Model used for ipi verification run #1
[urcu.git] / formal-model / urcu-controldataflow / urcu.spin
1 /*
2 * mem.spin: Promela code to validate memory barriers with OOO memory
3 * and out-of-order instruction scheduling.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (c) 2009 Mathieu Desnoyers
20 */
21
22 /* Promela validation variables. */
23
24 /* specific defines "included" here */
25 /* DEFINES file "included" here */
26
27 #define NR_READERS 1
28 #define NR_WRITERS 1
29
30 #define NR_PROCS 2
31
32 #define get_pid() (_pid)
33
34 #define get_readerid() (get_pid())
35
36 /*
37 * Produced process control and data flow. Updated after each instruction to
38 * show which variables are ready. Using one-hot bit encoding per variable to
39 * save state space. Used as triggers to execute the instructions having those
40 * variables as input. Leaving bits active to inhibit instruction execution.
41 * Scheme used to make instruction disabling and automatic dependency fall-back
42 * automatic.
43 */
44
45 #define CONSUME_TOKENS(state, bits, notbits) \
46 ((!(state & (notbits))) && (state & (bits)) == (bits))
47
48 #define PRODUCE_TOKENS(state, bits) \
49 state = state | (bits);
50
51 #define CLEAR_TOKENS(state, bits) \
52 state = state & ~(bits)
53
54 /*
55 * Types of dependency :
56 *
57 * Data dependency
58 *
59 * - True dependency, Read-after-Write (RAW)
60 *
61 * This type of dependency happens when a statement depends on the result of a
62 * previous statement. This applies to any statement which needs to read a
63 * variable written by a preceding statement.
64 *
65 * - False dependency, Write-after-Read (WAR)
66 *
67 * Typically, variable renaming can ensure that this dependency goes away.
68 * However, if the statements must read and then write from/to the same variable
69 * in the OOO memory model, renaming may be impossible, and therefore this
70 * causes a WAR dependency.
71 *
72 * - Output dependency, Write-after-Write (WAW)
73 *
74 * Two writes to the same variable in subsequent statements. Variable renaming
75 * can ensure this is not needed, but can be required when writing multiple
76 * times to the same OOO mem model variable.
77 *
78 * Control dependency
79 *
80 * Execution of a given instruction depends on a previous instruction evaluating
81 * in a way that allows its execution. E.g. : branches.
82 *
83 * Useful considerations for joining dependencies after branch
84 *
85 * - Pre-dominance
86 *
87 * "We say box i dominates box j if every path (leading from input to output
88 * through the diagram) which passes through box j must also pass through box
89 * i. Thus box i dominates box j if box j is subordinate to box i in the
90 * program."
91 *
92 * http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
93 * Other classic algorithm to calculate dominance : Lengauer-Tarjan (in gcc)
94 *
95 * - Post-dominance
96 *
97 * Just as pre-dominance, but with arcs of the data flow inverted, and input vs
98 * output exchanged. Therefore, i post-dominating j ensures that every path
99 * passing by j will pass by i before reaching the output.
100 *
101 * Other considerations
102 *
103 * Note about "volatile" keyword dependency : The compiler will order volatile
104 * accesses so they appear in the right order on a given CPU. They can be
105 * reordered by the CPU instruction scheduling. This therefore cannot be
106 * considered as a depencency.
107 *
108 * References :
109 *
110 * Cooper, Keith D.; & Torczon, Linda. (2005). Engineering a Compiler. Morgan
111 * Kaufmann. ISBN 1-55860-698-X.
112 * Kennedy, Ken; & Allen, Randy. (2001). Optimizing Compilers for Modern
113 * Architectures: A Dependence-based Approach. Morgan Kaufmann. ISBN
114 * 1-55860-286-0.
115 * Muchnick, Steven S. (1997). Advanced Compiler Design and Implementation.
116 * Morgan Kaufmann. ISBN 1-55860-320-4.
117 */
118
119 /*
120 * Note about loops and nested calls
121 *
122 * To keep this model simple, loops expressed in the framework will behave as if
123 * there was a core synchronizing instruction between loops. To see the effect
124 * of loop unrolling, manually unrolling loops is required. Note that if loops
125 * end or start with a core synchronizing instruction, the model is appropriate.
126 * Nested calls are not supported.
127 */
128
129 /*
130 * Each process have its own data in cache. Caches are randomly updated.
131 * smp_wmb and smp_rmb forces cache updates (write and read), smp_mb forces
132 * both.
133 */
134
135 typedef per_proc_byte {
136 byte val[NR_PROCS];
137 };
138
139 typedef per_proc_bit {
140 bit val[NR_PROCS];
141 };
142
143 /* Bitfield has a maximum of 8 procs */
144 typedef per_proc_bitfield {
145 byte bitfield;
146 };
147
148 #define DECLARE_CACHED_VAR(type, x) \
149 type mem_##x; \
150 per_proc_##type cached_##x; \
151 per_proc_bitfield cache_dirty_##x;
152
153 #define INIT_CACHED_VAR(x, v, j) \
154 mem_##x = v; \
155 cache_dirty_##x.bitfield = 0; \
156 j = 0; \
157 do \
158 :: j < NR_PROCS -> \
159 cached_##x.val[j] = v; \
160 j++ \
161 :: j >= NR_PROCS -> break \
162 od;
163
164 #define IS_CACHE_DIRTY(x, id) (cache_dirty_##x.bitfield & (1 << id))
165
166 #define READ_CACHED_VAR(x) (cached_##x.val[get_pid()])
167
168 #define WRITE_CACHED_VAR(x, v) \
169 atomic { \
170 cached_##x.val[get_pid()] = v; \
171 cache_dirty_##x.bitfield = \
172 cache_dirty_##x.bitfield | (1 << get_pid()); \
173 }
174
175 #define CACHE_WRITE_TO_MEM(x, id) \
176 if \
177 :: IS_CACHE_DIRTY(x, id) -> \
178 mem_##x = cached_##x.val[id]; \
179 cache_dirty_##x.bitfield = \
180 cache_dirty_##x.bitfield & (~(1 << id)); \
181 :: else -> \
182 skip \
183 fi;
184
185 #define CACHE_READ_FROM_MEM(x, id) \
186 if \
187 :: !IS_CACHE_DIRTY(x, id) -> \
188 cached_##x.val[id] = mem_##x;\
189 :: else -> \
190 skip \
191 fi;
192
193 /*
194 * May update other caches if cache is dirty, or not.
195 */
196 #define RANDOM_CACHE_WRITE_TO_MEM(x, id)\
197 if \
198 :: 1 -> CACHE_WRITE_TO_MEM(x, id); \
199 :: 1 -> skip \
200 fi;
201
202 #define RANDOM_CACHE_READ_FROM_MEM(x, id)\
203 if \
204 :: 1 -> CACHE_READ_FROM_MEM(x, id); \
205 :: 1 -> skip \
206 fi;
207
208 /* Must consume all prior read tokens. All subsequent reads depend on it. */
209 inline smp_rmb(i, j)
210 {
211 atomic {
212 CACHE_READ_FROM_MEM(urcu_gp_ctr, get_pid());
213 i = 0;
214 do
215 :: i < NR_READERS ->
216 CACHE_READ_FROM_MEM(urcu_active_readers[i], get_pid());
217 i++
218 :: i >= NR_READERS -> break
219 od;
220 CACHE_READ_FROM_MEM(rcu_ptr, get_pid());
221 i = 0;
222 do
223 :: i < SLAB_SIZE ->
224 CACHE_READ_FROM_MEM(rcu_data[i], get_pid());
225 i++
226 :: i >= SLAB_SIZE -> break
227 od;
228 }
229 }
230
231 /* Must consume all prior write tokens. All subsequent writes depend on it. */
232 inline smp_wmb(i, j)
233 {
234 atomic {
235 CACHE_WRITE_TO_MEM(urcu_gp_ctr, get_pid());
236 i = 0;
237 do
238 :: i < NR_READERS ->
239 CACHE_WRITE_TO_MEM(urcu_active_readers[i], get_pid());
240 i++
241 :: i >= NR_READERS -> break
242 od;
243 CACHE_WRITE_TO_MEM(rcu_ptr, get_pid());
244 i = 0;
245 do
246 :: i < SLAB_SIZE ->
247 CACHE_WRITE_TO_MEM(rcu_data[i], get_pid());
248 i++
249 :: i >= SLAB_SIZE -> break
250 od;
251 }
252 }
253
254 /* Synchronization point. Must consume all prior read and write tokens. All
255 * subsequent reads and writes depend on it. */
256 inline smp_mb(i, j)
257 {
258 atomic {
259 smp_wmb(i, j);
260 smp_rmb(i, j);
261 }
262 }
263
264 #ifdef REMOTE_BARRIERS
265
266 bit reader_barrier[NR_READERS];
267
268 /*
269 * We cannot leave the barriers dependencies in place in REMOTE_BARRIERS mode
270 * because they would add unexisting core synchronization and would therefore
271 * create an incomplete model.
272 * Therefore, we model the read-side memory barriers by completely disabling the
273 * memory barriers and their dependencies from the read-side. One at a time
274 * (different verification runs), we make a different instruction listen for
275 * signals.
276 */
277
278 #define smp_mb_reader(i, j)
279
280 /*
281 * Service 0, 1 or many barrier requests.
282 */
283 inline smp_mb_recv(i, j)
284 {
285 do
286 :: (reader_barrier[get_readerid()] == 1) ->
287 /*
288 * We choose to ignore cycles caused by writer busy-looping,
289 * waiting for the reader, sending barrier requests, and the
290 * reader always services them without continuing execution.
291 */
292 progress_ignoring_mb1:
293 smp_mb(i, j);
294 reader_barrier[get_readerid()] = 0;
295 :: 1 ->
296 /*
297 * We choose to ignore writer's non-progress caused by the
298 * reader ignoring the writer's mb() requests.
299 */
300 progress_ignoring_mb2:
301 break;
302 od;
303 }
304
305 #define PROGRESS_LABEL(progressid) progress_writer_progid_##progressid:
306
307 #define smp_mb_send(i, j, progressid) \
308 { \
309 smp_mb(i, j); \
310 i = 0; \
311 do \
312 :: i < NR_READERS -> \
313 reader_barrier[i] = 1; \
314 /* \
315 * Busy-looping waiting for reader barrier handling is of little\
316 * interest, given the reader has the ability to totally ignore \
317 * barrier requests. \
318 */ \
319 do \
320 :: (reader_barrier[i] == 1) -> \
321 PROGRESS_LABEL(progressid) \
322 skip; \
323 :: (reader_barrier[i] == 0) -> break; \
324 od; \
325 i++; \
326 :: i >= NR_READERS -> \
327 break \
328 od; \
329 smp_mb(i, j); \
330 }
331
332 #else
333
334 #define smp_mb_send(i, j, progressid) smp_mb(i, j)
335 #define smp_mb_reader smp_mb
336 #define smp_mb_recv(i, j)
337
338 #endif
339
340 /* Keep in sync manually with smp_rmb, smp_wmb, ooo_mem and init() */
341 DECLARE_CACHED_VAR(byte, urcu_gp_ctr);
342 /* Note ! currently only one reader */
343 DECLARE_CACHED_VAR(byte, urcu_active_readers[NR_READERS]);
344 /* RCU data */
345 DECLARE_CACHED_VAR(bit, rcu_data[SLAB_SIZE]);
346
347 /* RCU pointer */
348 #if (SLAB_SIZE == 2)
349 DECLARE_CACHED_VAR(bit, rcu_ptr);
350 bit ptr_read_first[NR_READERS];
351 bit ptr_read_second[NR_READERS];
352 #else
353 DECLARE_CACHED_VAR(byte, rcu_ptr);
354 byte ptr_read_first[NR_READERS];
355 byte ptr_read_second[NR_READERS];
356 #endif
357
358 bit data_read_first[NR_READERS];
359 bit data_read_second[NR_READERS];
360
361 bit init_done = 0;
362
363 inline wait_init_done()
364 {
365 do
366 :: init_done == 0 -> skip;
367 :: else -> break;
368 od;
369 }
370
371 inline ooo_mem(i)
372 {
373 atomic {
374 RANDOM_CACHE_WRITE_TO_MEM(urcu_gp_ctr, get_pid());
375 i = 0;
376 do
377 :: i < NR_READERS ->
378 RANDOM_CACHE_WRITE_TO_MEM(urcu_active_readers[i],
379 get_pid());
380 i++
381 :: i >= NR_READERS -> break
382 od;
383 RANDOM_CACHE_WRITE_TO_MEM(rcu_ptr, get_pid());
384 i = 0;
385 do
386 :: i < SLAB_SIZE ->
387 RANDOM_CACHE_WRITE_TO_MEM(rcu_data[i], get_pid());
388 i++
389 :: i >= SLAB_SIZE -> break
390 od;
391 RANDOM_CACHE_READ_FROM_MEM(urcu_gp_ctr, get_pid());
392 i = 0;
393 do
394 :: i < NR_READERS ->
395 RANDOM_CACHE_READ_FROM_MEM(urcu_active_readers[i],
396 get_pid());
397 i++
398 :: i >= NR_READERS -> break
399 od;
400 RANDOM_CACHE_READ_FROM_MEM(rcu_ptr, get_pid());
401 i = 0;
402 do
403 :: i < SLAB_SIZE ->
404 RANDOM_CACHE_READ_FROM_MEM(rcu_data[i], get_pid());
405 i++
406 :: i >= SLAB_SIZE -> break
407 od;
408 }
409 }
410
411 /*
412 * Bit encoding, urcu_reader :
413 */
414
415 int _proc_urcu_reader;
416 #define proc_urcu_reader _proc_urcu_reader
417
418 /* Body of PROCEDURE_READ_LOCK */
419 #define READ_PROD_A_READ (1 << 0)
420 #define READ_PROD_B_IF_TRUE (1 << 1)
421 #define READ_PROD_B_IF_FALSE (1 << 2)
422 #define READ_PROD_C_IF_TRUE_READ (1 << 3)
423
424 #define PROCEDURE_READ_LOCK(base, consumetoken, producetoken) \
425 :: CONSUME_TOKENS(proc_urcu_reader, consumetoken, READ_PROD_A_READ << base) -> \
426 ooo_mem(i); \
427 tmp = READ_CACHED_VAR(urcu_active_readers[get_readerid()]); \
428 PRODUCE_TOKENS(proc_urcu_reader, READ_PROD_A_READ << base); \
429 :: CONSUME_TOKENS(proc_urcu_reader, \
430 READ_PROD_A_READ << base, /* RAW, pre-dominant */ \
431 (READ_PROD_B_IF_TRUE | READ_PROD_B_IF_FALSE) << base) -> \
432 if \
433 :: (!(tmp & RCU_GP_CTR_NEST_MASK)) -> \
434 PRODUCE_TOKENS(proc_urcu_reader, READ_PROD_B_IF_TRUE << base); \
435 :: else -> \
436 PRODUCE_TOKENS(proc_urcu_reader, READ_PROD_B_IF_FALSE << base); \
437 fi; \
438 /* IF TRUE */ \
439 :: CONSUME_TOKENS(proc_urcu_reader, READ_PROD_B_IF_TRUE << base, \
440 READ_PROD_C_IF_TRUE_READ << base) -> \
441 ooo_mem(i); \
442 tmp2 = READ_CACHED_VAR(urcu_gp_ctr); \
443 PRODUCE_TOKENS(proc_urcu_reader, READ_PROD_C_IF_TRUE_READ << base); \
444 :: CONSUME_TOKENS(proc_urcu_reader, \
445 (READ_PROD_C_IF_TRUE_READ /* pre-dominant */ \
446 | READ_PROD_A_READ) << base, /* WAR */ \
447 producetoken) -> \
448 ooo_mem(i); \
449 WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], tmp2); \
450 PRODUCE_TOKENS(proc_urcu_reader, producetoken); \
451 /* IF_MERGE implies \
452 * post-dominance */ \
453 /* ELSE */ \
454 :: CONSUME_TOKENS(proc_urcu_reader, \
455 (READ_PROD_B_IF_FALSE /* pre-dominant */ \
456 | READ_PROD_A_READ) << base, /* WAR */ \
457 producetoken) -> \
458 ooo_mem(i); \
459 WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], \
460 tmp + 1); \
461 PRODUCE_TOKENS(proc_urcu_reader, producetoken); \
462 /* IF_MERGE implies \
463 * post-dominance */ \
464 /* ENDIF */ \
465 skip
466
467 /* Body of PROCEDURE_READ_LOCK */
468 #define READ_PROC_READ_UNLOCK (1 << 0)
469
470 #define PROCEDURE_READ_UNLOCK(base, consumetoken, producetoken) \
471 :: CONSUME_TOKENS(proc_urcu_reader, \
472 consumetoken, \
473 READ_PROC_READ_UNLOCK << base) -> \
474 ooo_mem(i); \
475 tmp2 = READ_CACHED_VAR(urcu_active_readers[get_readerid()]); \
476 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_READ_UNLOCK << base); \
477 :: CONSUME_TOKENS(proc_urcu_reader, \
478 consumetoken \
479 | (READ_PROC_READ_UNLOCK << base), /* WAR */ \
480 producetoken) -> \
481 ooo_mem(i); \
482 WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], tmp2 - 1); \
483 PRODUCE_TOKENS(proc_urcu_reader, producetoken); \
484 skip
485
486
487 #define READ_PROD_NONE (1 << 0)
488
489 /* PROCEDURE_READ_LOCK base = << 1 : 1 to 5 */
490 #define READ_LOCK_BASE 1
491 #define READ_LOCK_OUT (1 << 5)
492
493 #define READ_PROC_FIRST_MB (1 << 6)
494
495 /* PROCEDURE_READ_LOCK (NESTED) base : << 7 : 7 to 11 */
496 #define READ_LOCK_NESTED_BASE 7
497 #define READ_LOCK_NESTED_OUT (1 << 11)
498
499 #define READ_PROC_READ_GEN (1 << 12)
500 #define READ_PROC_ACCESS_GEN (1 << 13)
501
502 /* PROCEDURE_READ_UNLOCK (NESTED) base = << 14 : 14 to 15 */
503 #define READ_UNLOCK_NESTED_BASE 14
504 #define READ_UNLOCK_NESTED_OUT (1 << 15)
505
506 #define READ_PROC_SECOND_MB (1 << 16)
507
508 /* PROCEDURE_READ_UNLOCK base = << 17 : 17 to 18 */
509 #define READ_UNLOCK_BASE 17
510 #define READ_UNLOCK_OUT (1 << 18)
511
512 /* PROCEDURE_READ_LOCK_UNROLL base = << 19 : 19 to 23 */
513 #define READ_LOCK_UNROLL_BASE 19
514 #define READ_LOCK_OUT_UNROLL (1 << 23)
515
516 #define READ_PROC_THIRD_MB (1 << 24)
517
518 #define READ_PROC_READ_GEN_UNROLL (1 << 25)
519 #define READ_PROC_ACCESS_GEN_UNROLL (1 << 26)
520
521 #define READ_PROC_FOURTH_MB (1 << 27)
522
523 /* PROCEDURE_READ_UNLOCK_UNROLL base = << 28 : 28 to 29 */
524 #define READ_UNLOCK_UNROLL_BASE 28
525 #define READ_UNLOCK_OUT_UNROLL (1 << 29)
526
527
528 /* Should not include branches */
529 #define READ_PROC_ALL_TOKENS (READ_PROD_NONE \
530 | READ_LOCK_OUT \
531 | READ_PROC_FIRST_MB \
532 | READ_LOCK_NESTED_OUT \
533 | READ_PROC_READ_GEN \
534 | READ_PROC_ACCESS_GEN \
535 | READ_UNLOCK_NESTED_OUT \
536 | READ_PROC_SECOND_MB \
537 | READ_UNLOCK_OUT \
538 | READ_LOCK_OUT_UNROLL \
539 | READ_PROC_THIRD_MB \
540 | READ_PROC_READ_GEN_UNROLL \
541 | READ_PROC_ACCESS_GEN_UNROLL \
542 | READ_PROC_FOURTH_MB \
543 | READ_UNLOCK_OUT_UNROLL)
544
545 /* Must clear all tokens, including branches */
546 #define READ_PROC_ALL_TOKENS_CLEAR ((1 << 30) - 1)
547
548 inline urcu_one_read(i, j, nest_i, tmp, tmp2)
549 {
550 PRODUCE_TOKENS(proc_urcu_reader, READ_PROD_NONE);
551
552 #ifdef NO_MB
553 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_FIRST_MB);
554 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_SECOND_MB);
555 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_THIRD_MB);
556 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_FOURTH_MB);
557 #endif
558
559 #ifdef REMOTE_BARRIERS
560 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_FIRST_MB);
561 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_SECOND_MB);
562 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_THIRD_MB);
563 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_FOURTH_MB);
564 #endif
565
566 do
567 :: 1 ->
568
569 #ifdef REMOTE_BARRIERS
570 /*
571 * Signal-based memory barrier will only execute when the
572 * execution order appears in program order.
573 */
574 if
575 :: 1 ->
576 atomic {
577 if
578 :: CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE,
579 READ_LOCK_OUT | READ_LOCK_NESTED_OUT
580 | READ_PROC_READ_GEN | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
581 | READ_UNLOCK_OUT
582 | READ_LOCK_OUT_UNROLL
583 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
584 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT,
585 READ_LOCK_NESTED_OUT
586 | READ_PROC_READ_GEN | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
587 | READ_UNLOCK_OUT
588 | READ_LOCK_OUT_UNROLL
589 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
590 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT | READ_LOCK_NESTED_OUT,
591 READ_PROC_READ_GEN | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
592 | READ_UNLOCK_OUT
593 | READ_LOCK_OUT_UNROLL
594 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
595 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
596 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN,
597 READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
598 | READ_UNLOCK_OUT
599 | READ_LOCK_OUT_UNROLL
600 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
601 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
602 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN | READ_PROC_ACCESS_GEN,
603 READ_UNLOCK_NESTED_OUT
604 | READ_UNLOCK_OUT
605 | READ_LOCK_OUT_UNROLL
606 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
607 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
608 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN
609 | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT,
610 READ_UNLOCK_OUT
611 | READ_LOCK_OUT_UNROLL
612 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
613 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
614 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN
615 | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
616 | READ_UNLOCK_OUT,
617 READ_LOCK_OUT_UNROLL
618 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
619 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
620 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN
621 | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
622 | READ_UNLOCK_OUT | READ_LOCK_OUT_UNROLL,
623 READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
624 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
625 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN
626 | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
627 | READ_UNLOCK_OUT | READ_LOCK_OUT_UNROLL
628 | READ_PROC_READ_GEN_UNROLL,
629 READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL)
630 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
631 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN
632 | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
633 | READ_UNLOCK_OUT | READ_LOCK_OUT_UNROLL
634 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL,
635 READ_UNLOCK_OUT_UNROLL)
636 || CONSUME_TOKENS(proc_urcu_reader, READ_PROD_NONE | READ_LOCK_OUT
637 | READ_LOCK_NESTED_OUT | READ_PROC_READ_GEN | READ_PROC_ACCESS_GEN | READ_UNLOCK_NESTED_OUT
638 | READ_UNLOCK_OUT | READ_LOCK_OUT_UNROLL
639 | READ_PROC_READ_GEN_UNROLL | READ_PROC_ACCESS_GEN_UNROLL | READ_UNLOCK_OUT_UNROLL,
640 0) ->
641 goto non_atomic3;
642 non_atomic3_end:
643 skip;
644 fi;
645 }
646 fi;
647
648 goto non_atomic3_skip;
649 non_atomic3:
650 smp_mb_recv(i, j);
651 goto non_atomic3_end;
652 non_atomic3_skip:
653
654 #endif /* REMOTE_BARRIERS */
655
656 atomic {
657 if
658 PROCEDURE_READ_LOCK(READ_LOCK_BASE, READ_PROD_NONE, READ_LOCK_OUT);
659
660 :: CONSUME_TOKENS(proc_urcu_reader,
661 READ_LOCK_OUT, /* post-dominant */
662 READ_PROC_FIRST_MB) ->
663 smp_mb_reader(i, j);
664 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_FIRST_MB);
665
666 PROCEDURE_READ_LOCK(READ_LOCK_NESTED_BASE, READ_PROC_FIRST_MB | READ_LOCK_OUT,
667 READ_LOCK_NESTED_OUT);
668
669 :: CONSUME_TOKENS(proc_urcu_reader,
670 READ_PROC_FIRST_MB, /* mb() orders reads */
671 READ_PROC_READ_GEN) ->
672 ooo_mem(i);
673 ptr_read_first[get_readerid()] = READ_CACHED_VAR(rcu_ptr);
674 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_READ_GEN);
675
676 :: CONSUME_TOKENS(proc_urcu_reader,
677 READ_PROC_FIRST_MB /* mb() orders reads */
678 | READ_PROC_READ_GEN,
679 READ_PROC_ACCESS_GEN) ->
680 /* smp_read_barrier_depends */
681 goto rmb1;
682 rmb1_end:
683 data_read_first[get_readerid()] =
684 READ_CACHED_VAR(rcu_data[ptr_read_first[get_readerid()]]);
685 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_ACCESS_GEN);
686
687
688 /* Note : we remove the nested memory barrier from the read unlock
689 * model, given it is not usually needed. The implementation has the barrier
690 * because the performance impact added by a branch in the common case does not
691 * justify it.
692 */
693
694 PROCEDURE_READ_UNLOCK(READ_UNLOCK_NESTED_BASE,
695 READ_PROC_FIRST_MB
696 | READ_LOCK_OUT
697 | READ_LOCK_NESTED_OUT,
698 READ_UNLOCK_NESTED_OUT);
699
700
701 :: CONSUME_TOKENS(proc_urcu_reader,
702 READ_PROC_ACCESS_GEN /* mb() orders reads */
703 | READ_PROC_READ_GEN /* mb() orders reads */
704 | READ_PROC_FIRST_MB /* mb() ordered */
705 | READ_LOCK_OUT /* post-dominant */
706 | READ_LOCK_NESTED_OUT /* post-dominant */
707 | READ_UNLOCK_NESTED_OUT,
708 READ_PROC_SECOND_MB) ->
709 smp_mb_reader(i, j);
710 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_SECOND_MB);
711
712 PROCEDURE_READ_UNLOCK(READ_UNLOCK_BASE,
713 READ_PROC_SECOND_MB /* mb() orders reads */
714 | READ_PROC_FIRST_MB /* mb() orders reads */
715 | READ_LOCK_NESTED_OUT /* RAW */
716 | READ_LOCK_OUT /* RAW */
717 | READ_UNLOCK_NESTED_OUT, /* RAW */
718 READ_UNLOCK_OUT);
719
720 /* Unrolling loop : second consecutive lock */
721 /* reading urcu_active_readers, which have been written by
722 * READ_UNLOCK_OUT : RAW */
723 PROCEDURE_READ_LOCK(READ_LOCK_UNROLL_BASE,
724 READ_UNLOCK_OUT /* RAW */
725 | READ_PROC_SECOND_MB /* mb() orders reads */
726 | READ_PROC_FIRST_MB /* mb() orders reads */
727 | READ_LOCK_NESTED_OUT /* RAW */
728 | READ_LOCK_OUT /* RAW */
729 | READ_UNLOCK_NESTED_OUT, /* RAW */
730 READ_LOCK_OUT_UNROLL);
731
732
733 :: CONSUME_TOKENS(proc_urcu_reader,
734 READ_PROC_FIRST_MB /* mb() ordered */
735 | READ_PROC_SECOND_MB /* mb() ordered */
736 | READ_LOCK_OUT_UNROLL /* post-dominant */
737 | READ_LOCK_NESTED_OUT
738 | READ_LOCK_OUT
739 | READ_UNLOCK_NESTED_OUT
740 | READ_UNLOCK_OUT,
741 READ_PROC_THIRD_MB) ->
742 smp_mb_reader(i, j);
743 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_THIRD_MB);
744
745 :: CONSUME_TOKENS(proc_urcu_reader,
746 READ_PROC_FIRST_MB /* mb() orders reads */
747 | READ_PROC_SECOND_MB /* mb() orders reads */
748 | READ_PROC_THIRD_MB, /* mb() orders reads */
749 READ_PROC_READ_GEN_UNROLL) ->
750 ooo_mem(i);
751 ptr_read_second[get_readerid()] = READ_CACHED_VAR(rcu_ptr);
752 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_READ_GEN_UNROLL);
753
754 :: CONSUME_TOKENS(proc_urcu_reader,
755 READ_PROC_READ_GEN_UNROLL
756 | READ_PROC_FIRST_MB /* mb() orders reads */
757 | READ_PROC_SECOND_MB /* mb() orders reads */
758 | READ_PROC_THIRD_MB, /* mb() orders reads */
759 READ_PROC_ACCESS_GEN_UNROLL) ->
760 /* smp_read_barrier_depends */
761 goto rmb2;
762 rmb2_end:
763 data_read_second[get_readerid()] =
764 READ_CACHED_VAR(rcu_data[ptr_read_second[get_readerid()]]);
765 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_ACCESS_GEN_UNROLL);
766
767 :: CONSUME_TOKENS(proc_urcu_reader,
768 READ_PROC_READ_GEN_UNROLL /* mb() orders reads */
769 | READ_PROC_ACCESS_GEN_UNROLL /* mb() orders reads */
770 | READ_PROC_FIRST_MB /* mb() ordered */
771 | READ_PROC_SECOND_MB /* mb() ordered */
772 | READ_PROC_THIRD_MB /* mb() ordered */
773 | READ_LOCK_OUT_UNROLL /* post-dominant */
774 | READ_LOCK_NESTED_OUT
775 | READ_LOCK_OUT
776 | READ_UNLOCK_NESTED_OUT
777 | READ_UNLOCK_OUT,
778 READ_PROC_FOURTH_MB) ->
779 smp_mb_reader(i, j);
780 PRODUCE_TOKENS(proc_urcu_reader, READ_PROC_FOURTH_MB);
781
782 PROCEDURE_READ_UNLOCK(READ_UNLOCK_UNROLL_BASE,
783 READ_PROC_FOURTH_MB /* mb() orders reads */
784 | READ_PROC_THIRD_MB /* mb() orders reads */
785 | READ_LOCK_OUT_UNROLL /* RAW */
786 | READ_PROC_SECOND_MB /* mb() orders reads */
787 | READ_PROC_FIRST_MB /* mb() orders reads */
788 | READ_LOCK_NESTED_OUT /* RAW */
789 | READ_LOCK_OUT /* RAW */
790 | READ_UNLOCK_NESTED_OUT, /* RAW */
791 READ_UNLOCK_OUT_UNROLL);
792 :: CONSUME_TOKENS(proc_urcu_reader, READ_PROC_ALL_TOKENS, 0) ->
793 CLEAR_TOKENS(proc_urcu_reader, READ_PROC_ALL_TOKENS_CLEAR);
794 break;
795 fi;
796 }
797 od;
798 /*
799 * Dependency between consecutive loops :
800 * RAW dependency on
801 * WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], tmp2 - 1)
802 * tmp = READ_CACHED_VAR(urcu_active_readers[get_readerid()]);
803 * between loops.
804 * _WHEN THE MB()s are in place_, they add full ordering of the
805 * generation pointer read wrt active reader count read, which ensures
806 * execution will not spill across loop execution.
807 * However, in the event mb()s are removed (execution using signal
808 * handler to promote barrier()() -> smp_mb()), nothing prevents one loop
809 * to spill its execution on other loop's execution.
810 */
811 goto end;
812 rmb1:
813 #ifndef NO_RMB
814 smp_rmb(i, j);
815 #else
816 ooo_mem(i);
817 #endif
818 goto rmb1_end;
819 rmb2:
820 #ifndef NO_RMB
821 smp_rmb(i, j);
822 #else
823 ooo_mem(i);
824 #endif
825 goto rmb2_end;
826 end:
827 skip;
828 }
829
830
831
832 active proctype urcu_reader()
833 {
834 byte i, j, nest_i;
835 byte tmp, tmp2;
836
837 wait_init_done();
838
839 assert(get_pid() < NR_PROCS);
840
841 end_reader:
842 do
843 :: 1 ->
844 /*
845 * We do not test reader's progress here, because we are mainly
846 * interested in writer's progress. The reader never blocks
847 * anyway. We have to test for reader/writer's progress
848 * separately, otherwise we could think the writer is doing
849 * progress when it's blocked by an always progressing reader.
850 */
851 #ifdef READER_PROGRESS
852 progress_reader:
853 #endif
854 urcu_one_read(i, j, nest_i, tmp, tmp2);
855 od;
856 }
857
858 /* no name clash please */
859 #undef proc_urcu_reader
860
861
862 /* Model the RCU update process. */
863
864 /*
865 * Bit encoding, urcu_writer :
866 * Currently only supports one reader.
867 */
868
869 int _proc_urcu_writer;
870 #define proc_urcu_writer _proc_urcu_writer
871
872 #define WRITE_PROD_NONE (1 << 0)
873
874 #define WRITE_DATA (1 << 1)
875 #define WRITE_PROC_WMB (1 << 2)
876 #define WRITE_XCHG_PTR (1 << 3)
877
878 #define WRITE_PROC_FIRST_MB (1 << 4)
879
880 /* first flip */
881 #define WRITE_PROC_FIRST_READ_GP (1 << 5)
882 #define WRITE_PROC_FIRST_WRITE_GP (1 << 6)
883 #define WRITE_PROC_FIRST_WAIT (1 << 7)
884 #define WRITE_PROC_FIRST_WAIT_LOOP (1 << 8)
885
886 /* second flip */
887 #define WRITE_PROC_SECOND_READ_GP (1 << 9)
888 #define WRITE_PROC_SECOND_WRITE_GP (1 << 10)
889 #define WRITE_PROC_SECOND_WAIT (1 << 11)
890 #define WRITE_PROC_SECOND_WAIT_LOOP (1 << 12)
891
892 #define WRITE_PROC_SECOND_MB (1 << 13)
893
894 #define WRITE_FREE (1 << 14)
895
896 #define WRITE_PROC_ALL_TOKENS (WRITE_PROD_NONE \
897 | WRITE_DATA \
898 | WRITE_PROC_WMB \
899 | WRITE_XCHG_PTR \
900 | WRITE_PROC_FIRST_MB \
901 | WRITE_PROC_FIRST_READ_GP \
902 | WRITE_PROC_FIRST_WRITE_GP \
903 | WRITE_PROC_FIRST_WAIT \
904 | WRITE_PROC_SECOND_READ_GP \
905 | WRITE_PROC_SECOND_WRITE_GP \
906 | WRITE_PROC_SECOND_WAIT \
907 | WRITE_PROC_SECOND_MB \
908 | WRITE_FREE)
909
910 #define WRITE_PROC_ALL_TOKENS_CLEAR ((1 << 15) - 1)
911
912 /*
913 * Mutexes are implied around writer execution. A single writer at a time.
914 */
915 active proctype urcu_writer()
916 {
917 byte i, j;
918 byte tmp, tmp2, tmpa;
919 byte cur_data = 0, old_data, loop_nr = 0;
920 byte cur_gp_val = 0; /*
921 * Keep a local trace of the current parity so
922 * we don't add non-existing dependencies on the global
923 * GP update. Needed to test single flip case.
924 */
925
926 wait_init_done();
927
928 assert(get_pid() < NR_PROCS);
929
930 do
931 :: (loop_nr < 3) ->
932 #ifdef WRITER_PROGRESS
933 progress_writer1:
934 #endif
935 loop_nr = loop_nr + 1;
936
937 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROD_NONE);
938
939 #ifdef NO_WMB
940 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_WMB);
941 #endif
942
943 #ifdef NO_MB
944 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_MB);
945 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_MB);
946 #endif
947
948 #ifdef SINGLE_FLIP
949 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_READ_GP);
950 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_WRITE_GP);
951 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_WAIT);
952 /* For single flip, we need to know the current parity */
953 cur_gp_val = cur_gp_val ^ RCU_GP_CTR_BIT;
954 #endif
955
956 do :: 1 ->
957 atomic {
958 if
959
960 :: CONSUME_TOKENS(proc_urcu_writer,
961 WRITE_PROD_NONE,
962 WRITE_DATA) ->
963 ooo_mem(i);
964 cur_data = (cur_data + 1) % SLAB_SIZE;
965 WRITE_CACHED_VAR(rcu_data[cur_data], WINE);
966 PRODUCE_TOKENS(proc_urcu_writer, WRITE_DATA);
967
968
969 :: CONSUME_TOKENS(proc_urcu_writer,
970 WRITE_DATA,
971 WRITE_PROC_WMB) ->
972 smp_wmb(i, j);
973 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_WMB);
974
975 :: CONSUME_TOKENS(proc_urcu_writer,
976 WRITE_PROC_WMB,
977 WRITE_XCHG_PTR) ->
978 /* rcu_xchg_pointer() */
979 atomic {
980 old_data = READ_CACHED_VAR(rcu_ptr);
981 WRITE_CACHED_VAR(rcu_ptr, cur_data);
982 }
983 PRODUCE_TOKENS(proc_urcu_writer, WRITE_XCHG_PTR);
984
985 :: CONSUME_TOKENS(proc_urcu_writer,
986 WRITE_DATA | WRITE_PROC_WMB | WRITE_XCHG_PTR,
987 WRITE_PROC_FIRST_MB) ->
988 goto smp_mb_send1;
989 smp_mb_send1_end:
990 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_MB);
991
992 /* first flip */
993 :: CONSUME_TOKENS(proc_urcu_writer,
994 WRITE_PROC_FIRST_MB,
995 WRITE_PROC_FIRST_READ_GP) ->
996 tmpa = READ_CACHED_VAR(urcu_gp_ctr);
997 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_READ_GP);
998 :: CONSUME_TOKENS(proc_urcu_writer,
999 WRITE_PROC_FIRST_MB | WRITE_PROC_WMB
1000 | WRITE_PROC_FIRST_READ_GP,
1001 WRITE_PROC_FIRST_WRITE_GP) ->
1002 ooo_mem(i);
1003 WRITE_CACHED_VAR(urcu_gp_ctr, tmpa ^ RCU_GP_CTR_BIT);
1004 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_WRITE_GP);
1005
1006 :: CONSUME_TOKENS(proc_urcu_writer,
1007 //WRITE_PROC_FIRST_WRITE_GP /* TEST ADDING SYNC CORE */
1008 WRITE_PROC_FIRST_MB, /* can be reordered before/after flips */
1009 WRITE_PROC_FIRST_WAIT | WRITE_PROC_FIRST_WAIT_LOOP) ->
1010 ooo_mem(i);
1011 /* ONLY WAITING FOR READER 0 */
1012 tmp2 = READ_CACHED_VAR(urcu_active_readers[0]);
1013 #ifndef SINGLE_FLIP
1014 /* In normal execution, we are always starting by
1015 * waiting for the even parity.
1016 */
1017 cur_gp_val = RCU_GP_CTR_BIT;
1018 #endif
1019 if
1020 :: (tmp2 & RCU_GP_CTR_NEST_MASK)
1021 && ((tmp2 ^ cur_gp_val) & RCU_GP_CTR_BIT) ->
1022 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_WAIT_LOOP);
1023 :: else ->
1024 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_WAIT);
1025 fi;
1026
1027 :: CONSUME_TOKENS(proc_urcu_writer,
1028 //WRITE_PROC_FIRST_WRITE_GP /* TEST ADDING SYNC CORE */
1029 WRITE_PROC_FIRST_WRITE_GP
1030 | WRITE_PROC_FIRST_READ_GP
1031 | WRITE_PROC_FIRST_WAIT_LOOP
1032 | WRITE_DATA | WRITE_PROC_WMB | WRITE_XCHG_PTR
1033 | WRITE_PROC_FIRST_MB, /* can be reordered before/after flips */
1034 0) ->
1035 #ifndef GEN_ERROR_WRITER_PROGRESS
1036 goto smp_mb_send2;
1037 smp_mb_send2_end:
1038 #else
1039 ooo_mem(i);
1040 #endif
1041 /* This instruction loops to WRITE_PROC_FIRST_WAIT */
1042 CLEAR_TOKENS(proc_urcu_writer, WRITE_PROC_FIRST_WAIT_LOOP | WRITE_PROC_FIRST_WAIT);
1043
1044 /* second flip */
1045 :: CONSUME_TOKENS(proc_urcu_writer,
1046 WRITE_PROC_FIRST_WAIT /* Control dependency : need to branch out of
1047 * the loop to execute the next flip (CHECK) */
1048 | WRITE_PROC_FIRST_WRITE_GP
1049 | WRITE_PROC_FIRST_READ_GP
1050 | WRITE_PROC_FIRST_MB,
1051 WRITE_PROC_SECOND_READ_GP) ->
1052 ooo_mem(i);
1053 tmpa = READ_CACHED_VAR(urcu_gp_ctr);
1054 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_READ_GP);
1055 :: CONSUME_TOKENS(proc_urcu_writer,
1056 WRITE_PROC_FIRST_MB
1057 | WRITE_PROC_WMB
1058 | WRITE_PROC_FIRST_READ_GP
1059 | WRITE_PROC_FIRST_WRITE_GP
1060 | WRITE_PROC_SECOND_READ_GP,
1061 WRITE_PROC_SECOND_WRITE_GP) ->
1062 ooo_mem(i);
1063 WRITE_CACHED_VAR(urcu_gp_ctr, tmpa ^ RCU_GP_CTR_BIT);
1064 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_WRITE_GP);
1065
1066 :: CONSUME_TOKENS(proc_urcu_writer,
1067 //WRITE_PROC_FIRST_WRITE_GP /* TEST ADDING SYNC CORE */
1068 WRITE_PROC_FIRST_WAIT
1069 | WRITE_PROC_FIRST_MB, /* can be reordered before/after flips */
1070 WRITE_PROC_SECOND_WAIT | WRITE_PROC_SECOND_WAIT_LOOP) ->
1071 ooo_mem(i);
1072 /* ONLY WAITING FOR READER 0 */
1073 tmp2 = READ_CACHED_VAR(urcu_active_readers[0]);
1074 if
1075 :: (tmp2 & RCU_GP_CTR_NEST_MASK)
1076 && ((tmp2 ^ 0) & RCU_GP_CTR_BIT) ->
1077 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_WAIT_LOOP);
1078 :: else ->
1079 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_WAIT);
1080 fi;
1081
1082 :: CONSUME_TOKENS(proc_urcu_writer,
1083 //WRITE_PROC_FIRST_WRITE_GP /* TEST ADDING SYNC CORE */
1084 WRITE_PROC_SECOND_WRITE_GP
1085 | WRITE_PROC_FIRST_WRITE_GP
1086 | WRITE_PROC_SECOND_READ_GP
1087 | WRITE_PROC_FIRST_READ_GP
1088 | WRITE_PROC_SECOND_WAIT_LOOP
1089 | WRITE_DATA | WRITE_PROC_WMB | WRITE_XCHG_PTR
1090 | WRITE_PROC_FIRST_MB, /* can be reordered before/after flips */
1091 0) ->
1092 #ifndef GEN_ERROR_WRITER_PROGRESS
1093 goto smp_mb_send3;
1094 smp_mb_send3_end:
1095 #else
1096 ooo_mem(i);
1097 #endif
1098 /* This instruction loops to WRITE_PROC_SECOND_WAIT */
1099 CLEAR_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_WAIT_LOOP | WRITE_PROC_SECOND_WAIT);
1100
1101
1102 :: CONSUME_TOKENS(proc_urcu_writer,
1103 WRITE_PROC_FIRST_WAIT
1104 | WRITE_PROC_SECOND_WAIT
1105 | WRITE_PROC_FIRST_READ_GP
1106 | WRITE_PROC_SECOND_READ_GP
1107 | WRITE_PROC_FIRST_WRITE_GP
1108 | WRITE_PROC_SECOND_WRITE_GP
1109 | WRITE_DATA | WRITE_PROC_WMB | WRITE_XCHG_PTR
1110 | WRITE_PROC_FIRST_MB,
1111 WRITE_PROC_SECOND_MB) ->
1112 goto smp_mb_send4;
1113 smp_mb_send4_end:
1114 PRODUCE_TOKENS(proc_urcu_writer, WRITE_PROC_SECOND_MB);
1115
1116 :: CONSUME_TOKENS(proc_urcu_writer,
1117 WRITE_XCHG_PTR
1118 | WRITE_PROC_FIRST_WAIT
1119 | WRITE_PROC_SECOND_WAIT
1120 | WRITE_PROC_WMB /* No dependency on
1121 * WRITE_DATA because we
1122 * write to a
1123 * different location. */
1124 | WRITE_PROC_SECOND_MB
1125 | WRITE_PROC_FIRST_MB,
1126 WRITE_FREE) ->
1127 WRITE_CACHED_VAR(rcu_data[old_data], POISON);
1128 PRODUCE_TOKENS(proc_urcu_writer, WRITE_FREE);
1129
1130 :: CONSUME_TOKENS(proc_urcu_writer, WRITE_PROC_ALL_TOKENS, 0) ->
1131 CLEAR_TOKENS(proc_urcu_writer, WRITE_PROC_ALL_TOKENS_CLEAR);
1132 break;
1133 fi;
1134 }
1135 od;
1136 /*
1137 * Note : Promela model adds implicit serialization of the
1138 * WRITE_FREE instruction. Normally, it would be permitted to
1139 * spill on the next loop execution. Given the validation we do
1140 * checks for the data entry read to be poisoned, it's ok if
1141 * we do not check "late arriving" memory poisoning.
1142 */
1143 :: else -> break;
1144 od;
1145 /*
1146 * Given the reader loops infinitely, let the writer also busy-loop
1147 * with progress here so, with weak fairness, we can test the
1148 * writer's progress.
1149 */
1150 end_writer:
1151 do
1152 :: 1 ->
1153 #ifdef WRITER_PROGRESS
1154 progress_writer2:
1155 #endif
1156 #ifdef READER_PROGRESS
1157 /*
1158 * Make sure we don't block the reader's progress.
1159 */
1160 smp_mb_send(i, j, 5);
1161 #endif
1162 skip;
1163 od;
1164
1165 /* Non-atomic parts of the loop */
1166 goto end;
1167 smp_mb_send1:
1168 smp_mb_send(i, j, 1);
1169 goto smp_mb_send1_end;
1170 #ifndef GEN_ERROR_WRITER_PROGRESS
1171 smp_mb_send2:
1172 smp_mb_send(i, j, 2);
1173 goto smp_mb_send2_end;
1174 smp_mb_send3:
1175 smp_mb_send(i, j, 3);
1176 goto smp_mb_send3_end;
1177 #endif
1178 smp_mb_send4:
1179 smp_mb_send(i, j, 4);
1180 goto smp_mb_send4_end;
1181 end:
1182 skip;
1183 }
1184
1185 /* no name clash please */
1186 #undef proc_urcu_writer
1187
1188
1189 /* Leave after the readers and writers so the pid count is ok. */
1190 init {
1191 byte i, j;
1192
1193 atomic {
1194 INIT_CACHED_VAR(urcu_gp_ctr, 1, j);
1195 INIT_CACHED_VAR(rcu_ptr, 0, j);
1196
1197 i = 0;
1198 do
1199 :: i < NR_READERS ->
1200 INIT_CACHED_VAR(urcu_active_readers[i], 0, j);
1201 ptr_read_first[i] = 1;
1202 ptr_read_second[i] = 1;
1203 data_read_first[i] = WINE;
1204 data_read_second[i] = WINE;
1205 i++;
1206 :: i >= NR_READERS -> break
1207 od;
1208 INIT_CACHED_VAR(rcu_data[0], WINE, j);
1209 i = 1;
1210 do
1211 :: i < SLAB_SIZE ->
1212 INIT_CACHED_VAR(rcu_data[i], POISON, j);
1213 i++
1214 :: i >= SLAB_SIZE -> break
1215 od;
1216
1217 init_done = 1;
1218 }
1219 }
This page took 0.054352 seconds and 4 git commands to generate.