828ff4a5d9245e51c3ba529af0ff4c0189caefc8
[urcu.git] / formal-model / ooomem-two-writes / mem.spin
1 /*
2 * mem.spin: Promela code to validate memory barriers with OOO memory.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (c) 2009 Mathieu Desnoyers
19 */
20
21 /* Promela validation variables. */
22
23 /*
24 * Produced process data flow. Updated after each instruction to show which
25 * variables are ready. Assigned using SSA (static single assignment) (defuse
26 * analysis must be done on the program to map "real" variables to single define
27 * followed by use). Using one-hot bit encoding per variable to save state
28 * space. Used as triggers to execute the instructions having those variables
29 * as input.
30 */
31
32 #define PRODUCE_TOKENS(state, bits) \
33 state = (state) | (bits)
34
35 /* All bits must be active to consume. All notbits must be inactive. */
36 /* Consuming a token does not clear it, it just waits for it. */
37 #define CONSUME_TOKENS(state, bits, notbits) \
38 ((!((state) & (notbits))) && ((state) & (bits)) == (bits))
39
40 #define CLEAR_TOKENS(state, bits) \
41 state = (state) & ~(bits)
42
43 /*
44 * Bit encoding, proc_one_produced :
45 */
46
47 #define P1_PROD_NONE (1 << 0)
48
49 #define P1_WRITE (1 << 1)
50 #define P1_WMB (1 << 2)
51 #define P1_SYNC_CORE (1 << 3)
52 #define P1_RMB (1 << 4)
53 #define P1_READ (1 << 5)
54
55 int proc_one_produced;
56
57 #define P2_PROD_NONE (1 << 0)
58
59 #define P2_WRITE (1 << 1)
60 #define P2_WMB (1 << 2)
61 #define P2_SYNC_CORE (1 << 3)
62 #define P2_RMB (1 << 4)
63 #define P2_READ (1 << 5)
64
65 int proc_two_produced;
66
67 #define NR_PROCS 2
68
69 #define get_pid() (_pid)
70
71 /*
72 * Each process have its own data in cache. Caches are randomly updated.
73 * smp_wmb and smp_rmb forces cache updates (write and read), wmb_mb forces
74 * both.
75 */
76
77 #define DECLARE_CACHED_VAR(type, x, v) \
78 type mem_##x = v; \
79 type cached_##x[NR_PROCS] = v; \
80 bit cache_dirty_##x[NR_PROCS] = 0;
81
82 #define IS_CACHE_DIRTY(x, id) (cache_dirty_##x[id])
83
84 #define READ_CACHED_VAR(x) \
85 (cached_##x[get_pid()])
86
87 #define WRITE_CACHED_VAR(x, v) \
88 atomic { \
89 cached_##x[get_pid()] = v; \
90 cache_dirty_##x[get_pid()] = 1; \
91 }
92
93 #define CACHE_WRITE_TO_MEM(x, id) \
94 if \
95 :: IS_CACHE_DIRTY(x, id) -> \
96 mem_##x = cached_##x[id]; \
97 cache_dirty_##x[id] = 0; \
98 :: else -> \
99 skip \
100 fi;
101
102 #define CACHE_READ_FROM_MEM(x, id) \
103 if \
104 :: !IS_CACHE_DIRTY(x, id) -> \
105 cached_##x[id] = mem_##x; \
106 :: else -> \
107 skip \
108 fi;
109
110 /*
111 * May update other caches if cache is dirty, or not.
112 */
113 #define RANDOM_CACHE_WRITE_TO_MEM(x, id) \
114 if \
115 :: 1 -> CACHE_WRITE_TO_MEM(x, id); \
116 :: 1 -> skip \
117 fi;
118
119 #define RANDOM_CACHE_READ_FROM_MEM(x, id)\
120 if \
121 :: 1 -> CACHE_READ_FROM_MEM(x, id); \
122 :: 1 -> skip \
123 fi;
124
125 inline ooo_mem()
126 {
127 atomic {
128 RANDOM_CACHE_WRITE_TO_MEM(alpha, get_pid());
129 RANDOM_CACHE_WRITE_TO_MEM(beta, get_pid());
130 RANDOM_CACHE_READ_FROM_MEM(alpha, get_pid());
131 RANDOM_CACHE_READ_FROM_MEM(beta, get_pid());
132 }
133 }
134
135 /* must consume all prior read tokens */
136 inline smp_rmb()
137 {
138 atomic {
139 /* todo : consume all read tokens .. ? */
140 CACHE_READ_FROM_MEM(alpha, get_pid());
141 CACHE_READ_FROM_MEM(beta, get_pid());
142 }
143 }
144
145 /* must consume all prior write tokens */
146 inline smp_wmb()
147 {
148 atomic {
149 CACHE_WRITE_TO_MEM(alpha, get_pid());
150 CACHE_WRITE_TO_MEM(beta, get_pid());
151 }
152 }
153
154 /* sync_core() must consume all prior read and write tokens, including rmb/wmb
155 * tokens */
156
157 /* must consume all prior read and write tokens */
158 inline smp_mb()
159 {
160 atomic {
161 smp_wmb();
162 /* sync_core() */
163 smp_rmb();
164 }
165 }
166
167 /* Keep in sync manually with smp_rmb, wmp_wmb and ooo_mem */
168 DECLARE_CACHED_VAR(byte, alpha, 0);
169 DECLARE_CACHED_VAR(byte, beta, 0);
170
171 /* value 2 is uninitialized */
172 byte read_one = 2;
173 byte read_two = 2;
174
175 active proctype test_proc_one()
176 {
177 assert(get_pid() < NR_PROCS);
178
179 PRODUCE_TOKENS(proc_one_produced, P1_PROD_NONE);
180
181 #ifdef NO_WMB
182 PRODUCE_TOKENS(proc_one_produced, P1_WMB);
183 #endif
184 #ifdef NO_RMB
185 PRODUCE_TOKENS(proc_one_produced, P1_RMB);
186 #endif
187 #ifdef NO_SYNC
188 PRODUCE_TOKENS(proc_one_produced, P1_SYNC_CORE);
189 #endif
190
191 do
192 :: CONSUME_TOKENS(proc_one_produced, P1_PROD_NONE, P1_WRITE) ->
193 ooo_mem();
194 WRITE_CACHED_VAR(alpha, 1);
195 ooo_mem();
196 PRODUCE_TOKENS(proc_one_produced, P1_WRITE);
197 :: CONSUME_TOKENS(proc_one_produced, P1_WRITE, P1_WMB) ->
198 smp_wmb();
199 PRODUCE_TOKENS(proc_one_produced, P1_WMB);
200 :: CONSUME_TOKENS(proc_one_produced, P1_WRITE | P1_WMB, P1_SYNC_CORE) ->
201 /* sync_core(); */
202 PRODUCE_TOKENS(proc_one_produced, P1_SYNC_CORE);
203 :: CONSUME_TOKENS(proc_one_produced, P1_SYNC_CORE, P1_RMB) ->
204 smp_rmb();
205 PRODUCE_TOKENS(proc_one_produced, P1_RMB);
206 :: CONSUME_TOKENS(proc_one_produced, P1_RMB | P1_SYNC_CORE, P1_READ) ->
207 ooo_mem();
208 read_one = READ_CACHED_VAR(beta);
209 ooo_mem();
210 PRODUCE_TOKENS(proc_one_produced, P1_READ);
211 :: CONSUME_TOKENS(proc_one_produced, P1_PROD_NONE | P1_WRITE
212 | P1_WMB | P1_SYNC_CORE | P1_RMB | P1_READ, 0) ->
213 break;
214 od;
215
216 //CLEAR_TOKENS(proc_one_produced,
217 // P1_PROD_NONE | P1_WRITE | P1_WMB | P1_SYNC_CORE | P1_RMB |
218 // P2_READ);
219
220 // test : [] (read_one == 0 -> read_two != 0)
221 // test : [] (read_two == 0 -> read_one != 0)
222 assert(!(read_one == 0 && read_two == 0));
223 }
224
225 active proctype test_proc_two()
226 {
227 assert(get_pid() < NR_PROCS);
228
229 PRODUCE_TOKENS(proc_two_produced, P2_PROD_NONE);
230
231 #ifdef NO_WMB
232 PRODUCE_TOKENS(proc_two_produced, P2_WMB);
233 #endif
234 #ifdef NO_RMB
235 PRODUCE_TOKENS(proc_two_produced, P2_RMB);
236 #endif
237 #ifdef NO_SYNC
238 PRODUCE_TOKENS(proc_two_produced, P2_SYNC_CORE);
239 #endif
240
241 do
242 :: CONSUME_TOKENS(proc_two_produced, P2_PROD_NONE, P2_WRITE) ->
243 ooo_mem();
244 WRITE_CACHED_VAR(beta, 1);
245 ooo_mem();
246 PRODUCE_TOKENS(proc_two_produced, P2_WRITE);
247 :: CONSUME_TOKENS(proc_two_produced, P2_WRITE, P2_WMB) ->
248 smp_wmb();
249 PRODUCE_TOKENS(proc_two_produced, P2_WMB);
250 :: CONSUME_TOKENS(proc_two_produced, P2_WRITE | P2_WMB, P2_SYNC_CORE) ->
251 /* sync_core(); */
252 PRODUCE_TOKENS(proc_two_produced, P2_SYNC_CORE);
253 :: CONSUME_TOKENS(proc_two_produced, P2_SYNC_CORE, P2_RMB) ->
254 smp_rmb();
255 PRODUCE_TOKENS(proc_two_produced, P2_RMB);
256 :: CONSUME_TOKENS(proc_two_produced, P2_SYNC_CORE | P2_RMB, P2_READ) ->
257 ooo_mem();
258 read_two = READ_CACHED_VAR(alpha);
259 ooo_mem();
260 PRODUCE_TOKENS(proc_two_produced, P2_READ);
261 :: CONSUME_TOKENS(proc_two_produced, P2_PROD_NONE | P2_WRITE
262 | P2_WMB | P2_SYNC_CORE | P2_RMB | P2_READ, 0) ->
263 break;
264 od;
265
266 //CLEAR_TOKENS(proc_two_produced,
267 // P2_PROD_NONE | P2_WRITE | P2_WMB | P2_SYNC_CORE | P2_RMB |
268 // P2_READ);
269
270 // test : [] (read_one == 0 -> read_two != 0)
271 // test : [] (read_two == 0 -> read_one != 0)
272 assert(!(read_one == 0 && read_two == 0));
273 }
This page took 0.034032 seconds and 3 git commands to generate.