rculfhash: document algorithms
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Expandable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Expandable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation only allows expanding the hash table.
52 * It is triggered either through an API call or automatically by
53 * detecting long chains in the add operation.
54 * - Resize operation initiated by long chain detection is executed by a
55 * call_rcu thread, which keeps lock-freedom of add and remove.
56 * - Resize operations are protected by a mutex.
57 * - The removal operation is split in two parts: first, a "removed"
58 * flag is set in the next pointer within the node to remove. Then,
59 * a "garbage collection" is performed in the bucket containing the
60 * removed node (from the start of the bucket up to the removed node).
61 * All encountered nodes with "removed" flag set in their next
62 * pointers are removed from the linked-list. If the cmpxchg used for
63 * removal fails (due to concurrent garbage-collection or concurrent
64 * add), we retry from the beginning of the bucket. This ensures that
65 * the node with "removed" flag set is removed from the hash table
66 * (not visible to lookups anymore) before the RCU read-side critical
67 * section held across removal ends. Furthermore, this ensures that
68 * the node with "removed" flag set is removed from the linked-list
69 * before its memory is reclaimed. Only the thread which removal
70 * successfully set the "removed" flag (with a cmpxchg) into a node's
71 * next pointer is considered to have succeeded its removal (and thus
72 * owns the node to reclaim). Because we garbage-collect starting from
73 * an invariant node (the start-of-bucket dummy node) up to the
74 * "removed" node (or find a reverse-hash that is higher), we are sure
75 * that a successful traversal of the chain leads to a chain that is
76 * present in the linked-list (the start node is never removed) and
77 * that is does not contain the "removed" node anymore, even if
78 * concurrent delete/add operations are changing the structure of the
79 * list concurrently.
80 * - A RCU "order table" indexed by log2(hash index) is copied and
81 * expanded by the resize operation. This order table allows finding
82 * the "dummy node" tables.
83 * - There is one dummy node table per hash index order. The size of
84 * each dummy node table is half the number of hashes contained in
85 * this order.
86 * - call_rcu is used to garbage-collect the old order table.
87 * - The per-order dummy node tables contain a compact version of the
88 * hash table nodes. These tables are invariant after they are
89 * populated into the hash table.
90 */
91
92 #define _LGPL_SOURCE
93 #include <stdlib.h>
94 #include <errno.h>
95 #include <assert.h>
96 #include <stdio.h>
97 #include <stdint.h>
98 #include <string.h>
99
100 #include <urcu.h>
101 #include <urcu-call-rcu.h>
102 #include <urcu/arch.h>
103 #include <urcu/uatomic.h>
104 #include <urcu/jhash.h>
105 #include <urcu/compiler.h>
106 #include <urcu/rculfhash.h>
107 #include <stdio.h>
108 #include <pthread.h>
109
110 #ifdef DEBUG
111 #define dbg_printf(fmt, args...) printf(fmt, ## args)
112 #else
113 #define dbg_printf(fmt, args...)
114 #endif
115
116 #define CHAIN_LEN_TARGET 4
117 #define CHAIN_LEN_RESIZE_THRESHOLD 8
118
119 #ifndef max
120 #define max(a, b) ((a) > (b) ? (a) : (b))
121 #endif
122
123 /*
124 * The removed flag needs to be updated atomically with the pointer.
125 * The dummy flag does not require to be updated atomically with the
126 * pointer, but it is added as a pointer low bit flag to save space.
127 */
128 #define REMOVED_FLAG (1UL << 0)
129 #define DUMMY_FLAG (1UL << 1)
130 #define FLAGS_MASK ((1UL << 2) - 1)
131
132 struct rcu_table {
133 unsigned long size; /* always a power of 2 */
134 unsigned long resize_target;
135 int resize_initiated;
136 struct rcu_head head;
137 struct _rcu_ht_node *tbl[0];
138 };
139
140 struct rcu_ht {
141 struct rcu_table *t; /* shared */
142 ht_hash_fct hash_fct;
143 ht_compare_fct compare_fct;
144 unsigned long hash_seed;
145 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
146 unsigned int in_progress_resize, in_progress_destroy;
147 void (*ht_call_rcu)(struct rcu_head *head,
148 void (*func)(struct rcu_head *head));
149 };
150
151 struct rcu_resize_work {
152 struct rcu_head head;
153 struct rcu_ht *ht;
154 };
155
156 /*
157 * Algorithm to reverse bits in a word by lookup table, extended to
158 * 64-bit words.
159 * Source:
160 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
161 * Originally from Public Domain.
162 */
163
164 static const uint8_t BitReverseTable256[256] =
165 {
166 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
167 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
168 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
169 R6(0), R6(2), R6(1), R6(3)
170 };
171 #undef R2
172 #undef R4
173 #undef R6
174
175 static
176 uint8_t bit_reverse_u8(uint8_t v)
177 {
178 return BitReverseTable256[v];
179 }
180
181 static __attribute__((unused))
182 uint32_t bit_reverse_u32(uint32_t v)
183 {
184 return ((uint32_t) bit_reverse_u8(v) << 24) |
185 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
186 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
187 ((uint32_t) bit_reverse_u8(v >> 24));
188 }
189
190 static __attribute__((unused))
191 uint64_t bit_reverse_u64(uint64_t v)
192 {
193 return ((uint64_t) bit_reverse_u8(v) << 56) |
194 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
195 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
196 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
197 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
198 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
199 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
200 ((uint64_t) bit_reverse_u8(v >> 56));
201 }
202
203 static
204 unsigned long bit_reverse_ulong(unsigned long v)
205 {
206 #if (CAA_BITS_PER_LONG == 32)
207 return bit_reverse_u32(v);
208 #else
209 return bit_reverse_u64(v);
210 #endif
211 }
212
213 /*
214 * fls: returns the position of the most significant bit.
215 * Returns 0 if no bit is set, else returns the position of the most
216 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
217 */
218 #if defined(__i386) || defined(__x86_64)
219 static inline
220 unsigned int fls_u32(uint32_t x)
221 {
222 int r;
223
224 asm("bsrl %1,%0\n\t"
225 "jnz 1f\n\t"
226 "movl $-1,%0\n\t"
227 "1:\n\t"
228 : "=r" (r) : "rm" (x));
229 return r + 1;
230 }
231 #define HAS_FLS_U32
232 #endif
233
234 #if defined(__x86_64)
235 static inline
236 unsigned int fls_u64(uint64_t x)
237 {
238 long r;
239
240 asm("bsrq %1,%0\n\t"
241 "jnz 1f\n\t"
242 "movq $-1,%0\n\t"
243 "1:\n\t"
244 : "=r" (r) : "rm" (x));
245 return r + 1;
246 }
247 #define HAS_FLS_U64
248 #endif
249
250 #ifndef HAS_FLS_U64
251 static __attribute__((unused))
252 unsigned int fls_u64(uint64_t x)
253 {
254 unsigned int r = 64;
255
256 if (!x)
257 return 0;
258
259 if (!(x & 0xFFFFFFFF00000000ULL)) {
260 x <<= 32;
261 r -= 32;
262 }
263 if (!(x & 0xFFFF000000000000ULL)) {
264 x <<= 16;
265 r -= 16;
266 }
267 if (!(x & 0xFF00000000000000ULL)) {
268 x <<= 8;
269 r -= 8;
270 }
271 if (!(x & 0xF000000000000000ULL)) {
272 x <<= 4;
273 r -= 4;
274 }
275 if (!(x & 0xC000000000000000ULL)) {
276 x <<= 2;
277 r -= 2;
278 }
279 if (!(x & 0x8000000000000000ULL)) {
280 x <<= 1;
281 r -= 1;
282 }
283 return r;
284 }
285 #endif
286
287 #ifndef HAS_FLS_U32
288 static __attribute__((unused))
289 unsigned int fls_u32(uint32_t x)
290 {
291 unsigned int r = 32;
292
293 if (!x)
294 return 0;
295 if (!(x & 0xFFFF0000U)) {
296 x <<= 16;
297 r -= 16;
298 }
299 if (!(x & 0xFF000000U)) {
300 x <<= 8;
301 r -= 8;
302 }
303 if (!(x & 0xF0000000U)) {
304 x <<= 4;
305 r -= 4;
306 }
307 if (!(x & 0xC0000000U)) {
308 x <<= 2;
309 r -= 2;
310 }
311 if (!(x & 0x80000000U)) {
312 x <<= 1;
313 r -= 1;
314 }
315 return r;
316 }
317 #endif
318
319 unsigned int fls_ulong(unsigned long x)
320 {
321 #if (CAA_BITS_PER_lONG == 32)
322 return fls_u32(x);
323 #else
324 return fls_u64(x);
325 #endif
326 }
327
328 int get_count_order_u32(uint32_t x)
329 {
330 int order;
331
332 order = fls_u32(x) - 1;
333 if (x & (x - 1))
334 order++;
335 return order;
336 }
337
338 int get_count_order_ulong(unsigned long x)
339 {
340 int order;
341
342 order = fls_ulong(x) - 1;
343 if (x & (x - 1))
344 order++;
345 return order;
346 }
347
348 static
349 void ht_resize_lazy(struct rcu_ht *ht, struct rcu_table *t, int growth);
350
351 static
352 void check_resize(struct rcu_ht *ht, struct rcu_table *t,
353 uint32_t chain_len)
354 {
355 if (chain_len > 100)
356 dbg_printf("rculfhash: WARNING: large chain length: %u.\n",
357 chain_len);
358 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
359 ht_resize_lazy(ht, t,
360 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
361 }
362
363 static
364 struct rcu_ht_node *clear_flag(struct rcu_ht_node *node)
365 {
366 return (struct rcu_ht_node *) (((unsigned long) node) & ~FLAGS_MASK);
367 }
368
369 static
370 int is_removed(struct rcu_ht_node *node)
371 {
372 return ((unsigned long) node) & REMOVED_FLAG;
373 }
374
375 static
376 struct rcu_ht_node *flag_removed(struct rcu_ht_node *node)
377 {
378 return (struct rcu_ht_node *) (((unsigned long) node) | REMOVED_FLAG);
379 }
380
381 static
382 int is_dummy(struct rcu_ht_node *node)
383 {
384 return ((unsigned long) node) & DUMMY_FLAG;
385 }
386
387 static
388 struct rcu_ht_node *flag_dummy(struct rcu_ht_node *node)
389 {
390 return (struct rcu_ht_node *) (((unsigned long) node) | DUMMY_FLAG);
391 }
392
393 static
394 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
395 {
396 unsigned long old1, old2;
397
398 old1 = uatomic_read(ptr);
399 do {
400 old2 = old1;
401 if (old2 >= v)
402 return old2;
403 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
404 return v;
405 }
406
407 /*
408 * Remove all logically deleted nodes from a bucket up to a certain node key.
409 */
410 static
411 void _ht_gc_bucket(struct rcu_ht_node *dummy, struct rcu_ht_node *node)
412 {
413 struct rcu_ht_node *iter_prev, *iter, *next, *new_next;
414
415 for (;;) {
416 iter_prev = dummy;
417 /* We can always skip the dummy node initially */
418 iter = rcu_dereference(iter_prev->p.next);
419 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
420 for (;;) {
421 if (unlikely(!clear_flag(iter)))
422 return;
423 if (clear_flag(iter)->p.reverse_hash > node->p.reverse_hash)
424 return;
425 next = rcu_dereference(clear_flag(iter)->p.next);
426 if (is_removed(next))
427 break;
428 iter_prev = clear_flag(iter);
429 iter = next;
430 }
431 assert(!is_removed(iter));
432 if (is_dummy(iter))
433 new_next = flag_dummy(clear_flag(next));
434 else
435 new_next = clear_flag(next);
436 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
437 }
438 }
439
440 static
441 struct rcu_ht_node *_ht_add(struct rcu_ht *ht, struct rcu_table *t,
442 struct rcu_ht_node *node, int unique, int dummy)
443 {
444 struct rcu_ht_node *iter_prev, *iter, *next, *new_node, *new_next,
445 *dummy_node;
446 struct _rcu_ht_node *lookup;
447 unsigned long hash, index, order;
448
449 if (!t->size) {
450 assert(dummy);
451 node->p.next = flag_dummy(NULL);
452 return node; /* Initial first add (head) */
453 }
454 hash = bit_reverse_ulong(node->p.reverse_hash);
455 for (;;) {
456 uint32_t chain_len = 0;
457
458 /*
459 * iter_prev points to the non-removed node prior to the
460 * insert location.
461 */
462 index = hash & (t->size - 1);
463 order = get_count_order_ulong(index + 1);
464 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
465 iter_prev = (struct rcu_ht_node *) lookup;
466 /* We can always skip the dummy node initially */
467 iter = rcu_dereference(iter_prev->p.next);
468 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
469 for (;;) {
470 if (unlikely(!clear_flag(iter)))
471 goto insert;
472 if (clear_flag(iter)->p.reverse_hash > node->p.reverse_hash)
473 goto insert;
474 next = rcu_dereference(clear_flag(iter)->p.next);
475 if (is_removed(next))
476 goto gc_node;
477 if (unique
478 && !is_dummy(next)
479 && !ht->compare_fct(node->key, node->key_len,
480 clear_flag(iter)->key,
481 clear_flag(iter)->key_len))
482 return clear_flag(iter);
483 /* Only account for identical reverse hash once */
484 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
485 && !is_dummy(next))
486 check_resize(ht, t, ++chain_len);
487 iter_prev = clear_flag(iter);
488 iter = next;
489 }
490 insert:
491 assert(node != clear_flag(iter));
492 assert(!is_removed(iter_prev));
493 assert(iter_prev != node);
494 if (!dummy)
495 node->p.next = clear_flag(iter);
496 else
497 node->p.next = flag_dummy(clear_flag(iter));
498 if (is_dummy(iter))
499 new_node = flag_dummy(node);
500 else
501 new_node = node;
502 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
503 new_node) != iter)
504 continue; /* retry */
505 else
506 goto gc_end;
507 gc_node:
508 assert(!is_removed(iter));
509 if (is_dummy(iter))
510 new_next = flag_dummy(clear_flag(next));
511 else
512 new_next = clear_flag(next);
513 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
514 /* retry */
515 }
516 gc_end:
517 /* Garbage collect logically removed nodes in the bucket */
518 index = hash & (t->size - 1);
519 order = get_count_order_ulong(index + 1);
520 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
521 dummy_node = (struct rcu_ht_node *) lookup;
522 _ht_gc_bucket(dummy_node, node);
523 return node;
524 }
525
526 static
527 int _ht_remove(struct rcu_ht *ht, struct rcu_table *t, struct rcu_ht_node *node)
528 {
529 struct rcu_ht_node *dummy, *next, *old;
530 struct _rcu_ht_node *lookup;
531 int flagged = 0;
532 unsigned long hash, index, order;
533
534 /* logically delete the node */
535 old = rcu_dereference(node->p.next);
536 do {
537 next = old;
538 if (is_removed(next))
539 goto end;
540 assert(!is_dummy(next));
541 old = uatomic_cmpxchg(&node->p.next, next,
542 flag_removed(next));
543 } while (old != next);
544
545 /* We performed the (logical) deletion. */
546 flagged = 1;
547
548 /*
549 * Ensure that the node is not visible to readers anymore: lookup for
550 * the node, and remove it (along with any other logically removed node)
551 * if found.
552 */
553 hash = bit_reverse_ulong(node->p.reverse_hash);
554 index = hash & (t->size - 1);
555 order = get_count_order_ulong(index + 1);
556 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
557 dummy = (struct rcu_ht_node *) lookup;
558 _ht_gc_bucket(dummy, node);
559 end:
560 /*
561 * Only the flagging action indicated that we (and no other)
562 * removed the node from the hash.
563 */
564 if (flagged) {
565 assert(is_removed(rcu_dereference(node->p.next)));
566 return 0;
567 } else
568 return -ENOENT;
569 }
570
571 static
572 void init_table(struct rcu_ht *ht, struct rcu_table *t,
573 unsigned long first_order, unsigned long len_order)
574 {
575 unsigned long i, end_order;
576
577 dbg_printf("rculfhash: init table: first_order %lu end_order %lu\n",
578 first_order, first_order + len_order);
579 end_order = first_order + len_order;
580 t->size = !first_order ? 0 : (1UL << (first_order - 1));
581 for (i = first_order; i < end_order; i++) {
582 unsigned long j, len;
583
584 len = !i ? 1 : 1UL << (i - 1);
585 dbg_printf("rculfhash: init order %lu len: %lu\n", i, len);
586 t->tbl[i] = calloc(len, sizeof(struct _rcu_ht_node));
587 for (j = 0; j < len; j++) {
588 dbg_printf("rculfhash: init entry: i %lu j %lu hash %lu\n",
589 i, j, !i ? 0 : (1UL << (i - 1)) + j);
590 struct rcu_ht_node *new_node =
591 (struct rcu_ht_node *) &t->tbl[i][j];
592 new_node->p.reverse_hash =
593 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
594 (void) _ht_add(ht, t, new_node, 0, 1);
595 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
596 break;
597 }
598 /* Update table size */
599 t->size = !i ? 1 : (1UL << i);
600 dbg_printf("rculfhash: init new size: %lu\n", t->size);
601 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
602 break;
603 }
604 t->resize_target = t->size;
605 t->resize_initiated = 0;
606 }
607
608 struct rcu_ht *ht_new(ht_hash_fct hash_fct,
609 ht_compare_fct compare_fct,
610 unsigned long hash_seed,
611 unsigned long init_size,
612 void (*ht_call_rcu)(struct rcu_head *head,
613 void (*func)(struct rcu_head *head)))
614 {
615 struct rcu_ht *ht;
616 unsigned long order;
617
618 ht = calloc(1, sizeof(struct rcu_ht));
619 ht->hash_fct = hash_fct;
620 ht->compare_fct = compare_fct;
621 ht->hash_seed = hash_seed;
622 ht->ht_call_rcu = ht_call_rcu;
623 ht->in_progress_resize = 0;
624 /* this mutex should not nest in read-side C.S. */
625 pthread_mutex_init(&ht->resize_mutex, NULL);
626 order = get_count_order_ulong(max(init_size, 1)) + 1;
627 ht->t = calloc(1, sizeof(struct rcu_table)
628 + (order * sizeof(struct _rcu_ht_node *)));
629 ht->t->size = 0;
630 pthread_mutex_lock(&ht->resize_mutex);
631 init_table(ht, ht->t, 0, order);
632 pthread_mutex_unlock(&ht->resize_mutex);
633 return ht;
634 }
635
636 struct rcu_ht_node *ht_lookup(struct rcu_ht *ht, void *key, size_t key_len)
637 {
638 struct rcu_table *t;
639 struct rcu_ht_node *node, *next;
640 struct _rcu_ht_node *lookup;
641 unsigned long hash, reverse_hash, index, order;
642
643 hash = ht->hash_fct(key, key_len, ht->hash_seed);
644 reverse_hash = bit_reverse_ulong(hash);
645
646 t = rcu_dereference(ht->t);
647 index = hash & (t->size - 1);
648 order = get_count_order_ulong(index + 1);
649 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
650 dbg_printf("rculfhash: lookup hash %lu index %lu order %lu aridx %lu\n",
651 hash, index, order, index & ((1UL << (order - 1)) - 1));
652 node = (struct rcu_ht_node *) lookup;
653 for (;;) {
654 if (unlikely(!node))
655 break;
656 if (unlikely(node->p.reverse_hash > reverse_hash)) {
657 node = NULL;
658 break;
659 }
660 next = rcu_dereference(node->p.next);
661 if (likely(!is_removed(next))
662 && !is_dummy(next)
663 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
664 break;
665 }
666 node = clear_flag(next);
667 }
668 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
669 return node;
670 }
671
672 void ht_add(struct rcu_ht *ht, struct rcu_ht_node *node)
673 {
674 struct rcu_table *t;
675 unsigned long hash;
676
677 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
678 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
679
680 t = rcu_dereference(ht->t);
681 (void) _ht_add(ht, t, node, 0, 0);
682 }
683
684 struct rcu_ht_node *ht_add_unique(struct rcu_ht *ht, struct rcu_ht_node *node)
685 {
686 struct rcu_table *t;
687 unsigned long hash;
688
689 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
690 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
691
692 t = rcu_dereference(ht->t);
693 return _ht_add(ht, t, node, 1, 0);
694 }
695
696 int ht_remove(struct rcu_ht *ht, struct rcu_ht_node *node)
697 {
698 struct rcu_table *t;
699
700 t = rcu_dereference(ht->t);
701 return _ht_remove(ht, t, node);
702 }
703
704 static
705 int ht_delete_dummy(struct rcu_ht *ht)
706 {
707 struct rcu_table *t;
708 struct rcu_ht_node *node;
709 struct _rcu_ht_node *lookup;
710 unsigned long order, i;
711
712 t = ht->t;
713 /* Check that the table is empty */
714 lookup = &t->tbl[0][0];
715 node = (struct rcu_ht_node *) lookup;
716 do {
717 node = clear_flag(node)->p.next;
718 if (!is_dummy(node))
719 return -EPERM;
720 assert(!is_removed(node));
721 } while (clear_flag(node));
722 /* Internal sanity check: all nodes left should be dummy */
723 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
724 unsigned long len;
725
726 len = !order ? 1 : 1UL << (order - 1);
727 for (i = 0; i < len; i++) {
728 dbg_printf("rculfhash: delete order %lu i %lu hash %lu\n",
729 order, i,
730 bit_reverse_ulong(t->tbl[order][i].reverse_hash));
731 assert(is_dummy(t->tbl[order][i].next));
732 }
733 free(t->tbl[order]);
734 }
735 return 0;
736 }
737
738 /*
739 * Should only be called when no more concurrent readers nor writers can
740 * possibly access the table.
741 */
742 int ht_destroy(struct rcu_ht *ht)
743 {
744 int ret;
745
746 /* Wait for in-flight resize operations to complete */
747 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
748 while (uatomic_read(&ht->in_progress_resize))
749 poll(NULL, 0, 100); /* wait for 100ms */
750 ret = ht_delete_dummy(ht);
751 if (ret)
752 return ret;
753 free(ht->t);
754 free(ht);
755 return ret;
756 }
757
758 void ht_count_nodes(struct rcu_ht *ht,
759 unsigned long *count,
760 unsigned long *removed)
761 {
762 struct rcu_table *t;
763 struct rcu_ht_node *node, *next;
764 struct _rcu_ht_node *lookup;
765 unsigned long nr_dummy = 0;
766
767 *count = 0;
768 *removed = 0;
769
770 t = rcu_dereference(ht->t);
771 /* Count non-dummy nodes in the table */
772 lookup = &t->tbl[0][0];
773 node = (struct rcu_ht_node *) lookup;
774 do {
775 next = rcu_dereference(node->p.next);
776 if (is_removed(next)) {
777 assert(!is_dummy(next));
778 (*removed)++;
779 } else if (!is_dummy(next))
780 (*count)++;
781 else
782 (nr_dummy)++;
783 node = clear_flag(next);
784 } while (node);
785 dbg_printf("rculfhash: number of dummy nodes: %lu\n", nr_dummy);
786 }
787
788 static
789 void ht_free_table_cb(struct rcu_head *head)
790 {
791 struct rcu_table *t =
792 caa_container_of(head, struct rcu_table, head);
793 free(t);
794 }
795
796 /* called with resize mutex held */
797 static
798 void _do_ht_resize(struct rcu_ht *ht)
799 {
800 unsigned long new_size, old_size, old_order, new_order;
801 struct rcu_table *new_t, *old_t;
802
803 old_t = ht->t;
804 old_size = old_t->size;
805 old_order = get_count_order_ulong(old_size) + 1;
806
807 new_size = CMM_LOAD_SHARED(old_t->resize_target);
808 if (old_size == new_size)
809 return;
810 new_order = get_count_order_ulong(new_size) + 1;
811 printf("rculfhash: resize from %lu (order %lu) to %lu (order %lu) buckets\n",
812 old_size, old_order, new_size, new_order);
813 new_t = malloc(sizeof(struct rcu_table)
814 + (new_order * sizeof(struct _rcu_ht_node *)));
815 assert(new_size > old_size);
816 memcpy(&new_t->tbl, &old_t->tbl,
817 old_order * sizeof(struct _rcu_ht_node *));
818 init_table(ht, new_t, old_order, new_order - old_order);
819 /* Changing table and size atomically wrt lookups */
820 rcu_assign_pointer(ht->t, new_t);
821 ht->ht_call_rcu(&old_t->head, ht_free_table_cb);
822 }
823
824 static
825 unsigned long resize_target_update(struct rcu_table *t,
826 int growth_order)
827 {
828 return _uatomic_max(&t->resize_target,
829 t->size << growth_order);
830 }
831
832 void ht_resize(struct rcu_ht *ht, int growth)
833 {
834 struct rcu_table *t = rcu_dereference(ht->t);
835 unsigned long target_size;
836
837 target_size = resize_target_update(t, growth);
838 if (t->size < target_size) {
839 CMM_STORE_SHARED(t->resize_initiated, 1);
840 pthread_mutex_lock(&ht->resize_mutex);
841 _do_ht_resize(ht);
842 pthread_mutex_unlock(&ht->resize_mutex);
843 }
844 }
845
846 static
847 void do_resize_cb(struct rcu_head *head)
848 {
849 struct rcu_resize_work *work =
850 caa_container_of(head, struct rcu_resize_work, head);
851 struct rcu_ht *ht = work->ht;
852
853 pthread_mutex_lock(&ht->resize_mutex);
854 _do_ht_resize(ht);
855 pthread_mutex_unlock(&ht->resize_mutex);
856 free(work);
857 cmm_smp_mb(); /* finish resize before decrement */
858 uatomic_dec(&ht->in_progress_resize);
859 }
860
861 static
862 void ht_resize_lazy(struct rcu_ht *ht, struct rcu_table *t, int growth)
863 {
864 struct rcu_resize_work *work;
865 unsigned long target_size;
866
867 target_size = resize_target_update(t, growth);
868 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
869 uatomic_inc(&ht->in_progress_resize);
870 cmm_smp_mb(); /* increment resize count before calling it */
871 work = malloc(sizeof(*work));
872 work->ht = ht;
873 ht->ht_call_rcu(&work->head, do_resize_cb);
874 CMM_STORE_SHARED(t->resize_initiated, 1);
875 }
876 }
This page took 0.046898 seconds and 5 git commands to generate.