1939 {
1940 struct lttng_kernel_ring_buffer_channel *chan = buf->backend.chan;
1941 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
1942 int ret;
1943 struct switch_param param;
1944
1945 /*
1946 * With global synchronization we don't need to use the IPI scheme.
1947 */
1948 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1949 lib_ring_buffer_switch_slow(buf, mode);
1950 return;
1951 }
1952
1953 /*
1954 * Disabling preemption ensures two things: first, that the
1955 * target cpu is not taken concurrently offline while we are within
1956 * smp_call_function_single(). Secondly, if it happens that the
1957 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1958 * needs to be protected from CPU hotplug handlers, which can
1959 * also perform a remote subbuffer switch.
1960 */
1961 preempt_disable();
1962 param.buf = buf;
1963 param.mode = mode;
1964 ret = smp_call_function_single(buf->backend.cpu,
1965 remote_switch, &param, 1);
1966 if (ret) {
1967 /* Remote CPU is offline, do it ourself. */
1968 lib_ring_buffer_switch_slow(buf, mode);
1969 }
1970 preempt_enable();
1971 }
1972
1973 /* Switch sub-buffer if current sub-buffer is non-empty. */
1974 void lib_ring_buffer_switch_remote(struct lttng_kernel_ring_buffer *buf)
1975 {
1976 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1977 }
1978 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1979
1980 /* Switch sub-buffer even if current sub-buffer is empty. */
1981 void lib_ring_buffer_switch_remote_empty(struct lttng_kernel_ring_buffer *buf)
1982 {
1983 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1984 }
1985 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1986
1987 void lib_ring_buffer_clear(struct lttng_kernel_ring_buffer *buf)
1988 {
1989 struct lttng_kernel_ring_buffer_backend *bufb = &buf->backend;
1990 struct lttng_kernel_ring_buffer_channel *chan = bufb->chan;
1991
1992 lib_ring_buffer_switch_remote(buf);
1993 lib_ring_buffer_clear_reader(buf, chan);
1994 }
1995 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear);
1996
1997 /*
1998 * Returns :
1999 * 0 if ok
2000 * -ENOSPC if event size is too large for packet.
2001 * -ENOBUFS if there is currently not enough space in buffer for the event.
2002 * -EIO if data cannot be written into the buffer for any other reason.
2003 */
2004 static
2005 int lib_ring_buffer_try_reserve_slow(struct lttng_kernel_ring_buffer *buf,
2006 struct lttng_kernel_ring_buffer_channel *chan,
2007 struct switch_offsets *offsets,
2008 struct lttng_kernel_ring_buffer_ctx *ctx,
2009 void *client_ctx)
2010 {
2011 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
2012 unsigned long reserve_commit_diff, offset_cmp;
2013
2014 retry:
2015 offsets->begin = offset_cmp = v_read(config, &buf->offset);
2016 offsets->old = offsets->begin;
2017 offsets->switch_new_start = 0;
2018 offsets->switch_new_end = 0;
2019 offsets->switch_old_end = 0;
2020 offsets->pre_header_padding = 0;
2021
2022 ctx->priv.tsc = config->cb.ring_buffer_clock_read(chan);
2023 if ((int64_t) ctx->priv.tsc == -EIO)
2024 return -EIO;
2025
2026 if (last_tsc_overflow(config, buf, ctx->priv.tsc))
2027 ctx->priv.rflags |= RING_BUFFER_RFLAG_FULL_TSC;
2028
2029 if (unlikely(subbuf_offset(offsets->begin, ctx->priv.chan) == 0)) {
2030 offsets->switch_new_start = 1; /* For offsets->begin */
2031 } else {
2032 offsets->size = config->cb.record_header_size(config, chan,
2033 offsets->begin,
2034 &offsets->pre_header_padding,
2035 ctx, client_ctx);
2036 offsets->size +=
2037 lib_ring_buffer_align(offsets->begin + offsets->size,
2038 ctx->largest_align)
2039 + ctx->data_size;
2040 if (unlikely(subbuf_offset(offsets->begin, chan) +
2041 offsets->size > chan->backend.subbuf_size)) {
2042 offsets->switch_old_end = 1; /* For offsets->old */
2043 offsets->switch_new_start = 1; /* For offsets->begin */
2044 }
2045 }
2046 if (unlikely(offsets->switch_new_start)) {
2047 unsigned long sb_index, commit_count;
2048
2049 /*
2050 * We are typically not filling the previous buffer completely.
2051 */
2052 if (likely(offsets->switch_old_end))
2053 offsets->begin = subbuf_align(offsets->begin, chan);
2054 offsets->begin = offsets->begin
2055 + config->cb.subbuffer_header_size();
2056 /* Test new buffer integrity */
2057 sb_index = subbuf_index(offsets->begin, chan);
2058 /*
2059 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2060 * lib_ring_buffer_check_deliver() has the matching
2061 * memory barriers required around commit_cold cc_sb
2062 * updates to ensure reserve and commit counter updates
2063 * are not seen reordered when updated by another CPU.
2064 */
2065 smp_rmb();
2066 commit_count = v_read(config,
2067 &buf->commit_cold[sb_index].cc_sb);
2068 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2069 smp_rmb();
2070 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
2071 /*
2072 * The reserve counter have been concurrently updated
2073 * while we read the commit counter. This means the
2074 * commit counter we read might not match buf->offset
2075 * due to concurrent update. We therefore need to retry.
2076 */
2077 goto retry;
2078 }
2079 reserve_commit_diff =
2080 (buf_trunc(offsets->begin, chan)
2081 >> chan->backend.num_subbuf_order)
2082 - (commit_count & chan->commit_count_mask);
2083 if (likely(reserve_commit_diff == 0)) {
2084 /* Next subbuffer not being written to. */
2085 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2086 subbuf_trunc(offsets->begin, chan)
2087 - subbuf_trunc((unsigned long)
2088 atomic_long_read(&buf->consumed), chan)
2089 >= chan->backend.buf_size)) {
2090 /*
2091 * We do not overwrite non consumed buffers
2092 * and we are full : record is lost.
2093 */
2094 v_inc(config, &buf->records_lost_full);
2095 return -ENOBUFS;
2096 } else {
2097 /*
2098 * Next subbuffer not being written to, and we
2099 * are either in overwrite mode or the buffer is
2100 * not full. It's safe to write in this new
2101 * subbuffer.
2102 */
2103 }
2104 } else {
2105 /*
2106 * Next subbuffer reserve offset does not match the
2107 * commit offset, and this did not involve update to the
2108 * reserve counter. Drop record in producer-consumer and
2109 * overwrite mode. Caused by either a writer OOPS or
2110 * too many nested writes over a reserve/commit pair.
2111 */
2112 v_inc(config, &buf->records_lost_wrap);
2113 return -EIO;
2114 }
2115 offsets->size =
2116 config->cb.record_header_size(config, chan,
2117 offsets->begin,
2118 &offsets->pre_header_padding,
2119 ctx, client_ctx);
2120 offsets->size +=
2121 lib_ring_buffer_align(offsets->begin + offsets->size,
2122 ctx->largest_align)
2123 + ctx->data_size;
2124 if (unlikely(subbuf_offset(offsets->begin, chan)
2125 + offsets->size > chan->backend.subbuf_size)) {
2126 /*
2127 * Record too big for subbuffers, report error, don't
2128 * complete the sub-buffer switch.
2129 */
2130 v_inc(config, &buf->records_lost_big);
2131 return -ENOSPC;
2132 } else {
2133 /*
2134 * We just made a successful buffer switch and the
2135 * record fits in the new subbuffer. Let's write.
2136 */
2137 }
2138 } else {
2139 /*
2140 * Record fits in the current buffer and we are not on a switch
2141 * boundary. It's safe to write.
2142 */
2143 }
2144 offsets->end = offsets->begin + offsets->size;
2145
2146 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2147 /*
2148 * The offset_end will fall at the very beginning of the next
2149 * subbuffer.
2150 */
2151 offsets->switch_new_end = 1; /* For offsets->begin */
2152 }
2153 /*
2154 * Populate the records lost counters when the space reservation
2155 * may cause a sub-buffer switch.
2156 */
2157 if (offsets->switch_new_end || offsets->switch_old_end) {
2158 ctx->priv.records_lost_full = v_read(config, &buf->records_lost_full);
2159 ctx->priv.records_lost_wrap = v_read(config, &buf->records_lost_wrap);
2160 ctx->priv.records_lost_big = v_read(config, &buf->records_lost_big);
2161 }
2162 return 0;
2163 }
2164
2165 static struct lttng_kernel_ring_buffer *get_current_buf(struct lttng_kernel_ring_buffer_channel *chan, int cpu)
2166 {
2167 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
2168
2169 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2170 return per_cpu_ptr(chan->backend.buf, cpu);
2171 else
2172 return chan->backend.buf;
2173 }
2174
2175 void lib_ring_buffer_lost_event_too_big(struct lttng_kernel_ring_buffer_channel *chan)
2176 {
2177 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
2178 struct lttng_kernel_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2179
2180 v_inc(config, &buf->records_lost_big);
2181 }
2182 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2183
2184 /**
2185 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2186 * @ctx: ring buffer context.
2187 *
2188 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2189 * -EIO for other errors, else returns 0.
2190 * It will take care of sub-buffer switching.
2191 */
2192 int lib_ring_buffer_reserve_slow(struct lttng_kernel_ring_buffer_ctx *ctx,
2193 void *client_ctx)
2194 {
2195 struct lttng_kernel_ring_buffer_channel *chan = ctx->priv.chan;
2196 const struct lttng_kernel_ring_buffer_config *config = &chan->backend.config;
2197 struct lttng_kernel_ring_buffer *buf;
2198 struct switch_offsets offsets;
2199 int ret;
2200
2201 ctx->priv.buf = buf = get_current_buf(chan, ctx->priv.reserve_cpu);
2202 offsets.size = 0;
2203
2204 do {
2205 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2206 ctx, client_ctx);
2207 if (unlikely(ret))
2208 return ret;
2209 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2210 offsets.end)
2211 != offsets.old));
2212
2213 /*
2214 * Atomically update last_tsc. This update races against concurrent
2215 * atomic updates, but the race will always cause supplementary full TSC
2216 * records, never the opposite (missing a full TSC record when it would
2217 * be needed).
2218 */
2219 save_last_tsc(config, buf, ctx->priv.tsc);
2220
2221 /*
2222 * Push the reader if necessary
2223 */
2224 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2225
2226 /*
2227 * Clear noref flag for this subbuffer.
2228 */
2229 lib_ring_buffer_clear_noref(config, &buf->backend,
2230 subbuf_index(offsets.end - 1, chan));
2231
2232 /*
2233 * Switch old subbuffer if needed.
2234 */
2235 if (unlikely(offsets.switch_old_end)) {
2236 lib_ring_buffer_clear_noref(config, &buf->backend,
2237 subbuf_index(offsets.old - 1, chan));
2238 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx);
2239 }
2240
2241 /*
2242 * Populate new subbuffer.
2243 */
2244 if (unlikely(offsets.switch_new_start))
2245 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx);
2246
2247 if (unlikely(offsets.switch_new_end))
2248 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx);
2249
2250 ctx->priv.slot_size = offsets.size;
2251 ctx->priv.pre_offset = offsets.begin;
2252 ctx->priv.buf_offset = offsets.begin + offsets.pre_header_padding;
2253 return 0;
2254 }
2255 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2256
2257 static
2258 void lib_ring_buffer_vmcore_check_deliver(const struct lttng_kernel_ring_buffer_config *config,
2259 struct lttng_kernel_ring_buffer *buf,
2260 unsigned long commit_count,
2261 unsigned long idx)
2262 {
2263 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2264 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2265 }
2266
2267 /*
2268 * The ring buffer can count events recorded and overwritten per buffer,
2269 * but it is disabled by default due to its performance overhead.
2270 */
2271 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2272 static
2273 void deliver_count_events(const struct lttng_kernel_ring_buffer_config *config,
2274 struct lttng_kernel_ring_buffer *buf,
2275 unsigned long idx)
2276 {
2277 v_add(config, subbuffer_get_records_count(config,
2278 &buf->backend, idx),
2279 &buf->records_count);
2280 v_add(config, subbuffer_count_records_overrun(config,
2281 &buf->backend, idx),
2282 &buf->records_overrun);
2283 }
2284 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2285 static
2286 void deliver_count_events(const struct lttng_kernel_ring_buffer_config *config,
2287 struct lttng_kernel_ring_buffer *buf,
2288 unsigned long idx)
2289 {
2290 }
2291 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2292
2293
2294 void lib_ring_buffer_check_deliver_slow(const struct lttng_kernel_ring_buffer_config *config,
2295 struct lttng_kernel_ring_buffer *buf,
2296 struct lttng_kernel_ring_buffer_channel *chan,
2297 unsigned long offset,
2298 unsigned long commit_count,
2299 unsigned long idx,
2300 const struct lttng_kernel_ring_buffer_ctx *ctx)
2301 {
2302 unsigned long old_commit_count = commit_count
2303 - chan->backend.subbuf_size;
2304
2305 /*
2306 * If we succeeded at updating cc_sb below, we are the subbuffer
2307 * writer delivering the subbuffer. Deals with concurrent
2308 * updates of the "cc" value without adding a add_return atomic
2309 * operation to the fast path.
2310 *
2311 * We are doing the delivery in two steps:
2312 * - First, we cmpxchg() cc_sb to the new value
2313 * old_commit_count + 1. This ensures that we are the only
2314 * subbuffer user successfully filling the subbuffer, but we
2315 * do _not_ set the cc_sb value to "commit_count" yet.
2316 * Therefore, other writers that would wrap around the ring
2317 * buffer and try to start writing to our subbuffer would
2318 * have to drop records, because it would appear as
2319 * non-filled.
2320 * We therefore have exclusive access to the subbuffer control
2321 * structures. This mutual exclusion with other writers is
2322 * crucially important to perform record overruns count in
2323 * flight recorder mode locklessly.
2324 * - When we are ready to release the subbuffer (either for
2325 * reading or for overrun by other writers), we simply set the
2326 * cc_sb value to "commit_count" and perform delivery.
2327 *
2328 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2329 * This guarantees that old_commit_count + 1 != commit_count.
2330 */
2331
2332 /*
2333 * Order prior updates to reserve count prior to the
2334 * commit_cold cc_sb update.
2335 */
2336 smp_wmb();
2337 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2338 old_commit_count, old_commit_count + 1)
2339 == old_commit_count)) {
2340 u64 *ts_end;
2341
2342 /*
2343 * Start of exclusive subbuffer access. We are
2344 * guaranteed to be the last writer in this subbuffer
2345 * and any other writer trying to access this subbuffer
2346 * in this state is required to drop records.
2347 *
2348 * We can read the ts_end for the current sub-buffer
2349 * which has been saved by the very last space
2350 * reservation for the current sub-buffer.
2351 *
2352 * Order increment of commit counter before reading ts_end.
2353 */
2354 smp_mb();
2355 ts_end = &buf->ts_end[idx];
2356 deliver_count_events(config, buf, idx);
2357 config->cb.buffer_end(buf, *ts_end, idx,
2358 lib_ring_buffer_get_data_size(config,
2359 buf,
2360 idx), ctx);
2361
2362 /*
2363 * Increment the packet counter while we have exclusive
2364 * access.
2365 */
2366 subbuffer_inc_packet_count(config, &buf->backend, idx);
2367
2368 /*
2369 * Set noref flag and offset for this subbuffer id.
2370 * Contains a memory barrier that ensures counter stores
2371 * are ordered before set noref and offset.
2372 */
2373 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2374 buf_trunc_val(offset, chan));
2375
2376 /*
2377 * Order set_noref and record counter updates before the
2378 * end of subbuffer exclusive access. Orders with
2379 * respect to writers coming into the subbuffer after
2380 * wrap around, and also order wrt concurrent readers.
2381 */
2382 smp_mb();
2383 /* End of exclusive subbuffer access */
2384 v_set(config, &buf->commit_cold[idx].cc_sb,
2385 commit_count);
2386 /*
2387 * Order later updates to reserve count after
2388 * the commit_cold cc_sb update.
2389 */
2390 smp_wmb();
2391 lib_ring_buffer_vmcore_check_deliver(config, buf,
2392 commit_count, idx);
2393
2394 /*
2395 * RING_BUFFER_WAKEUP_BY_WRITER uses an irq_work to issue
2396 * the wakeups.
2397 */
2398 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2399 && atomic_long_read(&buf->active_readers)
2400 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2401 irq_work_queue(&buf->wakeup_pending);
2402 irq_work_queue(&chan->wakeup_pending);
2403 }
2404
2405 }
2406 }
2407 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2408
2409 int __init init_lib_ring_buffer_frontend(void)
2410 {
2411 int cpu;
2412
2413 for_each_possible_cpu(cpu)
2414 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2415 return 0;
2416 }
2417
2418 module_init(init_lib_ring_buffer_frontend);
2419
2420 void __exit exit_lib_ring_buffer_frontend(void)
2421 {
2422 }
2423
2424 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.136181 seconds and 4 git commands to generate.