Show the latency histograms by IP address rather than by trace
[lttv.git] / lttv / lttv / sync / event_analysis_eval.c
1 /* This file is part of the Linux Trace Toolkit viewer
2 * Copyright (C) 2009 Benjamin Poirier <benjamin.poirier@polymtl.ca>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License Version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
16 * MA 02111-1307, USA.
17 */
18
19 #define _GNU_SOURCE
20 #define _ISOC99_SOURCE
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <arpa/inet.h>
27 #include <errno.h>
28 #include <math.h>
29 #include <netinet/in.h>
30 #include <stddef.h>
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <string.h>
34 #include <sys/socket.h>
35 #include <unistd.h>
36
37 #include "lookup3.h"
38 #include "sync_chain.h"
39
40 #include "event_analysis_eval.h"
41
42
43 struct WriteGraphInfo
44 {
45 GHashTable* rttInfo;
46 FILE* graphsStream;
47 };
48
49
50 // Functions common to all analysis modules
51 static void initAnalysisEval(SyncState* const syncState);
52 static void destroyAnalysisEval(SyncState* const syncState);
53
54 static void analyzeMessageEval(SyncState* const syncState, Message* const
55 message);
56 static void analyzeExchangeEval(SyncState* const syncState, Exchange* const
57 exchange);
58 static void analyzeBroadcastEval(SyncState* const syncState, Broadcast* const
59 broadcast);
60 static GArray* finalizeAnalysisEval(SyncState* const syncState);
61 static void printAnalysisStatsEval(SyncState* const syncState);
62
63 // Functions specific to this module
64 static void registerAnalysisEval() __attribute__((constructor (102)));
65 static guint ghfRttKeyHash(gconstpointer key);
66 static gboolean gefRttKeyEqual(gconstpointer a, gconstpointer b);
67 static void gdnDestroyRttKey(gpointer data);
68 static void gdnDestroyDouble(gpointer data);
69 static void readRttInfo(GHashTable* rttInfo, FILE* rttFile);
70 static void positionStream(FILE* stream);
71
72 static void gfSum(gpointer data, gpointer userData);
73 static void gfSumSquares(gpointer data, gpointer userData);
74 static void ghfPrintExchangeRtt(gpointer key, gpointer value, gpointer user_data);
75
76 static void hitBin(struct Bins* const bins, const double value);
77 static unsigned int binNum(const double value) __attribute__((pure));
78 static double binStart(const unsigned int binNum) __attribute__((pure));
79 static double binEnd(const unsigned int binNum) __attribute__((pure));
80
81 static AnalysisGraphEval* constructAnalysisGraphEval(const char* const
82 graphsDir, const struct RttKey* const rttKey);
83 static void destroyAnalysisGraphEval(AnalysisGraphEval* const graph);
84 static void gdnDestroyAnalysisGraphEval(gpointer data);
85 static void ghfWriteGraph(gpointer key, gpointer value, gpointer user_data);
86 static void dumpBinToFile(const struct Bins* const bins, FILE* const file);
87 static void writeHistogram(FILE* graphsStream, const struct RttKey* rttKey,
88 double* minRtt);
89
90
91 double binBase;
92
93 static AnalysisModule analysisModuleEval= {
94 .name= "eval",
95 .initAnalysis= &initAnalysisEval,
96 .destroyAnalysis= &destroyAnalysisEval,
97 .analyzeMessage= &analyzeMessageEval,
98 .analyzeExchange= &analyzeExchangeEval,
99 .analyzeBroadcast= &analyzeBroadcastEval,
100 .finalizeAnalysis= &finalizeAnalysisEval,
101 .printAnalysisStats= &printAnalysisStatsEval,
102 .writeAnalysisGraphsPlots= NULL,
103 .writeAnalysisGraphsOptions= NULL,
104 };
105
106 static ModuleOption optionEvalRttFile= {
107 .longName= "eval-rtt-file",
108 .hasArg= REQUIRED_ARG,
109 {.arg= NULL},
110 .optionHelp= "specify the file containing RTT information",
111 .argHelp= "FILE",
112 };
113
114
115 /*
116 * Analysis module registering function
117 */
118 static void registerAnalysisEval()
119 {
120 g_queue_push_tail(&analysisModules, &analysisModuleEval);
121 g_queue_push_tail(&moduleOptions, &optionEvalRttFile);
122 }
123
124
125 /*
126 * Analysis init function
127 *
128 * This function is called at the beginning of a synchronization run for a set
129 * of traces.
130 *
131 * Args:
132 * syncState container for synchronization data.
133 */
134 static void initAnalysisEval(SyncState* const syncState)
135 {
136 AnalysisDataEval* analysisData;
137 unsigned int i;
138
139 analysisData= malloc(sizeof(AnalysisDataEval));
140 syncState->analysisData= analysisData;
141
142 analysisData->rttInfo= g_hash_table_new_full(&ghfRttKeyHash,
143 &gefRttKeyEqual, &gdnDestroyRttKey, &gdnDestroyDouble);
144 if (optionEvalRttFile.arg)
145 {
146 FILE* rttStream;
147 int retval;
148
149 rttStream= fopen(optionEvalRttFile.arg, "r");
150 if (rttStream == NULL)
151 {
152 g_error(strerror(errno));
153 }
154
155 readRttInfo(analysisData->rttInfo, rttStream);
156
157 retval= fclose(rttStream);
158 if (retval == EOF)
159 {
160 g_error(strerror(errno));
161 }
162 }
163
164 if (syncState->stats)
165 {
166 analysisData->stats= calloc(1, sizeof(AnalysisStatsEval));
167 analysisData->stats->broadcastDiffSum= 0.;
168
169 analysisData->stats->messageStats= malloc(syncState->traceNb *
170 sizeof(MessageStats*));
171 for (i= 0; i < syncState->traceNb; i++)
172 {
173 analysisData->stats->messageStats[i]= calloc(syncState->traceNb,
174 sizeof(MessageStats));
175 }
176
177 analysisData->stats->exchangeRtt=
178 g_hash_table_new_full(&ghfRttKeyHash, &gefRttKeyEqual,
179 &gdnDestroyRttKey, &gdnDestroyDouble);
180 }
181
182 if (syncState->graphsStream)
183 {
184 binBase= exp10(6. / (BIN_NB - 3));
185 analysisData->graphs= g_hash_table_new_full(&ghfRttKeyHash,
186 &gefRttKeyEqual, &gdnDestroyRttKey, &gdnDestroyAnalysisGraphEval);
187 }
188 }
189
190
191 /*
192 * Create and open files used to store histogram points to generate graphs.
193 * Create data structures to store histogram points during analysis.
194 *
195 * Args:
196 * graphsDir: folder where to write files
197 * rttKey: host pair, make sure saddr < daddr
198 */
199 static AnalysisGraphEval* constructAnalysisGraphEval(const char* const
200 graphsDir, const struct RttKey* const rttKey)
201 {
202 int retval;
203 unsigned int i;
204 char* cwd;
205 char name[60], saddr[16], daddr[16];
206 AnalysisGraphEval* graph= calloc(1, sizeof(*graph));
207 const struct {
208 size_t pointsOffset;
209 const char* fileName;
210 const char* host1, *host2;
211 } loopValues[]= {
212 {offsetof(AnalysisGraphEval, ttSendPoints), "analysis_eval_tt-%s_to_%s.data",
213 saddr, daddr},
214 {offsetof(AnalysisGraphEval, ttRecvPoints), "analysis_eval_tt-%s_to_%s.data",
215 daddr, saddr},
216 {offsetof(AnalysisGraphEval, hrttPoints), "analysis_eval_hrtt-%s_and_%s.data",
217 saddr, daddr},
218 };
219
220 graph->ttSendBins.max= BIN_NB - 1;
221 graph->ttRecvBins.max= BIN_NB - 1;
222 graph->hrttBins.max= BIN_NB - 1;
223
224 convertIP(saddr, rttKey->saddr);
225 convertIP(daddr, rttKey->daddr);
226
227 cwd= changeToGraphDir(graphsDir);
228
229 for (i= 0; i < sizeof(loopValues) / sizeof(*loopValues); i++)
230 {
231 retval= snprintf(name, sizeof(name), loopValues[i].fileName,
232 loopValues[i].host1, loopValues[i].host2);
233 if (retval > sizeof(name) - 1)
234 {
235 name[sizeof(name) - 1]= '\0';
236 }
237 if ((*(FILE**)((void*) graph + loopValues[i].pointsOffset)=
238 fopen(name, "w")) == NULL)
239 {
240 g_error(strerror(errno));
241 }
242 }
243
244 retval= chdir(cwd);
245 if (retval == -1)
246 {
247 g_error(strerror(errno));
248 }
249 free(cwd);
250
251 return graph;
252 }
253
254
255 /*
256 * Close files used to store histogram points to generate graphs.
257 *
258 * Args:
259 * graphsDir: folder where to write files
260 * rttKey: host pair, make sure saddr < daddr
261 */
262 static void destroyAnalysisGraphEval(AnalysisGraphEval* const graph)
263 {
264 unsigned int i;
265 int retval;
266 const struct {
267 size_t pointsOffset;
268 } loopValues[]= {
269 {offsetof(AnalysisGraphEval, ttSendPoints)},
270 {offsetof(AnalysisGraphEval, ttRecvPoints)},
271 {offsetof(AnalysisGraphEval, hrttPoints)},
272 };
273
274 for (i= 0; i < sizeof(loopValues) / sizeof(*loopValues); i++)
275 {
276 retval= fclose(*(FILE**)((void*) graph + loopValues[i].pointsOffset));
277 if (retval != 0)
278 {
279 g_error(strerror(errno));
280 }
281 }
282 }
283
284
285 /*
286 * A GDestroyNotify function for g_hash_table_new_full()
287 *
288 * Args:
289 * data: AnalysisGraphEval*
290 */
291 static void gdnDestroyAnalysisGraphEval(gpointer data)
292 {
293 destroyAnalysisGraphEval(data);
294 }
295
296
297 /*
298 * A GHFunc for g_hash_table_foreach()
299 *
300 * Args:
301 * key: RttKey* where saddr < daddr
302 * value: AnalysisGraphEval*
303 * user_data struct WriteGraphInfo*
304 */
305 static void ghfWriteGraph(gpointer key, gpointer value, gpointer user_data)
306 {
307 double* rtt1, * rtt2;
308 struct RttKey* rttKey= key;
309 struct RttKey oppositeRttKey= {.saddr= rttKey->daddr, .daddr=
310 rttKey->saddr};
311 AnalysisGraphEval* graph= value;
312 struct WriteGraphInfo* info= user_data;
313
314 rtt1= g_hash_table_lookup(info->rttInfo, rttKey);
315 rtt2= g_hash_table_lookup(info->rttInfo, &oppositeRttKey);
316
317 if (rtt1 == NULL)
318 {
319 rtt1= rtt2;
320 }
321 else if (rtt2 != NULL)
322 {
323 rtt1= MIN(rtt1, rtt2);
324 }
325
326 dumpBinToFile(&graph->ttSendBins, graph->ttSendPoints);
327 dumpBinToFile(&graph->ttRecvBins, graph->ttRecvPoints);
328 dumpBinToFile(&graph->hrttBins, graph->hrttPoints);
329 writeHistogram(info->graphsStream, rttKey, rtt1);
330 }
331
332
333 /*
334 * Write the content of one bin in a histogram point file
335 *
336 * Args:
337 * bin: array of values that make up a histogram
338 * file: FILE*, write to this file
339 */
340 static void dumpBinToFile(const struct Bins* const bins, FILE* const file)
341 {
342 unsigned int i;
343
344 // The first and last bins are skipped, see struct Bins
345 for (i= 1; i < BIN_NB - 1; i++)
346 {
347 if (bins->bin[i] > 0)
348 {
349 fprintf(file, "%20.9f %20.9f %20.9f\n", (binStart(i) + binEnd(i))
350 / 2., (double) bins->bin[i] / ((binEnd(i) - binStart(i)) *
351 bins->total), binEnd(i) - binStart(i));
352 }
353 }
354 }
355
356
357 /*
358 * Write the analysis-specific plot in the gnuplot script.
359 *
360 * Args:
361 * graphsStream: write to this file
362 * rttKey: must be sorted such that saddr < daddr
363 * minRtt: if available, else NULL
364 */
365 static void writeHistogram(FILE* graphsStream, const struct RttKey* rttKey,
366 double* minRtt)
367 {
368 char saddr[16], daddr[16];
369
370 convertIP(saddr, rttKey->saddr);
371 convertIP(daddr, rttKey->daddr);
372
373 fprintf(graphsStream,
374 "reset\n"
375 "set output \"histogram-%s-%s.eps\"\n"
376 "set title \"\"\n"
377 "set xlabel \"Message Latency (s)\"\n"
378 "set ylabel \"Proportion of messages per second\"\n", saddr, daddr);
379
380 if (minRtt != NULL)
381 {
382 fprintf(graphsStream,
383 "set arrow from %.9f, 0 rto 0, graph 1 "
384 "nohead linetype 3 linewidth 3 linecolor rgb \"black\"\n", *minRtt / 2);
385 }
386
387 fprintf(graphsStream,
388 "plot \\\n"
389 "\t\"analysis_eval_hrtt-%1$s_and_%2$s.data\" "
390 "title \"RTT/2\" with linespoints linetype 1 linewidth 2 "
391 "linecolor rgb \"black\" pointtype 6 pointsize 1,\\\n"
392 "\t\"analysis_eval_tt-%1$s_to_%2$s.data\" "
393 "title \"%1$s to %2$s\" with linespoints linetype 4 linewidth 2 "
394 "linecolor rgb \"gray60\" pointtype 6 pointsize 1,\\\n"
395 "\t\"analysis_eval_tt-%2$s_to_%1$s.data\" "
396 "title \"%2$s to %1$s\" with linespoints linetype 4 linewidth 2 "
397 "linecolor rgb \"gray30\" pointtype 6 pointsize 1\n", saddr, daddr);
398 }
399
400
401 /*
402 * Analysis destroy function
403 *
404 * Free the analysis specific data structures
405 *
406 * Args:
407 * syncState container for synchronization data.
408 */
409 static void destroyAnalysisEval(SyncState* const syncState)
410 {
411 unsigned int i;
412 AnalysisDataEval* analysisData;
413
414 analysisData= (AnalysisDataEval*) syncState->analysisData;
415
416 if (analysisData == NULL || analysisData->rttInfo == NULL)
417 {
418 return;
419 }
420
421 g_hash_table_destroy(analysisData->rttInfo);
422 analysisData->rttInfo= NULL;
423
424 if (syncState->stats)
425 {
426 for (i= 0; i < syncState->traceNb; i++)
427 {
428 free(analysisData->stats->messageStats[i]);
429 }
430 free(analysisData->stats->messageStats);
431
432 g_hash_table_destroy(analysisData->stats->exchangeRtt);
433
434 free(analysisData->stats);
435 }
436
437 if (syncState->graphsStream && analysisData->graphs)
438 {
439 g_hash_table_destroy(analysisData->graphs);
440 }
441
442 free(syncState->analysisData);
443 syncState->analysisData= NULL;
444 }
445
446
447 /*
448 * Perform analysis on an event pair.
449 *
450 * Check if there is message inversion or messages that are too fast.
451 *
452 * Args:
453 * syncState container for synchronization data
454 * message structure containing the events
455 */
456 static void analyzeMessageEval(SyncState* const syncState, Message* const message)
457 {
458 AnalysisDataEval* analysisData= syncState->analysisData;
459 MessageStats* messageStats=
460 &analysisData->stats->messageStats[message->outE->traceNum][message->inE->traceNum];;
461 double* rtt;
462 double tt;
463 struct RttKey rttKey;
464
465 if (!syncState->stats)
466 {
467 return;
468 }
469
470 g_assert(message->inE->type == TCP);
471
472 messageStats->total++;
473
474 tt= wallTimeSub(&message->inE->wallTime, &message->outE->wallTime);
475 if (tt <= 0)
476 {
477 messageStats->inversionNb++;
478 }
479 else if (syncState->graphsStream)
480 {
481 struct RttKey rttKey= {
482 .saddr=MIN(message->inE->event.tcpEvent->segmentKey->connectionKey.saddr,
483 message->inE->event.tcpEvent->segmentKey->connectionKey.daddr),
484 .daddr=MAX(message->inE->event.tcpEvent->segmentKey->connectionKey.saddr,
485 message->inE->event.tcpEvent->segmentKey->connectionKey.daddr),
486 };
487 AnalysisGraphEval* graph= g_hash_table_lookup(analysisData->graphs,
488 &rttKey);
489
490 if (graph == NULL)
491 {
492 struct RttKey* tableKey= malloc(sizeof(*tableKey));
493
494 graph= constructAnalysisGraphEval(syncState->graphsDir, &rttKey);
495 memcpy(tableKey, &rttKey, sizeof(*tableKey));
496 g_hash_table_insert(analysisData->graphs, tableKey, graph);
497 }
498
499 if (message->inE->event.udpEvent->datagramKey->saddr <
500 message->inE->event.udpEvent->datagramKey->daddr)
501 {
502 hitBin(&graph->ttSendBins, tt);
503 }
504 else
505 {
506 hitBin(&graph->ttRecvBins, tt);
507 }
508 }
509
510 rttKey.saddr=
511 message->inE->event.tcpEvent->segmentKey->connectionKey.saddr;
512 rttKey.daddr=
513 message->inE->event.tcpEvent->segmentKey->connectionKey.daddr;
514 rtt= g_hash_table_lookup(analysisData->rttInfo, &rttKey);
515 g_debug("rttInfo, looking up (%u, %u)->(%f)", rttKey.saddr,
516 rttKey.daddr, rtt ? *rtt : NAN);
517
518 if (rtt)
519 {
520 g_debug("rttInfo, tt: %f rtt / 2: %f", tt, *rtt / 2.);
521 if (tt < *rtt / 2.)
522 {
523 messageStats->tooFastNb++;
524 }
525 }
526 else
527 {
528 messageStats->noRTTInfoNb++;
529 }
530 }
531
532
533 /*
534 * Perform analysis on multiple messages
535 *
536 * Measure the RTT
537 *
538 * Args:
539 * syncState container for synchronization data
540 * exchange structure containing the messages
541 */
542 static void analyzeExchangeEval(SyncState* const syncState, Exchange* const exchange)
543 {
544 AnalysisDataEval* analysisData= syncState->analysisData;
545 Message* m1= g_queue_peek_tail(exchange->acks);
546 Message* m2= exchange->message;
547 struct RttKey* rttKey;
548 double* rtt, * exchangeRtt;
549
550 if (!syncState->stats)
551 {
552 return;
553 }
554
555 g_assert(m1->inE->type == TCP);
556
557 // (T2 - T1) - (T3 - T4)
558 rtt= malloc(sizeof(double));
559 *rtt= wallTimeSub(&m1->inE->wallTime, &m1->outE->wallTime) -
560 wallTimeSub(&m2->outE->wallTime, &m2->inE->wallTime);
561
562 rttKey= malloc(sizeof(struct RttKey));
563 rttKey->saddr=
564 MIN(m1->inE->event.tcpEvent->segmentKey->connectionKey.saddr,
565 m1->inE->event.tcpEvent->segmentKey->connectionKey.daddr);
566 rttKey->daddr=
567 MAX(m1->inE->event.tcpEvent->segmentKey->connectionKey.saddr,
568 m1->inE->event.tcpEvent->segmentKey->connectionKey.daddr);
569
570 if (syncState->graphsStream)
571 {
572 AnalysisGraphEval* graph= g_hash_table_lookup(analysisData->graphs,
573 rttKey);
574
575 if (graph == NULL)
576 {
577 struct RttKey* tableKey= malloc(sizeof(*tableKey));
578
579 graph= constructAnalysisGraphEval(syncState->graphsDir, rttKey);
580 memcpy(tableKey, rttKey, sizeof(*tableKey));
581 g_hash_table_insert(analysisData->graphs, tableKey, graph);
582 }
583
584 hitBin(&graph->hrttBins, *rtt / 2);
585 }
586
587 exchangeRtt= g_hash_table_lookup(analysisData->stats->exchangeRtt,
588 rttKey);
589
590 if (exchangeRtt)
591 {
592 if (*rtt < *exchangeRtt)
593 {
594 g_hash_table_replace(analysisData->stats->exchangeRtt, rttKey, rtt);
595 }
596 }
597 else
598 {
599 g_hash_table_insert(analysisData->stats->exchangeRtt, rttKey, rtt);
600 }
601 }
602
603
604 /*
605 * Perform analysis on muliple events
606 *
607 * Sum the broadcast differential delays
608 *
609 * Args:
610 * syncState container for synchronization data
611 * broadcast structure containing the events
612 */
613 static void analyzeBroadcastEval(SyncState* const syncState, Broadcast* const broadcast)
614 {
615 AnalysisDataEval* analysisData;
616 double sum= 0, squaresSum= 0;
617 double y;
618
619 if (!syncState->stats)
620 {
621 return;
622 }
623
624 analysisData= (AnalysisDataEval*) syncState->analysisData;
625
626 g_queue_foreach(broadcast->events, &gfSum, &sum);
627 g_queue_foreach(broadcast->events, &gfSumSquares, &squaresSum);
628
629 analysisData->stats->broadcastNb++;
630 // Because of numerical errors, this can at times be < 0
631 y= squaresSum / g_queue_get_length(broadcast->events) - pow(sum /
632 g_queue_get_length(broadcast->events), 2.);
633 if (y > 0)
634 {
635 analysisData->stats->broadcastDiffSum+= sqrt(y);
636 }
637 }
638
639
640 /*
641 * Finalize the factor calculations
642 *
643 * Since this module does not really calculate factors, identity factors are
644 * returned.
645 *
646 * Args:
647 * syncState container for synchronization data.
648 *
649 * Returns:
650 * Factors[traceNb] identity factors for each trace
651 */
652 static GArray* finalizeAnalysisEval(SyncState* const syncState)
653 {
654 GArray* factors;
655 unsigned int i;
656 AnalysisDataEval* analysisData= syncState->analysisData;
657
658 if (syncState->graphsStream && analysisData->graphs)
659 {
660 g_hash_table_foreach(analysisData->graphs, &ghfWriteGraph, &(struct
661 WriteGraphInfo) {.rttInfo= analysisData->rttInfo,
662 .graphsStream= syncState->graphsStream});
663 g_hash_table_destroy(analysisData->graphs);
664 analysisData->graphs= NULL;
665 }
666
667 factors= g_array_sized_new(FALSE, FALSE, sizeof(Factors),
668 syncState->traceNb);
669 g_array_set_size(factors, syncState->traceNb);
670 for (i= 0; i < syncState->traceNb; i++)
671 {
672 Factors* e;
673
674 e= &g_array_index(factors, Factors, i);
675 e->drift= 1.;
676 e->offset= 0.;
677 }
678
679 return factors;
680 }
681
682
683 /*
684 * Print statistics related to analysis. Must be called after
685 * finalizeAnalysis.
686 *
687 * Args:
688 * syncState container for synchronization data.
689 */
690 static void printAnalysisStatsEval(SyncState* const syncState)
691 {
692 AnalysisDataEval* analysisData;
693 unsigned int i, j;
694
695 if (!syncState->stats)
696 {
697 return;
698 }
699
700 analysisData= (AnalysisDataEval*) syncState->analysisData;
701
702 printf("Synchronization evaluation analysis stats:\n");
703 printf("\tsum of broadcast differential delays: %g\n",
704 analysisData->stats->broadcastDiffSum);
705 printf("\taverage broadcast differential delays: %g\n",
706 analysisData->stats->broadcastDiffSum /
707 analysisData->stats->broadcastNb);
708
709 printf("\tIndividual evaluation:\n"
710 "\t\tTrace pair Inversions Too fast (No RTT info) Total\n");
711
712 for (i= 0; i < syncState->traceNb; i++)
713 {
714 for (j= i + 1; j < syncState->traceNb; j++)
715 {
716 MessageStats* messageStats;
717 const char* format= "\t\t%3d - %-3d %-10u %-10u %-10u %u\n";
718
719 messageStats= &analysisData->stats->messageStats[i][j];
720
721 printf(format, i, j, messageStats->inversionNb, messageStats->tooFastNb,
722 messageStats->noRTTInfoNb, messageStats->total);
723
724 messageStats= &analysisData->stats->messageStats[j][i];
725
726 printf(format, j, i, messageStats->inversionNb, messageStats->tooFastNb,
727 messageStats->noRTTInfoNb, messageStats->total);
728 }
729 }
730
731 printf("\tRound-trip times:\n"
732 "\t\tHost pair RTT from exchanges RTTs from file (ms)\n");
733 g_hash_table_foreach(analysisData->stats->exchangeRtt,
734 &ghfPrintExchangeRtt, analysisData->rttInfo);
735 }
736
737
738 /*
739 * A GHFunc for g_hash_table_foreach()
740 *
741 * Args:
742 * key: RttKey* where saddr < daddr
743 * value: double*, RTT estimated from exchanges
744 * user_data GHashTable* rttInfo
745 */
746 static void ghfPrintExchangeRtt(gpointer key, gpointer value, gpointer user_data)
747 {
748 char addr1[16], addr2[16];
749 struct RttKey* rttKey1= key;
750 struct RttKey rttKey2= {rttKey1->daddr, rttKey1->saddr};
751 double* fileRtt1, *fileRtt2;
752 GHashTable* rttInfo= user_data;
753
754 convertIP(addr1, rttKey1->saddr);
755 convertIP(addr2, rttKey1->daddr);
756
757 fileRtt1= g_hash_table_lookup(rttInfo, rttKey1);
758 fileRtt2= g_hash_table_lookup(rttInfo, &rttKey2);
759
760 printf("\t\t(%15s, %-15s) %-18.3f ", addr1, addr2, *(double*) value * 1e3);
761
762 if (fileRtt1 || fileRtt2)
763 {
764 if (fileRtt1)
765 {
766 printf("%.3f", *fileRtt1 * 1e3);
767 }
768 if (fileRtt1 && fileRtt2)
769 {
770 printf(", ");
771 }
772 if (fileRtt2)
773 {
774 printf("%.3f", *fileRtt2 * 1e3);
775 }
776 }
777 else
778 {
779 printf("-");
780 }
781 printf("\n");
782 }
783
784
785 /*
786 * A GHashFunc for g_hash_table_new()
787 *
788 * Args:
789 * key struct RttKey*
790 */
791 static guint ghfRttKeyHash(gconstpointer key)
792 {
793 struct RttKey* rttKey;
794 uint32_t a, b, c;
795
796 rttKey= (struct RttKey*) key;
797
798 a= rttKey->saddr;
799 b= rttKey->daddr;
800 c= 0;
801 final(a, b, c);
802
803 return c;
804 }
805
806
807 /*
808 * A GDestroyNotify function for g_hash_table_new_full()
809 *
810 * Args:
811 * data: struct RttKey*
812 */
813 static void gdnDestroyRttKey(gpointer data)
814 {
815 free(data);
816 }
817
818
819 /*
820 * A GDestroyNotify function for g_hash_table_new_full()
821 *
822 * Args:
823 * data: double*
824 */
825 static void gdnDestroyDouble(gpointer data)
826 {
827 free(data);
828 }
829
830
831 /*
832 * A GEqualFunc for g_hash_table_new()
833 *
834 * Args:
835 * a, b RttKey*
836 *
837 * Returns:
838 * TRUE if both values are equal
839 */
840 static gboolean gefRttKeyEqual(gconstpointer a, gconstpointer b)
841 {
842 const struct RttKey* rkA, * rkB;
843
844 rkA= (struct RttKey*) a;
845 rkB= (struct RttKey*) b;
846
847 if (rkA->saddr == rkB->saddr && rkA->daddr == rkB->daddr)
848 {
849 return TRUE;
850 }
851 else
852 {
853 return FALSE;
854 }
855 }
856
857
858 /*
859 * Read a file contain minimum round trip time values and fill an array with
860 * them. The file is formatted as such:
861 * <host1 IP> <host2 IP> <RTT in milliseconds>
862 * ip's should be in dotted quad format
863 *
864 * Args:
865 * rttInfo: double* rttInfo[RttKey], empty table, will be filled
866 * rttStream: stream from which to read
867 */
868 static void readRttInfo(GHashTable* rttInfo, FILE* rttStream)
869 {
870 char* line= NULL;
871 size_t len;
872 int retval;
873
874 positionStream(rttStream);
875 retval= getline(&line, &len, rttStream);
876 while(!feof(rttStream))
877 {
878 struct RttKey* rttKey;
879 char saddrDQ[20], daddrDQ[20];
880 double* rtt;
881 char tmp;
882 struct in_addr addr;
883 unsigned int i;
884 struct {
885 char* dq;
886 size_t offset;
887 } loopValues[] = {
888 {saddrDQ, offsetof(struct RttKey, saddr)},
889 {daddrDQ, offsetof(struct RttKey, daddr)}
890 };
891
892 if (retval == -1 && !feof(rttStream))
893 {
894 g_error(strerror(errno));
895 }
896
897 if (line[retval - 1] == '\n')
898 {
899 line[retval - 1]= '\0';
900 }
901
902 rtt= malloc(sizeof(double));
903 retval= sscanf(line, " %19s %19s %lf %c", saddrDQ, daddrDQ, rtt,
904 &tmp);
905 if (retval == EOF)
906 {
907 g_error(strerror(errno));
908 }
909 else if (retval != 3)
910 {
911 g_error("Error parsing RTT file, line was '%s'", line);
912 }
913
914 rttKey= malloc(sizeof(struct RttKey));
915 for (i= 0; i < sizeof(loopValues) / sizeof(*loopValues); i++)
916 {
917 retval= inet_aton(loopValues[i].dq, &addr);
918 if (retval == 0)
919 {
920 g_error("Error converting address '%s'", loopValues[i].dq);
921 }
922 *(uint32_t*) ((void*) rttKey + loopValues[i].offset)=
923 addr.s_addr;
924 }
925
926 *rtt/= 1e3;
927 g_debug("rttInfo, Inserting (%u, %u)->(%f)", rttKey->saddr,
928 rttKey->daddr, *rtt);
929 g_hash_table_insert(rttInfo, rttKey, rtt);
930
931 positionStream(rttStream);
932 retval= getline(&line, &len, rttStream);
933 }
934
935 if (line)
936 {
937 free(line);
938 }
939 }
940
941
942 /*
943 * Advance stream over empty space, empty lines and lines that begin with '#'
944 *
945 * Args:
946 * stream: stream, at exit, will be over the first non-empty character
947 * of a line of be at EOF
948 */
949 static void positionStream(FILE* stream)
950 {
951 int firstChar;
952 ssize_t retval;
953 char* line= NULL;
954 size_t len;
955
956 do
957 {
958 firstChar= fgetc(stream);
959 if (firstChar == (int) '#')
960 {
961 retval= getline(&line, &len, stream);
962 if (retval == -1)
963 {
964 if (feof(stream))
965 {
966 goto outEof;
967 }
968 else
969 {
970 g_error(strerror(errno));
971 }
972 }
973 }
974 else if (firstChar == (int) '\n' || firstChar == (int) ' ' ||
975 firstChar == (int) '\t')
976 {}
977 else if (firstChar == EOF)
978 {
979 goto outEof;
980 }
981 else
982 {
983 break;
984 }
985 } while (true);
986 retval= ungetc(firstChar, stream);
987 if (retval == EOF)
988 {
989 g_error("Error: ungetc()");
990 }
991
992 outEof:
993 if (line)
994 {
995 free(line);
996 }
997 }
998
999
1000 /*
1001 * A GFunc for g_queue_foreach()
1002 *
1003 * Args:
1004 * data Event*, a UDP broadcast event
1005 * user_data double*, the running sum
1006 *
1007 * Returns:
1008 * Adds the time of the event to the sum
1009 */
1010 static void gfSum(gpointer data, gpointer userData)
1011 {
1012 Event* event= (Event*) data;
1013
1014 *(double*) userData+= event->wallTime.seconds + event->wallTime.nanosec /
1015 1e9;
1016 }
1017
1018
1019 /*
1020 * A GFunc for g_queue_foreach()
1021 *
1022 * Args:
1023 * data Event*, a UDP broadcast event
1024 * user_data double*, the running sum
1025 *
1026 * Returns:
1027 * Adds the square of the time of the event to the sum
1028 */
1029 static void gfSumSquares(gpointer data, gpointer userData)
1030 {
1031 Event* event= (Event*) data;
1032
1033 *(double*) userData+= pow(event->wallTime.seconds + event->wallTime.nanosec
1034 / 1e9, 2.);
1035 }
1036
1037
1038 /*
1039 * Update a struct Bins according to a new value
1040 *
1041 * Args:
1042 * bins: the structure containing bins to build a histrogram
1043 * value: the new value
1044 */
1045 static void hitBin(struct Bins* const bins, const double value)
1046 {
1047 unsigned int binN= binNum(value);
1048
1049 if (binN < bins->min)
1050 {
1051 bins->min= binN;
1052 }
1053 else if (binN > bins->max)
1054 {
1055 bins->max= binN;
1056 }
1057
1058 bins->total++;
1059
1060 bins->bin[binN]++;
1061 }
1062
1063
1064 /*
1065 * Figure out the bin in a histogram to which a value belongs.
1066 *
1067 * This uses exponentially sized bins that go from 0 to infinity.
1068 *
1069 * Args:
1070 * value: in the range -INFINITY to INFINITY
1071 *
1072 * Returns:
1073 * The number of the bin in a struct Bins.bin
1074 */
1075 static unsigned int binNum(const double value)
1076 {
1077 if (value <= 0)
1078 {
1079 return 0;
1080 }
1081 else if (value < binEnd(1))
1082 {
1083 return 1;
1084 }
1085 else if (value >= binStart(BIN_NB - 1))
1086 {
1087 return BIN_NB - 1;
1088 }
1089 else
1090 {
1091 return floor(log(value) / log(binBase)) + BIN_NB + 1;
1092 }
1093 }
1094
1095
1096 /*
1097 * Figure out the start of the interval of a bin in a histogram. See struct
1098 * Bins.
1099 *
1100 * This uses exponentially sized bins that go from 0 to infinity.
1101 *
1102 * Args:
1103 * binNum: bin number
1104 *
1105 * Return:
1106 * The start of the interval, this value is included in the interval (except
1107 * for -INFINITY, naturally)
1108 */
1109 static double binStart(const unsigned int binNum)
1110 {
1111 g_assert_cmpuint(binNum, <, BIN_NB);
1112
1113 if (binNum == 0)
1114 {
1115 return -INFINITY;
1116 }
1117 else if (binNum == 1)
1118 {
1119 return 0.;
1120 }
1121 else
1122 {
1123 return pow(binBase, (double) binNum - BIN_NB + 1);
1124 }
1125 }
1126
1127
1128 /*
1129 * Figure out the end of the interval of a bin in a histogram. See struct
1130 * Bins.
1131 *
1132 * This uses exponentially sized bins that go from 0 to infinity.
1133 *
1134 * Args:
1135 * binNum: bin number
1136 *
1137 * Return:
1138 * The end of the interval, this value is not included in the interval
1139 */
1140 static double binEnd(const unsigned int binNum)
1141 {
1142 g_assert_cmpuint(binNum, <, BIN_NB);
1143
1144 if (binNum == 0)
1145 {
1146 return 0.;
1147 }
1148 else if (binNum < BIN_NB - 1)
1149 {
1150 return pow(binBase, (double) binNum - BIN_NB + 2);
1151 }
1152 else
1153 {
1154 return INFINITY;
1155 }
1156 }
This page took 0.083763 seconds and 4 git commands to generate.