a9a757bcd1415748b778cf8c31b7b85eaed51183
[lttng-modules.git] / src / lttng-statedump-impl.c
1 /* SPDX-License-Identifier: (GPL-2.0-only or LGPL-2.1-only)
2 *
3 * lttng-statedump.c
4 *
5 * Linux Trace Toolkit Next Generation Kernel State Dump
6 *
7 * Copyright 2005 Jean-Hugues Deschenes <jean-hugues.deschenes@polymtl.ca>
8 * Copyright 2006-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
9 *
10 * Changes:
11 * Eric Clement: Add listing of network IP interface
12 * 2006, 2007 Mathieu Desnoyers Fix kernel threads
13 * Various updates
14 */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/netlink.h>
19 #include <linux/inet.h>
20 #include <linux/ip.h>
21 #include <linux/kthread.h>
22 #include <linux/proc_fs.h>
23 #include <linux/file.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqnr.h>
26 #include <linux/cpu.h>
27 #include <linux/netdevice.h>
28 #include <linux/inetdevice.h>
29 #include <linux/sched.h>
30 #include <linux/mm.h>
31 #include <linux/swap.h>
32 #include <linux/wait.h>
33 #include <linux/mutex.h>
34 #include <linux/device.h>
35
36 #include <lttng/events.h>
37 #include <lttng/tracer.h>
38 #include <wrapper/irqdesc.h>
39 #include <wrapper/fdtable.h>
40 #include <wrapper/namespace.h>
41 #include <wrapper/irq.h>
42 #include <wrapper/tracepoint.h>
43 #include <wrapper/genhd.h>
44 #include <wrapper/file.h>
45 #include <wrapper/fdtable.h>
46
47 #ifdef CONFIG_LTTNG_HAS_LIST_IRQ
48 #include <linux/irq.h>
49 #endif
50
51 /* Define the tracepoints, but do not build the probes */
52 #define CREATE_TRACE_POINTS
53 #define TRACE_INCLUDE_PATH instrumentation/events
54 #define TRACE_INCLUDE_FILE lttng-statedump
55 #define LTTNG_INSTRUMENTATION
56 #include <instrumentation/events/lttng-statedump.h>
57
58 LTTNG_DEFINE_TRACE(lttng_statedump_block_device,
59 TP_PROTO(struct lttng_kernel_session *session,
60 dev_t dev, const char *diskname),
61 TP_ARGS(session, dev, diskname));
62
63 LTTNG_DEFINE_TRACE(lttng_statedump_end,
64 TP_PROTO(struct lttng_kernel_session *session),
65 TP_ARGS(session));
66
67 LTTNG_DEFINE_TRACE(lttng_statedump_interrupt,
68 TP_PROTO(struct lttng_kernel_session *session,
69 unsigned int irq, const char *chip_name,
70 struct irqaction *action),
71 TP_ARGS(session, irq, chip_name, action));
72
73 LTTNG_DEFINE_TRACE(lttng_statedump_file_descriptor,
74 TP_PROTO(struct lttng_kernel_session *session,
75 struct files_struct *files,
76 int fd, const char *filename,
77 unsigned int flags, fmode_t fmode),
78 TP_ARGS(session, files, fd, filename, flags, fmode));
79
80 LTTNG_DEFINE_TRACE(lttng_statedump_start,
81 TP_PROTO(struct lttng_kernel_session *session),
82 TP_ARGS(session));
83
84 LTTNG_DEFINE_TRACE(lttng_statedump_process_state,
85 TP_PROTO(struct lttng_kernel_session *session,
86 struct task_struct *p,
87 int type, int mode, int submode, int status,
88 struct files_struct *files),
89 TP_ARGS(session, p, type, mode, submode, status, files));
90
91 LTTNG_DEFINE_TRACE(lttng_statedump_process_pid_ns,
92 TP_PROTO(struct lttng_kernel_session *session,
93 struct task_struct *p,
94 struct pid_namespace *pid_ns),
95 TP_ARGS(session, p, pid_ns));
96
97 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,6,0))
98 LTTNG_DEFINE_TRACE(lttng_statedump_process_cgroup_ns,
99 TP_PROTO(struct lttng_kernel_session *session,
100 struct task_struct *p,
101 struct cgroup_namespace *cgroup_ns),
102 TP_ARGS(session, p, cgroup_ns));
103 #endif
104
105 LTTNG_DEFINE_TRACE(lttng_statedump_process_ipc_ns,
106 TP_PROTO(struct lttng_kernel_session *session,
107 struct task_struct *p,
108 struct ipc_namespace *ipc_ns),
109 TP_ARGS(session, p, ipc_ns));
110
111 #ifndef LTTNG_MNT_NS_MISSING_HEADER
112 LTTNG_DEFINE_TRACE(lttng_statedump_process_mnt_ns,
113 TP_PROTO(struct lttng_kernel_session *session,
114 struct task_struct *p,
115 struct mnt_namespace *mnt_ns),
116 TP_ARGS(session, p, mnt_ns));
117 #endif
118
119 LTTNG_DEFINE_TRACE(lttng_statedump_process_net_ns,
120 TP_PROTO(struct lttng_kernel_session *session,
121 struct task_struct *p,
122 struct net *net_ns),
123 TP_ARGS(session, p, net_ns));
124
125 LTTNG_DEFINE_TRACE(lttng_statedump_process_user_ns,
126 TP_PROTO(struct lttng_kernel_session *session,
127 struct task_struct *p,
128 struct user_namespace *user_ns),
129 TP_ARGS(session, p, user_ns));
130
131 LTTNG_DEFINE_TRACE(lttng_statedump_process_uts_ns,
132 TP_PROTO(struct lttng_kernel_session *session,
133 struct task_struct *p,
134 struct uts_namespace *uts_ns),
135 TP_ARGS(session, p, uts_ns));
136
137 LTTNG_DEFINE_TRACE(lttng_statedump_process_time_ns,
138 TP_PROTO(struct lttng_kernel_session *session,
139 struct task_struct *p,
140 struct time_namespace *time_ns),
141 TP_ARGS(session, p, time_ns));
142
143 LTTNG_DEFINE_TRACE(lttng_statedump_network_interface,
144 TP_PROTO(struct lttng_kernel_session *session,
145 struct net_device *dev, struct in_ifaddr *ifa),
146 TP_ARGS(session, dev, ifa));
147
148 #ifdef LTTNG_HAVE_STATEDUMP_CPU_TOPOLOGY
149 LTTNG_DEFINE_TRACE(lttng_statedump_cpu_topology,
150 TP_PROTO(struct lttng_kernel_session *session, struct cpuinfo_x86 *c),
151 TP_ARGS(session, c));
152 #endif
153
154 struct lttng_fd_ctx {
155 char *page;
156 struct lttng_kernel_session *session;
157 struct files_struct *files;
158 };
159
160 /*
161 * Protected by the trace lock.
162 */
163 static struct delayed_work cpu_work[NR_CPUS];
164 static DECLARE_WAIT_QUEUE_HEAD(statedump_wq);
165 static atomic_t kernel_threads_to_run;
166
167 enum lttng_thread_type {
168 LTTNG_USER_THREAD = 0,
169 LTTNG_KERNEL_THREAD = 1,
170 };
171
172 enum lttng_execution_mode {
173 LTTNG_USER_MODE = 0,
174 LTTNG_SYSCALL = 1,
175 LTTNG_TRAP = 2,
176 LTTNG_IRQ = 3,
177 LTTNG_SOFTIRQ = 4,
178 LTTNG_MODE_UNKNOWN = 5,
179 };
180
181 enum lttng_execution_submode {
182 LTTNG_NONE = 0,
183 LTTNG_UNKNOWN = 1,
184 };
185
186 enum lttng_process_status {
187 LTTNG_UNNAMED = 0,
188 LTTNG_WAIT_FORK = 1,
189 LTTNG_WAIT_CPU = 2,
190 LTTNG_EXIT = 3,
191 LTTNG_ZOMBIE = 4,
192 LTTNG_WAIT = 5,
193 LTTNG_RUN = 6,
194 LTTNG_DEAD = 7,
195 };
196
197
198 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(5,11,0))
199
200 #define LTTNG_PART_STRUCT_TYPE struct block_device
201
202 static
203 int lttng_get_part_name(struct gendisk *disk, struct block_device *part, char *name_buf)
204 {
205 const char *p;
206
207 p = bdevname(part, name_buf);
208 if (!p)
209 return -ENOSYS;
210
211 return 0;
212 }
213
214 static
215 dev_t lttng_get_part_devt(struct block_device *part)
216 {
217 return part->bd_dev;
218 }
219
220 #else
221
222 #define LTTNG_PART_STRUCT_TYPE struct hd_struct
223
224 static
225 int lttng_get_part_name(struct gendisk *disk, struct hd_struct *part, char *name_buf)
226 {
227 const char *p;
228 struct block_device bdev;
229
230 /*
231 * Create a partial 'struct blockdevice' to use
232 * 'bdevname()' which is a simple wrapper over
233 * 'disk_name()' but has the honor to be EXPORT_SYMBOL.
234 */
235 bdev.bd_disk = disk;
236 bdev.bd_part = part;
237
238 p = bdevname(&bdev, name_buf);
239 if (!p)
240 return -ENOSYS;
241
242 return 0;
243 }
244
245 static
246 dev_t lttng_get_part_devt(struct hd_struct *part)
247 {
248 return part_devt(part);
249 }
250 #endif
251
252 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(5,12,0))
253 static
254 int lttng_statedump_each_block_device(struct lttng_kernel_session *session, struct gendisk *disk)
255 {
256 struct block_device *part;
257 unsigned long idx;
258 int ret = 0;
259
260 /* Include partition 0 */
261 idx = 0;
262
263 rcu_read_lock();
264 xa_for_each(&disk->part_tbl, idx, part) {
265 char name_buf[BDEVNAME_SIZE];
266
267 /* Exclude non-partitions bdev and empty partitions. */
268 if (bdev_is_partition(part) && !bdev_nr_sectors(part))
269 continue;
270
271 if (lttng_get_part_name(disk, part, name_buf) == -ENOSYS) {
272 ret = -ENOSYS;
273 goto end;
274 }
275 trace_lttng_statedump_block_device(session, lttng_get_part_devt(part),
276 name_buf);
277 }
278 end:
279 rcu_read_unlock();
280 return ret;
281 }
282 #else
283 static
284 int lttng_statedump_each_block_device(struct lttng_kernel_session *session, struct gendisk *disk)
285 {
286 struct disk_part_iter piter;
287 LTTNG_PART_STRUCT_TYPE *part;
288
289 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
290
291 while ((part = disk_part_iter_next(&piter))) {
292 char name_buf[BDEVNAME_SIZE];
293
294 if (lttng_get_part_name(disk, part, name_buf) == -ENOSYS) {
295 disk_part_iter_exit(&piter);
296 return -ENOSYS;
297 }
298 trace_lttng_statedump_block_device(session, lttng_get_part_devt(part),
299 name_buf);
300 }
301 disk_part_iter_exit(&piter);
302
303 return 0;
304 }
305 #endif
306
307 static
308 int lttng_enumerate_block_devices(struct lttng_kernel_session *session)
309 {
310 struct class *ptr_block_class;
311 struct device_type *ptr_disk_type;
312 struct class_dev_iter iter;
313 struct device *dev;
314 int ret = 0;
315
316 ptr_block_class = wrapper_get_block_class();
317 if (!ptr_block_class) {
318 ret = -ENOSYS;
319 goto end;
320 }
321 ptr_disk_type = wrapper_get_disk_type();
322 if (!ptr_disk_type) {
323 ret = -ENOSYS;
324 goto end;
325 }
326 class_dev_iter_init(&iter, ptr_block_class, NULL, ptr_disk_type);
327 while ((dev = class_dev_iter_next(&iter))) {
328 struct gendisk *disk = dev_to_disk(dev);
329
330 /*
331 * Don't show empty devices or things that have been
332 * suppressed
333 */
334 if (get_capacity(disk) == 0 ||
335 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
336 continue;
337
338 ret = lttng_statedump_each_block_device(session, disk);
339 }
340 class_dev_iter_exit(&iter);
341 end:
342 return ret;
343 }
344
345 #ifdef CONFIG_INET
346
347 static
348 void lttng_enumerate_device(struct lttng_kernel_session *session,
349 struct net_device *dev)
350 {
351 struct in_device *in_dev;
352 struct in_ifaddr *ifa;
353
354 if (dev->flags & IFF_UP) {
355 in_dev = in_dev_get(dev);
356 if (in_dev) {
357 for (ifa = in_dev->ifa_list; ifa != NULL;
358 ifa = ifa->ifa_next) {
359 trace_lttng_statedump_network_interface(
360 session, dev, ifa);
361 }
362 in_dev_put(in_dev);
363 }
364 } else {
365 trace_lttng_statedump_network_interface(
366 session, dev, NULL);
367 }
368 }
369
370 static
371 int lttng_enumerate_network_ip_interface(struct lttng_kernel_session *session)
372 {
373 struct net_device *dev;
374
375 read_lock(&dev_base_lock);
376 for_each_netdev(&init_net, dev)
377 lttng_enumerate_device(session, dev);
378 read_unlock(&dev_base_lock);
379
380 return 0;
381 }
382 #else /* CONFIG_INET */
383 static inline
384 int lttng_enumerate_network_ip_interface(struct lttng_kernel_session *session)
385 {
386 return 0;
387 }
388 #endif /* CONFIG_INET */
389
390 static
391 int lttng_dump_one_fd(const void *p, struct file *file, unsigned int fd)
392 {
393 const struct lttng_fd_ctx *ctx = p;
394 const char *s = d_path(&file->f_path, ctx->page, PAGE_SIZE);
395 unsigned int flags = file->f_flags;
396 struct fdtable *fdt;
397
398 /*
399 * We don't expose kernel internal flags, only userspace-visible
400 * flags.
401 */
402 flags &= ~FMODE_NONOTIFY;
403 fdt = files_fdtable(ctx->files);
404 /*
405 * We need to check here again whether fd is within the fdt
406 * max_fds range, because we might be seeing a different
407 * files_fdtable() than iterate_fd(), assuming only RCU is
408 * protecting the read. In reality, iterate_fd() holds
409 * file_lock, which should ensure the fdt does not change while
410 * the lock is taken, but we are not aware whether this is
411 * guaranteed or not, so play safe.
412 */
413 if (fd < fdt->max_fds && lttng_close_on_exec(fd, fdt))
414 flags |= O_CLOEXEC;
415 if (IS_ERR(s)) {
416 struct dentry *dentry = file->f_path.dentry;
417
418 /* Make sure we give at least some info */
419 spin_lock(&dentry->d_lock);
420 trace_lttng_statedump_file_descriptor(ctx->session,
421 ctx->files, fd, dentry->d_name.name, flags,
422 file->f_mode);
423 spin_unlock(&dentry->d_lock);
424 goto end;
425 }
426 trace_lttng_statedump_file_descriptor(ctx->session,
427 ctx->files, fd, s, flags, file->f_mode);
428 end:
429 return 0;
430 }
431
432 /* Called with task lock held. */
433 static
434 void lttng_enumerate_files(struct lttng_kernel_session *session,
435 struct files_struct *files,
436 char *tmp)
437 {
438 struct lttng_fd_ctx ctx = { .page = tmp, .session = session, .files = files, };
439
440 lttng_iterate_fd(files, 0, lttng_dump_one_fd, &ctx);
441 }
442
443 #ifdef LTTNG_HAVE_STATEDUMP_CPU_TOPOLOGY
444 static
445 int lttng_enumerate_cpu_topology(struct lttng_kernel_session *session)
446 {
447 int cpu;
448 const cpumask_t *cpumask = cpu_possible_mask;
449
450 for (cpu = cpumask_first(cpumask); cpu < nr_cpu_ids;
451 cpu = cpumask_next(cpu, cpumask)) {
452 trace_lttng_statedump_cpu_topology(session, &cpu_data(cpu));
453 }
454
455 return 0;
456 }
457 #else
458 static
459 int lttng_enumerate_cpu_topology(struct lttng_kernel_session *session)
460 {
461 return 0;
462 }
463 #endif
464
465 #if 0
466 /*
467 * FIXME: we cannot take a mmap_sem while in a RCU read-side critical section
468 * (scheduling in atomic). Normally, the tasklist lock protects this kind of
469 * iteration, but it is not exported to modules.
470 */
471 static
472 void lttng_enumerate_task_vm_maps(struct lttng_kernel_session *session,
473 struct task_struct *p)
474 {
475 struct mm_struct *mm;
476 struct vm_area_struct *map;
477 unsigned long ino;
478
479 /* get_task_mm does a task_lock... */
480 mm = get_task_mm(p);
481 if (!mm)
482 return;
483
484 map = mm->mmap;
485 if (map) {
486 down_read(&mm->mmap_sem);
487 while (map) {
488 if (map->vm_file)
489 ino = map->vm_file->lttng_f_dentry->d_inode->i_ino;
490 else
491 ino = 0;
492 trace_lttng_statedump_vm_map(session, p, map, ino);
493 map = map->vm_next;
494 }
495 up_read(&mm->mmap_sem);
496 }
497 mmput(mm);
498 }
499
500 static
501 int lttng_enumerate_vm_maps(struct lttng_kernel_session *session)
502 {
503 struct task_struct *p;
504
505 rcu_read_lock();
506 for_each_process(p)
507 lttng_enumerate_task_vm_maps(session, p);
508 rcu_read_unlock();
509 return 0;
510 }
511 #endif
512
513 #ifdef CONFIG_LTTNG_HAS_LIST_IRQ
514
515 static
516 int lttng_list_interrupts(struct lttng_kernel_session *session)
517 {
518 unsigned int irq;
519 unsigned long flags = 0;
520 struct irq_desc *desc;
521
522 #define irq_to_desc wrapper_irq_to_desc
523 /* needs irq_desc */
524 for_each_irq_desc(irq, desc) {
525 struct irqaction *action;
526 const char *irq_chip_name =
527 irq_desc_get_chip(desc)->name ? : "unnamed_irq_chip";
528
529 local_irq_save(flags);
530 raw_spin_lock(&desc->lock);
531 for (action = desc->action; action; action = action->next) {
532 trace_lttng_statedump_interrupt(session,
533 irq, irq_chip_name, action);
534 }
535 raw_spin_unlock(&desc->lock);
536 local_irq_restore(flags);
537 }
538 return 0;
539 #undef irq_to_desc
540 }
541 #else
542 static inline
543 int lttng_list_interrupts(struct lttng_kernel_session *session)
544 {
545 return 0;
546 }
547 #endif
548
549 /*
550 * Statedump the task's namespaces using the proc filesystem inode number as
551 * the unique identifier. The user and pid ns are nested and will be dumped
552 * recursively.
553 *
554 * Called with task lock held.
555 */
556 static
557 void lttng_statedump_process_ns(struct lttng_kernel_session *session,
558 struct task_struct *p,
559 enum lttng_thread_type type,
560 enum lttng_execution_mode mode,
561 enum lttng_execution_submode submode,
562 enum lttng_process_status status)
563 {
564 struct nsproxy *proxy;
565 struct pid_namespace *pid_ns;
566 struct user_namespace *user_ns;
567
568 /*
569 * The pid and user namespaces are special, they are nested and
570 * accessed with specific functions instead of the nsproxy struct
571 * like the other namespaces.
572 */
573 pid_ns = task_active_pid_ns(p);
574 do {
575 trace_lttng_statedump_process_pid_ns(session, p, pid_ns);
576 pid_ns = pid_ns ? pid_ns->parent : NULL;
577 } while (pid_ns);
578
579
580 user_ns = task_cred_xxx(p, user_ns);
581 do {
582 trace_lttng_statedump_process_user_ns(session, p, user_ns);
583 /*
584 * trace_lttng_statedump_process_user_ns() internally
585 * checks whether user_ns is NULL. While this does not
586 * appear to be a possible return value for
587 * task_cred_xxx(), err on the safe side and check
588 * for NULL here as well to be consistent with the
589 * paranoid behavior of
590 * trace_lttng_statedump_process_user_ns().
591 */
592 user_ns = user_ns ? user_ns->lttng_user_ns_parent : NULL;
593 } while (user_ns);
594
595 /*
596 * Back and forth on locking strategy within Linux upstream for nsproxy.
597 * See Linux upstream commit 728dba3a39c66b3d8ac889ddbe38b5b1c264aec3
598 * "namespaces: Use task_lock and not rcu to protect nsproxy"
599 * for details.
600 */
601 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(3,17,0) || \
602 LTTNG_UBUNTU_KERNEL_RANGE(3,13,11,36, 3,14,0,0) || \
603 LTTNG_UBUNTU_KERNEL_RANGE(3,16,1,11, 3,17,0,0) || \
604 LTTNG_RHEL_KERNEL_RANGE(3,10,0,229,13,0, 3,11,0,0,0,0))
605 proxy = p->nsproxy;
606 #else
607 rcu_read_lock();
608 proxy = task_nsproxy(p);
609 #endif
610 if (proxy) {
611 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,6,0))
612 trace_lttng_statedump_process_cgroup_ns(session, p, proxy->cgroup_ns);
613 #endif
614 trace_lttng_statedump_process_ipc_ns(session, p, proxy->ipc_ns);
615 #ifndef LTTNG_MNT_NS_MISSING_HEADER
616 trace_lttng_statedump_process_mnt_ns(session, p, proxy->mnt_ns);
617 #endif
618 trace_lttng_statedump_process_net_ns(session, p, proxy->net_ns);
619 trace_lttng_statedump_process_uts_ns(session, p, proxy->uts_ns);
620 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(5,6,0))
621 trace_lttng_statedump_process_time_ns(session, p, proxy->time_ns);
622 #endif
623 }
624 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(3,17,0) || \
625 LTTNG_UBUNTU_KERNEL_RANGE(3,13,11,36, 3,14,0,0) || \
626 LTTNG_UBUNTU_KERNEL_RANGE(3,16,1,11, 3,17,0,0) || \
627 LTTNG_RHEL_KERNEL_RANGE(3,10,0,229,13,0, 3,11,0,0,0,0))
628 /* (nothing) */
629 #else
630 rcu_read_unlock();
631 #endif
632 }
633
634 static
635 int lttng_enumerate_process_states(struct lttng_kernel_session *session)
636 {
637 struct task_struct *g, *p;
638 char *tmp;
639
640 tmp = (char *) __get_free_page(GFP_KERNEL);
641 if (!tmp)
642 return -ENOMEM;
643
644 rcu_read_lock();
645 for_each_process(g) {
646 struct files_struct *prev_files = NULL;
647
648 p = g;
649 do {
650 enum lttng_execution_mode mode =
651 LTTNG_MODE_UNKNOWN;
652 enum lttng_execution_submode submode =
653 LTTNG_UNKNOWN;
654 enum lttng_process_status status;
655 enum lttng_thread_type type;
656 struct files_struct *files;
657
658 task_lock(p);
659 if (p->exit_state == EXIT_ZOMBIE)
660 status = LTTNG_ZOMBIE;
661 else if (p->exit_state == EXIT_DEAD)
662 status = LTTNG_DEAD;
663 else if (p->state == TASK_RUNNING) {
664 /* Is this a forked child that has not run yet? */
665 if (list_empty(&p->rt.run_list))
666 status = LTTNG_WAIT_FORK;
667 else
668 /*
669 * All tasks are considered as wait_cpu;
670 * the viewer will sort out if the task
671 * was really running at this time.
672 */
673 status = LTTNG_WAIT_CPU;
674 } else if (p->state &
675 (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)) {
676 /* Task is waiting for something to complete */
677 status = LTTNG_WAIT;
678 } else
679 status = LTTNG_UNNAMED;
680 submode = LTTNG_NONE;
681
682 /*
683 * Verification of t->mm is to filter out kernel
684 * threads; Viewer will further filter out if a
685 * user-space thread was in syscall mode or not.
686 */
687 if (p->mm)
688 type = LTTNG_USER_THREAD;
689 else
690 type = LTTNG_KERNEL_THREAD;
691 files = p->files;
692
693 trace_lttng_statedump_process_state(session,
694 p, type, mode, submode, status, files);
695 lttng_statedump_process_ns(session,
696 p, type, mode, submode, status);
697 /*
698 * As an optimisation for the common case, do not
699 * repeat information for the same files_struct in
700 * two consecutive threads. This is the common case
701 * for threads sharing the same fd table. RCU guarantees
702 * that the same files_struct pointer is not re-used
703 * throughout processes/threads iteration.
704 */
705 if (files && files != prev_files) {
706 lttng_enumerate_files(session, files, tmp);
707 prev_files = files;
708 }
709 task_unlock(p);
710 } while_each_thread(g, p);
711 }
712 rcu_read_unlock();
713
714 free_page((unsigned long) tmp);
715
716 return 0;
717 }
718
719 static
720 void lttng_statedump_work_func(struct work_struct *work)
721 {
722 if (atomic_dec_and_test(&kernel_threads_to_run))
723 /* If we are the last thread, wake up do_lttng_statedump */
724 wake_up(&statedump_wq);
725 }
726
727 static
728 int do_lttng_statedump(struct lttng_kernel_session *session)
729 {
730 int cpu, ret;
731
732 trace_lttng_statedump_start(session);
733 ret = lttng_enumerate_process_states(session);
734 if (ret)
735 return ret;
736 /*
737 * FIXME
738 * ret = lttng_enumerate_vm_maps(session);
739 * if (ret)
740 * return ret;
741 */
742 ret = lttng_list_interrupts(session);
743 if (ret)
744 return ret;
745 ret = lttng_enumerate_network_ip_interface(session);
746 if (ret)
747 return ret;
748 ret = lttng_enumerate_block_devices(session);
749 switch (ret) {
750 case 0:
751 break;
752 case -ENOSYS:
753 printk(KERN_WARNING "LTTng: block device enumeration is not supported by kernel\n");
754 break;
755 default:
756 return ret;
757 }
758 ret = lttng_enumerate_cpu_topology(session);
759 if (ret)
760 return ret;
761
762 /* TODO lttng_dump_idt_table(session); */
763 /* TODO lttng_dump_softirq_vec(session); */
764 /* TODO lttng_list_modules(session); */
765 /* TODO lttng_dump_swap_files(session); */
766
767 /*
768 * Fire off a work queue on each CPU. Their sole purpose in life
769 * is to guarantee that each CPU has been in a state where is was in
770 * syscall mode (i.e. not in a trap, an IRQ or a soft IRQ).
771 */
772 get_online_cpus();
773 atomic_set(&kernel_threads_to_run, num_online_cpus());
774 for_each_online_cpu(cpu) {
775 INIT_DELAYED_WORK(&cpu_work[cpu], lttng_statedump_work_func);
776 schedule_delayed_work_on(cpu, &cpu_work[cpu], 0);
777 }
778 /* Wait for all threads to run */
779 __wait_event(statedump_wq, (atomic_read(&kernel_threads_to_run) == 0));
780 put_online_cpus();
781 /* Our work is done */
782 trace_lttng_statedump_end(session);
783 return 0;
784 }
785
786 /*
787 * Called with session mutex held.
788 */
789 int lttng_statedump_start(struct lttng_kernel_session *session)
790 {
791 return do_lttng_statedump(session);
792 }
793 EXPORT_SYMBOL_GPL(lttng_statedump_start);
794
795 static
796 int __init lttng_statedump_init(void)
797 {
798 /*
799 * Allow module to load even if the fixup cannot be done. This
800 * will allow seemless transition when the underlying issue fix
801 * is merged into the Linux kernel, and when tracepoint.c
802 * "tracepoint_module_notify" is turned into a static function.
803 */
804 (void) wrapper_lttng_fixup_sig(THIS_MODULE);
805 return 0;
806 }
807
808 module_init(lttng_statedump_init);
809
810 static
811 void __exit lttng_statedump_exit(void)
812 {
813 }
814
815 module_exit(lttng_statedump_exit);
816
817 MODULE_LICENSE("GPL and additional rights");
818 MODULE_AUTHOR("Jean-Hugues Deschenes");
819 MODULE_DESCRIPTION("LTTng statedump provider");
820 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
821 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
822 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
823 LTTNG_MODULES_EXTRAVERSION);
This page took 0.043759 seconds and 3 git commands to generate.