ust: continue implementation of ustd
[ust.git] / libtracing / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
5 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
6 * Copyright (C) 2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
7 *
8 * Moved to kernel/relay.c by Paul Mundt, 2006.
9 * November 2006 - CPU hotplug support by Mathieu Desnoyers
10 * (mathieu.desnoyers@polymtl.ca)
11 *
12 * This file is released under the GPL.
13 */
14 //ust// #include <linux/errno.h>
15 //ust// #include <linux/stddef.h>
16 //ust// #include <linux/slab.h>
17 //ust// #include <linux/module.h>
18 //ust// #include <linux/string.h>
19 //ust// #include <linux/ltt-relay.h>
20 //ust// #include <linux/vmalloc.h>
21 //ust// #include <linux/mm.h>
22 //ust// #include <linux/cpu.h>
23 //ust// #include <linux/splice.h>
24 //ust// #include <linux/bitops.h>
25 #include "kernelcompat.h"
26 #include <sys/mman.h>
27 #include <sys/ipc.h>
28 #include <sys/shm.h>
29 #include "list.h"
30 #include "relay.h"
31 #include "channels.h"
32 #include "kref.h"
33 #include "tracer.h"
34 #include "tracercore.h"
35 #include "usterr.h"
36
37 /* list of open channels, for cpu hotplug */
38 static DEFINE_MUTEX(relay_channels_mutex);
39 static LIST_HEAD(relay_channels);
40
41
42 static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf);
43
44 /**
45 * relay_alloc_buf - allocate a channel buffer
46 * @buf: the buffer struct
47 * @size: total size of the buffer
48 */
49 //ust// static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
50 //ust//{
51 //ust// unsigned int i, n_pages;
52 //ust// struct buf_page *buf_page, *n;
53 //ust//
54 //ust// *size = PAGE_ALIGN(*size);
55 //ust// n_pages = *size >> PAGE_SHIFT;
56 //ust//
57 //ust// INIT_LIST_HEAD(&buf->pages);
58 //ust//
59 //ust// for (i = 0; i < n_pages; i++) {
60 //ust// buf_page = kmalloc_node(sizeof(*buf_page), GFP_KERNEL,
61 //ust// cpu_to_node(buf->cpu));
62 //ust// if (unlikely(!buf_page))
63 //ust// goto depopulate;
64 //ust// buf_page->page = alloc_pages_node(cpu_to_node(buf->cpu),
65 //ust// GFP_KERNEL | __GFP_ZERO, 0);
66 //ust// if (unlikely(!buf_page->page)) {
67 //ust// kfree(buf_page);
68 //ust// goto depopulate;
69 //ust// }
70 //ust// list_add_tail(&buf_page->list, &buf->pages);
71 //ust// buf_page->offset = (size_t)i << PAGE_SHIFT;
72 //ust// buf_page->buf = buf;
73 //ust// set_page_private(buf_page->page, (unsigned long)buf_page);
74 //ust// if (i == 0) {
75 //ust// buf->wpage = buf_page;
76 //ust// buf->hpage[0] = buf_page;
77 //ust// buf->hpage[1] = buf_page;
78 //ust// buf->rpage = buf_page;
79 //ust// }
80 //ust// }
81 //ust// buf->page_count = n_pages;
82 //ust// return 0;
83 //ust//
84 //ust//depopulate:
85 //ust// list_for_each_entry_safe(buf_page, n, &buf->pages, list) {
86 //ust// list_del_init(&buf_page->list);
87 //ust// __free_page(buf_page->page);
88 //ust// kfree(buf_page);
89 //ust// }
90 //ust// return -ENOMEM;
91 //ust//}
92
93 static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
94 {
95 unsigned int n_pages;
96 struct buf_page *buf_page, *n;
97
98 void *ptr;
99 int result;
100
101 *size = PAGE_ALIGN(*size);
102
103 result = buf->shmid = shmget(getpid(), *size, IPC_CREAT | IPC_EXCL | 0700);
104 if(buf->shmid == -1) {
105 PERROR("shmget");
106 return -1;
107 }
108
109 ptr = shmat(buf->shmid, NULL, 0);
110 if(ptr == (void *) -1) {
111 perror("shmat");
112 goto destroy_shmem;
113 }
114
115 /* Already mark the shared memory for destruction. This will occur only
116 * when all users have detached.
117 */
118 result = shmctl(buf->shmid, IPC_RMID, NULL);
119 if(result == -1) {
120 perror("shmctl");
121 return -1;
122 }
123
124 buf->buf_data = ptr;
125 buf->buf_size = *size;
126
127 return 0;
128
129 destroy_shmem:
130 result = shmctl(buf->shmid, IPC_RMID, NULL);
131 if(result == -1) {
132 perror("shmctl");
133 }
134
135 return -1;
136 }
137
138 /**
139 * relay_create_buf - allocate and initialize a channel buffer
140 * @chan: the relay channel
141 * @cpu: cpu the buffer belongs to
142 *
143 * Returns channel buffer if successful, %NULL otherwise.
144 */
145 static struct rchan_buf *relay_create_buf(struct rchan *chan)
146 {
147 int ret;
148 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
149 if (!buf)
150 return NULL;
151
152 // buf->cpu = cpu;
153 ret = relay_alloc_buf(buf, &chan->alloc_size);
154 if (ret)
155 goto free_buf;
156
157 buf->chan = chan;
158 kref_get(&buf->chan->kref);
159 return buf;
160
161 free_buf:
162 kfree(buf);
163 return NULL;
164 }
165
166 /**
167 * relay_destroy_channel - free the channel struct
168 * @kref: target kernel reference that contains the relay channel
169 *
170 * Should only be called from kref_put().
171 */
172 static void relay_destroy_channel(struct kref *kref)
173 {
174 struct rchan *chan = container_of(kref, struct rchan, kref);
175 kfree(chan);
176 }
177
178 /**
179 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
180 * @buf: the buffer struct
181 */
182 static void relay_destroy_buf(struct rchan_buf *buf)
183 {
184 struct rchan *chan = buf->chan;
185 struct buf_page *buf_page, *n;
186 int result;
187
188 result = munmap(buf->buf_data, buf->buf_size);
189 if(result == -1) {
190 PERROR("munmap");
191 }
192
193 //ust// chan->buf[buf->cpu] = NULL;
194 kfree(buf);
195 kref_put(&chan->kref, relay_destroy_channel);
196 }
197
198 /**
199 * relay_remove_buf - remove a channel buffer
200 * @kref: target kernel reference that contains the relay buffer
201 *
202 * Removes the file from the fileystem, which also frees the
203 * rchan_buf_struct and the channel buffer. Should only be called from
204 * kref_put().
205 */
206 static void relay_remove_buf(struct kref *kref)
207 {
208 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
209 //ust// buf->chan->cb->remove_buf_file(buf);
210 relay_destroy_buf(buf);
211 }
212
213 /*
214 * High-level relay kernel API and associated functions.
215 */
216
217 /*
218 * rchan_callback implementations defining default channel behavior. Used
219 * in place of corresponding NULL values in client callback struct.
220 */
221
222 /*
223 * create_buf_file_create() default callback. Does nothing.
224 */
225 static struct dentry *create_buf_file_default_callback(const char *filename,
226 struct dentry *parent,
227 int mode,
228 struct rchan_buf *buf)
229 {
230 return NULL;
231 }
232
233 /*
234 * remove_buf_file() default callback. Does nothing.
235 */
236 static int remove_buf_file_default_callback(struct dentry *dentry)
237 {
238 return -EINVAL;
239 }
240
241 /**
242 * wakeup_readers - wake up readers waiting on a channel
243 * @data: contains the channel buffer
244 *
245 * This is the timer function used to defer reader waking.
246 */
247 //ust// static void wakeup_readers(unsigned long data)
248 //ust// {
249 //ust// struct rchan_buf *buf = (struct rchan_buf *)data;
250 //ust// wake_up_interruptible(&buf->read_wait);
251 //ust// }
252
253 /**
254 * __relay_reset - reset a channel buffer
255 * @buf: the channel buffer
256 * @init: 1 if this is a first-time initialization
257 *
258 * See relay_reset() for description of effect.
259 */
260 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
261 {
262 if (init) {
263 //ust// init_waitqueue_head(&buf->read_wait);
264 kref_init(&buf->kref);
265 //ust// setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
266 } else
267 //ust// del_timer_sync(&buf->timer);
268
269 buf->finalized = 0;
270 }
271
272 /*
273 * relay_open_buf - create a new relay channel buffer
274 *
275 * used by relay_open() and CPU hotplug.
276 */
277 static struct rchan_buf *relay_open_buf(struct rchan *chan)
278 {
279 struct rchan_buf *buf = NULL;
280 struct dentry *dentry;
281 //ust// char *tmpname;
282
283 //ust// tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
284 //ust// if (!tmpname)
285 //ust// goto end;
286 //ust// snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
287
288 buf = relay_create_buf(chan);
289 if (!buf)
290 goto free_name;
291
292 __relay_reset(buf, 1);
293
294 /* Create file in fs */
295 //ust// dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
296 //ust// buf);
297
298 ltt_create_buf_file_callback(buf); // ust //
299
300 //ust// if (!dentry)
301 //ust// goto free_buf;
302 //ust//
303 //ust// buf->dentry = dentry;
304
305 goto free_name;
306
307 free_buf:
308 relay_destroy_buf(buf);
309 buf = NULL;
310 free_name:
311 //ust// kfree(tmpname);
312 end:
313 return buf;
314 }
315
316 /**
317 * relay_close_buf - close a channel buffer
318 * @buf: channel buffer
319 *
320 * Marks the buffer finalized and restores the default callbacks.
321 * The channel buffer and channel buffer data structure are then freed
322 * automatically when the last reference is given up.
323 */
324 static void relay_close_buf(struct rchan_buf *buf)
325 {
326 //ust// del_timer_sync(&buf->timer);
327 kref_put(&buf->kref, relay_remove_buf);
328 }
329
330 //ust// static void setup_callbacks(struct rchan *chan,
331 //ust// struct rchan_callbacks *cb)
332 //ust// {
333 //ust// if (!cb) {
334 //ust// chan->cb = &default_channel_callbacks;
335 //ust// return;
336 //ust// }
337 //ust//
338 //ust// if (!cb->create_buf_file)
339 //ust// cb->create_buf_file = create_buf_file_default_callback;
340 //ust// if (!cb->remove_buf_file)
341 //ust// cb->remove_buf_file = remove_buf_file_default_callback;
342 //ust// chan->cb = cb;
343 //ust// }
344
345 /**
346 * relay_hotcpu_callback - CPU hotplug callback
347 * @nb: notifier block
348 * @action: hotplug action to take
349 * @hcpu: CPU number
350 *
351 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
352 */
353 //ust// static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
354 //ust// unsigned long action,
355 //ust// void *hcpu)
356 //ust// {
357 //ust// unsigned int hotcpu = (unsigned long)hcpu;
358 //ust// struct rchan *chan;
359 //ust//
360 //ust// switch (action) {
361 //ust// case CPU_UP_PREPARE:
362 //ust// case CPU_UP_PREPARE_FROZEN:
363 //ust// mutex_lock(&relay_channels_mutex);
364 //ust// list_for_each_entry(chan, &relay_channels, list) {
365 //ust// if (chan->buf[hotcpu])
366 //ust// continue;
367 //ust// chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
368 //ust// if (!chan->buf[hotcpu]) {
369 //ust// printk(KERN_ERR
370 //ust// "relay_hotcpu_callback: cpu %d buffer "
371 //ust// "creation failed\n", hotcpu);
372 //ust// mutex_unlock(&relay_channels_mutex);
373 //ust// return NOTIFY_BAD;
374 //ust// }
375 //ust// }
376 //ust// mutex_unlock(&relay_channels_mutex);
377 //ust// break;
378 //ust// case CPU_DEAD:
379 //ust// case CPU_DEAD_FROZEN:
380 //ust// /* No need to flush the cpu : will be flushed upon
381 //ust// * final relay_flush() call. */
382 //ust// break;
383 //ust// }
384 //ust// return NOTIFY_OK;
385 //ust// }
386
387 /**
388 * ltt_relay_open - create a new relay channel
389 * @base_filename: base name of files to create
390 * @parent: dentry of parent directory, %NULL for root directory
391 * @subbuf_size: size of sub-buffers
392 * @n_subbufs: number of sub-buffers
393 * @cb: client callback functions
394 * @private_data: user-defined data
395 *
396 * Returns channel pointer if successful, %NULL otherwise.
397 *
398 * Creates a channel buffer for each cpu using the sizes and
399 * attributes specified. The created channel buffer files
400 * will be named base_filename0...base_filenameN-1. File
401 * permissions will be %S_IRUSR.
402 */
403 struct rchan *ltt_relay_open(const char *base_filename,
404 struct dentry *parent,
405 size_t subbuf_size,
406 size_t n_subbufs,
407 void *private_data)
408 {
409 unsigned int i;
410 struct rchan *chan;
411 //ust// if (!base_filename)
412 //ust// return NULL;
413
414 if (!(subbuf_size && n_subbufs))
415 return NULL;
416
417 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
418 if (!chan)
419 return NULL;
420
421 chan->version = LTT_RELAY_CHANNEL_VERSION;
422 chan->n_subbufs = n_subbufs;
423 chan->subbuf_size = subbuf_size;
424 chan->subbuf_size_order = get_count_order(subbuf_size);
425 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
426 chan->parent = parent;
427 chan->private_data = private_data;
428 //ust// strlcpy(chan->base_filename, base_filename, NAME_MAX);
429 //ust// setup_callbacks(chan, cb);
430 kref_init(&chan->kref);
431
432 mutex_lock(&relay_channels_mutex);
433 //ust// for_each_online_cpu(i) {
434 chan->buf = relay_open_buf(chan);
435 if (!chan->buf)
436 goto error;
437 //ust// }
438 list_add(&chan->list, &relay_channels);
439 mutex_unlock(&relay_channels_mutex);
440
441 return chan;
442
443 //ust//free_bufs:
444 //ust// for_each_possible_cpu(i) {
445 //ust// if (!chan->buf[i])
446 //ust// break;
447 //ust// relay_close_buf(chan->buf[i]);
448 //ust// }
449
450 error:
451 kref_put(&chan->kref, relay_destroy_channel);
452 mutex_unlock(&relay_channels_mutex);
453 return NULL;
454 }
455 //ust// EXPORT_SYMBOL_GPL(ltt_relay_open);
456
457 /**
458 * ltt_relay_close - close the channel
459 * @chan: the channel
460 *
461 * Closes all channel buffers and frees the channel.
462 */
463 void ltt_relay_close(struct rchan *chan)
464 {
465 unsigned int i;
466
467 if (!chan)
468 return;
469
470 mutex_lock(&relay_channels_mutex);
471 //ust// for_each_possible_cpu(i)
472 if (chan->buf)
473 relay_close_buf(chan->buf);
474
475 list_del(&chan->list);
476 kref_put(&chan->kref, relay_destroy_channel);
477 mutex_unlock(&relay_channels_mutex);
478 }
479 //ust// EXPORT_SYMBOL_GPL(ltt_relay_close);
480
481 /*
482 * Start iteration at the previous element. Skip the real list head.
483 */
484 //ust// struct buf_page *ltt_relay_find_prev_page(struct rchan_buf *buf,
485 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
486 //ust// {
487 //ust// struct buf_page *iter;
488 //ust// size_t orig_iter_off;
489 //ust// unsigned int i = 0;
490 //ust//
491 //ust// orig_iter_off = page->offset;
492 //ust// list_for_each_entry_reverse(iter, &page->list, list) {
493 //ust// /*
494 //ust// * Skip the real list head.
495 //ust// */
496 //ust// if (&iter->list == &buf->pages)
497 //ust// continue;
498 //ust// i++;
499 //ust// if (offset >= iter->offset
500 //ust// && offset < iter->offset + PAGE_SIZE) {
501 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
502 //ust// if (i > 1) {
503 //ust// printk(KERN_WARNING
504 //ust// "Backward random access detected in "
505 //ust// "ltt_relay. Iterations %u, "
506 //ust// "offset %zu, orig iter->off %zu, "
507 //ust// "iter->off %zu diff_offset %zd.\n", i,
508 //ust// offset, orig_iter_off, iter->offset,
509 //ust// diff_offset);
510 //ust// WARN_ON(1);
511 //ust// }
512 //ust// #endif
513 //ust// return iter;
514 //ust// }
515 //ust// }
516 //ust// WARN_ON(1);
517 //ust// return NULL;
518 //ust// }
519 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_prev_page);
520
521 /*
522 * Start iteration at the next element. Skip the real list head.
523 */
524 //ust// struct buf_page *ltt_relay_find_next_page(struct rchan_buf *buf,
525 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
526 //ust// {
527 //ust// struct buf_page *iter;
528 //ust// unsigned int i = 0;
529 //ust// size_t orig_iter_off;
530 //ust//
531 //ust// orig_iter_off = page->offset;
532 //ust// list_for_each_entry(iter, &page->list, list) {
533 //ust// /*
534 //ust// * Skip the real list head.
535 //ust// */
536 //ust// if (&iter->list == &buf->pages)
537 //ust// continue;
538 //ust// i++;
539 //ust// if (offset >= iter->offset
540 //ust// && offset < iter->offset + PAGE_SIZE) {
541 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
542 //ust// if (i > 1) {
543 //ust// printk(KERN_WARNING
544 //ust// "Forward random access detected in "
545 //ust// "ltt_relay. Iterations %u, "
546 //ust// "offset %zu, orig iter->off %zu, "
547 //ust// "iter->off %zu diff_offset %zd.\n", i,
548 //ust// offset, orig_iter_off, iter->offset,
549 //ust// diff_offset);
550 //ust// WARN_ON(1);
551 //ust// }
552 //ust// #endif
553 //ust// return iter;
554 //ust// }
555 //ust// }
556 //ust// WARN_ON(1);
557 //ust// return NULL;
558 //ust// }
559 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_next_page);
560
561 /**
562 * ltt_relay_write - write data to a ltt_relay buffer.
563 * @buf : buffer
564 * @offset : offset within the buffer
565 * @src : source address
566 * @len : length to write
567 * @page : cached buffer page
568 * @pagecpy : page size copied so far
569 */
570 void _ltt_relay_write(struct rchan_buf *buf, size_t offset,
571 const void *src, size_t len, ssize_t cpy)
572 {
573 do {
574 len -= cpy;
575 src += cpy;
576 offset += cpy;
577 /*
578 * Underlying layer should never ask for writes across
579 * subbuffers.
580 */
581 WARN_ON(offset >= buf->buf_size);
582
583 cpy = min_t(size_t, len, buf->buf_size - offset);
584 ltt_relay_do_copy(buf->buf_data + offset, src, cpy);
585 } while (unlikely(len != cpy));
586 }
587 //ust// EXPORT_SYMBOL_GPL(_ltt_relay_write);
588
589 /**
590 * ltt_relay_read - read data from ltt_relay_buffer.
591 * @buf : buffer
592 * @offset : offset within the buffer
593 * @dest : destination address
594 * @len : length to write
595 */
596 //ust// int ltt_relay_read(struct rchan_buf *buf, size_t offset,
597 //ust// void *dest, size_t len)
598 //ust// {
599 //ust// struct buf_page *page;
600 //ust// ssize_t pagecpy, orig_len;
601 //ust//
602 //ust// orig_len = len;
603 //ust// offset &= buf->chan->alloc_size - 1;
604 //ust// page = buf->rpage;
605 //ust// if (unlikely(!len))
606 //ust// return 0;
607 //ust// for (;;) {
608 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
609 //ust// pagecpy = min_t(size_t, len, PAGE_SIZE - (offset & ~PAGE_MASK));
610 //ust// memcpy(dest, page_address(page->page) + (offset & ~PAGE_MASK),
611 //ust// pagecpy);
612 //ust// len -= pagecpy;
613 //ust// if (likely(!len))
614 //ust// break;
615 //ust// dest += pagecpy;
616 //ust// offset += pagecpy;
617 //ust// /*
618 //ust// * Underlying layer should never ask for reads across
619 //ust// * subbuffers.
620 //ust// */
621 //ust// WARN_ON(offset >= buf->chan->alloc_size);
622 //ust// }
623 //ust// return orig_len;
624 //ust// }
625 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read);
626
627 /**
628 * ltt_relay_read_get_page - Get a whole page to read from
629 * @buf : buffer
630 * @offset : offset within the buffer
631 */
632 //ust// struct buf_page *ltt_relay_read_get_page(struct rchan_buf *buf, size_t offset)
633 //ust// {
634 //ust// struct buf_page *page;
635
636 //ust// offset &= buf->chan->alloc_size - 1;
637 //ust// page = buf->rpage;
638 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
639 //ust// return page;
640 //ust// }
641 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read_get_page);
642
643 /**
644 * ltt_relay_offset_address - get address of a location within the buffer
645 * @buf : buffer
646 * @offset : offset within the buffer.
647 *
648 * Return the address where a given offset is located.
649 * Should be used to get the current subbuffer header pointer. Given we know
650 * it's never on a page boundary, it's safe to write directly to this address,
651 * as long as the write is never bigger than a page size.
652 */
653 void *ltt_relay_offset_address(struct rchan_buf *buf, size_t offset)
654 {
655 //ust// struct buf_page *page;
656 //ust// unsigned int odd;
657 //ust//
658 //ust// offset &= buf->chan->alloc_size - 1;
659 //ust// odd = !!(offset & buf->chan->subbuf_size);
660 //ust// page = buf->hpage[odd];
661 //ust// if (offset < page->offset || offset >= page->offset + PAGE_SIZE)
662 //ust// buf->hpage[odd] = page = buf->wpage;
663 //ust// page = ltt_relay_cache_page(buf, &buf->hpage[odd], page, offset);
664 //ust// return page_address(page->page) + (offset & ~PAGE_MASK);
665 return ((char *)buf->buf_data)+offset;
666 return NULL;
667 }
668 //ust// EXPORT_SYMBOL_GPL(ltt_relay_offset_address);
669
670 /**
671 * relay_file_open - open file op for relay files
672 * @inode: the inode
673 * @filp: the file
674 *
675 * Increments the channel buffer refcount.
676 */
677 //ust// static int relay_file_open(struct inode *inode, struct file *filp)
678 //ust// {
679 //ust// struct rchan_buf *buf = inode->i_private;
680 //ust// kref_get(&buf->kref);
681 //ust// filp->private_data = buf;
682 //ust//
683 //ust// return nonseekable_open(inode, filp);
684 //ust// }
685
686 /**
687 * relay_file_release - release file op for relay files
688 * @inode: the inode
689 * @filp: the file
690 *
691 * Decrements the channel refcount, as the filesystem is
692 * no longer using it.
693 */
694 //ust// static int relay_file_release(struct inode *inode, struct file *filp)
695 //ust// {
696 //ust// struct rchan_buf *buf = filp->private_data;
697 //ust// kref_put(&buf->kref, relay_remove_buf);
698 //ust//
699 //ust// return 0;
700 //ust// }
701
702 //ust// const struct file_operations ltt_relay_file_operations = {
703 //ust// .open = relay_file_open,
704 //ust// .release = relay_file_release,
705 //ust// };
706 //ust// EXPORT_SYMBOL_GPL(ltt_relay_file_operations);
707
708 //ust// static __init int relay_init(void)
709 //ust// {
710 //ust// hotcpu_notifier(relay_hotcpu_callback, 5);
711 //ust// return 0;
712 //ust// }
713
714 //ust// module_init(relay_init);
715 /*
716 * ltt/ltt-relay.c
717 *
718 * (C) Copyright 2005-2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
719 *
720 * LTTng lockless buffer space management (reader/writer).
721 *
722 * Author:
723 * Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
724 *
725 * Inspired from LTT :
726 * Karim Yaghmour (karim@opersys.com)
727 * Tom Zanussi (zanussi@us.ibm.com)
728 * Bob Wisniewski (bob@watson.ibm.com)
729 * And from K42 :
730 * Bob Wisniewski (bob@watson.ibm.com)
731 *
732 * Changelog:
733 * 08/10/08, Cleanup.
734 * 19/10/05, Complete lockless mechanism.
735 * 27/05/05, Modular redesign and rewrite.
736 *
737 * Userspace reader semantic :
738 * while (poll fd != POLLHUP) {
739 * - ioctl RELAY_GET_SUBBUF_SIZE
740 * while (1) {
741 * - ioctl GET_SUBBUF
742 * - splice 1 subbuffer worth of data to a pipe
743 * - splice the data from pipe to disk/network
744 * - ioctl PUT_SUBBUF, check error value
745 * if err val < 0, previous subbuffer was corrupted.
746 * }
747 * }
748 */
749
750 //ust// #include <linux/time.h>
751 //ust// #include <linux/ltt-tracer.h>
752 //ust// #include <linux/ltt-relay.h>
753 //ust// #include <linux/module.h>
754 //ust// #include <linux/string.h>
755 //ust// #include <linux/slab.h>
756 //ust// #include <linux/init.h>
757 //ust// #include <linux/rcupdate.h>
758 //ust// #include <linux/sched.h>
759 //ust// #include <linux/bitops.h>
760 //ust// #include <linux/fs.h>
761 //ust// #include <linux/smp_lock.h>
762 //ust// #include <linux/debugfs.h>
763 //ust// #include <linux/stat.h>
764 //ust// #include <linux/cpu.h>
765 //ust// #include <linux/pipe_fs_i.h>
766 //ust// #include <linux/splice.h>
767 //ust// #include <asm/atomic.h>
768 //ust// #include <asm/local.h>
769
770 #if 0
771 #define printk_dbg(fmt, args...) printk(fmt, args)
772 #else
773 #define printk_dbg(fmt, args...)
774 #endif
775
776 /*
777 * Last TSC comparison functions. Check if the current TSC overflows
778 * LTT_TSC_BITS bits from the last TSC read. Reads and writes last_tsc
779 * atomically.
780 */
781
782 #if (BITS_PER_LONG == 32)
783 static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
784 u64 tsc)
785 {
786 ltt_buf->last_tsc = (unsigned long)(tsc >> LTT_TSC_BITS);
787 }
788
789 static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
790 u64 tsc)
791 {
792 unsigned long tsc_shifted = (unsigned long)(tsc >> LTT_TSC_BITS);
793
794 if (unlikely((tsc_shifted - ltt_buf->last_tsc)))
795 return 1;
796 else
797 return 0;
798 }
799 #else
800 static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
801 u64 tsc)
802 {
803 ltt_buf->last_tsc = (unsigned long)tsc;
804 }
805
806 static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
807 u64 tsc)
808 {
809 if (unlikely((tsc - ltt_buf->last_tsc) >> LTT_TSC_BITS))
810 return 1;
811 else
812 return 0;
813 }
814 #endif
815
816 //ust// static struct file_operations ltt_file_operations;
817
818 /*
819 * A switch is done during tracing or as a final flush after tracing (so it
820 * won't write in the new sub-buffer).
821 */
822 enum force_switch_mode { FORCE_ACTIVE, FORCE_FLUSH };
823
824 static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
825 struct ltt_channel_struct *ltt_chan,
826 struct rchan_buf *buf,
827 unsigned int n_subbufs);
828
829 static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan);
830
831 static void ltt_force_switch(struct rchan_buf *buf,
832 enum force_switch_mode mode);
833
834 /*
835 * Trace callbacks
836 */
837 static void ltt_buffer_begin_callback(struct rchan_buf *buf,
838 u64 tsc, unsigned int subbuf_idx)
839 {
840 struct ltt_channel_struct *channel =
841 (struct ltt_channel_struct *)buf->chan->private_data;
842 struct ltt_subbuffer_header *header =
843 (struct ltt_subbuffer_header *)
844 ltt_relay_offset_address(buf,
845 subbuf_idx * buf->chan->subbuf_size);
846
847 header->cycle_count_begin = tsc;
848 header->lost_size = 0xFFFFFFFF; /* for debugging */
849 header->buf_size = buf->chan->subbuf_size;
850 ltt_write_trace_header(channel->trace, header);
851 }
852
853 /*
854 * offset is assumed to never be 0 here : never deliver a completely empty
855 * subbuffer. The lost size is between 0 and subbuf_size-1.
856 */
857 static notrace void ltt_buffer_end_callback(struct rchan_buf *buf,
858 u64 tsc, unsigned int offset, unsigned int subbuf_idx)
859 {
860 struct ltt_channel_struct *channel =
861 (struct ltt_channel_struct *)buf->chan->private_data;
862 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
863 struct ltt_subbuffer_header *header =
864 (struct ltt_subbuffer_header *)
865 ltt_relay_offset_address(buf,
866 subbuf_idx * buf->chan->subbuf_size);
867
868 header->lost_size = SUBBUF_OFFSET((buf->chan->subbuf_size - offset),
869 buf->chan);
870 header->cycle_count_end = tsc;
871 header->events_lost = local_read(&ltt_buf->events_lost);
872 header->subbuf_corrupt = local_read(&ltt_buf->corrupted_subbuffers);
873
874 }
875
876 static notrace void ltt_deliver(struct rchan_buf *buf, unsigned int subbuf_idx,
877 void *subbuf)
878 {
879 struct ltt_channel_struct *channel =
880 (struct ltt_channel_struct *)buf->chan->private_data;
881 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
882
883 atomic_set(&ltt_buf->wakeup_readers, 1);
884 }
885
886 static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf)
887 {
888 struct ltt_channel_struct *ltt_chan;
889 int err;
890 //ust// struct dentry *dentry;
891
892 ltt_chan = buf->chan->private_data;
893 err = ltt_relay_create_buffer(ltt_chan->trace, ltt_chan, buf, buf->chan->n_subbufs);
894 if (err)
895 return ERR_PTR(err);
896
897 //ust// dentry = debugfs_create_file(filename, mode, parent, buf,
898 //ust// &ltt_file_operations);
899 //ust// if (!dentry)
900 //ust// goto error;
901 //ust// return dentry;
902 return NULL; //ust//
903 //ust//error:
904 ltt_relay_destroy_buffer(ltt_chan);
905 return NULL;
906 }
907
908 static int ltt_remove_buf_file_callback(struct rchan_buf *buf)
909 {
910 //ust// struct rchan_buf *buf = dentry->d_inode->i_private;
911 struct ltt_channel_struct *ltt_chan = buf->chan->private_data;
912
913 //ust// debugfs_remove(dentry);
914 ltt_relay_destroy_buffer(ltt_chan);
915
916 return 0;
917 }
918
919 /*
920 * Wake writers :
921 *
922 * This must be done after the trace is removed from the RCU list so that there
923 * are no stalled writers.
924 */
925 //ust// static void ltt_relay_wake_writers(struct ltt_channel_buf_struct *ltt_buf)
926 //ust// {
927 //ust//
928 //ust// if (waitqueue_active(&ltt_buf->write_wait))
929 //ust// wake_up_interruptible(&ltt_buf->write_wait);
930 //ust// }
931
932 /*
933 * This function should not be called from NMI interrupt context
934 */
935 static notrace void ltt_buf_unfull(struct rchan_buf *buf,
936 unsigned int subbuf_idx,
937 long offset)
938 {
939 //ust// struct ltt_channel_struct *ltt_channel =
940 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
941 //ust// struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
942 //ust//
943 //ust// ltt_relay_wake_writers(ltt_buf);
944 }
945
946 /**
947 * ltt_open - open file op for ltt files
948 * @inode: opened inode
949 * @file: opened file
950 *
951 * Open implementation. Makes sure only one open instance of a buffer is
952 * done at a given moment.
953 */
954 //ust// static int ltt_open(struct inode *inode, struct file *file)
955 //ust// {
956 //ust// struct rchan_buf *buf = inode->i_private;
957 //ust// struct ltt_channel_struct *ltt_channel =
958 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
959 //ust// struct ltt_channel_buf_struct *ltt_buf =
960 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
961 //ust//
962 //ust// if (!atomic_long_add_unless(&ltt_buf->active_readers, 1, 1))
963 //ust// return -EBUSY;
964 //ust// return ltt_relay_file_operations.open(inode, file);
965 //ust// }
966
967 /**
968 * ltt_release - release file op for ltt files
969 * @inode: opened inode
970 * @file: opened file
971 *
972 * Release implementation.
973 */
974 //ust// static int ltt_release(struct inode *inode, struct file *file)
975 //ust// {
976 //ust// struct rchan_buf *buf = inode->i_private;
977 //ust// struct ltt_channel_struct *ltt_channel =
978 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
979 //ust// struct ltt_channel_buf_struct *ltt_buf =
980 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
981 //ust// int ret;
982 //ust//
983 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
984 //ust// atomic_long_dec(&ltt_buf->active_readers);
985 //ust// ret = ltt_relay_file_operations.release(inode, file);
986 //ust// WARN_ON(ret);
987 //ust// return ret;
988 //ust// }
989
990 /**
991 * ltt_poll - file op for ltt files
992 * @filp: the file
993 * @wait: poll table
994 *
995 * Poll implementation.
996 */
997 //ust// static unsigned int ltt_poll(struct file *filp, poll_table *wait)
998 //ust// {
999 //ust// unsigned int mask = 0;
1000 //ust// struct inode *inode = filp->f_dentry->d_inode;
1001 //ust// struct rchan_buf *buf = inode->i_private;
1002 //ust// struct ltt_channel_struct *ltt_channel =
1003 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1004 //ust// struct ltt_channel_buf_struct *ltt_buf =
1005 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1006 //ust//
1007 //ust// if (filp->f_mode & FMODE_READ) {
1008 //ust// poll_wait_set_exclusive(wait);
1009 //ust// poll_wait(filp, &buf->read_wait, wait);
1010 //ust//
1011 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1012 //ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1013 //ust// buf->chan)
1014 //ust// - SUBBUF_TRUNC(atomic_long_read(&ltt_buf->consumed),
1015 //ust// buf->chan)
1016 //ust// == 0) {
1017 //ust// if (buf->finalized)
1018 //ust// return POLLHUP;
1019 //ust// else
1020 //ust// return 0;
1021 //ust// } else {
1022 //ust// struct rchan *rchan =
1023 //ust// ltt_channel->trans_channel_data;
1024 //ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1025 //ust// buf->chan)
1026 //ust// - SUBBUF_TRUNC(atomic_long_read(
1027 //ust// &ltt_buf->consumed),
1028 //ust// buf->chan)
1029 //ust// >= rchan->alloc_size)
1030 //ust// return POLLPRI | POLLRDBAND;
1031 //ust// else
1032 //ust// return POLLIN | POLLRDNORM;
1033 //ust// }
1034 //ust// }
1035 //ust// return mask;
1036 //ust// }
1037
1038 int ltt_do_get_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, long *pconsumed_old)
1039 {
1040 struct ltt_channel_struct *ltt_channel = (struct ltt_channel_struct *)buf->chan->private_data;
1041 long consumed_old, consumed_idx, commit_count, write_offset;
1042 consumed_old = atomic_long_read(&ltt_buf->consumed);
1043 consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1044 commit_count = local_read(&ltt_buf->commit_count[consumed_idx]);
1045 /*
1046 * Make sure we read the commit count before reading the buffer
1047 * data and the write offset. Correct consumed offset ordering
1048 * wrt commit count is insured by the use of cmpxchg to update
1049 * the consumed offset.
1050 */
1051 smp_rmb();
1052 write_offset = local_read(&ltt_buf->offset);
1053 /*
1054 * Check that the subbuffer we are trying to consume has been
1055 * already fully committed.
1056 */
1057 if (((commit_count - buf->chan->subbuf_size)
1058 & ltt_channel->commit_count_mask)
1059 - (BUFFER_TRUNC(consumed_old, buf->chan)
1060 >> ltt_channel->n_subbufs_order)
1061 != 0) {
1062 return -EAGAIN;
1063 }
1064 /*
1065 * Check that we are not about to read the same subbuffer in
1066 * which the writer head is.
1067 */
1068 if ((SUBBUF_TRUNC(write_offset, buf->chan)
1069 - SUBBUF_TRUNC(consumed_old, buf->chan))
1070 == 0) {
1071 return -EAGAIN;
1072 }
1073
1074 *pconsumed_old = consumed_old;
1075 return 0;
1076 }
1077
1078 int ltt_do_put_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, u32 uconsumed_old)
1079 {
1080 long consumed_new, consumed_old;
1081
1082 consumed_old = atomic_long_read(&ltt_buf->consumed);
1083 consumed_old = consumed_old & (~0xFFFFFFFFL);
1084 consumed_old = consumed_old | uconsumed_old;
1085 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1086
1087 spin_lock(&ltt_buf->full_lock);
1088 if (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1089 consumed_new)
1090 != consumed_old) {
1091 /* We have been pushed by the writer : the last
1092 * buffer read _is_ corrupted! It can also
1093 * happen if this is a buffer we never got. */
1094 spin_unlock(&ltt_buf->full_lock);
1095 return -EIO;
1096 } else {
1097 /* tell the client that buffer is now unfull */
1098 int index;
1099 long data;
1100 index = SUBBUF_INDEX(consumed_old, buf->chan);
1101 data = BUFFER_OFFSET(consumed_old, buf->chan);
1102 ltt_buf_unfull(buf, index, data);
1103 spin_unlock(&ltt_buf->full_lock);
1104 }
1105 return 0;
1106 }
1107
1108 /**
1109 * ltt_ioctl - control on the debugfs file
1110 *
1111 * @inode: the inode
1112 * @filp: the file
1113 * @cmd: the command
1114 * @arg: command arg
1115 *
1116 * This ioctl implements three commands necessary for a minimal
1117 * producer/consumer implementation :
1118 * RELAY_GET_SUBBUF
1119 * Get the next sub buffer that can be read. It never blocks.
1120 * RELAY_PUT_SUBBUF
1121 * Release the currently read sub-buffer. Parameter is the last
1122 * put subbuffer (returned by GET_SUBBUF).
1123 * RELAY_GET_N_BUBBUFS
1124 * returns the number of sub buffers in the per cpu channel.
1125 * RELAY_GET_SUBBUF_SIZE
1126 * returns the size of the sub buffers.
1127 */
1128 //ust// static int ltt_ioctl(struct inode *inode, struct file *filp,
1129 //ust// unsigned int cmd, unsigned long arg)
1130 //ust// {
1131 //ust// struct rchan_buf *buf = inode->i_private;
1132 //ust// struct ltt_channel_struct *ltt_channel =
1133 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1134 //ust// struct ltt_channel_buf_struct *ltt_buf =
1135 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1136 //ust// u32 __user *argp = (u32 __user *)arg;
1137 //ust//
1138 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1139 //ust// switch (cmd) {
1140 //ust// case RELAY_GET_SUBBUF:
1141 //ust// {
1142 //ust// int ret;
1143 //ust// ret = ltt_do_get_subbuf(buf, ltt_buf, &consumed_old);
1144 //ust// if(ret < 0)
1145 //ust// return ret;
1146 //ust// return put_user((u32)consumed_old, argp);
1147 //ust// }
1148 //ust// case RELAY_PUT_SUBBUF:
1149 //ust// {
1150 //ust// int ret;
1151 //ust// u32 uconsumed_old;
1152 //ust// ret = get_user(uconsumed_old, argp);
1153 //ust// if (ret)
1154 //ust// return ret; /* will return -EFAULT */
1155 //ust// return ltt_do_put_subbuf(buf, ltt_buf, uconsumed_old);
1156 //ust// }
1157 //ust// case RELAY_GET_N_SUBBUFS:
1158 //ust// return put_user((u32)buf->chan->n_subbufs, argp);
1159 //ust// break;
1160 //ust// case RELAY_GET_SUBBUF_SIZE:
1161 //ust// return put_user((u32)buf->chan->subbuf_size, argp);
1162 //ust// break;
1163 //ust// default:
1164 //ust// return -ENOIOCTLCMD;
1165 //ust// }
1166 //ust// return 0;
1167 //ust// }
1168
1169 //ust// #ifdef CONFIG_COMPAT
1170 //ust// static long ltt_compat_ioctl(struct file *file, unsigned int cmd,
1171 //ust// unsigned long arg)
1172 //ust// {
1173 //ust// long ret = -ENOIOCTLCMD;
1174 //ust//
1175 //ust// lock_kernel();
1176 //ust// ret = ltt_ioctl(file->f_dentry->d_inode, file, cmd, arg);
1177 //ust// unlock_kernel();
1178 //ust//
1179 //ust// return ret;
1180 //ust// }
1181 //ust// #endif
1182
1183 //ust// static void ltt_relay_pipe_buf_release(struct pipe_inode_info *pipe,
1184 //ust// struct pipe_buffer *pbuf)
1185 //ust// {
1186 //ust// }
1187 //ust//
1188 //ust// static struct pipe_buf_operations ltt_relay_pipe_buf_ops = {
1189 //ust// .can_merge = 0,
1190 //ust// .map = generic_pipe_buf_map,
1191 //ust// .unmap = generic_pipe_buf_unmap,
1192 //ust// .confirm = generic_pipe_buf_confirm,
1193 //ust// .release = ltt_relay_pipe_buf_release,
1194 //ust// .steal = generic_pipe_buf_steal,
1195 //ust// .get = generic_pipe_buf_get,
1196 //ust// };
1197
1198 //ust// static void ltt_relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1199 //ust// {
1200 //ust// }
1201
1202 /*
1203 * subbuf_splice_actor - splice up to one subbuf's worth of data
1204 */
1205 //ust// static int subbuf_splice_actor(struct file *in,
1206 //ust// loff_t *ppos,
1207 //ust// struct pipe_inode_info *pipe,
1208 //ust// size_t len,
1209 //ust// unsigned int flags)
1210 //ust// {
1211 //ust// struct rchan_buf *buf = in->private_data;
1212 //ust// struct ltt_channel_struct *ltt_channel =
1213 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1214 //ust// struct ltt_channel_buf_struct *ltt_buf =
1215 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1216 //ust// unsigned int poff, subbuf_pages, nr_pages;
1217 //ust// struct page *pages[PIPE_BUFFERS];
1218 //ust// struct partial_page partial[PIPE_BUFFERS];
1219 //ust// struct splice_pipe_desc spd = {
1220 //ust// .pages = pages,
1221 //ust// .nr_pages = 0,
1222 //ust// .partial = partial,
1223 //ust// .flags = flags,
1224 //ust// .ops = &ltt_relay_pipe_buf_ops,
1225 //ust// .spd_release = ltt_relay_page_release,
1226 //ust// };
1227 //ust// long consumed_old, consumed_idx, roffset;
1228 //ust// unsigned long bytes_avail;
1229 //ust//
1230 //ust// /*
1231 //ust// * Check that a GET_SUBBUF ioctl has been done before.
1232 //ust// */
1233 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1234 //ust// consumed_old = atomic_long_read(&ltt_buf->consumed);
1235 //ust// consumed_old += *ppos;
1236 //ust// consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1237 //ust//
1238 //ust// /*
1239 //ust// * Adjust read len, if longer than what is available
1240 //ust// */
1241 //ust// bytes_avail = SUBBUF_TRUNC(local_read(&ltt_buf->offset), buf->chan)
1242 //ust// - consumed_old;
1243 //ust// WARN_ON(bytes_avail > buf->chan->alloc_size);
1244 //ust// len = min_t(size_t, len, bytes_avail);
1245 //ust// subbuf_pages = bytes_avail >> PAGE_SHIFT;
1246 //ust// nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1247 //ust// roffset = consumed_old & PAGE_MASK;
1248 //ust// poff = consumed_old & ~PAGE_MASK;
1249 //ust// printk_dbg(KERN_DEBUG "SPLICE actor len %zu pos %zd write_pos %ld\n",
1250 //ust// len, (ssize_t)*ppos, local_read(&ltt_buf->offset));
1251 //ust//
1252 //ust// for (; spd.nr_pages < nr_pages; spd.nr_pages++) {
1253 //ust// unsigned int this_len;
1254 //ust// struct buf_page *page;
1255 //ust//
1256 //ust// if (!len)
1257 //ust// break;
1258 //ust// printk_dbg(KERN_DEBUG "SPLICE actor loop len %zu roffset %ld\n",
1259 //ust// len, roffset);
1260 //ust//
1261 //ust// this_len = PAGE_SIZE - poff;
1262 //ust// page = ltt_relay_read_get_page(buf, roffset);
1263 //ust// spd.pages[spd.nr_pages] = page->page;
1264 //ust// spd.partial[spd.nr_pages].offset = poff;
1265 //ust// spd.partial[spd.nr_pages].len = this_len;
1266 //ust//
1267 //ust// poff = 0;
1268 //ust// roffset += PAGE_SIZE;
1269 //ust// len -= this_len;
1270 //ust// }
1271 //ust//
1272 //ust// if (!spd.nr_pages)
1273 //ust// return 0;
1274 //ust//
1275 //ust// return splice_to_pipe(pipe, &spd);
1276 //ust// }
1277
1278 //ust// static ssize_t ltt_relay_file_splice_read(struct file *in,
1279 //ust// loff_t *ppos,
1280 //ust// struct pipe_inode_info *pipe,
1281 //ust// size_t len,
1282 //ust// unsigned int flags)
1283 //ust// {
1284 //ust// ssize_t spliced;
1285 //ust// int ret;
1286 //ust//
1287 //ust// ret = 0;
1288 //ust// spliced = 0;
1289 //ust//
1290 //ust// printk_dbg(KERN_DEBUG "SPLICE read len %zu pos %zd\n",
1291 //ust// len, (ssize_t)*ppos);
1292 //ust// while (len && !spliced) {
1293 //ust// ret = subbuf_splice_actor(in, ppos, pipe, len, flags);
1294 //ust// printk_dbg(KERN_DEBUG "SPLICE read loop ret %d\n", ret);
1295 //ust// if (ret < 0)
1296 //ust// break;
1297 //ust// else if (!ret) {
1298 //ust// if (flags & SPLICE_F_NONBLOCK)
1299 //ust// ret = -EAGAIN;
1300 //ust// break;
1301 //ust// }
1302 //ust//
1303 //ust// *ppos += ret;
1304 //ust// if (ret > len)
1305 //ust// len = 0;
1306 //ust// else
1307 //ust// len -= ret;
1308 //ust// spliced += ret;
1309 //ust// }
1310 //ust//
1311 //ust// if (spliced)
1312 //ust// return spliced;
1313 //ust//
1314 //ust// return ret;
1315 //ust// }
1316
1317 static void ltt_relay_print_subbuffer_errors(
1318 struct ltt_channel_struct *ltt_chan,
1319 long cons_off)
1320 {
1321 struct rchan *rchan = ltt_chan->trans_channel_data;
1322 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1323 long cons_idx, commit_count, write_offset;
1324
1325 cons_idx = SUBBUF_INDEX(cons_off, rchan);
1326 commit_count = local_read(&ltt_buf->commit_count[cons_idx]);
1327 /*
1328 * No need to order commit_count and write_offset reads because we
1329 * execute after trace is stopped when there are no readers left.
1330 */
1331 write_offset = local_read(&ltt_buf->offset);
1332 printk(KERN_WARNING
1333 "LTT : unread channel %s offset is %ld "
1334 "and cons_off : %ld\n",
1335 ltt_chan->channel_name, write_offset, cons_off);
1336 /* Check each sub-buffer for non filled commit count */
1337 if (((commit_count - rchan->subbuf_size) & ltt_chan->commit_count_mask)
1338 - (BUFFER_TRUNC(cons_off, rchan) >> ltt_chan->n_subbufs_order)
1339 != 0)
1340 printk(KERN_ALERT
1341 "LTT : %s : subbuffer %lu has non filled "
1342 "commit count %lu.\n",
1343 ltt_chan->channel_name, cons_idx, commit_count);
1344 printk(KERN_ALERT "LTT : %s : commit count : %lu, subbuf size %zd\n",
1345 ltt_chan->channel_name, commit_count,
1346 rchan->subbuf_size);
1347 }
1348
1349 static void ltt_relay_print_errors(struct ltt_trace_struct *trace,
1350 struct ltt_channel_struct *ltt_chan)
1351 {
1352 struct rchan *rchan = ltt_chan->trans_channel_data;
1353 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1354 long cons_off;
1355
1356 for (cons_off = atomic_long_read(&ltt_buf->consumed);
1357 (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1358 rchan)
1359 - cons_off) > 0;
1360 cons_off = SUBBUF_ALIGN(cons_off, rchan))
1361 ltt_relay_print_subbuffer_errors(ltt_chan, cons_off);
1362 }
1363
1364 static void ltt_relay_print_buffer_errors(struct ltt_channel_struct *ltt_chan)
1365 {
1366 struct ltt_trace_struct *trace = ltt_chan->trace;
1367 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1368
1369 if (local_read(&ltt_buf->events_lost))
1370 printk(KERN_ALERT
1371 "LTT : %s : %ld events lost "
1372 "in %s channel.\n",
1373 ltt_chan->channel_name,
1374 local_read(&ltt_buf->events_lost),
1375 ltt_chan->channel_name);
1376 if (local_read(&ltt_buf->corrupted_subbuffers))
1377 printk(KERN_ALERT
1378 "LTT : %s : %ld corrupted subbuffers "
1379 "in %s channel.\n",
1380 ltt_chan->channel_name,
1381 local_read(&ltt_buf->corrupted_subbuffers),
1382 ltt_chan->channel_name);
1383
1384 ltt_relay_print_errors(trace, ltt_chan);
1385 }
1386
1387 static void ltt_relay_remove_dirs(struct ltt_trace_struct *trace)
1388 {
1389 //ust// debugfs_remove(trace->dentry.trace_root);
1390 }
1391
1392 static void ltt_relay_release_channel(struct kref *kref)
1393 {
1394 struct ltt_channel_struct *ltt_chan = container_of(kref,
1395 struct ltt_channel_struct, kref);
1396 free(ltt_chan->buf);
1397 }
1398
1399 /*
1400 * Create ltt buffer.
1401 */
1402 //ust// static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1403 //ust// struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1404 //ust// unsigned int cpu, unsigned int n_subbufs)
1405 //ust// {
1406 //ust// struct ltt_channel_buf_struct *ltt_buf =
1407 //ust// percpu_ptr(ltt_chan->buf, cpu);
1408 //ust// unsigned int j;
1409 //ust//
1410 //ust// ltt_buf->commit_count =
1411 //ust// kzalloc_node(sizeof(ltt_buf->commit_count) * n_subbufs,
1412 //ust// GFP_KERNEL, cpu_to_node(cpu));
1413 //ust// if (!ltt_buf->commit_count)
1414 //ust// return -ENOMEM;
1415 //ust// kref_get(&trace->kref);
1416 //ust// kref_get(&trace->ltt_transport_kref);
1417 //ust// kref_get(&ltt_chan->kref);
1418 //ust// local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1419 //ust// atomic_long_set(&ltt_buf->consumed, 0);
1420 //ust// atomic_long_set(&ltt_buf->active_readers, 0);
1421 //ust// for (j = 0; j < n_subbufs; j++)
1422 //ust// local_set(&ltt_buf->commit_count[j], 0);
1423 //ust// init_waitqueue_head(&ltt_buf->write_wait);
1424 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1425 //ust// spin_lock_init(&ltt_buf->full_lock);
1426 //ust//
1427 //ust// ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1428 //ust// /* atomic_add made on local variable on data that belongs to
1429 //ust// * various CPUs : ok because tracing not started (for this cpu). */
1430 //ust// local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1431 //ust//
1432 //ust// local_set(&ltt_buf->events_lost, 0);
1433 //ust// local_set(&ltt_buf->corrupted_subbuffers, 0);
1434 //ust//
1435 //ust// return 0;
1436 //ust// }
1437
1438 static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1439 struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1440 unsigned int n_subbufs)
1441 {
1442 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1443 unsigned int j;
1444
1445 ltt_buf->commit_count =
1446 zmalloc(sizeof(ltt_buf->commit_count) * n_subbufs);
1447 if (!ltt_buf->commit_count)
1448 return -ENOMEM;
1449 kref_get(&trace->kref);
1450 kref_get(&trace->ltt_transport_kref);
1451 kref_get(&ltt_chan->kref);
1452 local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1453 atomic_long_set(&ltt_buf->consumed, 0);
1454 atomic_long_set(&ltt_buf->active_readers, 0);
1455 for (j = 0; j < n_subbufs; j++)
1456 local_set(&ltt_buf->commit_count[j], 0);
1457 //ust// init_waitqueue_head(&ltt_buf->write_wait);
1458 atomic_set(&ltt_buf->wakeup_readers, 0);
1459 spin_lock_init(&ltt_buf->full_lock);
1460
1461 ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1462
1463 local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1464
1465 local_set(&ltt_buf->events_lost, 0);
1466 local_set(&ltt_buf->corrupted_subbuffers, 0);
1467
1468 return 0;
1469 }
1470
1471 static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan)
1472 {
1473 struct ltt_trace_struct *trace = ltt_chan->trace;
1474 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1475
1476 kref_put(&ltt_chan->trace->ltt_transport_kref,
1477 ltt_release_transport);
1478 ltt_relay_print_buffer_errors(ltt_chan);
1479 kfree(ltt_buf->commit_count);
1480 ltt_buf->commit_count = NULL;
1481 kref_put(&ltt_chan->kref, ltt_relay_release_channel);
1482 kref_put(&trace->kref, ltt_release_trace);
1483 //ust// wake_up_interruptible(&trace->kref_wq);
1484 }
1485
1486 /*
1487 * Create channel.
1488 */
1489 static int ltt_relay_create_channel(const char *trace_name,
1490 struct ltt_trace_struct *trace, struct dentry *dir,
1491 const char *channel_name, struct ltt_channel_struct *ltt_chan,
1492 unsigned int subbuf_size, unsigned int n_subbufs,
1493 int overwrite)
1494 {
1495 char *tmpname;
1496 unsigned int tmpname_len;
1497 int err = 0;
1498
1499 tmpname = kmalloc(PATH_MAX, GFP_KERNEL);
1500 if (!tmpname)
1501 return EPERM;
1502 if (overwrite) {
1503 strncpy(tmpname, LTT_FLIGHT_PREFIX, PATH_MAX-1);
1504 strncat(tmpname, channel_name,
1505 PATH_MAX-1-sizeof(LTT_FLIGHT_PREFIX));
1506 } else {
1507 strncpy(tmpname, channel_name, PATH_MAX-1);
1508 }
1509 strncat(tmpname, "_", PATH_MAX-1-strlen(tmpname));
1510
1511 kref_init(&ltt_chan->kref);
1512
1513 ltt_chan->trace = trace;
1514 ltt_chan->buffer_begin = ltt_buffer_begin_callback;
1515 ltt_chan->buffer_end = ltt_buffer_end_callback;
1516 ltt_chan->overwrite = overwrite;
1517 ltt_chan->n_subbufs_order = get_count_order(n_subbufs);
1518 ltt_chan->commit_count_mask = (~0UL >> ltt_chan->n_subbufs_order);
1519 //ust// ltt_chan->buf = percpu_alloc_mask(sizeof(struct ltt_channel_buf_struct), GFP_KERNEL, cpu_possible_map);
1520 ltt_chan->buf = malloc(sizeof(struct ltt_channel_buf_struct));
1521 if (!ltt_chan->buf)
1522 goto alloc_error;
1523 ltt_chan->trans_channel_data = ltt_relay_open(tmpname,
1524 dir,
1525 subbuf_size,
1526 n_subbufs,
1527 ltt_chan);
1528 tmpname_len = strlen(tmpname);
1529 if (tmpname_len > 0) {
1530 /* Remove final _ for pretty printing */
1531 tmpname[tmpname_len-1] = '\0';
1532 }
1533 if (ltt_chan->trans_channel_data == NULL) {
1534 printk(KERN_ERR "LTT : Can't open %s channel for trace %s\n",
1535 tmpname, trace_name);
1536 goto relay_open_error;
1537 }
1538
1539 err = 0;
1540 goto end;
1541
1542 relay_open_error:
1543 //ust// percpu_free(ltt_chan->buf);
1544 alloc_error:
1545 err = EPERM;
1546 end:
1547 kfree(tmpname);
1548 return err;
1549 }
1550
1551 static int ltt_relay_create_dirs(struct ltt_trace_struct *new_trace)
1552 {
1553 //ust// new_trace->dentry.trace_root = debugfs_create_dir(new_trace->trace_name,
1554 //ust// get_ltt_root());
1555 //ust// if (new_trace->dentry.trace_root == NULL) {
1556 //ust// printk(KERN_ERR "LTT : Trace directory name %s already taken\n",
1557 //ust// new_trace->trace_name);
1558 //ust// return EEXIST;
1559 //ust// }
1560
1561 //ust// new_trace->callbacks.create_buf_file = ltt_create_buf_file_callback;
1562 //ust// new_trace->callbacks.remove_buf_file = ltt_remove_buf_file_callback;
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * LTTng channel flush function.
1569 *
1570 * Must be called when no tracing is active in the channel, because of
1571 * accesses across CPUs.
1572 */
1573 static notrace void ltt_relay_buffer_flush(struct rchan_buf *buf)
1574 {
1575 buf->finalized = 1;
1576 ltt_force_switch(buf, FORCE_FLUSH);
1577 }
1578
1579 static void ltt_relay_async_wakeup_chan(struct ltt_channel_struct *ltt_channel)
1580 {
1581 //ust// unsigned int i;
1582 //ust// struct rchan *rchan = ltt_channel->trans_channel_data;
1583 //ust//
1584 //ust// for_each_possible_cpu(i) {
1585 //ust// struct ltt_channel_buf_struct *ltt_buf =
1586 //ust// percpu_ptr(ltt_channel->buf, i);
1587 //ust//
1588 //ust// if (atomic_read(&ltt_buf->wakeup_readers) == 1) {
1589 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1590 //ust// wake_up_interruptible(&rchan->buf[i]->read_wait);
1591 //ust// }
1592 //ust// }
1593 }
1594
1595 static void ltt_relay_finish_buffer(struct ltt_channel_struct *ltt_channel)
1596 {
1597 struct rchan *rchan = ltt_channel->trans_channel_data;
1598
1599 if (rchan->buf) {
1600 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
1601 ltt_relay_buffer_flush(rchan->buf);
1602 //ust// ltt_relay_wake_writers(ltt_buf);
1603 }
1604 }
1605
1606
1607 static void ltt_relay_finish_channel(struct ltt_channel_struct *ltt_channel)
1608 {
1609 unsigned int i;
1610
1611 //ust// for_each_possible_cpu(i)
1612 ltt_relay_finish_buffer(ltt_channel);
1613 }
1614
1615 static void ltt_relay_remove_channel(struct ltt_channel_struct *channel)
1616 {
1617 struct rchan *rchan = channel->trans_channel_data;
1618
1619 ltt_relay_close(rchan);
1620 kref_put(&channel->kref, ltt_relay_release_channel);
1621 }
1622
1623 struct ltt_reserve_switch_offsets {
1624 long begin, end, old;
1625 long begin_switch, end_switch_current, end_switch_old;
1626 long commit_count, reserve_commit_diff;
1627 size_t before_hdr_pad, size;
1628 };
1629
1630 /*
1631 * Returns :
1632 * 0 if ok
1633 * !0 if execution must be aborted.
1634 */
1635 static inline int ltt_relay_try_reserve(
1636 struct ltt_channel_struct *ltt_channel,
1637 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1638 struct rchan_buf *buf,
1639 struct ltt_reserve_switch_offsets *offsets, size_t data_size,
1640 u64 *tsc, unsigned int *rflags, int largest_align)
1641 {
1642 offsets->begin = local_read(&ltt_buf->offset);
1643 offsets->old = offsets->begin;
1644 offsets->begin_switch = 0;
1645 offsets->end_switch_current = 0;
1646 offsets->end_switch_old = 0;
1647
1648 *tsc = trace_clock_read64();
1649 if (last_tsc_overflow(ltt_buf, *tsc))
1650 *rflags = LTT_RFLAG_ID_SIZE_TSC;
1651
1652 if (SUBBUF_OFFSET(offsets->begin, buf->chan) == 0) {
1653 offsets->begin_switch = 1; /* For offsets->begin */
1654 } else {
1655 offsets->size = ltt_get_header_size(ltt_channel,
1656 offsets->begin, data_size,
1657 &offsets->before_hdr_pad, *rflags);
1658 offsets->size += ltt_align(offsets->begin + offsets->size,
1659 largest_align)
1660 + data_size;
1661 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1662 > buf->chan->subbuf_size) {
1663 offsets->end_switch_old = 1; /* For offsets->old */
1664 offsets->begin_switch = 1; /* For offsets->begin */
1665 }
1666 }
1667 if (offsets->begin_switch) {
1668 long subbuf_index;
1669
1670 if (offsets->end_switch_old)
1671 offsets->begin = SUBBUF_ALIGN(offsets->begin,
1672 buf->chan);
1673 offsets->begin = offsets->begin + ltt_subbuffer_header_size();
1674 /* Test new buffer integrity */
1675 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1676 offsets->reserve_commit_diff =
1677 (BUFFER_TRUNC(offsets->begin, buf->chan)
1678 >> ltt_channel->n_subbufs_order)
1679 - (local_read(&ltt_buf->commit_count[subbuf_index])
1680 & ltt_channel->commit_count_mask);
1681 if (offsets->reserve_commit_diff == 0) {
1682 /* Next buffer not corrupted. */
1683 if (!ltt_channel->overwrite &&
1684 (SUBBUF_TRUNC(offsets->begin, buf->chan)
1685 - SUBBUF_TRUNC(atomic_long_read(
1686 &ltt_buf->consumed),
1687 buf->chan))
1688 >= rchan->alloc_size) {
1689 /*
1690 * We do not overwrite non consumed buffers
1691 * and we are full : event is lost.
1692 */
1693 local_inc(&ltt_buf->events_lost);
1694 return -1;
1695 } else {
1696 /*
1697 * next buffer not corrupted, we are either in
1698 * overwrite mode or the buffer is not full.
1699 * It's safe to write in this new subbuffer.
1700 */
1701 }
1702 } else {
1703 /*
1704 * Next subbuffer corrupted. Force pushing reader even
1705 * in normal mode. It's safe to write in this new
1706 * subbuffer.
1707 */
1708 }
1709 offsets->size = ltt_get_header_size(ltt_channel,
1710 offsets->begin, data_size,
1711 &offsets->before_hdr_pad, *rflags);
1712 offsets->size += ltt_align(offsets->begin + offsets->size,
1713 largest_align)
1714 + data_size;
1715 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1716 > buf->chan->subbuf_size) {
1717 /*
1718 * Event too big for subbuffers, report error, don't
1719 * complete the sub-buffer switch.
1720 */
1721 local_inc(&ltt_buf->events_lost);
1722 return -1;
1723 } else {
1724 /*
1725 * We just made a successful buffer switch and the event
1726 * fits in the new subbuffer. Let's write.
1727 */
1728 }
1729 } else {
1730 /*
1731 * Event fits in the current buffer and we are not on a switch
1732 * boundary. It's safe to write.
1733 */
1734 }
1735 offsets->end = offsets->begin + offsets->size;
1736
1737 if ((SUBBUF_OFFSET(offsets->end, buf->chan)) == 0) {
1738 /*
1739 * The offset_end will fall at the very beginning of the next
1740 * subbuffer.
1741 */
1742 offsets->end_switch_current = 1; /* For offsets->begin */
1743 }
1744 return 0;
1745 }
1746
1747 /*
1748 * Returns :
1749 * 0 if ok
1750 * !0 if execution must be aborted.
1751 */
1752 static inline int ltt_relay_try_switch(
1753 enum force_switch_mode mode,
1754 struct ltt_channel_struct *ltt_channel,
1755 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1756 struct rchan_buf *buf,
1757 struct ltt_reserve_switch_offsets *offsets,
1758 u64 *tsc)
1759 {
1760 long subbuf_index;
1761
1762 offsets->begin = local_read(&ltt_buf->offset);
1763 offsets->old = offsets->begin;
1764 offsets->begin_switch = 0;
1765 offsets->end_switch_old = 0;
1766
1767 *tsc = trace_clock_read64();
1768
1769 if (SUBBUF_OFFSET(offsets->begin, buf->chan) != 0) {
1770 offsets->begin = SUBBUF_ALIGN(offsets->begin, buf->chan);
1771 offsets->end_switch_old = 1;
1772 } else {
1773 /* we do not have to switch : buffer is empty */
1774 return -1;
1775 }
1776 if (mode == FORCE_ACTIVE)
1777 offsets->begin += ltt_subbuffer_header_size();
1778 /*
1779 * Always begin_switch in FORCE_ACTIVE mode.
1780 * Test new buffer integrity
1781 */
1782 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1783 offsets->reserve_commit_diff =
1784 (BUFFER_TRUNC(offsets->begin, buf->chan)
1785 >> ltt_channel->n_subbufs_order)
1786 - (local_read(&ltt_buf->commit_count[subbuf_index])
1787 & ltt_channel->commit_count_mask);
1788 if (offsets->reserve_commit_diff == 0) {
1789 /* Next buffer not corrupted. */
1790 if (mode == FORCE_ACTIVE
1791 && !ltt_channel->overwrite
1792 && offsets->begin - atomic_long_read(&ltt_buf->consumed)
1793 >= rchan->alloc_size) {
1794 /*
1795 * We do not overwrite non consumed buffers and we are
1796 * full : ignore switch while tracing is active.
1797 */
1798 return -1;
1799 }
1800 } else {
1801 /*
1802 * Next subbuffer corrupted. Force pushing reader even in normal
1803 * mode
1804 */
1805 }
1806 offsets->end = offsets->begin;
1807 return 0;
1808 }
1809
1810 static inline void ltt_reserve_push_reader(
1811 struct ltt_channel_struct *ltt_channel,
1812 struct ltt_channel_buf_struct *ltt_buf,
1813 struct rchan *rchan,
1814 struct rchan_buf *buf,
1815 struct ltt_reserve_switch_offsets *offsets)
1816 {
1817 long consumed_old, consumed_new;
1818
1819 do {
1820 consumed_old = atomic_long_read(&ltt_buf->consumed);
1821 /*
1822 * If buffer is in overwrite mode, push the reader consumed
1823 * count if the write position has reached it and we are not
1824 * at the first iteration (don't push the reader farther than
1825 * the writer). This operation can be done concurrently by many
1826 * writers in the same buffer, the writer being at the farthest
1827 * write position sub-buffer index in the buffer being the one
1828 * which will win this loop.
1829 * If the buffer is not in overwrite mode, pushing the reader
1830 * only happens if a sub-buffer is corrupted.
1831 */
1832 if ((SUBBUF_TRUNC(offsets->end-1, buf->chan)
1833 - SUBBUF_TRUNC(consumed_old, buf->chan))
1834 >= rchan->alloc_size)
1835 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1836 else {
1837 consumed_new = consumed_old;
1838 break;
1839 }
1840 } while (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1841 consumed_new) != consumed_old);
1842
1843 if (consumed_old != consumed_new) {
1844 /*
1845 * Reader pushed : we are the winner of the push, we can
1846 * therefore reequilibrate reserve and commit. Atomic increment
1847 * of the commit count permits other writers to play around
1848 * with this variable before us. We keep track of
1849 * corrupted_subbuffers even in overwrite mode :
1850 * we never want to write over a non completely committed
1851 * sub-buffer : possible causes : the buffer size is too low
1852 * compared to the unordered data input, or there is a writer
1853 * that died between the reserve and the commit.
1854 */
1855 if (offsets->reserve_commit_diff) {
1856 /*
1857 * We have to alter the sub-buffer commit count.
1858 * We do not deliver the previous subbuffer, given it
1859 * was either corrupted or not consumed (overwrite
1860 * mode).
1861 */
1862 local_add(offsets->reserve_commit_diff,
1863 &ltt_buf->commit_count[
1864 SUBBUF_INDEX(offsets->begin,
1865 buf->chan)]);
1866 if (!ltt_channel->overwrite
1867 || offsets->reserve_commit_diff
1868 != rchan->subbuf_size) {
1869 /*
1870 * The reserve commit diff was not subbuf_size :
1871 * it means the subbuffer was partly written to
1872 * and is therefore corrupted. If it is multiple
1873 * of subbuffer size and we are in flight
1874 * recorder mode, we are skipping over a whole
1875 * subbuffer.
1876 */
1877 local_inc(&ltt_buf->corrupted_subbuffers);
1878 }
1879 }
1880 }
1881 }
1882
1883
1884 /*
1885 * ltt_reserve_switch_old_subbuf: switch old subbuffer
1886 *
1887 * Concurrency safe because we are the last and only thread to alter this
1888 * sub-buffer. As long as it is not delivered and read, no other thread can
1889 * alter the offset, alter the reserve_count or call the
1890 * client_buffer_end_callback on this sub-buffer.
1891 *
1892 * The only remaining threads could be the ones with pending commits. They will
1893 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1894 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1895 * corrupted sub-buffers count and push the readers across these sub-buffers.
1896 *
1897 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1898 * switches in, finding out it's corrupted. The result will be than the old
1899 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1900 * will be declared corrupted too because of the commit count adjustment.
1901 *
1902 * Note : offset_old should never be 0 here.
1903 */
1904 static inline void ltt_reserve_switch_old_subbuf(
1905 struct ltt_channel_struct *ltt_channel,
1906 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1907 struct rchan_buf *buf,
1908 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1909 {
1910 long oldidx = SUBBUF_INDEX(offsets->old - 1, rchan);
1911
1912 ltt_channel->buffer_end(buf, *tsc, offsets->old, oldidx);
1913 /* Must write buffer end before incrementing commit count */
1914 smp_wmb();
1915 offsets->commit_count =
1916 local_add_return(rchan->subbuf_size
1917 - (SUBBUF_OFFSET(offsets->old - 1, rchan)
1918 + 1),
1919 &ltt_buf->commit_count[oldidx]);
1920 if ((BUFFER_TRUNC(offsets->old - 1, rchan)
1921 >> ltt_channel->n_subbufs_order)
1922 - ((offsets->commit_count - rchan->subbuf_size)
1923 & ltt_channel->commit_count_mask) == 0)
1924 ltt_deliver(buf, oldidx, NULL);
1925 }
1926
1927 /*
1928 * ltt_reserve_switch_new_subbuf: Populate new subbuffer.
1929 *
1930 * This code can be executed unordered : writers may already have written to the
1931 * sub-buffer before this code gets executed, caution. The commit makes sure
1932 * that this code is executed before the deliver of this sub-buffer.
1933 */
1934 static inline void ltt_reserve_switch_new_subbuf(
1935 struct ltt_channel_struct *ltt_channel,
1936 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1937 struct rchan_buf *buf,
1938 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1939 {
1940 long beginidx = SUBBUF_INDEX(offsets->begin, rchan);
1941
1942 ltt_channel->buffer_begin(buf, *tsc, beginidx);
1943 /* Must write buffer end before incrementing commit count */
1944 smp_wmb();
1945 offsets->commit_count = local_add_return(ltt_subbuffer_header_size(),
1946 &ltt_buf->commit_count[beginidx]);
1947 /* Check if the written buffer has to be delivered */
1948 if ((BUFFER_TRUNC(offsets->begin, rchan)
1949 >> ltt_channel->n_subbufs_order)
1950 - ((offsets->commit_count - rchan->subbuf_size)
1951 & ltt_channel->commit_count_mask) == 0)
1952 ltt_deliver(buf, beginidx, NULL);
1953 }
1954
1955
1956 /*
1957 * ltt_reserve_end_switch_current: finish switching current subbuffer
1958 *
1959 * Concurrency safe because we are the last and only thread to alter this
1960 * sub-buffer. As long as it is not delivered and read, no other thread can
1961 * alter the offset, alter the reserve_count or call the
1962 * client_buffer_end_callback on this sub-buffer.
1963 *
1964 * The only remaining threads could be the ones with pending commits. They will
1965 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1966 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1967 * corrupted sub-buffers count and push the readers across these sub-buffers.
1968 *
1969 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1970 * switches in, finding out it's corrupted. The result will be than the old
1971 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1972 * will be declared corrupted too because of the commit count adjustment.
1973 */
1974 static inline void ltt_reserve_end_switch_current(
1975 struct ltt_channel_struct *ltt_channel,
1976 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1977 struct rchan_buf *buf,
1978 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1979 {
1980 long endidx = SUBBUF_INDEX(offsets->end - 1, rchan);
1981
1982 ltt_channel->buffer_end(buf, *tsc, offsets->end, endidx);
1983 /* Must write buffer begin before incrementing commit count */
1984 smp_wmb();
1985 offsets->commit_count =
1986 local_add_return(rchan->subbuf_size
1987 - (SUBBUF_OFFSET(offsets->end - 1, rchan)
1988 + 1),
1989 &ltt_buf->commit_count[endidx]);
1990 if ((BUFFER_TRUNC(offsets->end - 1, rchan)
1991 >> ltt_channel->n_subbufs_order)
1992 - ((offsets->commit_count - rchan->subbuf_size)
1993 & ltt_channel->commit_count_mask) == 0)
1994 ltt_deliver(buf, endidx, NULL);
1995 }
1996
1997 /**
1998 * ltt_relay_reserve_slot - Atomic slot reservation in a LTTng buffer.
1999 * @trace: the trace structure to log to.
2000 * @ltt_channel: channel structure
2001 * @transport_data: data structure specific to ltt relay
2002 * @data_size: size of the variable length data to log.
2003 * @slot_size: pointer to total size of the slot (out)
2004 * @buf_offset : pointer to reserved buffer offset (out)
2005 * @tsc: pointer to the tsc at the slot reservation (out)
2006 * @cpu: cpuid
2007 *
2008 * Return : -ENOSPC if not enough space, else returns 0.
2009 * It will take care of sub-buffer switching.
2010 */
2011 static notrace int ltt_relay_reserve_slot(struct ltt_trace_struct *trace,
2012 struct ltt_channel_struct *ltt_channel, void **transport_data,
2013 size_t data_size, size_t *slot_size, long *buf_offset, u64 *tsc,
2014 unsigned int *rflags, int largest_align)
2015 {
2016 struct rchan *rchan = ltt_channel->trans_channel_data;
2017 struct rchan_buf *buf = *transport_data = rchan->buf;
2018 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2019 struct ltt_reserve_switch_offsets offsets;
2020
2021 offsets.reserve_commit_diff = 0;
2022 offsets.size = 0;
2023
2024 /*
2025 * Perform retryable operations.
2026 */
2027 if (ltt_nesting > 4) {
2028 local_inc(&ltt_buf->events_lost);
2029 return -EPERM;
2030 }
2031 do {
2032 if (ltt_relay_try_reserve(ltt_channel, ltt_buf,
2033 rchan, buf, &offsets, data_size, tsc, rflags,
2034 largest_align))
2035 return -ENOSPC;
2036 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2037 offsets.end) != offsets.old);
2038
2039 /*
2040 * Atomically update last_tsc. This update races against concurrent
2041 * atomic updates, but the race will always cause supplementary full TSC
2042 * events, never the opposite (missing a full TSC event when it would be
2043 * needed).
2044 */
2045 save_last_tsc(ltt_buf, *tsc);
2046
2047 /*
2048 * Push the reader if necessary
2049 */
2050 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan, buf, &offsets);
2051
2052 /*
2053 * Switch old subbuffer if needed.
2054 */
2055 if (offsets.end_switch_old)
2056 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2057 &offsets, tsc);
2058
2059 /*
2060 * Populate new subbuffer.
2061 */
2062 if (offsets.begin_switch)
2063 ltt_reserve_switch_new_subbuf(ltt_channel, ltt_buf, rchan,
2064 buf, &offsets, tsc);
2065
2066 if (offsets.end_switch_current)
2067 ltt_reserve_end_switch_current(ltt_channel, ltt_buf, rchan,
2068 buf, &offsets, tsc);
2069
2070 *slot_size = offsets.size;
2071 *buf_offset = offsets.begin + offsets.before_hdr_pad;
2072 return 0;
2073 }
2074
2075 /*
2076 * Force a sub-buffer switch for a per-cpu buffer. This operation is
2077 * completely reentrant : can be called while tracing is active with
2078 * absolutely no lock held.
2079 *
2080 * Note, however, that as a local_cmpxchg is used for some atomic
2081 * operations, this function must be called from the CPU which owns the buffer
2082 * for a ACTIVE flush.
2083 */
2084 static notrace void ltt_force_switch(struct rchan_buf *buf,
2085 enum force_switch_mode mode)
2086 {
2087 struct ltt_channel_struct *ltt_channel =
2088 (struct ltt_channel_struct *)buf->chan->private_data;
2089 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2090 struct rchan *rchan = ltt_channel->trans_channel_data;
2091 struct ltt_reserve_switch_offsets offsets;
2092 u64 tsc;
2093
2094 offsets.reserve_commit_diff = 0;
2095 offsets.size = 0;
2096
2097 /*
2098 * Perform retryable operations.
2099 */
2100 do {
2101 if (ltt_relay_try_switch(mode, ltt_channel, ltt_buf,
2102 rchan, buf, &offsets, &tsc))
2103 return;
2104 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2105 offsets.end) != offsets.old);
2106
2107 /*
2108 * Atomically update last_tsc. This update races against concurrent
2109 * atomic updates, but the race will always cause supplementary full TSC
2110 * events, never the opposite (missing a full TSC event when it would be
2111 * needed).
2112 */
2113 save_last_tsc(ltt_buf, tsc);
2114
2115 /*
2116 * Push the reader if necessary
2117 */
2118 if (mode == FORCE_ACTIVE)
2119 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan,
2120 buf, &offsets);
2121
2122 /*
2123 * Switch old subbuffer if needed.
2124 */
2125 if (offsets.end_switch_old)
2126 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2127 &offsets, &tsc);
2128
2129 /*
2130 * Populate new subbuffer.
2131 */
2132 if (mode == FORCE_ACTIVE)
2133 ltt_reserve_switch_new_subbuf(ltt_channel,
2134 ltt_buf, rchan, buf, &offsets, &tsc);
2135 }
2136
2137 /*
2138 * for flight recording. must be called after relay_commit.
2139 * This function decrements de subbuffer's lost_size each time the commit count
2140 * reaches back the reserve offset (module subbuffer size). It is useful for
2141 * crash dump.
2142 * We use slot_size - 1 to make sure we deal correctly with the case where we
2143 * fill the subbuffer completely (so the subbuf index stays in the previous
2144 * subbuffer).
2145 */
2146 #ifdef CONFIG_LTT_VMCORE
2147 static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2148 long buf_offset, size_t slot_size)
2149 {
2150 struct ltt_channel_struct *ltt_channel =
2151 (struct ltt_channel_struct *)buf->chan->private_data;
2152 struct ltt_channel_buf_struct *ltt_buf =
2153 percpu_ptr(ltt_channel->buf, buf->cpu);
2154 struct ltt_subbuffer_header *header;
2155 long offset, subbuf_idx, commit_count;
2156 uint32_t lost_old, lost_new;
2157
2158 subbuf_idx = SUBBUF_INDEX(buf_offset - 1, buf->chan);
2159 offset = buf_offset + slot_size;
2160 header = (struct ltt_subbuffer_header *)
2161 ltt_relay_offset_address(buf,
2162 subbuf_idx * buf->chan->subbuf_size);
2163 for (;;) {
2164 lost_old = header->lost_size;
2165 commit_count =
2166 local_read(&ltt_buf->commit_count[subbuf_idx]);
2167 /* SUBBUF_OFFSET includes commit_count_mask */
2168 if (!SUBBUF_OFFSET(offset - commit_count, buf->chan)) {
2169 lost_new = (uint32_t)buf->chan->subbuf_size
2170 - SUBBUF_OFFSET(commit_count, buf->chan);
2171 lost_old = cmpxchg_local(&header->lost_size, lost_old,
2172 lost_new);
2173 if (lost_old <= lost_new)
2174 break;
2175 } else {
2176 break;
2177 }
2178 }
2179 }
2180 #else
2181 static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2182 long buf_offset, size_t slot_size)
2183 {
2184 }
2185 #endif
2186
2187 /*
2188 * Atomic unordered slot commit. Increments the commit count in the
2189 * specified sub-buffer, and delivers it if necessary.
2190 *
2191 * Parameters:
2192 *
2193 * @ltt_channel : channel structure
2194 * @transport_data: transport-specific data
2195 * @buf_offset : offset following the event header.
2196 * @slot_size : size of the reserved slot.
2197 */
2198 static notrace void ltt_relay_commit_slot(
2199 struct ltt_channel_struct *ltt_channel,
2200 void **transport_data, long buf_offset, size_t slot_size)
2201 {
2202 struct rchan_buf *buf = *transport_data;
2203 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2204 struct rchan *rchan = buf->chan;
2205 long offset_end = buf_offset;
2206 long endidx = SUBBUF_INDEX(offset_end - 1, rchan);
2207 long commit_count;
2208
2209 /* Must write slot data before incrementing commit count */
2210 smp_wmb();
2211 commit_count = local_add_return(slot_size,
2212 &ltt_buf->commit_count[endidx]);
2213 /* Check if all commits have been done */
2214 if ((BUFFER_TRUNC(offset_end - 1, rchan)
2215 >> ltt_channel->n_subbufs_order)
2216 - ((commit_count - rchan->subbuf_size)
2217 & ltt_channel->commit_count_mask) == 0)
2218 ltt_deliver(buf, endidx, NULL);
2219 /*
2220 * Update lost_size for each commit. It's needed only for extracting
2221 * ltt buffers from vmcore, after crash.
2222 */
2223 ltt_write_commit_counter(buf, buf_offset, slot_size);
2224 }
2225
2226 /*
2227 * This is called with preemption disabled when user space has requested
2228 * blocking mode. If one of the active traces has free space below a
2229 * specific threshold value, we reenable preemption and block.
2230 */
2231 static int ltt_relay_user_blocking(struct ltt_trace_struct *trace,
2232 unsigned int chan_index, size_t data_size,
2233 struct user_dbg_data *dbg)
2234 {
2235 //ust// struct rchan *rchan;
2236 //ust// struct ltt_channel_buf_struct *ltt_buf;
2237 //ust// struct ltt_channel_struct *channel;
2238 //ust// struct rchan_buf *relay_buf;
2239 //ust// int cpu;
2240 //ust// DECLARE_WAITQUEUE(wait, current);
2241 //ust//
2242 //ust// channel = &trace->channels[chan_index];
2243 //ust// rchan = channel->trans_channel_data;
2244 //ust// cpu = smp_processor_id();
2245 //ust// relay_buf = rchan->buf[cpu];
2246 //ust// ltt_buf = percpu_ptr(channel->buf, cpu);
2247 //ust//
2248 //ust// /*
2249 //ust// * Check if data is too big for the channel : do not
2250 //ust// * block for it.
2251 //ust// */
2252 //ust// if (LTT_RESERVE_CRITICAL + data_size > relay_buf->chan->subbuf_size)
2253 //ust// return 0;
2254 //ust//
2255 //ust// /*
2256 //ust// * If free space too low, we block. We restart from the
2257 //ust// * beginning after we resume (cpu id may have changed
2258 //ust// * while preemption is active).
2259 //ust// */
2260 //ust// spin_lock(&ltt_buf->full_lock);
2261 //ust// if (!channel->overwrite) {
2262 //ust// dbg->write = local_read(&ltt_buf->offset);
2263 //ust// dbg->read = atomic_long_read(&ltt_buf->consumed);
2264 //ust// dbg->avail_size = dbg->write + LTT_RESERVE_CRITICAL + data_size
2265 //ust// - SUBBUF_TRUNC(dbg->read,
2266 //ust// relay_buf->chan);
2267 //ust// if (dbg->avail_size > rchan->alloc_size) {
2268 //ust// __set_current_state(TASK_INTERRUPTIBLE);
2269 //ust// add_wait_queue(&ltt_buf->write_wait, &wait);
2270 //ust// spin_unlock(&ltt_buf->full_lock);
2271 //ust// preempt_enable();
2272 //ust// schedule();
2273 //ust// __set_current_state(TASK_RUNNING);
2274 //ust// remove_wait_queue(&ltt_buf->write_wait, &wait);
2275 //ust// if (signal_pending(current))
2276 //ust// return -ERESTARTSYS;
2277 //ust// preempt_disable();
2278 //ust// return 1;
2279 //ust// }
2280 //ust// }
2281 //ust// spin_unlock(&ltt_buf->full_lock);
2282 return 0;
2283 }
2284
2285 static void ltt_relay_print_user_errors(struct ltt_trace_struct *trace,
2286 unsigned int chan_index, size_t data_size,
2287 struct user_dbg_data *dbg)
2288 {
2289 struct rchan *rchan;
2290 struct ltt_channel_buf_struct *ltt_buf;
2291 struct ltt_channel_struct *channel;
2292 struct rchan_buf *relay_buf;
2293
2294 channel = &trace->channels[chan_index];
2295 rchan = channel->trans_channel_data;
2296 relay_buf = rchan->buf;
2297 ltt_buf = channel->buf;
2298
2299 printk(KERN_ERR "Error in LTT usertrace : "
2300 "buffer full : event lost in blocking "
2301 "mode. Increase LTT_RESERVE_CRITICAL.\n");
2302 printk(KERN_ERR "LTT nesting level is %u.\n", ltt_nesting);
2303 printk(KERN_ERR "LTT avail size %lu.\n",
2304 dbg->avail_size);
2305 printk(KERN_ERR "avai write : %lu, read : %lu\n",
2306 dbg->write, dbg->read);
2307
2308 dbg->write = local_read(&ltt_buf->offset);
2309 dbg->read = atomic_long_read(&ltt_buf->consumed);
2310
2311 printk(KERN_ERR "LTT cur size %lu.\n",
2312 dbg->write + LTT_RESERVE_CRITICAL + data_size
2313 - SUBBUF_TRUNC(dbg->read, relay_buf->chan));
2314 printk(KERN_ERR "cur write : %lu, read : %lu\n",
2315 dbg->write, dbg->read);
2316 }
2317
2318 //ust// static struct ltt_transport ltt_relay_transport = {
2319 //ust// .name = "relay",
2320 //ust// .owner = THIS_MODULE,
2321 //ust// .ops = {
2322 //ust// .create_dirs = ltt_relay_create_dirs,
2323 //ust// .remove_dirs = ltt_relay_remove_dirs,
2324 //ust// .create_channel = ltt_relay_create_channel,
2325 //ust// .finish_channel = ltt_relay_finish_channel,
2326 //ust// .remove_channel = ltt_relay_remove_channel,
2327 //ust// .wakeup_channel = ltt_relay_async_wakeup_chan,
2328 //ust// .commit_slot = ltt_relay_commit_slot,
2329 //ust// .reserve_slot = ltt_relay_reserve_slot,
2330 //ust// .user_blocking = ltt_relay_user_blocking,
2331 //ust// .user_errors = ltt_relay_print_user_errors,
2332 //ust// },
2333 //ust// };
2334
2335 static struct ltt_transport ust_relay_transport = {
2336 .name = "ustrelay",
2337 //ust// .owner = THIS_MODULE,
2338 .ops = {
2339 .create_dirs = ltt_relay_create_dirs,
2340 .remove_dirs = ltt_relay_remove_dirs,
2341 .create_channel = ltt_relay_create_channel,
2342 .finish_channel = ltt_relay_finish_channel,
2343 .remove_channel = ltt_relay_remove_channel,
2344 .wakeup_channel = ltt_relay_async_wakeup_chan,
2345 .commit_slot = ltt_relay_commit_slot,
2346 .reserve_slot = ltt_relay_reserve_slot,
2347 .user_blocking = ltt_relay_user_blocking,
2348 .user_errors = ltt_relay_print_user_errors,
2349 },
2350 };
2351
2352 //ust// static int __init ltt_relay_init(void)
2353 //ust// {
2354 //ust// printk(KERN_INFO "LTT : ltt-relay init\n");
2355 //ust//
2356 //ust// ltt_file_operations = ltt_relay_file_operations;
2357 //ust// ltt_file_operations.owner = THIS_MODULE;
2358 //ust// ltt_file_operations.open = ltt_open;
2359 //ust// ltt_file_operations.release = ltt_release;
2360 //ust// ltt_file_operations.poll = ltt_poll;
2361 //ust// ltt_file_operations.splice_read = ltt_relay_file_splice_read,
2362 //ust// ltt_file_operations.ioctl = ltt_ioctl;
2363 //ust//#ifdef CONFIG_COMPAT
2364 //ust// ltt_file_operations.compat_ioctl = ltt_compat_ioctl;
2365 //ust//#endif
2366 //ust//
2367 //ust// ltt_transport_register(&ltt_relay_transport);
2368 //ust//
2369 //ust// return 0;
2370 //ust// }
2371
2372 static char initialized = 0;
2373
2374 void __attribute__((constructor)) init_ustrelay_transport(void)
2375 {
2376 if(!initialized) {
2377 ltt_transport_register(&ust_relay_transport);
2378 initialized = 1;
2379 }
2380 }
2381
2382 static void __exit ltt_relay_exit(void)
2383 {
2384 //ust// printk(KERN_INFO "LTT : ltt-relay exit\n");
2385
2386 ltt_transport_unregister(&ust_relay_transport);
2387 }
2388
2389 //ust// module_init(ltt_relay_init);
2390 //ust// module_exit(ltt_relay_exit);
2391 //ust//
2392 //ust// MODULE_LICENSE("GPL");
2393 //ust// MODULE_AUTHOR("Mathieu Desnoyers");
2394 //ust// MODULE_DESCRIPTION("Linux Trace Toolkit Next Generation Lockless Relay");
This page took 0.120158 seconds and 4 git commands to generate.