Version 0.8.11
[userspace-rcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #define _GNU_SOURCE
260 #include <stdlib.h>
261 #include <errno.h>
262 #include <assert.h>
263 #include <stdio.h>
264 #include <stdint.h>
265 #include <string.h>
266 #include <sched.h>
267 #include <unistd.h>
268
269 #include "config.h"
270 #include <urcu-pointer.h>
271 #include <urcu-call-rcu.h>
272 #include <urcu-flavor.h>
273 #include <urcu/arch.h>
274 #include <urcu/uatomic.h>
275 #include <urcu/compiler.h>
276 #include <urcu/rculfhash.h>
277 #include <rculfhash-internal.h>
278 #include <stdio.h>
279 #include <pthread.h>
280
281 /*
282 * Split-counters lazily update the global counter each 1024
283 * addition/removal. It automatically keeps track of resize required.
284 * We use the bucket length as indicator for need to expand for small
285 * tables and machines lacking per-cpu data support.
286 */
287 #define COUNT_COMMIT_ORDER 10
288 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
289 #define CHAIN_LEN_TARGET 1
290 #define CHAIN_LEN_RESIZE_THRESHOLD 3
291
292 /*
293 * Define the minimum table size.
294 */
295 #define MIN_TABLE_ORDER 0
296 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
297
298 /*
299 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
300 */
301 #define MIN_PARTITION_PER_THREAD_ORDER 12
302 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
303
304 /*
305 * The removed flag needs to be updated atomically with the pointer.
306 * It indicates that no node must attach to the node scheduled for
307 * removal, and that node garbage collection must be performed.
308 * The bucket flag does not require to be updated atomically with the
309 * pointer, but it is added as a pointer low bit flag to save space.
310 * The "removal owner" flag is used to detect which of the "del"
311 * operation that has set the "removed flag" gets to return the removed
312 * node to its caller. Note that the replace operation does not need to
313 * iteract with the "removal owner" flag, because it validates that
314 * the "removed" flag is not set before performing its cmpxchg.
315 */
316 #define REMOVED_FLAG (1UL << 0)
317 #define BUCKET_FLAG (1UL << 1)
318 #define REMOVAL_OWNER_FLAG (1UL << 2)
319 #define FLAGS_MASK ((1UL << 3) - 1)
320
321 /* Value of the end pointer. Should not interact with flags. */
322 #define END_VALUE NULL
323
324 /*
325 * ht_items_count: Split-counters counting the number of node addition
326 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
327 * is set at hash table creation.
328 *
329 * These are free-running counters, never reset to zero. They count the
330 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
331 * operations to update the global counter. We choose a power-of-2 value
332 * for the trigger to deal with 32 or 64-bit overflow of the counter.
333 */
334 struct ht_items_count {
335 unsigned long add, del;
336 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
337
338 /*
339 * rcu_resize_work: Contains arguments passed to RCU worker thread
340 * responsible for performing lazy resize.
341 */
342 struct rcu_resize_work {
343 struct rcu_head head;
344 struct cds_lfht *ht;
345 };
346
347 /*
348 * partition_resize_work: Contains arguments passed to worker threads
349 * executing the hash table resize on partitions of the hash table
350 * assigned to each processor's worker thread.
351 */
352 struct partition_resize_work {
353 pthread_t thread_id;
354 struct cds_lfht *ht;
355 unsigned long i, start, len;
356 void (*fct)(struct cds_lfht *ht, unsigned long i,
357 unsigned long start, unsigned long len);
358 };
359
360 /*
361 * Algorithm to reverse bits in a word by lookup table, extended to
362 * 64-bit words.
363 * Source:
364 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
365 * Originally from Public Domain.
366 */
367
368 static const uint8_t BitReverseTable256[256] =
369 {
370 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
371 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
372 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
373 R6(0), R6(2), R6(1), R6(3)
374 };
375 #undef R2
376 #undef R4
377 #undef R6
378
379 static
380 uint8_t bit_reverse_u8(uint8_t v)
381 {
382 return BitReverseTable256[v];
383 }
384
385 #if (CAA_BITS_PER_LONG == 32)
386 static
387 uint32_t bit_reverse_u32(uint32_t v)
388 {
389 return ((uint32_t) bit_reverse_u8(v) << 24) |
390 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
391 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
392 ((uint32_t) bit_reverse_u8(v >> 24));
393 }
394 #else
395 static
396 uint64_t bit_reverse_u64(uint64_t v)
397 {
398 return ((uint64_t) bit_reverse_u8(v) << 56) |
399 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
400 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
401 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
402 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
403 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
404 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
405 ((uint64_t) bit_reverse_u8(v >> 56));
406 }
407 #endif
408
409 static
410 unsigned long bit_reverse_ulong(unsigned long v)
411 {
412 #if (CAA_BITS_PER_LONG == 32)
413 return bit_reverse_u32(v);
414 #else
415 return bit_reverse_u64(v);
416 #endif
417 }
418
419 /*
420 * fls: returns the position of the most significant bit.
421 * Returns 0 if no bit is set, else returns the position of the most
422 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
423 */
424 #if defined(__i386) || defined(__x86_64)
425 static inline
426 unsigned int fls_u32(uint32_t x)
427 {
428 int r;
429
430 asm("bsrl %1,%0\n\t"
431 "jnz 1f\n\t"
432 "movl $-1,%0\n\t"
433 "1:\n\t"
434 : "=r" (r) : "rm" (x));
435 return r + 1;
436 }
437 #define HAS_FLS_U32
438 #endif
439
440 #if defined(__x86_64)
441 static inline
442 unsigned int fls_u64(uint64_t x)
443 {
444 long r;
445
446 asm("bsrq %1,%0\n\t"
447 "jnz 1f\n\t"
448 "movq $-1,%0\n\t"
449 "1:\n\t"
450 : "=r" (r) : "rm" (x));
451 return r + 1;
452 }
453 #define HAS_FLS_U64
454 #endif
455
456 #ifndef HAS_FLS_U64
457 static __attribute__((unused))
458 unsigned int fls_u64(uint64_t x)
459 {
460 unsigned int r = 64;
461
462 if (!x)
463 return 0;
464
465 if (!(x & 0xFFFFFFFF00000000ULL)) {
466 x <<= 32;
467 r -= 32;
468 }
469 if (!(x & 0xFFFF000000000000ULL)) {
470 x <<= 16;
471 r -= 16;
472 }
473 if (!(x & 0xFF00000000000000ULL)) {
474 x <<= 8;
475 r -= 8;
476 }
477 if (!(x & 0xF000000000000000ULL)) {
478 x <<= 4;
479 r -= 4;
480 }
481 if (!(x & 0xC000000000000000ULL)) {
482 x <<= 2;
483 r -= 2;
484 }
485 if (!(x & 0x8000000000000000ULL)) {
486 x <<= 1;
487 r -= 1;
488 }
489 return r;
490 }
491 #endif
492
493 #ifndef HAS_FLS_U32
494 static __attribute__((unused))
495 unsigned int fls_u32(uint32_t x)
496 {
497 unsigned int r = 32;
498
499 if (!x)
500 return 0;
501 if (!(x & 0xFFFF0000U)) {
502 x <<= 16;
503 r -= 16;
504 }
505 if (!(x & 0xFF000000U)) {
506 x <<= 8;
507 r -= 8;
508 }
509 if (!(x & 0xF0000000U)) {
510 x <<= 4;
511 r -= 4;
512 }
513 if (!(x & 0xC0000000U)) {
514 x <<= 2;
515 r -= 2;
516 }
517 if (!(x & 0x80000000U)) {
518 x <<= 1;
519 r -= 1;
520 }
521 return r;
522 }
523 #endif
524
525 unsigned int cds_lfht_fls_ulong(unsigned long x)
526 {
527 #if (CAA_BITS_PER_LONG == 32)
528 return fls_u32(x);
529 #else
530 return fls_u64(x);
531 #endif
532 }
533
534 /*
535 * Return the minimum order for which x <= (1UL << order).
536 * Return -1 if x is 0.
537 */
538 int cds_lfht_get_count_order_u32(uint32_t x)
539 {
540 if (!x)
541 return -1;
542
543 return fls_u32(x - 1);
544 }
545
546 /*
547 * Return the minimum order for which x <= (1UL << order).
548 * Return -1 if x is 0.
549 */
550 int cds_lfht_get_count_order_ulong(unsigned long x)
551 {
552 if (!x)
553 return -1;
554
555 return cds_lfht_fls_ulong(x - 1);
556 }
557
558 static
559 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
560
561 static
562 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
563 unsigned long count);
564
565 static long nr_cpus_mask = -1;
566 static long split_count_mask = -1;
567 static int split_count_order = -1;
568
569 #if defined(HAVE_SYSCONF)
570 static void ht_init_nr_cpus_mask(void)
571 {
572 long maxcpus;
573
574 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
575 if (maxcpus <= 0) {
576 nr_cpus_mask = -2;
577 return;
578 }
579 /*
580 * round up number of CPUs to next power of two, so we
581 * can use & for modulo.
582 */
583 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
584 nr_cpus_mask = maxcpus - 1;
585 }
586 #else /* #if defined(HAVE_SYSCONF) */
587 static void ht_init_nr_cpus_mask(void)
588 {
589 nr_cpus_mask = -2;
590 }
591 #endif /* #else #if defined(HAVE_SYSCONF) */
592
593 static
594 void alloc_split_items_count(struct cds_lfht *ht)
595 {
596 if (nr_cpus_mask == -1) {
597 ht_init_nr_cpus_mask();
598 if (nr_cpus_mask < 0)
599 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
600 else
601 split_count_mask = nr_cpus_mask;
602 split_count_order =
603 cds_lfht_get_count_order_ulong(split_count_mask + 1);
604 }
605
606 assert(split_count_mask >= 0);
607
608 if (ht->flags & CDS_LFHT_ACCOUNTING) {
609 ht->split_count = calloc(split_count_mask + 1,
610 sizeof(struct ht_items_count));
611 assert(ht->split_count);
612 } else {
613 ht->split_count = NULL;
614 }
615 }
616
617 static
618 void free_split_items_count(struct cds_lfht *ht)
619 {
620 poison_free(ht->split_count);
621 }
622
623 #if defined(HAVE_SCHED_GETCPU)
624 static
625 int ht_get_split_count_index(unsigned long hash)
626 {
627 int cpu;
628
629 assert(split_count_mask >= 0);
630 cpu = sched_getcpu();
631 if (caa_unlikely(cpu < 0))
632 return hash & split_count_mask;
633 else
634 return cpu & split_count_mask;
635 }
636 #else /* #if defined(HAVE_SCHED_GETCPU) */
637 static
638 int ht_get_split_count_index(unsigned long hash)
639 {
640 return hash & split_count_mask;
641 }
642 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
643
644 static
645 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
646 {
647 unsigned long split_count;
648 int index;
649 long count;
650
651 if (caa_unlikely(!ht->split_count))
652 return;
653 index = ht_get_split_count_index(hash);
654 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
655 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
656 return;
657 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
658
659 dbg_printf("add split count %lu\n", split_count);
660 count = uatomic_add_return(&ht->count,
661 1UL << COUNT_COMMIT_ORDER);
662 if (caa_likely(count & (count - 1)))
663 return;
664 /* Only if global count is power of 2 */
665
666 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
667 return;
668 dbg_printf("add set global %ld\n", count);
669 cds_lfht_resize_lazy_count(ht, size,
670 count >> (CHAIN_LEN_TARGET - 1));
671 }
672
673 static
674 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
675 {
676 unsigned long split_count;
677 int index;
678 long count;
679
680 if (caa_unlikely(!ht->split_count))
681 return;
682 index = ht_get_split_count_index(hash);
683 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
684 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
685 return;
686 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
687
688 dbg_printf("del split count %lu\n", split_count);
689 count = uatomic_add_return(&ht->count,
690 -(1UL << COUNT_COMMIT_ORDER));
691 if (caa_likely(count & (count - 1)))
692 return;
693 /* Only if global count is power of 2 */
694
695 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
696 return;
697 dbg_printf("del set global %ld\n", count);
698 /*
699 * Don't shrink table if the number of nodes is below a
700 * certain threshold.
701 */
702 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
703 return;
704 cds_lfht_resize_lazy_count(ht, size,
705 count >> (CHAIN_LEN_TARGET - 1));
706 }
707
708 static
709 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
710 {
711 unsigned long count;
712
713 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
714 return;
715 count = uatomic_read(&ht->count);
716 /*
717 * Use bucket-local length for small table expand and for
718 * environments lacking per-cpu data support.
719 */
720 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
721 return;
722 if (chain_len > 100)
723 dbg_printf("WARNING: large chain length: %u.\n",
724 chain_len);
725 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
726 int growth;
727
728 /*
729 * Ideal growth calculated based on chain length.
730 */
731 growth = cds_lfht_get_count_order_u32(chain_len
732 - (CHAIN_LEN_TARGET - 1));
733 if ((ht->flags & CDS_LFHT_ACCOUNTING)
734 && (size << growth)
735 >= (1UL << (COUNT_COMMIT_ORDER
736 + split_count_order))) {
737 /*
738 * If ideal growth expands the hash table size
739 * beyond the "small hash table" sizes, use the
740 * maximum small hash table size to attempt
741 * expanding the hash table. This only applies
742 * when node accounting is available, otherwise
743 * the chain length is used to expand the hash
744 * table in every case.
745 */
746 growth = COUNT_COMMIT_ORDER + split_count_order
747 - cds_lfht_get_count_order_ulong(size);
748 if (growth <= 0)
749 return;
750 }
751 cds_lfht_resize_lazy_grow(ht, size, growth);
752 }
753 }
754
755 static
756 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
757 {
758 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
759 }
760
761 static
762 int is_removed(struct cds_lfht_node *node)
763 {
764 return ((unsigned long) node) & REMOVED_FLAG;
765 }
766
767 static
768 int is_bucket(struct cds_lfht_node *node)
769 {
770 return ((unsigned long) node) & BUCKET_FLAG;
771 }
772
773 static
774 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
775 {
776 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
777 }
778
779 static
780 int is_removal_owner(struct cds_lfht_node *node)
781 {
782 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
783 }
784
785 static
786 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
787 {
788 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
789 }
790
791 static
792 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
793 {
794 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
795 }
796
797 static
798 struct cds_lfht_node *get_end(void)
799 {
800 return (struct cds_lfht_node *) END_VALUE;
801 }
802
803 static
804 int is_end(struct cds_lfht_node *node)
805 {
806 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
807 }
808
809 static
810 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
811 unsigned long v)
812 {
813 unsigned long old1, old2;
814
815 old1 = uatomic_read(ptr);
816 do {
817 old2 = old1;
818 if (old2 >= v)
819 return old2;
820 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
821 return old2;
822 }
823
824 static
825 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
826 {
827 return ht->mm->alloc_bucket_table(ht, order);
828 }
829
830 /*
831 * cds_lfht_free_bucket_table() should be called with decreasing order.
832 * When cds_lfht_free_bucket_table(0) is called, it means the whole
833 * lfht is destroyed.
834 */
835 static
836 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
837 {
838 return ht->mm->free_bucket_table(ht, order);
839 }
840
841 static inline
842 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
843 {
844 return ht->bucket_at(ht, index);
845 }
846
847 static inline
848 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
849 unsigned long hash)
850 {
851 assert(size > 0);
852 return bucket_at(ht, hash & (size - 1));
853 }
854
855 /*
856 * Remove all logically deleted nodes from a bucket up to a certain node key.
857 */
858 static
859 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
860 {
861 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
862
863 assert(!is_bucket(bucket));
864 assert(!is_removed(bucket));
865 assert(!is_removal_owner(bucket));
866 assert(!is_bucket(node));
867 assert(!is_removed(node));
868 assert(!is_removal_owner(node));
869 for (;;) {
870 iter_prev = bucket;
871 /* We can always skip the bucket node initially */
872 iter = rcu_dereference(iter_prev->next);
873 assert(!is_removed(iter));
874 assert(!is_removal_owner(iter));
875 assert(iter_prev->reverse_hash <= node->reverse_hash);
876 /*
877 * We should never be called with bucket (start of chain)
878 * and logically removed node (end of path compression
879 * marker) being the actual same node. This would be a
880 * bug in the algorithm implementation.
881 */
882 assert(bucket != node);
883 for (;;) {
884 if (caa_unlikely(is_end(iter)))
885 return;
886 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
887 return;
888 next = rcu_dereference(clear_flag(iter)->next);
889 if (caa_likely(is_removed(next)))
890 break;
891 iter_prev = clear_flag(iter);
892 iter = next;
893 }
894 assert(!is_removed(iter));
895 assert(!is_removal_owner(iter));
896 if (is_bucket(iter))
897 new_next = flag_bucket(clear_flag(next));
898 else
899 new_next = clear_flag(next);
900 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
901 }
902 }
903
904 static
905 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
906 struct cds_lfht_node *old_node,
907 struct cds_lfht_node *old_next,
908 struct cds_lfht_node *new_node)
909 {
910 struct cds_lfht_node *bucket, *ret_next;
911
912 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
913 return -ENOENT;
914
915 assert(!is_removed(old_node));
916 assert(!is_removal_owner(old_node));
917 assert(!is_bucket(old_node));
918 assert(!is_removed(new_node));
919 assert(!is_removal_owner(new_node));
920 assert(!is_bucket(new_node));
921 assert(new_node != old_node);
922 for (;;) {
923 /* Insert after node to be replaced */
924 if (is_removed(old_next)) {
925 /*
926 * Too late, the old node has been removed under us
927 * between lookup and replace. Fail.
928 */
929 return -ENOENT;
930 }
931 assert(old_next == clear_flag(old_next));
932 assert(new_node != old_next);
933 /*
934 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
935 * flag. It is either set atomically at the same time
936 * (replace) or after (del).
937 */
938 assert(!is_removal_owner(old_next));
939 new_node->next = old_next;
940 /*
941 * Here is the whole trick for lock-free replace: we add
942 * the replacement node _after_ the node we want to
943 * replace by atomically setting its next pointer at the
944 * same time we set its removal flag. Given that
945 * the lookups/get next use an iterator aware of the
946 * next pointer, they will either skip the old node due
947 * to the removal flag and see the new node, or use
948 * the old node, but will not see the new one.
949 * This is a replacement of a node with another node
950 * that has the same value: we are therefore not
951 * removing a value from the hash table. We set both the
952 * REMOVED and REMOVAL_OWNER flags atomically so we own
953 * the node after successful cmpxchg.
954 */
955 ret_next = uatomic_cmpxchg(&old_node->next,
956 old_next, flag_removed_or_removal_owner(new_node));
957 if (ret_next == old_next)
958 break; /* We performed the replacement. */
959 old_next = ret_next;
960 }
961
962 /*
963 * Ensure that the old node is not visible to readers anymore:
964 * lookup for the node, and remove it (along with any other
965 * logically removed node) if found.
966 */
967 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
968 _cds_lfht_gc_bucket(bucket, new_node);
969
970 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
971 return 0;
972 }
973
974 /*
975 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
976 * mode. A NULL unique_ret allows creation of duplicate keys.
977 */
978 static
979 void _cds_lfht_add(struct cds_lfht *ht,
980 unsigned long hash,
981 cds_lfht_match_fct match,
982 const void *key,
983 unsigned long size,
984 struct cds_lfht_node *node,
985 struct cds_lfht_iter *unique_ret,
986 int bucket_flag)
987 {
988 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
989 *return_node;
990 struct cds_lfht_node *bucket;
991
992 assert(!is_bucket(node));
993 assert(!is_removed(node));
994 assert(!is_removal_owner(node));
995 bucket = lookup_bucket(ht, size, hash);
996 for (;;) {
997 uint32_t chain_len = 0;
998
999 /*
1000 * iter_prev points to the non-removed node prior to the
1001 * insert location.
1002 */
1003 iter_prev = bucket;
1004 /* We can always skip the bucket node initially */
1005 iter = rcu_dereference(iter_prev->next);
1006 assert(iter_prev->reverse_hash <= node->reverse_hash);
1007 for (;;) {
1008 if (caa_unlikely(is_end(iter)))
1009 goto insert;
1010 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1011 goto insert;
1012
1013 /* bucket node is the first node of the identical-hash-value chain */
1014 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1015 goto insert;
1016
1017 next = rcu_dereference(clear_flag(iter)->next);
1018 if (caa_unlikely(is_removed(next)))
1019 goto gc_node;
1020
1021 /* uniquely add */
1022 if (unique_ret
1023 && !is_bucket(next)
1024 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1025 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1026
1027 /*
1028 * uniquely adding inserts the node as the first
1029 * node of the identical-hash-value node chain.
1030 *
1031 * This semantic ensures no duplicated keys
1032 * should ever be observable in the table
1033 * (including traversing the table node by
1034 * node by forward iterations)
1035 */
1036 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1037 if (!d_iter.node)
1038 goto insert;
1039
1040 *unique_ret = d_iter;
1041 return;
1042 }
1043
1044 /* Only account for identical reverse hash once */
1045 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1046 && !is_bucket(next))
1047 check_resize(ht, size, ++chain_len);
1048 iter_prev = clear_flag(iter);
1049 iter = next;
1050 }
1051
1052 insert:
1053 assert(node != clear_flag(iter));
1054 assert(!is_removed(iter_prev));
1055 assert(!is_removal_owner(iter_prev));
1056 assert(!is_removed(iter));
1057 assert(!is_removal_owner(iter));
1058 assert(iter_prev != node);
1059 if (!bucket_flag)
1060 node->next = clear_flag(iter);
1061 else
1062 node->next = flag_bucket(clear_flag(iter));
1063 if (is_bucket(iter))
1064 new_node = flag_bucket(node);
1065 else
1066 new_node = node;
1067 if (uatomic_cmpxchg(&iter_prev->next, iter,
1068 new_node) != iter) {
1069 continue; /* retry */
1070 } else {
1071 return_node = node;
1072 goto end;
1073 }
1074
1075 gc_node:
1076 assert(!is_removed(iter));
1077 assert(!is_removal_owner(iter));
1078 if (is_bucket(iter))
1079 new_next = flag_bucket(clear_flag(next));
1080 else
1081 new_next = clear_flag(next);
1082 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1083 /* retry */
1084 }
1085 end:
1086 if (unique_ret) {
1087 unique_ret->node = return_node;
1088 /* unique_ret->next left unset, never used. */
1089 }
1090 }
1091
1092 static
1093 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1094 struct cds_lfht_node *node)
1095 {
1096 struct cds_lfht_node *bucket, *next;
1097
1098 if (!node) /* Return -ENOENT if asked to delete NULL node */
1099 return -ENOENT;
1100
1101 /* logically delete the node */
1102 assert(!is_bucket(node));
1103 assert(!is_removed(node));
1104 assert(!is_removal_owner(node));
1105
1106 /*
1107 * We are first checking if the node had previously been
1108 * logically removed (this check is not atomic with setting the
1109 * logical removal flag). Return -ENOENT if the node had
1110 * previously been removed.
1111 */
1112 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1113 if (caa_unlikely(is_removed(next)))
1114 return -ENOENT;
1115 assert(!is_bucket(next));
1116 /*
1117 * The del operation semantic guarantees a full memory barrier
1118 * before the uatomic_or atomic commit of the deletion flag.
1119 */
1120 cmm_smp_mb__before_uatomic_or();
1121 /*
1122 * We set the REMOVED_FLAG unconditionally. Note that there may
1123 * be more than one concurrent thread setting this flag.
1124 * Knowing which wins the race will be known after the garbage
1125 * collection phase, stay tuned!
1126 */
1127 uatomic_or(&node->next, REMOVED_FLAG);
1128 /* We performed the (logical) deletion. */
1129
1130 /*
1131 * Ensure that the node is not visible to readers anymore: lookup for
1132 * the node, and remove it (along with any other logically removed node)
1133 * if found.
1134 */
1135 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1136 _cds_lfht_gc_bucket(bucket, node);
1137
1138 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1139 /*
1140 * Last phase: atomically exchange node->next with a version
1141 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1142 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1143 * the node and win the removal race.
1144 * It is interesting to note that all "add" paths are forbidden
1145 * to change the next pointer starting from the point where the
1146 * REMOVED_FLAG is set, so here using a read, followed by a
1147 * xchg() suffice to guarantee that the xchg() will ever only
1148 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1149 * was already set).
1150 */
1151 if (!is_removal_owner(uatomic_xchg(&node->next,
1152 flag_removal_owner(node->next))))
1153 return 0;
1154 else
1155 return -ENOENT;
1156 }
1157
1158 static
1159 void *partition_resize_thread(void *arg)
1160 {
1161 struct partition_resize_work *work = arg;
1162
1163 work->ht->flavor->register_thread();
1164 work->fct(work->ht, work->i, work->start, work->len);
1165 work->ht->flavor->unregister_thread();
1166 return NULL;
1167 }
1168
1169 static
1170 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1171 unsigned long len,
1172 void (*fct)(struct cds_lfht *ht, unsigned long i,
1173 unsigned long start, unsigned long len))
1174 {
1175 unsigned long partition_len, start = 0;
1176 struct partition_resize_work *work;
1177 int thread, ret;
1178 unsigned long nr_threads;
1179
1180 assert(nr_cpus_mask != -1);
1181 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1182 goto fallback;
1183
1184 /*
1185 * Note: nr_cpus_mask + 1 is always power of 2.
1186 * We spawn just the number of threads we need to satisfy the minimum
1187 * partition size, up to the number of CPUs in the system.
1188 */
1189 if (nr_cpus_mask > 0) {
1190 nr_threads = min(nr_cpus_mask + 1,
1191 len >> MIN_PARTITION_PER_THREAD_ORDER);
1192 } else {
1193 nr_threads = 1;
1194 }
1195 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1196 work = calloc(nr_threads, sizeof(*work));
1197 if (!work) {
1198 dbg_printf("error allocating for resize, single-threading\n");
1199 goto fallback;
1200 }
1201 for (thread = 0; thread < nr_threads; thread++) {
1202 work[thread].ht = ht;
1203 work[thread].i = i;
1204 work[thread].len = partition_len;
1205 work[thread].start = thread * partition_len;
1206 work[thread].fct = fct;
1207 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1208 partition_resize_thread, &work[thread]);
1209 if (ret == EAGAIN) {
1210 /*
1211 * Out of resources: wait and join the threads
1212 * we've created, then handle leftovers.
1213 */
1214 dbg_printf("error spawning for resize, single-threading\n");
1215 start = work[thread].start;
1216 len -= start;
1217 nr_threads = thread;
1218 break;
1219 }
1220 assert(!ret);
1221 }
1222 for (thread = 0; thread < nr_threads; thread++) {
1223 ret = pthread_join(work[thread].thread_id, NULL);
1224 assert(!ret);
1225 }
1226 free(work);
1227
1228 /*
1229 * A pthread_create failure above will either lead in us having
1230 * no threads to join or starting at a non-zero offset,
1231 * fallback to single thread processing of leftovers.
1232 */
1233 if (start == 0 && nr_threads > 0)
1234 return;
1235 fallback:
1236 ht->flavor->thread_online();
1237 fct(ht, i, start, len);
1238 ht->flavor->thread_offline();
1239 }
1240
1241 /*
1242 * Holding RCU read lock to protect _cds_lfht_add against memory
1243 * reclaim that could be performed by other call_rcu worker threads (ABA
1244 * problem).
1245 *
1246 * When we reach a certain length, we can split this population phase over
1247 * many worker threads, based on the number of CPUs available in the system.
1248 * This should therefore take care of not having the expand lagging behind too
1249 * many concurrent insertion threads by using the scheduler's ability to
1250 * schedule bucket node population fairly with insertions.
1251 */
1252 static
1253 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1254 unsigned long start, unsigned long len)
1255 {
1256 unsigned long j, size = 1UL << (i - 1);
1257
1258 assert(i > MIN_TABLE_ORDER);
1259 ht->flavor->read_lock();
1260 for (j = size + start; j < size + start + len; j++) {
1261 struct cds_lfht_node *new_node = bucket_at(ht, j);
1262
1263 assert(j >= size && j < (size << 1));
1264 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1265 i, j, j);
1266 new_node->reverse_hash = bit_reverse_ulong(j);
1267 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1268 }
1269 ht->flavor->read_unlock();
1270 }
1271
1272 static
1273 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1274 unsigned long len)
1275 {
1276 partition_resize_helper(ht, i, len, init_table_populate_partition);
1277 }
1278
1279 static
1280 void init_table(struct cds_lfht *ht,
1281 unsigned long first_order, unsigned long last_order)
1282 {
1283 unsigned long i;
1284
1285 dbg_printf("init table: first_order %lu last_order %lu\n",
1286 first_order, last_order);
1287 assert(first_order > MIN_TABLE_ORDER);
1288 for (i = first_order; i <= last_order; i++) {
1289 unsigned long len;
1290
1291 len = 1UL << (i - 1);
1292 dbg_printf("init order %lu len: %lu\n", i, len);
1293
1294 /* Stop expand if the resize target changes under us */
1295 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1296 break;
1297
1298 cds_lfht_alloc_bucket_table(ht, i);
1299
1300 /*
1301 * Set all bucket nodes reverse hash values for a level and
1302 * link all bucket nodes into the table.
1303 */
1304 init_table_populate(ht, i, len);
1305
1306 /*
1307 * Update table size.
1308 */
1309 cmm_smp_wmb(); /* populate data before RCU size */
1310 CMM_STORE_SHARED(ht->size, 1UL << i);
1311
1312 dbg_printf("init new size: %lu\n", 1UL << i);
1313 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1314 break;
1315 }
1316 }
1317
1318 /*
1319 * Holding RCU read lock to protect _cds_lfht_remove against memory
1320 * reclaim that could be performed by other call_rcu worker threads (ABA
1321 * problem).
1322 * For a single level, we logically remove and garbage collect each node.
1323 *
1324 * As a design choice, we perform logical removal and garbage collection on a
1325 * node-per-node basis to simplify this algorithm. We also assume keeping good
1326 * cache locality of the operation would overweight possible performance gain
1327 * that could be achieved by batching garbage collection for multiple levels.
1328 * However, this would have to be justified by benchmarks.
1329 *
1330 * Concurrent removal and add operations are helping us perform garbage
1331 * collection of logically removed nodes. We guarantee that all logically
1332 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1333 * invoked to free a hole level of bucket nodes (after a grace period).
1334 *
1335 * Logical removal and garbage collection can therefore be done in batch
1336 * or on a node-per-node basis, as long as the guarantee above holds.
1337 *
1338 * When we reach a certain length, we can split this removal over many worker
1339 * threads, based on the number of CPUs available in the system. This should
1340 * take care of not letting resize process lag behind too many concurrent
1341 * updater threads actively inserting into the hash table.
1342 */
1343 static
1344 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1345 unsigned long start, unsigned long len)
1346 {
1347 unsigned long j, size = 1UL << (i - 1);
1348
1349 assert(i > MIN_TABLE_ORDER);
1350 ht->flavor->read_lock();
1351 for (j = size + start; j < size + start + len; j++) {
1352 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1353 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1354
1355 assert(j >= size && j < (size << 1));
1356 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1357 i, j, j);
1358 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1359 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1360 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1361 }
1362 ht->flavor->read_unlock();
1363 }
1364
1365 static
1366 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1367 {
1368 partition_resize_helper(ht, i, len, remove_table_partition);
1369 }
1370
1371 /*
1372 * fini_table() is never called for first_order == 0, which is why
1373 * free_by_rcu_order == 0 can be used as criterion to know if free must
1374 * be called.
1375 */
1376 static
1377 void fini_table(struct cds_lfht *ht,
1378 unsigned long first_order, unsigned long last_order)
1379 {
1380 long i;
1381 unsigned long free_by_rcu_order = 0;
1382
1383 dbg_printf("fini table: first_order %lu last_order %lu\n",
1384 first_order, last_order);
1385 assert(first_order > MIN_TABLE_ORDER);
1386 for (i = last_order; i >= first_order; i--) {
1387 unsigned long len;
1388
1389 len = 1UL << (i - 1);
1390 dbg_printf("fini order %ld len: %lu\n", i, len);
1391
1392 /* Stop shrink if the resize target changes under us */
1393 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1394 break;
1395
1396 cmm_smp_wmb(); /* populate data before RCU size */
1397 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1398
1399 /*
1400 * We need to wait for all add operations to reach Q.S. (and
1401 * thus use the new table for lookups) before we can start
1402 * releasing the old bucket nodes. Otherwise their lookup will
1403 * return a logically removed node as insert position.
1404 */
1405 ht->flavor->update_synchronize_rcu();
1406 if (free_by_rcu_order)
1407 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1408
1409 /*
1410 * Set "removed" flag in bucket nodes about to be removed.
1411 * Unlink all now-logically-removed bucket node pointers.
1412 * Concurrent add/remove operation are helping us doing
1413 * the gc.
1414 */
1415 remove_table(ht, i, len);
1416
1417 free_by_rcu_order = i;
1418
1419 dbg_printf("fini new size: %lu\n", 1UL << i);
1420 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1421 break;
1422 }
1423
1424 if (free_by_rcu_order) {
1425 ht->flavor->update_synchronize_rcu();
1426 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1427 }
1428 }
1429
1430 static
1431 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1432 {
1433 struct cds_lfht_node *prev, *node;
1434 unsigned long order, len, i;
1435
1436 cds_lfht_alloc_bucket_table(ht, 0);
1437
1438 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1439 node = bucket_at(ht, 0);
1440 node->next = flag_bucket(get_end());
1441 node->reverse_hash = 0;
1442
1443 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1444 len = 1UL << (order - 1);
1445 cds_lfht_alloc_bucket_table(ht, order);
1446
1447 for (i = 0; i < len; i++) {
1448 /*
1449 * Now, we are trying to init the node with the
1450 * hash=(len+i) (which is also a bucket with the
1451 * index=(len+i)) and insert it into the hash table,
1452 * so this node has to be inserted after the bucket
1453 * with the index=(len+i)&(len-1)=i. And because there
1454 * is no other non-bucket node nor bucket node with
1455 * larger index/hash inserted, so the bucket node
1456 * being inserted should be inserted directly linked
1457 * after the bucket node with index=i.
1458 */
1459 prev = bucket_at(ht, i);
1460 node = bucket_at(ht, len + i);
1461
1462 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1463 order, len + i, len + i);
1464 node->reverse_hash = bit_reverse_ulong(len + i);
1465
1466 /* insert after prev */
1467 assert(is_bucket(prev->next));
1468 node->next = prev->next;
1469 prev->next = flag_bucket(node);
1470 }
1471 }
1472 }
1473
1474 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1475 unsigned long min_nr_alloc_buckets,
1476 unsigned long max_nr_buckets,
1477 int flags,
1478 const struct cds_lfht_mm_type *mm,
1479 const struct rcu_flavor_struct *flavor,
1480 pthread_attr_t *attr)
1481 {
1482 struct cds_lfht *ht;
1483 unsigned long order;
1484
1485 /* min_nr_alloc_buckets must be power of two */
1486 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1487 return NULL;
1488
1489 /* init_size must be power of two */
1490 if (!init_size || (init_size & (init_size - 1)))
1491 return NULL;
1492
1493 /*
1494 * Memory management plugin default.
1495 */
1496 if (!mm) {
1497 if (CAA_BITS_PER_LONG > 32
1498 && max_nr_buckets
1499 && max_nr_buckets <= (1ULL << 32)) {
1500 /*
1501 * For 64-bit architectures, with max number of
1502 * buckets small enough not to use the entire
1503 * 64-bit memory mapping space (and allowing a
1504 * fair number of hash table instances), use the
1505 * mmap allocator, which is faster than the
1506 * order allocator.
1507 */
1508 mm = &cds_lfht_mm_mmap;
1509 } else {
1510 /*
1511 * The fallback is to use the order allocator.
1512 */
1513 mm = &cds_lfht_mm_order;
1514 }
1515 }
1516
1517 /* max_nr_buckets == 0 for order based mm means infinite */
1518 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1519 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1520
1521 /* max_nr_buckets must be power of two */
1522 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1523 return NULL;
1524
1525 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1526 init_size = max(init_size, MIN_TABLE_SIZE);
1527 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1528 init_size = min(init_size, max_nr_buckets);
1529
1530 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1531 assert(ht);
1532 assert(ht->mm == mm);
1533 assert(ht->bucket_at == mm->bucket_at);
1534
1535 ht->flags = flags;
1536 ht->flavor = flavor;
1537 ht->resize_attr = attr;
1538 alloc_split_items_count(ht);
1539 /* this mutex should not nest in read-side C.S. */
1540 pthread_mutex_init(&ht->resize_mutex, NULL);
1541 order = cds_lfht_get_count_order_ulong(init_size);
1542 ht->resize_target = 1UL << order;
1543 cds_lfht_create_bucket(ht, 1UL << order);
1544 ht->size = 1UL << order;
1545 return ht;
1546 }
1547
1548 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1549 cds_lfht_match_fct match, const void *key,
1550 struct cds_lfht_iter *iter)
1551 {
1552 struct cds_lfht_node *node, *next, *bucket;
1553 unsigned long reverse_hash, size;
1554
1555 reverse_hash = bit_reverse_ulong(hash);
1556
1557 size = rcu_dereference(ht->size);
1558 bucket = lookup_bucket(ht, size, hash);
1559 /* We can always skip the bucket node initially */
1560 node = rcu_dereference(bucket->next);
1561 node = clear_flag(node);
1562 for (;;) {
1563 if (caa_unlikely(is_end(node))) {
1564 node = next = NULL;
1565 break;
1566 }
1567 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1568 node = next = NULL;
1569 break;
1570 }
1571 next = rcu_dereference(node->next);
1572 assert(node == clear_flag(node));
1573 if (caa_likely(!is_removed(next))
1574 && !is_bucket(next)
1575 && node->reverse_hash == reverse_hash
1576 && caa_likely(match(node, key))) {
1577 break;
1578 }
1579 node = clear_flag(next);
1580 }
1581 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1582 iter->node = node;
1583 iter->next = next;
1584 }
1585
1586 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1587 const void *key, struct cds_lfht_iter *iter)
1588 {
1589 struct cds_lfht_node *node, *next;
1590 unsigned long reverse_hash;
1591
1592 node = iter->node;
1593 reverse_hash = node->reverse_hash;
1594 next = iter->next;
1595 node = clear_flag(next);
1596
1597 for (;;) {
1598 if (caa_unlikely(is_end(node))) {
1599 node = next = NULL;
1600 break;
1601 }
1602 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1603 node = next = NULL;
1604 break;
1605 }
1606 next = rcu_dereference(node->next);
1607 if (caa_likely(!is_removed(next))
1608 && !is_bucket(next)
1609 && caa_likely(match(node, key))) {
1610 break;
1611 }
1612 node = clear_flag(next);
1613 }
1614 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1615 iter->node = node;
1616 iter->next = next;
1617 }
1618
1619 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1620 {
1621 struct cds_lfht_node *node, *next;
1622
1623 node = clear_flag(iter->next);
1624 for (;;) {
1625 if (caa_unlikely(is_end(node))) {
1626 node = next = NULL;
1627 break;
1628 }
1629 next = rcu_dereference(node->next);
1630 if (caa_likely(!is_removed(next))
1631 && !is_bucket(next)) {
1632 break;
1633 }
1634 node = clear_flag(next);
1635 }
1636 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1637 iter->node = node;
1638 iter->next = next;
1639 }
1640
1641 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1642 {
1643 /*
1644 * Get next after first bucket node. The first bucket node is the
1645 * first node of the linked list.
1646 */
1647 iter->next = bucket_at(ht, 0)->next;
1648 cds_lfht_next(ht, iter);
1649 }
1650
1651 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1652 struct cds_lfht_node *node)
1653 {
1654 unsigned long size;
1655
1656 node->reverse_hash = bit_reverse_ulong(hash);
1657 size = rcu_dereference(ht->size);
1658 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1659 ht_count_add(ht, size, hash);
1660 }
1661
1662 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1663 unsigned long hash,
1664 cds_lfht_match_fct match,
1665 const void *key,
1666 struct cds_lfht_node *node)
1667 {
1668 unsigned long size;
1669 struct cds_lfht_iter iter;
1670
1671 node->reverse_hash = bit_reverse_ulong(hash);
1672 size = rcu_dereference(ht->size);
1673 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1674 if (iter.node == node)
1675 ht_count_add(ht, size, hash);
1676 return iter.node;
1677 }
1678
1679 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1680 unsigned long hash,
1681 cds_lfht_match_fct match,
1682 const void *key,
1683 struct cds_lfht_node *node)
1684 {
1685 unsigned long size;
1686 struct cds_lfht_iter iter;
1687
1688 node->reverse_hash = bit_reverse_ulong(hash);
1689 size = rcu_dereference(ht->size);
1690 for (;;) {
1691 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1692 if (iter.node == node) {
1693 ht_count_add(ht, size, hash);
1694 return NULL;
1695 }
1696
1697 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1698 return iter.node;
1699 }
1700 }
1701
1702 int cds_lfht_replace(struct cds_lfht *ht,
1703 struct cds_lfht_iter *old_iter,
1704 unsigned long hash,
1705 cds_lfht_match_fct match,
1706 const void *key,
1707 struct cds_lfht_node *new_node)
1708 {
1709 unsigned long size;
1710
1711 new_node->reverse_hash = bit_reverse_ulong(hash);
1712 if (!old_iter->node)
1713 return -ENOENT;
1714 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1715 return -EINVAL;
1716 if (caa_unlikely(!match(old_iter->node, key)))
1717 return -EINVAL;
1718 size = rcu_dereference(ht->size);
1719 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1720 new_node);
1721 }
1722
1723 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1724 {
1725 unsigned long size;
1726 int ret;
1727
1728 size = rcu_dereference(ht->size);
1729 ret = _cds_lfht_del(ht, size, node);
1730 if (!ret) {
1731 unsigned long hash;
1732
1733 hash = bit_reverse_ulong(node->reverse_hash);
1734 ht_count_del(ht, size, hash);
1735 }
1736 return ret;
1737 }
1738
1739 int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1740 {
1741 return is_removed(CMM_LOAD_SHARED(node->next));
1742 }
1743
1744 static
1745 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1746 {
1747 struct cds_lfht_node *node;
1748 unsigned long order, i, size;
1749
1750 /* Check that the table is empty */
1751 node = bucket_at(ht, 0);
1752 do {
1753 node = clear_flag(node)->next;
1754 if (!is_bucket(node))
1755 return -EPERM;
1756 assert(!is_removed(node));
1757 assert(!is_removal_owner(node));
1758 } while (!is_end(node));
1759 /*
1760 * size accessed without rcu_dereference because hash table is
1761 * being destroyed.
1762 */
1763 size = ht->size;
1764 /* Internal sanity check: all nodes left should be buckets */
1765 for (i = 0; i < size; i++) {
1766 node = bucket_at(ht, i);
1767 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1768 i, i, bit_reverse_ulong(node->reverse_hash));
1769 assert(is_bucket(node->next));
1770 }
1771
1772 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1773 cds_lfht_free_bucket_table(ht, order);
1774
1775 return 0;
1776 }
1777
1778 /*
1779 * Should only be called when no more concurrent readers nor writers can
1780 * possibly access the table.
1781 */
1782 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1783 {
1784 int ret, was_online;
1785
1786 /* Wait for in-flight resize operations to complete */
1787 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1788 cmm_smp_mb(); /* Store destroy before load resize */
1789 was_online = ht->flavor->read_ongoing();
1790 if (was_online)
1791 ht->flavor->thread_offline();
1792 /* Calling with RCU read-side held is an error. */
1793 if (ht->flavor->read_ongoing()) {
1794 ret = -EINVAL;
1795 if (was_online)
1796 ht->flavor->thread_online();
1797 goto end;
1798 }
1799 while (uatomic_read(&ht->in_progress_resize))
1800 poll(NULL, 0, 100); /* wait for 100ms */
1801 if (was_online)
1802 ht->flavor->thread_online();
1803 ret = cds_lfht_delete_bucket(ht);
1804 if (ret)
1805 return ret;
1806 free_split_items_count(ht);
1807 if (attr)
1808 *attr = ht->resize_attr;
1809 ret = pthread_mutex_destroy(&ht->resize_mutex);
1810 if (ret)
1811 ret = -EBUSY;
1812 poison_free(ht);
1813 end:
1814 return ret;
1815 }
1816
1817 void cds_lfht_count_nodes(struct cds_lfht *ht,
1818 long *approx_before,
1819 unsigned long *count,
1820 long *approx_after)
1821 {
1822 struct cds_lfht_node *node, *next;
1823 unsigned long nr_bucket = 0, nr_removed = 0;
1824
1825 *approx_before = 0;
1826 if (ht->split_count) {
1827 int i;
1828
1829 for (i = 0; i < split_count_mask + 1; i++) {
1830 *approx_before += uatomic_read(&ht->split_count[i].add);
1831 *approx_before -= uatomic_read(&ht->split_count[i].del);
1832 }
1833 }
1834
1835 *count = 0;
1836
1837 /* Count non-bucket nodes in the table */
1838 node = bucket_at(ht, 0);
1839 do {
1840 next = rcu_dereference(node->next);
1841 if (is_removed(next)) {
1842 if (!is_bucket(next))
1843 (nr_removed)++;
1844 else
1845 (nr_bucket)++;
1846 } else if (!is_bucket(next))
1847 (*count)++;
1848 else
1849 (nr_bucket)++;
1850 node = clear_flag(next);
1851 } while (!is_end(node));
1852 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1853 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1854 *approx_after = 0;
1855 if (ht->split_count) {
1856 int i;
1857
1858 for (i = 0; i < split_count_mask + 1; i++) {
1859 *approx_after += uatomic_read(&ht->split_count[i].add);
1860 *approx_after -= uatomic_read(&ht->split_count[i].del);
1861 }
1862 }
1863 }
1864
1865 /* called with resize mutex held */
1866 static
1867 void _do_cds_lfht_grow(struct cds_lfht *ht,
1868 unsigned long old_size, unsigned long new_size)
1869 {
1870 unsigned long old_order, new_order;
1871
1872 old_order = cds_lfht_get_count_order_ulong(old_size);
1873 new_order = cds_lfht_get_count_order_ulong(new_size);
1874 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1875 old_size, old_order, new_size, new_order);
1876 assert(new_size > old_size);
1877 init_table(ht, old_order + 1, new_order);
1878 }
1879
1880 /* called with resize mutex held */
1881 static
1882 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1883 unsigned long old_size, unsigned long new_size)
1884 {
1885 unsigned long old_order, new_order;
1886
1887 new_size = max(new_size, MIN_TABLE_SIZE);
1888 old_order = cds_lfht_get_count_order_ulong(old_size);
1889 new_order = cds_lfht_get_count_order_ulong(new_size);
1890 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1891 old_size, old_order, new_size, new_order);
1892 assert(new_size < old_size);
1893
1894 /* Remove and unlink all bucket nodes to remove. */
1895 fini_table(ht, new_order + 1, old_order);
1896 }
1897
1898
1899 /* called with resize mutex held */
1900 static
1901 void _do_cds_lfht_resize(struct cds_lfht *ht)
1902 {
1903 unsigned long new_size, old_size;
1904
1905 /*
1906 * Resize table, re-do if the target size has changed under us.
1907 */
1908 do {
1909 assert(uatomic_read(&ht->in_progress_resize));
1910 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1911 break;
1912 ht->resize_initiated = 1;
1913 old_size = ht->size;
1914 new_size = CMM_LOAD_SHARED(ht->resize_target);
1915 if (old_size < new_size)
1916 _do_cds_lfht_grow(ht, old_size, new_size);
1917 else if (old_size > new_size)
1918 _do_cds_lfht_shrink(ht, old_size, new_size);
1919 ht->resize_initiated = 0;
1920 /* write resize_initiated before read resize_target */
1921 cmm_smp_mb();
1922 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1923 }
1924
1925 static
1926 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1927 {
1928 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1929 }
1930
1931 static
1932 void resize_target_update_count(struct cds_lfht *ht,
1933 unsigned long count)
1934 {
1935 count = max(count, MIN_TABLE_SIZE);
1936 count = min(count, ht->max_nr_buckets);
1937 uatomic_set(&ht->resize_target, count);
1938 }
1939
1940 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1941 {
1942 int was_online;
1943
1944 was_online = ht->flavor->read_ongoing();
1945 if (was_online)
1946 ht->flavor->thread_offline();
1947 /* Calling with RCU read-side held is an error. */
1948 if (ht->flavor->read_ongoing()) {
1949 static int print_once;
1950
1951 if (!CMM_LOAD_SHARED(print_once))
1952 fprintf(stderr, "[error] rculfhash: cds_lfht_resize "
1953 "called with RCU read-side lock held.\n");
1954 CMM_STORE_SHARED(print_once, 1);
1955 assert(0);
1956 goto end;
1957 }
1958 resize_target_update_count(ht, new_size);
1959 CMM_STORE_SHARED(ht->resize_initiated, 1);
1960 pthread_mutex_lock(&ht->resize_mutex);
1961 _do_cds_lfht_resize(ht);
1962 pthread_mutex_unlock(&ht->resize_mutex);
1963 end:
1964 if (was_online)
1965 ht->flavor->thread_online();
1966 }
1967
1968 static
1969 void do_resize_cb(struct rcu_head *head)
1970 {
1971 struct rcu_resize_work *work =
1972 caa_container_of(head, struct rcu_resize_work, head);
1973 struct cds_lfht *ht = work->ht;
1974
1975 ht->flavor->thread_offline();
1976 pthread_mutex_lock(&ht->resize_mutex);
1977 _do_cds_lfht_resize(ht);
1978 pthread_mutex_unlock(&ht->resize_mutex);
1979 ht->flavor->thread_online();
1980 poison_free(work);
1981 cmm_smp_mb(); /* finish resize before decrement */
1982 uatomic_dec(&ht->in_progress_resize);
1983 }
1984
1985 static
1986 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1987 {
1988 struct rcu_resize_work *work;
1989
1990 /* Store resize_target before read resize_initiated */
1991 cmm_smp_mb();
1992 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1993 uatomic_inc(&ht->in_progress_resize);
1994 cmm_smp_mb(); /* increment resize count before load destroy */
1995 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1996 uatomic_dec(&ht->in_progress_resize);
1997 return;
1998 }
1999 work = malloc(sizeof(*work));
2000 if (work == NULL) {
2001 dbg_printf("error allocating resize work, bailing out\n");
2002 uatomic_dec(&ht->in_progress_resize);
2003 return;
2004 }
2005 work->ht = ht;
2006 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
2007 CMM_STORE_SHARED(ht->resize_initiated, 1);
2008 }
2009 }
2010
2011 static
2012 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2013 {
2014 unsigned long target_size = size << growth;
2015
2016 target_size = min(target_size, ht->max_nr_buckets);
2017 if (resize_target_grow(ht, target_size) >= target_size)
2018 return;
2019
2020 __cds_lfht_resize_lazy_launch(ht);
2021 }
2022
2023 /*
2024 * We favor grow operations over shrink. A shrink operation never occurs
2025 * if a grow operation is queued for lazy execution. A grow operation
2026 * cancels any pending shrink lazy execution.
2027 */
2028 static
2029 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2030 unsigned long count)
2031 {
2032 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2033 return;
2034 count = max(count, MIN_TABLE_SIZE);
2035 count = min(count, ht->max_nr_buckets);
2036 if (count == size)
2037 return; /* Already the right size, no resize needed */
2038 if (count > size) { /* lazy grow */
2039 if (resize_target_grow(ht, count) >= count)
2040 return;
2041 } else { /* lazy shrink */
2042 for (;;) {
2043 unsigned long s;
2044
2045 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2046 if (s == size)
2047 break; /* no resize needed */
2048 if (s > size)
2049 return; /* growing is/(was just) in progress */
2050 if (s <= count)
2051 return; /* some other thread do shrink */
2052 size = s;
2053 }
2054 }
2055 __cds_lfht_resize_lazy_launch(ht);
2056 }
This page took 0.098856 seconds and 4 git commands to generate.