Rename struct lib_ring_buffer_ctx to struct lttng_kernel_ring_buffer_ctx
[lttng-modules.git] / src / lib / ringbuffer / ring_buffer_frontend.c
1 /* SPDX-License-Identifier: (GPL-2.0-only OR LGPL-2.1-only)
2 *
3 * ring_buffer_frontend.c
4 *
5 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
6 *
7 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
8 * recorder (overwrite) modes. See thesis:
9 *
10 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
11 * dissertation, Ecole Polytechnique de Montreal.
12 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
13 *
14 * - Algorithm presentation in Chapter 5:
15 * "Lockless Multi-Core High-Throughput Buffering".
16 * - Algorithm formal verification in Section 8.6:
17 * "Formal verification of LTTng"
18 *
19 * Author:
20 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
21 *
22 * Inspired from LTT and RelayFS:
23 * Karim Yaghmour <karim@opersys.com>
24 * Tom Zanussi <zanussi@us.ibm.com>
25 * Bob Wisniewski <bob@watson.ibm.com>
26 * And from K42 :
27 * Bob Wisniewski <bob@watson.ibm.com>
28 *
29 * Buffer reader semantic :
30 *
31 * - get_subbuf_size
32 * while buffer is not finalized and empty
33 * - get_subbuf
34 * - if return value != 0, continue
35 * - splice one subbuffer worth of data to a pipe
36 * - splice the data from pipe to disk/network
37 * - put_subbuf
38 */
39
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/percpu.h>
43 #include <asm/cacheflush.h>
44
45 #include <ringbuffer/config.h>
46 #include <ringbuffer/backend.h>
47 #include <ringbuffer/frontend.h>
48 #include <ringbuffer/iterator.h>
49 #include <ringbuffer/nohz.h>
50 #include <wrapper/atomic.h>
51 #include <wrapper/kref.h>
52 #include <wrapper/percpu-defs.h>
53 #include <wrapper/timer.h>
54 #include <wrapper/vmalloc.h>
55
56 /*
57 * Internal structure representing offsets to use at a sub-buffer switch.
58 */
59 struct switch_offsets {
60 unsigned long begin, end, old;
61 size_t pre_header_padding, size;
62 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
63 switch_old_end:1;
64 };
65
66 #ifdef CONFIG_NO_HZ
67 enum tick_nohz_val {
68 TICK_NOHZ_STOP,
69 TICK_NOHZ_FLUSH,
70 TICK_NOHZ_RESTART,
71 };
72
73 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
74 #endif /* CONFIG_NO_HZ */
75
76 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
77
78 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
79 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
80
81 static
82 void lib_ring_buffer_print_errors(struct channel *chan,
83 struct lib_ring_buffer *buf, int cpu);
84 static
85 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
86 enum switch_mode mode);
87
88 static
89 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
90 struct lib_ring_buffer *buf,
91 struct channel *chan)
92 {
93 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
94
95 consumed_old = atomic_long_read(&buf->consumed);
96 consumed_idx = subbuf_index(consumed_old, chan);
97 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
98 /*
99 * No memory barrier here, since we are only interested
100 * in a statistically correct polling result. The next poll will
101 * get the data is we are racing. The mb() that ensures correct
102 * memory order is in get_subbuf.
103 */
104 write_offset = v_read(config, &buf->offset);
105
106 /*
107 * Check that the subbuffer we are trying to consume has been
108 * already fully committed.
109 */
110
111 if (((commit_count - chan->backend.subbuf_size)
112 & chan->commit_count_mask)
113 - (buf_trunc(consumed_old, chan)
114 >> chan->backend.num_subbuf_order)
115 != 0)
116 return 0;
117
118 /*
119 * Check that we are not about to read the same subbuffer in
120 * which the writer head is.
121 */
122 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
123 == 0)
124 return 0;
125
126 return 1;
127 }
128
129 /*
130 * Must be called under cpu hotplug protection.
131 */
132 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
133 {
134 struct channel *chan = buf->backend.chan;
135
136 irq_work_sync(&buf->wakeup_pending);
137
138 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
139 lttng_kvfree(buf->commit_hot);
140 lttng_kvfree(buf->commit_cold);
141 lttng_kvfree(buf->ts_end);
142
143 lib_ring_buffer_backend_free(&buf->backend);
144 }
145
146 /**
147 * lib_ring_buffer_reset - Reset ring buffer to initial values.
148 * @buf: Ring buffer.
149 *
150 * Effectively empty the ring buffer. Should be called when the buffer is not
151 * used for writing. The ring buffer can be opened for reading, but the reader
152 * should not be using the iterator concurrently with reset. The previous
153 * current iterator record is reset.
154 */
155 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
156 {
157 struct channel *chan = buf->backend.chan;
158 const struct lib_ring_buffer_config *config = &chan->backend.config;
159 unsigned int i;
160
161 /*
162 * Reset iterator first. It will put the subbuffer if it currently holds
163 * it.
164 */
165 lib_ring_buffer_iterator_reset(buf);
166 v_set(config, &buf->offset, 0);
167 for (i = 0; i < chan->backend.num_subbuf; i++) {
168 v_set(config, &buf->commit_hot[i].cc, 0);
169 v_set(config, &buf->commit_hot[i].seq, 0);
170 v_set(config, &buf->commit_cold[i].cc_sb, 0);
171 buf->ts_end[i] = 0;
172 }
173 atomic_long_set(&buf->consumed, 0);
174 atomic_set(&buf->record_disabled, 0);
175 v_set(config, &buf->last_tsc, 0);
176 lib_ring_buffer_backend_reset(&buf->backend);
177 /* Don't reset number of active readers */
178 v_set(config, &buf->records_lost_full, 0);
179 v_set(config, &buf->records_lost_wrap, 0);
180 v_set(config, &buf->records_lost_big, 0);
181 v_set(config, &buf->records_count, 0);
182 v_set(config, &buf->records_overrun, 0);
183 buf->finalized = 0;
184 }
185 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
186
187 /**
188 * channel_reset - Reset channel to initial values.
189 * @chan: Channel.
190 *
191 * Effectively empty the channel. Should be called when the channel is not used
192 * for writing. The channel can be opened for reading, but the reader should not
193 * be using the iterator concurrently with reset. The previous current iterator
194 * record is reset.
195 */
196 void channel_reset(struct channel *chan)
197 {
198 /*
199 * Reset iterators first. Will put the subbuffer if held for reading.
200 */
201 channel_iterator_reset(chan);
202 atomic_set(&chan->record_disabled, 0);
203 /* Don't reset commit_count_mask, still valid */
204 channel_backend_reset(&chan->backend);
205 /* Don't reset switch/read timer interval */
206 /* Don't reset notifiers and notifier enable bits */
207 /* Don't reset reader reference count */
208 }
209 EXPORT_SYMBOL_GPL(channel_reset);
210
211 static void lib_ring_buffer_pending_wakeup_buf(struct irq_work *entry)
212 {
213 struct lib_ring_buffer *buf = container_of(entry, struct lib_ring_buffer,
214 wakeup_pending);
215 wake_up_interruptible(&buf->read_wait);
216 }
217
218 static void lib_ring_buffer_pending_wakeup_chan(struct irq_work *entry)
219 {
220 struct channel *chan = container_of(entry, struct channel, wakeup_pending);
221 wake_up_interruptible(&chan->read_wait);
222 }
223
224 /*
225 * Must be called under cpu hotplug protection.
226 */
227 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
228 struct channel_backend *chanb, int cpu)
229 {
230 const struct lib_ring_buffer_config *config = &chanb->config;
231 struct channel *chan = container_of(chanb, struct channel, backend);
232 void *priv = chanb->priv;
233 size_t subbuf_header_size;
234 u64 tsc;
235 int ret;
236
237 /* Test for cpu hotplug */
238 if (buf->backend.allocated)
239 return 0;
240
241 /*
242 * Paranoia: per cpu dynamic allocation is not officially documented as
243 * zeroing the memory, so let's do it here too, just in case.
244 */
245 memset(buf, 0, sizeof(*buf));
246
247 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
248 if (ret)
249 return ret;
250
251 buf->commit_hot =
252 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
253 * chan->backend.num_subbuf,
254 1 << INTERNODE_CACHE_SHIFT),
255 GFP_KERNEL | __GFP_NOWARN,
256 cpu_to_node(max(cpu, 0)));
257 if (!buf->commit_hot) {
258 ret = -ENOMEM;
259 goto free_chanbuf;
260 }
261
262 buf->commit_cold =
263 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
264 * chan->backend.num_subbuf,
265 1 << INTERNODE_CACHE_SHIFT),
266 GFP_KERNEL | __GFP_NOWARN,
267 cpu_to_node(max(cpu, 0)));
268 if (!buf->commit_cold) {
269 ret = -ENOMEM;
270 goto free_commit;
271 }
272
273 buf->ts_end =
274 lttng_kvzalloc_node(ALIGN(sizeof(*buf->ts_end)
275 * chan->backend.num_subbuf,
276 1 << INTERNODE_CACHE_SHIFT),
277 GFP_KERNEL | __GFP_NOWARN,
278 cpu_to_node(max(cpu, 0)));
279 if (!buf->ts_end) {
280 ret = -ENOMEM;
281 goto free_commit_cold;
282 }
283
284 init_waitqueue_head(&buf->read_wait);
285 init_waitqueue_head(&buf->write_wait);
286 init_irq_work(&buf->wakeup_pending, lib_ring_buffer_pending_wakeup_buf);
287 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
288
289 /*
290 * Write the subbuffer header for first subbuffer so we know the total
291 * duration of data gathering.
292 */
293 subbuf_header_size = config->cb.subbuffer_header_size();
294 v_set(config, &buf->offset, subbuf_header_size);
295 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
296 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
297 config->cb.buffer_begin(buf, tsc, 0);
298 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
299
300 if (config->cb.buffer_create) {
301 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
302 if (ret)
303 goto free_init;
304 }
305
306 /*
307 * Ensure the buffer is ready before setting it to allocated and setting
308 * the cpumask.
309 * Used for cpu hotplug vs cpumask iteration.
310 */
311 smp_wmb();
312 buf->backend.allocated = 1;
313
314 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
315 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
316 chan->backend.cpumask));
317 cpumask_set_cpu(cpu, chan->backend.cpumask);
318 }
319
320 return 0;
321
322 /* Error handling */
323 free_init:
324 lttng_kvfree(buf->ts_end);
325 free_commit_cold:
326 lttng_kvfree(buf->commit_cold);
327 free_commit:
328 lttng_kvfree(buf->commit_hot);
329 free_chanbuf:
330 lib_ring_buffer_backend_free(&buf->backend);
331 return ret;
332 }
333
334 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
335 {
336 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
337 struct channel *chan = buf->backend.chan;
338 const struct lib_ring_buffer_config *config = &chan->backend.config;
339
340 /*
341 * Only flush buffers periodically if readers are active.
342 */
343 if (atomic_long_read(&buf->active_readers))
344 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
345
346 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
347 lttng_mod_timer_pinned(&buf->switch_timer,
348 jiffies + chan->switch_timer_interval);
349 else
350 mod_timer(&buf->switch_timer,
351 jiffies + chan->switch_timer_interval);
352 }
353
354 /*
355 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
356 */
357 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
358 {
359 struct channel *chan = buf->backend.chan;
360 const struct lib_ring_buffer_config *config = &chan->backend.config;
361 unsigned int flags = 0;
362
363 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
364 return;
365
366 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
367 flags = LTTNG_TIMER_PINNED;
368
369 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
370 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
371
372 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
373 add_timer_on(&buf->switch_timer, buf->backend.cpu);
374 else
375 add_timer(&buf->switch_timer);
376
377 buf->switch_timer_enabled = 1;
378 }
379
380 /*
381 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
382 */
383 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
384 {
385 struct channel *chan = buf->backend.chan;
386
387 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
388 return;
389
390 del_timer_sync(&buf->switch_timer);
391 buf->switch_timer_enabled = 0;
392 }
393
394 /*
395 * Polling timer to check the channels for data.
396 */
397 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
398 {
399 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
400 struct channel *chan = buf->backend.chan;
401 const struct lib_ring_buffer_config *config = &chan->backend.config;
402
403 CHAN_WARN_ON(chan, !buf->backend.allocated);
404
405 if (atomic_long_read(&buf->active_readers)
406 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
407 wake_up_interruptible(&buf->read_wait);
408 wake_up_interruptible(&chan->read_wait);
409 }
410
411 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
412 lttng_mod_timer_pinned(&buf->read_timer,
413 jiffies + chan->read_timer_interval);
414 else
415 mod_timer(&buf->read_timer,
416 jiffies + chan->read_timer_interval);
417 }
418
419 /*
420 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
421 */
422 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
423 {
424 struct channel *chan = buf->backend.chan;
425 const struct lib_ring_buffer_config *config = &chan->backend.config;
426 unsigned int flags = 0;
427
428 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
429 || !chan->read_timer_interval
430 || buf->read_timer_enabled)
431 return;
432
433 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
434 flags = LTTNG_TIMER_PINNED;
435
436 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
437 buf->read_timer.expires = jiffies + chan->read_timer_interval;
438
439 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
440 add_timer_on(&buf->read_timer, buf->backend.cpu);
441 else
442 add_timer(&buf->read_timer);
443
444 buf->read_timer_enabled = 1;
445 }
446
447 /*
448 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
449 */
450 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
451 {
452 struct channel *chan = buf->backend.chan;
453 const struct lib_ring_buffer_config *config = &chan->backend.config;
454
455 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
456 || !chan->read_timer_interval
457 || !buf->read_timer_enabled)
458 return;
459
460 del_timer_sync(&buf->read_timer);
461 /*
462 * do one more check to catch data that has been written in the last
463 * timer period.
464 */
465 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
466 wake_up_interruptible(&buf->read_wait);
467 wake_up_interruptible(&chan->read_wait);
468 }
469 buf->read_timer_enabled = 0;
470 }
471
472 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
473
474 enum cpuhp_state lttng_rb_hp_prepare;
475 enum cpuhp_state lttng_rb_hp_online;
476
477 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
478 {
479 lttng_rb_hp_prepare = val;
480 }
481 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
482
483 void lttng_rb_set_hp_online(enum cpuhp_state val)
484 {
485 lttng_rb_hp_online = val;
486 }
487 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
488
489 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
490 struct lttng_cpuhp_node *node)
491 {
492 struct channel *chan = container_of(node, struct channel,
493 cpuhp_prepare);
494 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
495 const struct lib_ring_buffer_config *config = &chan->backend.config;
496
497 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
498
499 /*
500 * Performing a buffer switch on a remote CPU. Performed by
501 * the CPU responsible for doing the hotunplug after the target
502 * CPU stopped running completely. Ensures that all data
503 * from that remote CPU is flushed.
504 */
505 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
509
510 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
511 struct lttng_cpuhp_node *node)
512 {
513 struct channel *chan = container_of(node, struct channel,
514 cpuhp_online);
515 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
516 const struct lib_ring_buffer_config *config = &chan->backend.config;
517
518 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
519
520 wake_up_interruptible(&chan->hp_wait);
521 lib_ring_buffer_start_switch_timer(buf);
522 lib_ring_buffer_start_read_timer(buf);
523 return 0;
524 }
525 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
526
527 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
528 struct lttng_cpuhp_node *node)
529 {
530 struct channel *chan = container_of(node, struct channel,
531 cpuhp_online);
532 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
533 const struct lib_ring_buffer_config *config = &chan->backend.config;
534
535 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
536
537 lib_ring_buffer_stop_switch_timer(buf);
538 lib_ring_buffer_stop_read_timer(buf);
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
542
543 #else /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
544
545 #ifdef CONFIG_HOTPLUG_CPU
546
547 /**
548 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
549 * @nb: notifier block
550 * @action: hotplug action to take
551 * @hcpu: CPU number
552 *
553 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
554 */
555 static
556 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
557 unsigned long action,
558 void *hcpu)
559 {
560 unsigned int cpu = (unsigned long)hcpu;
561 struct channel *chan = container_of(nb, struct channel,
562 cpu_hp_notifier);
563 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
564 const struct lib_ring_buffer_config *config = &chan->backend.config;
565
566 if (!chan->cpu_hp_enable)
567 return NOTIFY_DONE;
568
569 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
570
571 switch (action) {
572 case CPU_DOWN_FAILED:
573 case CPU_DOWN_FAILED_FROZEN:
574 case CPU_ONLINE:
575 case CPU_ONLINE_FROZEN:
576 wake_up_interruptible(&chan->hp_wait);
577 lib_ring_buffer_start_switch_timer(buf);
578 lib_ring_buffer_start_read_timer(buf);
579 return NOTIFY_OK;
580
581 case CPU_DOWN_PREPARE:
582 case CPU_DOWN_PREPARE_FROZEN:
583 lib_ring_buffer_stop_switch_timer(buf);
584 lib_ring_buffer_stop_read_timer(buf);
585 return NOTIFY_OK;
586
587 case CPU_DEAD:
588 case CPU_DEAD_FROZEN:
589 /*
590 * Performing a buffer switch on a remote CPU. Performed by
591 * the CPU responsible for doing the hotunplug after the target
592 * CPU stopped running completely. Ensures that all data
593 * from that remote CPU is flushed.
594 */
595 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
596 return NOTIFY_OK;
597
598 default:
599 return NOTIFY_DONE;
600 }
601 }
602
603 #endif
604
605 #endif /* #else #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
606
607 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
608 /*
609 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
610 * that wake-up-tracing generated events are flushed before going idle (in
611 * tick_nohz). We test if the spinlock is locked to deal with the race where
612 * readers try to sample the ring buffer before we perform the switch. We let
613 * the readers retry in that case. If there is data in the buffer, the wake up
614 * is going to forbid the CPU running the reader thread from going idle.
615 */
616 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
617 unsigned long val,
618 void *data)
619 {
620 struct channel *chan = container_of(nb, struct channel,
621 tick_nohz_notifier);
622 const struct lib_ring_buffer_config *config = &chan->backend.config;
623 struct lib_ring_buffer *buf;
624 int cpu = smp_processor_id();
625
626 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
627 /*
628 * We don't support keeping the system idle with global buffers
629 * and streaming active. In order to do so, we would need to
630 * sample a non-nohz-cpumask racelessly with the nohz updates
631 * without adding synchronization overhead to nohz. Leave this
632 * use-case out for now.
633 */
634 return 0;
635 }
636
637 buf = channel_get_ring_buffer(config, chan, cpu);
638 switch (val) {
639 case TICK_NOHZ_FLUSH:
640 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
641 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
642 && chan->read_timer_interval
643 && atomic_long_read(&buf->active_readers)
644 && (lib_ring_buffer_poll_deliver(config, buf, chan)
645 || lib_ring_buffer_pending_data(config, buf, chan))) {
646 wake_up_interruptible(&buf->read_wait);
647 wake_up_interruptible(&chan->read_wait);
648 }
649 if (chan->switch_timer_interval)
650 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
651 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
652 break;
653 case TICK_NOHZ_STOP:
654 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
655 lib_ring_buffer_stop_switch_timer(buf);
656 lib_ring_buffer_stop_read_timer(buf);
657 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
658 break;
659 case TICK_NOHZ_RESTART:
660 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
661 lib_ring_buffer_start_read_timer(buf);
662 lib_ring_buffer_start_switch_timer(buf);
663 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
664 break;
665 }
666
667 return 0;
668 }
669
670 void notrace lib_ring_buffer_tick_nohz_flush(void)
671 {
672 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
673 NULL);
674 }
675
676 void notrace lib_ring_buffer_tick_nohz_stop(void)
677 {
678 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
679 NULL);
680 }
681
682 void notrace lib_ring_buffer_tick_nohz_restart(void)
683 {
684 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
685 NULL);
686 }
687 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
688
689 /*
690 * Holds CPU hotplug.
691 */
692 static void channel_unregister_notifiers(struct channel *chan)
693 {
694 const struct lib_ring_buffer_config *config = &chan->backend.config;
695
696 channel_iterator_unregister_notifiers(chan);
697 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
698 #ifdef CONFIG_NO_HZ
699 /*
700 * Remove the nohz notifier first, so we are certain we stop
701 * the timers.
702 */
703 atomic_notifier_chain_unregister(&tick_nohz_notifier,
704 &chan->tick_nohz_notifier);
705 /*
706 * ring_buffer_nohz_lock will not be needed below, because
707 * we just removed the notifiers, which were the only source of
708 * concurrency.
709 */
710 #endif /* CONFIG_NO_HZ */
711 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
712 {
713 int ret;
714
715 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
716 &chan->cpuhp_online.node);
717 WARN_ON(ret);
718 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
719 &chan->cpuhp_prepare.node);
720 WARN_ON(ret);
721 }
722 #else /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
723 {
724 int cpu;
725
726 #ifdef CONFIG_HOTPLUG_CPU
727 get_online_cpus();
728 chan->cpu_hp_enable = 0;
729 for_each_online_cpu(cpu) {
730 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
731 cpu);
732 lib_ring_buffer_stop_switch_timer(buf);
733 lib_ring_buffer_stop_read_timer(buf);
734 }
735 put_online_cpus();
736 unregister_cpu_notifier(&chan->cpu_hp_notifier);
737 #else
738 for_each_possible_cpu(cpu) {
739 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
740 cpu);
741 lib_ring_buffer_stop_switch_timer(buf);
742 lib_ring_buffer_stop_read_timer(buf);
743 }
744 #endif
745 }
746 #endif /* #else #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
747 } else {
748 struct lib_ring_buffer *buf = chan->backend.buf;
749
750 lib_ring_buffer_stop_switch_timer(buf);
751 lib_ring_buffer_stop_read_timer(buf);
752 }
753 channel_backend_unregister_notifiers(&chan->backend);
754 }
755
756 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
757 {
758 if (!buf->quiescent) {
759 buf->quiescent = true;
760 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
761 }
762 }
763
764 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
765 {
766 buf->quiescent = false;
767 }
768
769 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
770 {
771 int cpu;
772 const struct lib_ring_buffer_config *config = &chan->backend.config;
773
774 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
775 get_online_cpus();
776 for_each_channel_cpu(cpu, chan) {
777 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
778 cpu);
779
780 lib_ring_buffer_set_quiescent(buf);
781 }
782 put_online_cpus();
783 } else {
784 struct lib_ring_buffer *buf = chan->backend.buf;
785
786 lib_ring_buffer_set_quiescent(buf);
787 }
788 }
789 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
790
791 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
792 {
793 int cpu;
794 const struct lib_ring_buffer_config *config = &chan->backend.config;
795
796 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
797 get_online_cpus();
798 for_each_channel_cpu(cpu, chan) {
799 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
800 cpu);
801
802 lib_ring_buffer_clear_quiescent(buf);
803 }
804 put_online_cpus();
805 } else {
806 struct lib_ring_buffer *buf = chan->backend.buf;
807
808 lib_ring_buffer_clear_quiescent(buf);
809 }
810 }
811 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
812
813 static void channel_free(struct channel *chan)
814 {
815 if (chan->backend.release_priv_ops) {
816 chan->backend.release_priv_ops(chan->backend.priv_ops);
817 }
818 channel_iterator_free(chan);
819 channel_backend_free(&chan->backend);
820 kfree(chan);
821 }
822
823 /**
824 * channel_create - Create channel.
825 * @config: ring buffer instance configuration
826 * @name: name of the channel
827 * @priv: ring buffer client private data
828 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
829 * address mapping. It is used only by RING_BUFFER_STATIC
830 * configuration. It can be set to NULL for other backends.
831 * @subbuf_size: subbuffer size
832 * @num_subbuf: number of subbuffers
833 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
834 * padding to let readers get those sub-buffers.
835 * Used for live streaming.
836 * @read_timer_interval: Time interval (in us) to wake up pending readers.
837 *
838 * Holds cpu hotplug.
839 * Returns NULL on failure.
840 */
841 struct channel *channel_create(const struct lib_ring_buffer_config *config,
842 const char *name, void *priv, void *buf_addr,
843 size_t subbuf_size,
844 size_t num_subbuf, unsigned int switch_timer_interval,
845 unsigned int read_timer_interval)
846 {
847 int ret;
848 struct channel *chan;
849
850 if (lib_ring_buffer_check_config(config, switch_timer_interval,
851 read_timer_interval))
852 return NULL;
853
854 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
855 if (!chan)
856 return NULL;
857
858 ret = channel_backend_init(&chan->backend, name, config, priv,
859 subbuf_size, num_subbuf);
860 if (ret)
861 goto error;
862
863 ret = channel_iterator_init(chan);
864 if (ret)
865 goto error_free_backend;
866
867 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
868 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
869 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
870 kref_init(&chan->ref);
871 init_waitqueue_head(&chan->read_wait);
872 init_waitqueue_head(&chan->hp_wait);
873 init_irq_work(&chan->wakeup_pending, lib_ring_buffer_pending_wakeup_chan);
874
875 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
876 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
877 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
878 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
879 &chan->cpuhp_prepare.node);
880 if (ret)
881 goto cpuhp_prepare_error;
882
883 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
884 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
885 &chan->cpuhp_online.node);
886 if (ret)
887 goto cpuhp_online_error;
888 #else /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
889 {
890 int cpu;
891 /*
892 * In case of non-hotplug cpu, if the ring-buffer is allocated
893 * in early initcall, it will not be notified of secondary cpus.
894 * In that off case, we need to allocate for all possible cpus.
895 */
896 #ifdef CONFIG_HOTPLUG_CPU
897 chan->cpu_hp_notifier.notifier_call =
898 lib_ring_buffer_cpu_hp_callback;
899 chan->cpu_hp_notifier.priority = 6;
900 register_cpu_notifier(&chan->cpu_hp_notifier);
901
902 get_online_cpus();
903 for_each_online_cpu(cpu) {
904 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
905 cpu);
906 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
907 lib_ring_buffer_start_switch_timer(buf);
908 lib_ring_buffer_start_read_timer(buf);
909 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
910 }
911 chan->cpu_hp_enable = 1;
912 put_online_cpus();
913 #else
914 for_each_possible_cpu(cpu) {
915 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
916 cpu);
917 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
918 lib_ring_buffer_start_switch_timer(buf);
919 lib_ring_buffer_start_read_timer(buf);
920 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
921 }
922 #endif
923 }
924 #endif /* #else #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
925
926 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
927 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
928 chan->tick_nohz_notifier.notifier_call =
929 ring_buffer_tick_nohz_callback;
930 chan->tick_nohz_notifier.priority = ~0U;
931 atomic_notifier_chain_register(&tick_nohz_notifier,
932 &chan->tick_nohz_notifier);
933 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
934
935 } else {
936 struct lib_ring_buffer *buf = chan->backend.buf;
937
938 lib_ring_buffer_start_switch_timer(buf);
939 lib_ring_buffer_start_read_timer(buf);
940 }
941
942 return chan;
943
944 #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0))
945 cpuhp_online_error:
946 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
947 &chan->cpuhp_prepare.node);
948 WARN_ON(ret);
949 cpuhp_prepare_error:
950 #endif /* #if (LTTNG_LINUX_VERSION_CODE >= LTTNG_KERNEL_VERSION(4,10,0)) */
951 error_free_backend:
952 channel_backend_free(&chan->backend);
953 error:
954 kfree(chan);
955 return NULL;
956 }
957 EXPORT_SYMBOL_GPL(channel_create);
958
959 static
960 void channel_release(struct kref *kref)
961 {
962 struct channel *chan = container_of(kref, struct channel, ref);
963 channel_free(chan);
964 }
965
966 /**
967 * channel_destroy - Finalize, wait for q.s. and destroy channel.
968 * @chan: channel to destroy
969 *
970 * Holds cpu hotplug.
971 * Call "destroy" callback, finalize channels, and then decrement the
972 * channel reference count. Note that when readers have completed data
973 * consumption of finalized channels, get_subbuf() will return -ENODATA.
974 * They should release their handle at that point. Returns the private
975 * data pointer.
976 */
977 void *channel_destroy(struct channel *chan)
978 {
979 int cpu;
980 const struct lib_ring_buffer_config *config = &chan->backend.config;
981 void *priv;
982
983 irq_work_sync(&chan->wakeup_pending);
984
985 channel_unregister_notifiers(chan);
986
987 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
988 /*
989 * No need to hold cpu hotplug, because all notifiers have been
990 * unregistered.
991 */
992 for_each_channel_cpu(cpu, chan) {
993 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
994 cpu);
995
996 if (config->cb.buffer_finalize)
997 config->cb.buffer_finalize(buf,
998 chan->backend.priv,
999 cpu);
1000 /*
1001 * Perform flush before writing to finalized.
1002 */
1003 smp_wmb();
1004 WRITE_ONCE(buf->finalized, 1);
1005 wake_up_interruptible(&buf->read_wait);
1006 }
1007 } else {
1008 struct lib_ring_buffer *buf = chan->backend.buf;
1009
1010 if (config->cb.buffer_finalize)
1011 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
1012 /*
1013 * Perform flush before writing to finalized.
1014 */
1015 smp_wmb();
1016 WRITE_ONCE(buf->finalized, 1);
1017 wake_up_interruptible(&buf->read_wait);
1018 }
1019 WRITE_ONCE(chan->finalized, 1);
1020 wake_up_interruptible(&chan->hp_wait);
1021 wake_up_interruptible(&chan->read_wait);
1022 priv = chan->backend.priv;
1023 kref_put(&chan->ref, channel_release);
1024 return priv;
1025 }
1026 EXPORT_SYMBOL_GPL(channel_destroy);
1027
1028 struct lib_ring_buffer *channel_get_ring_buffer(
1029 const struct lib_ring_buffer_config *config,
1030 struct channel *chan, int cpu)
1031 {
1032 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1033 return chan->backend.buf;
1034 else
1035 return per_cpu_ptr(chan->backend.buf, cpu);
1036 }
1037 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1038
1039 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1040 {
1041 struct channel *chan = buf->backend.chan;
1042
1043 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1044 return -EBUSY;
1045 if (!lttng_kref_get(&chan->ref)) {
1046 atomic_long_dec(&buf->active_readers);
1047 return -EOVERFLOW;
1048 }
1049 lttng_smp_mb__after_atomic();
1050 return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1053
1054 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1055 {
1056 struct channel *chan = buf->backend.chan;
1057
1058 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1059 lttng_smp_mb__before_atomic();
1060 atomic_long_dec(&buf->active_readers);
1061 kref_put(&chan->ref, channel_release);
1062 }
1063 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1064
1065 /*
1066 * Promote compiler barrier to a smp_mb().
1067 * For the specific ring buffer case, this IPI call should be removed if the
1068 * architecture does not reorder writes. This should eventually be provided by
1069 * a separate architecture-specific infrastructure.
1070 */
1071 static void remote_mb(void *info)
1072 {
1073 smp_mb();
1074 }
1075
1076 /**
1077 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1078 * @buf: ring buffer
1079 * @consumed: consumed count indicating the position where to read
1080 * @produced: produced count, indicates position when to stop reading
1081 *
1082 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1083 * data to read at consumed position, or 0 if the get operation succeeds.
1084 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1085 */
1086
1087 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1088 unsigned long *consumed, unsigned long *produced)
1089 {
1090 struct channel *chan = buf->backend.chan;
1091 const struct lib_ring_buffer_config *config = &chan->backend.config;
1092 unsigned long consumed_cur, write_offset;
1093 int finalized;
1094
1095 retry:
1096 finalized = LTTNG_READ_ONCE(buf->finalized);
1097 /*
1098 * Read finalized before counters.
1099 */
1100 smp_rmb();
1101 consumed_cur = atomic_long_read(&buf->consumed);
1102 /*
1103 * No need to issue a memory barrier between consumed count read and
1104 * write offset read, because consumed count can only change
1105 * concurrently in overwrite mode, and we keep a sequence counter
1106 * identifier derived from the write offset to check we are getting
1107 * the same sub-buffer we are expecting (the sub-buffers are atomically
1108 * "tagged" upon writes, tags are checked upon read).
1109 */
1110 write_offset = v_read(config, &buf->offset);
1111
1112 /*
1113 * Check that we are not about to read the same subbuffer in
1114 * which the writer head is.
1115 */
1116 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1117 == 0)
1118 goto nodata;
1119
1120 *consumed = consumed_cur;
1121 *produced = subbuf_trunc(write_offset, chan);
1122
1123 return 0;
1124
1125 nodata:
1126 /*
1127 * The memory barriers __wait_event()/wake_up_interruptible() take care
1128 * of "raw_spin_is_locked" memory ordering.
1129 */
1130 if (finalized)
1131 return -ENODATA;
1132 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1133 goto retry;
1134 else
1135 return -EAGAIN;
1136 }
1137 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1138
1139 /**
1140 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1141 * are saved regardless of whether the consumed and produced positions are
1142 * in the same subbuffer.
1143 * @buf: ring buffer
1144 * @consumed: consumed byte count indicating the last position read
1145 * @produced: produced byte count indicating the last position written
1146 *
1147 * This function is meant to provide information on the exact producer and
1148 * consumer positions without regard for the "snapshot" feature.
1149 */
1150 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1151 unsigned long *consumed, unsigned long *produced)
1152 {
1153 struct channel *chan = buf->backend.chan;
1154 const struct lib_ring_buffer_config *config = &chan->backend.config;
1155
1156 smp_rmb();
1157 *consumed = atomic_long_read(&buf->consumed);
1158 /*
1159 * No need to issue a memory barrier between consumed count read and
1160 * write offset read, because consumed count can only change
1161 * concurrently in overwrite mode, and we keep a sequence counter
1162 * identifier derived from the write offset to check we are getting
1163 * the same sub-buffer we are expecting (the sub-buffers are atomically
1164 * "tagged" upon writes, tags are checked upon read).
1165 */
1166 *produced = v_read(config, &buf->offset);
1167 return 0;
1168 }
1169
1170 /**
1171 * lib_ring_buffer_put_snapshot - move consumed counter forward
1172 *
1173 * Should only be called from consumer context.
1174 * @buf: ring buffer
1175 * @consumed_new: new consumed count value
1176 */
1177 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1178 unsigned long consumed_new)
1179 {
1180 struct lib_ring_buffer_backend *bufb = &buf->backend;
1181 struct channel *chan = bufb->chan;
1182 unsigned long consumed;
1183
1184 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1185
1186 /*
1187 * Only push the consumed value forward.
1188 * If the consumed cmpxchg fails, this is because we have been pushed by
1189 * the writer in flight recorder mode.
1190 */
1191 consumed = atomic_long_read(&buf->consumed);
1192 while ((long) consumed - (long) consumed_new < 0)
1193 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1194 consumed_new);
1195 /* Wake-up the metadata producer */
1196 wake_up_interruptible(&buf->write_wait);
1197 }
1198 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1199
1200 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1201 static void lib_ring_buffer_flush_read_subbuf_dcache(
1202 const struct lib_ring_buffer_config *config,
1203 struct channel *chan,
1204 struct lib_ring_buffer *buf)
1205 {
1206 struct lib_ring_buffer_backend_pages *pages;
1207 unsigned long sb_bindex, id, i, nr_pages;
1208
1209 if (config->output != RING_BUFFER_MMAP)
1210 return;
1211
1212 /*
1213 * Architectures with caches aliased on virtual addresses may
1214 * use different cache lines for the linear mapping vs
1215 * user-space memory mapping. Given that the ring buffer is
1216 * based on the kernel linear mapping, aligning it with the
1217 * user-space mapping is not straightforward, and would require
1218 * extra TLB entries. Therefore, simply flush the dcache for the
1219 * entire sub-buffer before reading it.
1220 */
1221 id = buf->backend.buf_rsb.id;
1222 sb_bindex = subbuffer_id_get_index(config, id);
1223 pages = buf->backend.array[sb_bindex];
1224 nr_pages = buf->backend.num_pages_per_subbuf;
1225 for (i = 0; i < nr_pages; i++) {
1226 struct lib_ring_buffer_backend_page *backend_page;
1227
1228 backend_page = &pages->p[i];
1229 flush_dcache_page(pfn_to_page(backend_page->pfn));
1230 }
1231 }
1232 #else
1233 static void lib_ring_buffer_flush_read_subbuf_dcache(
1234 const struct lib_ring_buffer_config *config,
1235 struct channel *chan,
1236 struct lib_ring_buffer *buf)
1237 {
1238 }
1239 #endif
1240
1241 /**
1242 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1243 * @buf: ring buffer
1244 * @consumed: consumed count indicating the position where to read
1245 *
1246 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1247 * data to read at consumed position, or 0 if the get operation succeeds.
1248 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1249 */
1250 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1251 unsigned long consumed)
1252 {
1253 struct channel *chan = buf->backend.chan;
1254 const struct lib_ring_buffer_config *config = &chan->backend.config;
1255 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1256 int ret;
1257 int finalized;
1258
1259 if (buf->get_subbuf) {
1260 /*
1261 * Reader is trying to get a subbuffer twice.
1262 */
1263 CHAN_WARN_ON(chan, 1);
1264 return -EBUSY;
1265 }
1266 retry:
1267 finalized = LTTNG_READ_ONCE(buf->finalized);
1268 /*
1269 * Read finalized before counters.
1270 */
1271 smp_rmb();
1272 consumed_cur = atomic_long_read(&buf->consumed);
1273 consumed_idx = subbuf_index(consumed, chan);
1274 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1275 /*
1276 * Make sure we read the commit count before reading the buffer
1277 * data and the write offset. Correct consumed offset ordering
1278 * wrt commit count is insured by the use of cmpxchg to update
1279 * the consumed offset.
1280 * smp_call_function_single can fail if the remote CPU is offline,
1281 * this is OK because then there is no wmb to execute there.
1282 * If our thread is executing on the same CPU as the on the buffers
1283 * belongs to, we don't have to synchronize it at all. If we are
1284 * migrated, the scheduler will take care of the memory barriers.
1285 * Normally, smp_call_function_single() should ensure program order when
1286 * executing the remote function, which implies that it surrounds the
1287 * function execution with :
1288 * smp_mb()
1289 * send IPI
1290 * csd_lock_wait
1291 * recv IPI
1292 * smp_mb()
1293 * exec. function
1294 * smp_mb()
1295 * csd unlock
1296 * smp_mb()
1297 *
1298 * However, smp_call_function_single() does not seem to clearly execute
1299 * such barriers. It depends on spinlock semantic to provide the barrier
1300 * before executing the IPI and, when busy-looping, csd_lock_wait only
1301 * executes smp_mb() when it has to wait for the other CPU.
1302 *
1303 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1304 * required ourself, even if duplicated. It has no performance impact
1305 * anyway.
1306 *
1307 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1308 * read and write vs write. They do not ensure core synchronization. We
1309 * really have to ensure total order between the 3 barriers running on
1310 * the 2 CPUs.
1311 */
1312 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1313 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1314 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1315 if (raw_smp_processor_id() != buf->backend.cpu) {
1316 /* Total order with IPI handler smp_mb() */
1317 smp_mb();
1318 smp_call_function_single(buf->backend.cpu,
1319 remote_mb, NULL, 1);
1320 /* Total order with IPI handler smp_mb() */
1321 smp_mb();
1322 }
1323 } else {
1324 /* Total order with IPI handler smp_mb() */
1325 smp_mb();
1326 smp_call_function(remote_mb, NULL, 1);
1327 /* Total order with IPI handler smp_mb() */
1328 smp_mb();
1329 }
1330 } else {
1331 /*
1332 * Local rmb to match the remote wmb to read the commit count
1333 * before the buffer data and the write offset.
1334 */
1335 smp_rmb();
1336 }
1337
1338 write_offset = v_read(config, &buf->offset);
1339
1340 /*
1341 * Check that the buffer we are getting is after or at consumed_cur
1342 * position.
1343 */
1344 if ((long) subbuf_trunc(consumed, chan)
1345 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1346 goto nodata;
1347
1348 /*
1349 * Check that the subbuffer we are trying to consume has been
1350 * already fully committed.
1351 */
1352 if (((commit_count - chan->backend.subbuf_size)
1353 & chan->commit_count_mask)
1354 - (buf_trunc(consumed, chan)
1355 >> chan->backend.num_subbuf_order)
1356 != 0)
1357 goto nodata;
1358
1359 /*
1360 * Check that we are not about to read the same subbuffer in
1361 * which the writer head is.
1362 */
1363 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1364 == 0)
1365 goto nodata;
1366
1367 /*
1368 * Failure to get the subbuffer causes a busy-loop retry without going
1369 * to a wait queue. These are caused by short-lived race windows where
1370 * the writer is getting access to a subbuffer we were trying to get
1371 * access to. Also checks that the "consumed" buffer count we are
1372 * looking for matches the one contained in the subbuffer id.
1373 */
1374 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1375 consumed_idx, buf_trunc_val(consumed, chan));
1376 if (ret)
1377 goto retry;
1378 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1379
1380 buf->get_subbuf_consumed = consumed;
1381 buf->get_subbuf = 1;
1382
1383 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1384
1385 return 0;
1386
1387 nodata:
1388 /*
1389 * The memory barriers __wait_event()/wake_up_interruptible() take care
1390 * of "raw_spin_is_locked" memory ordering.
1391 */
1392 if (finalized)
1393 return -ENODATA;
1394 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1395 goto retry;
1396 else
1397 return -EAGAIN;
1398 }
1399 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1400
1401 /**
1402 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1403 * @buf: ring buffer
1404 */
1405 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1406 {
1407 struct lib_ring_buffer_backend *bufb = &buf->backend;
1408 struct channel *chan = bufb->chan;
1409 const struct lib_ring_buffer_config *config = &chan->backend.config;
1410 unsigned long read_sb_bindex, consumed_idx, consumed;
1411
1412 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1413
1414 if (!buf->get_subbuf) {
1415 /*
1416 * Reader puts a subbuffer it did not get.
1417 */
1418 CHAN_WARN_ON(chan, 1);
1419 return;
1420 }
1421 consumed = buf->get_subbuf_consumed;
1422 buf->get_subbuf = 0;
1423
1424 /*
1425 * Clear the records_unread counter. (overruns counter)
1426 * Can still be non-zero if a file reader simply grabbed the data
1427 * without using iterators.
1428 * Can be below zero if an iterator is used on a snapshot more than
1429 * once.
1430 */
1431 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1432 v_add(config, v_read(config,
1433 &bufb->array[read_sb_bindex]->records_unread),
1434 &bufb->records_read);
1435 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1436 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1437 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1438 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1439
1440 /*
1441 * Exchange the reader subbuffer with the one we put in its place in the
1442 * writer subbuffer table. Expect the original consumed count. If
1443 * update_read_sb_index fails, this is because the writer updated the
1444 * subbuffer concurrently. We should therefore keep the subbuffer we
1445 * currently have: it has become invalid to try reading this sub-buffer
1446 * consumed count value anyway.
1447 */
1448 consumed_idx = subbuf_index(consumed, chan);
1449 update_read_sb_index(config, &buf->backend, &chan->backend,
1450 consumed_idx, buf_trunc_val(consumed, chan));
1451 /*
1452 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1453 * if the writer concurrently updated it.
1454 */
1455 }
1456 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1457
1458 /*
1459 * cons_offset is an iterator on all subbuffer offsets between the reader
1460 * position and the writer position. (inclusive)
1461 */
1462 static
1463 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1464 struct channel *chan,
1465 unsigned long cons_offset,
1466 int cpu)
1467 {
1468 const struct lib_ring_buffer_config *config = &chan->backend.config;
1469 unsigned long cons_idx, commit_count, commit_count_sb;
1470
1471 cons_idx = subbuf_index(cons_offset, chan);
1472 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1473 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1474
1475 if (subbuf_offset(commit_count, chan) != 0)
1476 printk(KERN_WARNING
1477 "LTTng: ring buffer %s, cpu %d: "
1478 "commit count in subbuffer %lu,\n"
1479 "expecting multiples of %lu bytes\n"
1480 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1481 chan->backend.name, cpu, cons_idx,
1482 chan->backend.subbuf_size,
1483 commit_count, commit_count_sb);
1484
1485 printk(KERN_DEBUG "LTTng: ring buffer: %s, cpu %d: %lu bytes committed\n",
1486 chan->backend.name, cpu, commit_count);
1487 }
1488
1489 static
1490 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1491 struct channel *chan,
1492 void *priv, int cpu)
1493 {
1494 const struct lib_ring_buffer_config *config = &chan->backend.config;
1495 unsigned long write_offset, cons_offset;
1496
1497 /*
1498 * No need to order commit_count, write_offset and cons_offset reads
1499 * because we execute at teardown when no more writer nor reader
1500 * references are left.
1501 */
1502 write_offset = v_read(config, &buf->offset);
1503 cons_offset = atomic_long_read(&buf->consumed);
1504 if (write_offset != cons_offset)
1505 printk(KERN_DEBUG
1506 "LTTng: ring buffer %s, cpu %d: "
1507 "non-consumed data\n"
1508 " [ %lu bytes written, %lu bytes read ]\n",
1509 chan->backend.name, cpu, write_offset, cons_offset);
1510
1511 for (cons_offset = atomic_long_read(&buf->consumed);
1512 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1513 chan)
1514 - cons_offset) > 0;
1515 cons_offset = subbuf_align(cons_offset, chan))
1516 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1517 cpu);
1518 }
1519
1520 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
1521 static
1522 void lib_ring_buffer_print_records_count(struct channel *chan,
1523 struct lib_ring_buffer *buf,
1524 int cpu)
1525 {
1526 const struct lib_ring_buffer_config *config = &chan->backend.config;
1527
1528 if (!strcmp(chan->backend.name, "relay-metadata")) {
1529 printk(KERN_DEBUG "LTTng: ring buffer %s: %lu records written, "
1530 "%lu records overrun\n",
1531 chan->backend.name,
1532 v_read(config, &buf->records_count),
1533 v_read(config, &buf->records_overrun));
1534 } else {
1535 printk(KERN_DEBUG "LTTng: ring buffer %s, cpu %d: %lu records written, "
1536 "%lu records overrun\n",
1537 chan->backend.name, cpu,
1538 v_read(config, &buf->records_count),
1539 v_read(config, &buf->records_overrun));
1540 }
1541 }
1542 #else
1543 static
1544 void lib_ring_buffer_print_records_count(struct channel *chan,
1545 struct lib_ring_buffer *buf,
1546 int cpu)
1547 {
1548 }
1549 #endif
1550
1551 static
1552 void lib_ring_buffer_print_errors(struct channel *chan,
1553 struct lib_ring_buffer *buf, int cpu)
1554 {
1555 const struct lib_ring_buffer_config *config = &chan->backend.config;
1556 void *priv = chan->backend.priv;
1557
1558 lib_ring_buffer_print_records_count(chan, buf, cpu);
1559 if (strcmp(chan->backend.name, "relay-metadata")) {
1560 if (v_read(config, &buf->records_lost_full)
1561 || v_read(config, &buf->records_lost_wrap)
1562 || v_read(config, &buf->records_lost_big))
1563 printk(KERN_WARNING
1564 "LTTng: ring buffer %s, cpu %d: records were lost. Caused by:\n"
1565 " [ %lu buffer full, %lu nest buffer wrap-around, "
1566 "%lu event too big ]\n",
1567 chan->backend.name, cpu,
1568 v_read(config, &buf->records_lost_full),
1569 v_read(config, &buf->records_lost_wrap),
1570 v_read(config, &buf->records_lost_big));
1571 }
1572 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1573 }
1574
1575 /*
1576 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1577 *
1578 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1579 */
1580 static
1581 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1582 struct channel *chan,
1583 struct switch_offsets *offsets,
1584 u64 tsc)
1585 {
1586 const struct lib_ring_buffer_config *config = &chan->backend.config;
1587 unsigned long oldidx = subbuf_index(offsets->old, chan);
1588 unsigned long commit_count;
1589 struct commit_counters_hot *cc_hot;
1590
1591 config->cb.buffer_begin(buf, tsc, oldidx);
1592
1593 /*
1594 * Order all writes to buffer before the commit count update that will
1595 * determine that the subbuffer is full.
1596 */
1597 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1598 /*
1599 * Must write slot data before incrementing commit count. This
1600 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1601 * by get_subbuf().
1602 */
1603 barrier();
1604 } else
1605 smp_wmb();
1606 cc_hot = &buf->commit_hot[oldidx];
1607 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1608 commit_count = v_read(config, &cc_hot->cc);
1609 /* Check if the written buffer has to be delivered */
1610 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1611 commit_count, oldidx, tsc);
1612 lib_ring_buffer_write_commit_counter(config, buf, chan,
1613 offsets->old + config->cb.subbuffer_header_size(),
1614 commit_count, cc_hot);
1615 }
1616
1617 /*
1618 * lib_ring_buffer_switch_old_end: switch old subbuffer
1619 *
1620 * Note : offset_old should never be 0 here. It is ok, because we never perform
1621 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1622 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1623 * subbuffer.
1624 */
1625 static
1626 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1627 struct channel *chan,
1628 struct switch_offsets *offsets,
1629 u64 tsc)
1630 {
1631 const struct lib_ring_buffer_config *config = &chan->backend.config;
1632 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1633 unsigned long commit_count, padding_size, data_size;
1634 struct commit_counters_hot *cc_hot;
1635 u64 *ts_end;
1636
1637 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1638 padding_size = chan->backend.subbuf_size - data_size;
1639 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1640
1641 ts_end = &buf->ts_end[oldidx];
1642 /*
1643 * This is the last space reservation in that sub-buffer before
1644 * it gets delivered. This provides exclusive access to write to
1645 * this sub-buffer's ts_end. There are also no concurrent
1646 * readers of that ts_end because delivery of that sub-buffer is
1647 * postponed until the commit counter is incremented for the
1648 * current space reservation.
1649 */
1650 *ts_end = tsc;
1651
1652 /*
1653 * Order all writes to buffer and store to ts_end before the commit
1654 * count update that will determine that the subbuffer is full.
1655 */
1656 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1657 /*
1658 * Must write slot data before incrementing commit count. This
1659 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1660 * by get_subbuf().
1661 */
1662 barrier();
1663 } else
1664 smp_wmb();
1665 cc_hot = &buf->commit_hot[oldidx];
1666 v_add(config, padding_size, &cc_hot->cc);
1667 commit_count = v_read(config, &cc_hot->cc);
1668 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1669 commit_count, oldidx, tsc);
1670 lib_ring_buffer_write_commit_counter(config, buf, chan,
1671 offsets->old + padding_size, commit_count,
1672 cc_hot);
1673 }
1674
1675 /*
1676 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1677 *
1678 * This code can be executed unordered : writers may already have written to the
1679 * sub-buffer before this code gets executed, caution. The commit makes sure
1680 * that this code is executed before the deliver of this sub-buffer.
1681 */
1682 static
1683 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1684 struct channel *chan,
1685 struct switch_offsets *offsets,
1686 u64 tsc)
1687 {
1688 const struct lib_ring_buffer_config *config = &chan->backend.config;
1689 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1690 unsigned long commit_count;
1691 struct commit_counters_hot *cc_hot;
1692
1693 config->cb.buffer_begin(buf, tsc, beginidx);
1694
1695 /*
1696 * Order all writes to buffer before the commit count update that will
1697 * determine that the subbuffer is full.
1698 */
1699 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1700 /*
1701 * Must write slot data before incrementing commit count. This
1702 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1703 * by get_subbuf().
1704 */
1705 barrier();
1706 } else
1707 smp_wmb();
1708 cc_hot = &buf->commit_hot[beginidx];
1709 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1710 commit_count = v_read(config, &cc_hot->cc);
1711 /* Check if the written buffer has to be delivered */
1712 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1713 commit_count, beginidx, tsc);
1714 lib_ring_buffer_write_commit_counter(config, buf, chan,
1715 offsets->begin + config->cb.subbuffer_header_size(),
1716 commit_count, cc_hot);
1717 }
1718
1719 /*
1720 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1721 *
1722 * Calls subbuffer_set_data_size() to set the data size of the current
1723 * sub-buffer. We do not need to perform check_deliver nor commit here,
1724 * since this task will be done by the "commit" of the event for which
1725 * we are currently doing the space reservation.
1726 */
1727 static
1728 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1729 struct channel *chan,
1730 struct switch_offsets *offsets,
1731 u64 tsc)
1732 {
1733 const struct lib_ring_buffer_config *config = &chan->backend.config;
1734 unsigned long endidx, data_size;
1735 u64 *ts_end;
1736
1737 endidx = subbuf_index(offsets->end - 1, chan);
1738 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1739 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1740 ts_end = &buf->ts_end[endidx];
1741 /*
1742 * This is the last space reservation in that sub-buffer before
1743 * it gets delivered. This provides exclusive access to write to
1744 * this sub-buffer's ts_end. There are also no concurrent
1745 * readers of that ts_end because delivery of that sub-buffer is
1746 * postponed until the commit counter is incremented for the
1747 * current space reservation.
1748 */
1749 *ts_end = tsc;
1750 }
1751
1752 /*
1753 * Returns :
1754 * 0 if ok
1755 * !0 if execution must be aborted.
1756 */
1757 static
1758 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1759 struct lib_ring_buffer *buf,
1760 struct channel *chan,
1761 struct switch_offsets *offsets,
1762 u64 *tsc)
1763 {
1764 const struct lib_ring_buffer_config *config = &chan->backend.config;
1765 unsigned long off, reserve_commit_diff;
1766
1767 offsets->begin = v_read(config, &buf->offset);
1768 offsets->old = offsets->begin;
1769 offsets->switch_old_start = 0;
1770 off = subbuf_offset(offsets->begin, chan);
1771
1772 *tsc = config->cb.ring_buffer_clock_read(chan);
1773
1774 /*
1775 * Ensure we flush the header of an empty subbuffer when doing the
1776 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1777 * total data gathering duration even if there were no records saved
1778 * after the last buffer switch.
1779 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1780 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1781 * subbuffer header as appropriate.
1782 * The next record that reserves space will be responsible for
1783 * populating the following subbuffer header. We choose not to populate
1784 * the next subbuffer header here because we want to be able to use
1785 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1786 * buffer flush, which must guarantee that all the buffer content
1787 * (records and header timestamps) are visible to the reader. This is
1788 * required for quiescence guarantees for the fusion merge.
1789 */
1790 if (mode != SWITCH_FLUSH && !off)
1791 return -1; /* we do not have to switch : buffer is empty */
1792
1793 if (unlikely(off == 0)) {
1794 unsigned long sb_index, commit_count;
1795
1796 /*
1797 * We are performing a SWITCH_FLUSH. At this stage, there are no
1798 * concurrent writes into the buffer.
1799 *
1800 * The client does not save any header information. Don't
1801 * switch empty subbuffer on finalize, because it is invalid to
1802 * deliver a completely empty subbuffer.
1803 */
1804 if (!config->cb.subbuffer_header_size())
1805 return -1;
1806
1807 /* Test new buffer integrity */
1808 sb_index = subbuf_index(offsets->begin, chan);
1809 commit_count = v_read(config,
1810 &buf->commit_cold[sb_index].cc_sb);
1811 reserve_commit_diff =
1812 (buf_trunc(offsets->begin, chan)
1813 >> chan->backend.num_subbuf_order)
1814 - (commit_count & chan->commit_count_mask);
1815 if (likely(reserve_commit_diff == 0)) {
1816 /* Next subbuffer not being written to. */
1817 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1818 subbuf_trunc(offsets->begin, chan)
1819 - subbuf_trunc((unsigned long)
1820 atomic_long_read(&buf->consumed), chan)
1821 >= chan->backend.buf_size)) {
1822 /*
1823 * We do not overwrite non consumed buffers
1824 * and we are full : don't switch.
1825 */
1826 return -1;
1827 } else {
1828 /*
1829 * Next subbuffer not being written to, and we
1830 * are either in overwrite mode or the buffer is
1831 * not full. It's safe to write in this new
1832 * subbuffer.
1833 */
1834 }
1835 } else {
1836 /*
1837 * Next subbuffer reserve offset does not match the
1838 * commit offset. Don't perform switch in
1839 * producer-consumer and overwrite mode. Caused by
1840 * either a writer OOPS or too many nested writes over a
1841 * reserve/commit pair.
1842 */
1843 return -1;
1844 }
1845
1846 /*
1847 * Need to write the subbuffer start header on finalize.
1848 */
1849 offsets->switch_old_start = 1;
1850 }
1851 offsets->begin = subbuf_align(offsets->begin, chan);
1852 /* Note: old points to the next subbuf at offset 0 */
1853 offsets->end = offsets->begin;
1854 return 0;
1855 }
1856
1857 /*
1858 * Force a sub-buffer switch. This operation is completely reentrant : can be
1859 * called while tracing is active with absolutely no lock held.
1860 *
1861 * Note, however, that as a v_cmpxchg is used for some atomic
1862 * operations, this function must be called from the CPU which owns the buffer
1863 * for a ACTIVE flush.
1864 */
1865 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1866 {
1867 struct channel *chan = buf->backend.chan;
1868 const struct lib_ring_buffer_config *config = &chan->backend.config;
1869 struct switch_offsets offsets;
1870 unsigned long oldidx;
1871 u64 tsc;
1872
1873 offsets.size = 0;
1874
1875 /*
1876 * Perform retryable operations.
1877 */
1878 do {
1879 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1880 &tsc))
1881 return; /* Switch not needed */
1882 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1883 != offsets.old);
1884
1885 /*
1886 * Atomically update last_tsc. This update races against concurrent
1887 * atomic updates, but the race will always cause supplementary full TSC
1888 * records, never the opposite (missing a full TSC record when it would
1889 * be needed).
1890 */
1891 save_last_tsc(config, buf, tsc);
1892
1893 /*
1894 * Push the reader if necessary
1895 */
1896 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1897
1898 oldidx = subbuf_index(offsets.old, chan);
1899 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1900
1901 /*
1902 * May need to populate header start on SWITCH_FLUSH.
1903 */
1904 if (offsets.switch_old_start) {
1905 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1906 offsets.old += config->cb.subbuffer_header_size();
1907 }
1908
1909 /*
1910 * Switch old subbuffer.
1911 */
1912 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1913 }
1914 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1915
1916 struct switch_param {
1917 struct lib_ring_buffer *buf;
1918 enum switch_mode mode;
1919 };
1920
1921 static void remote_switch(void *info)
1922 {
1923 struct switch_param *param = info;
1924 struct lib_ring_buffer *buf = param->buf;
1925
1926 lib_ring_buffer_switch_slow(buf, param->mode);
1927 }
1928
1929 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1930 enum switch_mode mode)
1931 {
1932 struct channel *chan = buf->backend.chan;
1933 const struct lib_ring_buffer_config *config = &chan->backend.config;
1934 int ret;
1935 struct switch_param param;
1936
1937 /*
1938 * With global synchronization we don't need to use the IPI scheme.
1939 */
1940 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1941 lib_ring_buffer_switch_slow(buf, mode);
1942 return;
1943 }
1944
1945 /*
1946 * Disabling preemption ensures two things: first, that the
1947 * target cpu is not taken concurrently offline while we are within
1948 * smp_call_function_single(). Secondly, if it happens that the
1949 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1950 * needs to be protected from CPU hotplug handlers, which can
1951 * also perform a remote subbuffer switch.
1952 */
1953 preempt_disable();
1954 param.buf = buf;
1955 param.mode = mode;
1956 ret = smp_call_function_single(buf->backend.cpu,
1957 remote_switch, &param, 1);
1958 if (ret) {
1959 /* Remote CPU is offline, do it ourself. */
1960 lib_ring_buffer_switch_slow(buf, mode);
1961 }
1962 preempt_enable();
1963 }
1964
1965 /* Switch sub-buffer if current sub-buffer is non-empty. */
1966 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1967 {
1968 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1969 }
1970 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1971
1972 /* Switch sub-buffer even if current sub-buffer is empty. */
1973 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1974 {
1975 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1976 }
1977 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1978
1979 void lib_ring_buffer_clear(struct lib_ring_buffer *buf)
1980 {
1981 struct lib_ring_buffer_backend *bufb = &buf->backend;
1982 struct channel *chan = bufb->chan;
1983
1984 lib_ring_buffer_switch_remote(buf);
1985 lib_ring_buffer_clear_reader(buf, chan);
1986 }
1987 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear);
1988
1989 /*
1990 * Returns :
1991 * 0 if ok
1992 * -ENOSPC if event size is too large for packet.
1993 * -ENOBUFS if there is currently not enough space in buffer for the event.
1994 * -EIO if data cannot be written into the buffer for any other reason.
1995 */
1996 static
1997 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1998 struct channel *chan,
1999 struct switch_offsets *offsets,
2000 struct lttng_kernel_ring_buffer_ctx *ctx,
2001 void *client_ctx)
2002 {
2003 const struct lib_ring_buffer_config *config = &chan->backend.config;
2004 unsigned long reserve_commit_diff, offset_cmp;
2005
2006 retry:
2007 offsets->begin = offset_cmp = v_read(config, &buf->offset);
2008 offsets->old = offsets->begin;
2009 offsets->switch_new_start = 0;
2010 offsets->switch_new_end = 0;
2011 offsets->switch_old_end = 0;
2012 offsets->pre_header_padding = 0;
2013
2014 ctx->priv.tsc = config->cb.ring_buffer_clock_read(chan);
2015 if ((int64_t) ctx->priv.tsc == -EIO)
2016 return -EIO;
2017
2018 if (last_tsc_overflow(config, buf, ctx->priv.tsc))
2019 ctx->priv.rflags |= RING_BUFFER_RFLAG_FULL_TSC;
2020
2021 if (unlikely(subbuf_offset(offsets->begin, ctx->priv.chan) == 0)) {
2022 offsets->switch_new_start = 1; /* For offsets->begin */
2023 } else {
2024 offsets->size = config->cb.record_header_size(config, chan,
2025 offsets->begin,
2026 &offsets->pre_header_padding,
2027 ctx, client_ctx);
2028 offsets->size +=
2029 lib_ring_buffer_align(offsets->begin + offsets->size,
2030 ctx->largest_align)
2031 + ctx->data_size;
2032 if (unlikely(subbuf_offset(offsets->begin, chan) +
2033 offsets->size > chan->backend.subbuf_size)) {
2034 offsets->switch_old_end = 1; /* For offsets->old */
2035 offsets->switch_new_start = 1; /* For offsets->begin */
2036 }
2037 }
2038 if (unlikely(offsets->switch_new_start)) {
2039 unsigned long sb_index, commit_count;
2040
2041 /*
2042 * We are typically not filling the previous buffer completely.
2043 */
2044 if (likely(offsets->switch_old_end))
2045 offsets->begin = subbuf_align(offsets->begin, chan);
2046 offsets->begin = offsets->begin
2047 + config->cb.subbuffer_header_size();
2048 /* Test new buffer integrity */
2049 sb_index = subbuf_index(offsets->begin, chan);
2050 /*
2051 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2052 * lib_ring_buffer_check_deliver() has the matching
2053 * memory barriers required around commit_cold cc_sb
2054 * updates to ensure reserve and commit counter updates
2055 * are not seen reordered when updated by another CPU.
2056 */
2057 smp_rmb();
2058 commit_count = v_read(config,
2059 &buf->commit_cold[sb_index].cc_sb);
2060 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2061 smp_rmb();
2062 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
2063 /*
2064 * The reserve counter have been concurrently updated
2065 * while we read the commit counter. This means the
2066 * commit counter we read might not match buf->offset
2067 * due to concurrent update. We therefore need to retry.
2068 */
2069 goto retry;
2070 }
2071 reserve_commit_diff =
2072 (buf_trunc(offsets->begin, chan)
2073 >> chan->backend.num_subbuf_order)
2074 - (commit_count & chan->commit_count_mask);
2075 if (likely(reserve_commit_diff == 0)) {
2076 /* Next subbuffer not being written to. */
2077 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2078 subbuf_trunc(offsets->begin, chan)
2079 - subbuf_trunc((unsigned long)
2080 atomic_long_read(&buf->consumed), chan)
2081 >= chan->backend.buf_size)) {
2082 /*
2083 * We do not overwrite non consumed buffers
2084 * and we are full : record is lost.
2085 */
2086 v_inc(config, &buf->records_lost_full);
2087 return -ENOBUFS;
2088 } else {
2089 /*
2090 * Next subbuffer not being written to, and we
2091 * are either in overwrite mode or the buffer is
2092 * not full. It's safe to write in this new
2093 * subbuffer.
2094 */
2095 }
2096 } else {
2097 /*
2098 * Next subbuffer reserve offset does not match the
2099 * commit offset, and this did not involve update to the
2100 * reserve counter. Drop record in producer-consumer and
2101 * overwrite mode. Caused by either a writer OOPS or
2102 * too many nested writes over a reserve/commit pair.
2103 */
2104 v_inc(config, &buf->records_lost_wrap);
2105 return -EIO;
2106 }
2107 offsets->size =
2108 config->cb.record_header_size(config, chan,
2109 offsets->begin,
2110 &offsets->pre_header_padding,
2111 ctx, client_ctx);
2112 offsets->size +=
2113 lib_ring_buffer_align(offsets->begin + offsets->size,
2114 ctx->largest_align)
2115 + ctx->data_size;
2116 if (unlikely(subbuf_offset(offsets->begin, chan)
2117 + offsets->size > chan->backend.subbuf_size)) {
2118 /*
2119 * Record too big for subbuffers, report error, don't
2120 * complete the sub-buffer switch.
2121 */
2122 v_inc(config, &buf->records_lost_big);
2123 return -ENOSPC;
2124 } else {
2125 /*
2126 * We just made a successful buffer switch and the
2127 * record fits in the new subbuffer. Let's write.
2128 */
2129 }
2130 } else {
2131 /*
2132 * Record fits in the current buffer and we are not on a switch
2133 * boundary. It's safe to write.
2134 */
2135 }
2136 offsets->end = offsets->begin + offsets->size;
2137
2138 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2139 /*
2140 * The offset_end will fall at the very beginning of the next
2141 * subbuffer.
2142 */
2143 offsets->switch_new_end = 1; /* For offsets->begin */
2144 }
2145 return 0;
2146 }
2147
2148 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2149 {
2150 const struct lib_ring_buffer_config *config = &chan->backend.config;
2151
2152 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2153 return per_cpu_ptr(chan->backend.buf, cpu);
2154 else
2155 return chan->backend.buf;
2156 }
2157
2158 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2159 {
2160 const struct lib_ring_buffer_config *config = &chan->backend.config;
2161 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2162
2163 v_inc(config, &buf->records_lost_big);
2164 }
2165 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2166
2167 /**
2168 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2169 * @ctx: ring buffer context.
2170 *
2171 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2172 * -EIO for other errors, else returns 0.
2173 * It will take care of sub-buffer switching.
2174 */
2175 int lib_ring_buffer_reserve_slow(struct lttng_kernel_ring_buffer_ctx *ctx,
2176 void *client_ctx)
2177 {
2178 struct channel *chan = ctx->priv.chan;
2179 const struct lib_ring_buffer_config *config = &chan->backend.config;
2180 struct lib_ring_buffer *buf;
2181 struct switch_offsets offsets;
2182 int ret;
2183
2184 ctx->priv.buf = buf = get_current_buf(chan, ctx->priv.reserve_cpu);
2185 offsets.size = 0;
2186
2187 do {
2188 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2189 ctx, client_ctx);
2190 if (unlikely(ret))
2191 return ret;
2192 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2193 offsets.end)
2194 != offsets.old));
2195
2196 /*
2197 * Atomically update last_tsc. This update races against concurrent
2198 * atomic updates, but the race will always cause supplementary full TSC
2199 * records, never the opposite (missing a full TSC record when it would
2200 * be needed).
2201 */
2202 save_last_tsc(config, buf, ctx->priv.tsc);
2203
2204 /*
2205 * Push the reader if necessary
2206 */
2207 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2208
2209 /*
2210 * Clear noref flag for this subbuffer.
2211 */
2212 lib_ring_buffer_clear_noref(config, &buf->backend,
2213 subbuf_index(offsets.end - 1, chan));
2214
2215 /*
2216 * Switch old subbuffer if needed.
2217 */
2218 if (unlikely(offsets.switch_old_end)) {
2219 lib_ring_buffer_clear_noref(config, &buf->backend,
2220 subbuf_index(offsets.old - 1, chan));
2221 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->priv.tsc);
2222 }
2223
2224 /*
2225 * Populate new subbuffer.
2226 */
2227 if (unlikely(offsets.switch_new_start))
2228 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->priv.tsc);
2229
2230 if (unlikely(offsets.switch_new_end))
2231 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->priv.tsc);
2232
2233 ctx->priv.slot_size = offsets.size;
2234 ctx->priv.pre_offset = offsets.begin;
2235 ctx->priv.buf_offset = offsets.begin + offsets.pre_header_padding;
2236 return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2239
2240 static
2241 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2242 struct lib_ring_buffer *buf,
2243 unsigned long commit_count,
2244 unsigned long idx)
2245 {
2246 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2247 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2248 }
2249
2250 /*
2251 * The ring buffer can count events recorded and overwritten per buffer,
2252 * but it is disabled by default due to its performance overhead.
2253 */
2254 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2255 static
2256 void deliver_count_events(const struct lib_ring_buffer_config *config,
2257 struct lib_ring_buffer *buf,
2258 unsigned long idx)
2259 {
2260 v_add(config, subbuffer_get_records_count(config,
2261 &buf->backend, idx),
2262 &buf->records_count);
2263 v_add(config, subbuffer_count_records_overrun(config,
2264 &buf->backend, idx),
2265 &buf->records_overrun);
2266 }
2267 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2268 static
2269 void deliver_count_events(const struct lib_ring_buffer_config *config,
2270 struct lib_ring_buffer *buf,
2271 unsigned long idx)
2272 {
2273 }
2274 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2275
2276
2277 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2278 struct lib_ring_buffer *buf,
2279 struct channel *chan,
2280 unsigned long offset,
2281 unsigned long commit_count,
2282 unsigned long idx,
2283 u64 tsc)
2284 {
2285 unsigned long old_commit_count = commit_count
2286 - chan->backend.subbuf_size;
2287
2288 /*
2289 * If we succeeded at updating cc_sb below, we are the subbuffer
2290 * writer delivering the subbuffer. Deals with concurrent
2291 * updates of the "cc" value without adding a add_return atomic
2292 * operation to the fast path.
2293 *
2294 * We are doing the delivery in two steps:
2295 * - First, we cmpxchg() cc_sb to the new value
2296 * old_commit_count + 1. This ensures that we are the only
2297 * subbuffer user successfully filling the subbuffer, but we
2298 * do _not_ set the cc_sb value to "commit_count" yet.
2299 * Therefore, other writers that would wrap around the ring
2300 * buffer and try to start writing to our subbuffer would
2301 * have to drop records, because it would appear as
2302 * non-filled.
2303 * We therefore have exclusive access to the subbuffer control
2304 * structures. This mutual exclusion with other writers is
2305 * crucially important to perform record overruns count in
2306 * flight recorder mode locklessly.
2307 * - When we are ready to release the subbuffer (either for
2308 * reading or for overrun by other writers), we simply set the
2309 * cc_sb value to "commit_count" and perform delivery.
2310 *
2311 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2312 * This guarantees that old_commit_count + 1 != commit_count.
2313 */
2314
2315 /*
2316 * Order prior updates to reserve count prior to the
2317 * commit_cold cc_sb update.
2318 */
2319 smp_wmb();
2320 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2321 old_commit_count, old_commit_count + 1)
2322 == old_commit_count)) {
2323 u64 *ts_end;
2324
2325 /*
2326 * Start of exclusive subbuffer access. We are
2327 * guaranteed to be the last writer in this subbuffer
2328 * and any other writer trying to access this subbuffer
2329 * in this state is required to drop records.
2330 *
2331 * We can read the ts_end for the current sub-buffer
2332 * which has been saved by the very last space
2333 * reservation for the current sub-buffer.
2334 *
2335 * Order increment of commit counter before reading ts_end.
2336 */
2337 smp_mb();
2338 ts_end = &buf->ts_end[idx];
2339 deliver_count_events(config, buf, idx);
2340 config->cb.buffer_end(buf, *ts_end, idx,
2341 lib_ring_buffer_get_data_size(config,
2342 buf,
2343 idx));
2344
2345 /*
2346 * Increment the packet counter while we have exclusive
2347 * access.
2348 */
2349 subbuffer_inc_packet_count(config, &buf->backend, idx);
2350
2351 /*
2352 * Set noref flag and offset for this subbuffer id.
2353 * Contains a memory barrier that ensures counter stores
2354 * are ordered before set noref and offset.
2355 */
2356 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2357 buf_trunc_val(offset, chan));
2358
2359 /*
2360 * Order set_noref and record counter updates before the
2361 * end of subbuffer exclusive access. Orders with
2362 * respect to writers coming into the subbuffer after
2363 * wrap around, and also order wrt concurrent readers.
2364 */
2365 smp_mb();
2366 /* End of exclusive subbuffer access */
2367 v_set(config, &buf->commit_cold[idx].cc_sb,
2368 commit_count);
2369 /*
2370 * Order later updates to reserve count after
2371 * the commit_cold cc_sb update.
2372 */
2373 smp_wmb();
2374 lib_ring_buffer_vmcore_check_deliver(config, buf,
2375 commit_count, idx);
2376
2377 /*
2378 * RING_BUFFER_WAKEUP_BY_WRITER uses an irq_work to issue
2379 * the wakeups.
2380 */
2381 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2382 && atomic_long_read(&buf->active_readers)
2383 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2384 irq_work_queue(&buf->wakeup_pending);
2385 irq_work_queue(&chan->wakeup_pending);
2386 }
2387
2388 }
2389 }
2390 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2391
2392 int __init init_lib_ring_buffer_frontend(void)
2393 {
2394 int cpu;
2395
2396 for_each_possible_cpu(cpu)
2397 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2398 return 0;
2399 }
2400
2401 module_init(init_lib_ring_buffer_frontend);
2402
2403 void __exit exit_lib_ring_buffer_frontend(void)
2404 {
2405 }
2406
2407 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.085206 seconds and 4 git commands to generate.