0133f3e3bb5cc8ae57073fd6b6d541b96c1cfc24
[ust.git] / libtracing / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
5 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
6 * Copyright (C) 2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
7 *
8 * Moved to kernel/relay.c by Paul Mundt, 2006.
9 * November 2006 - CPU hotplug support by Mathieu Desnoyers
10 * (mathieu.desnoyers@polymtl.ca)
11 *
12 * This file is released under the GPL.
13 */
14 //ust// #include <linux/errno.h>
15 //ust// #include <linux/stddef.h>
16 //ust// #include <linux/slab.h>
17 //ust// #include <linux/module.h>
18 //ust// #include <linux/string.h>
19 //ust// #include <linux/ltt-relay.h>
20 //ust// #include <linux/vmalloc.h>
21 //ust// #include <linux/mm.h>
22 //ust// #include <linux/cpu.h>
23 //ust// #include <linux/splice.h>
24 //ust// #include <linux/bitops.h>
25 #include "kernelcompat.h"
26 #include <sys/mman.h>
27 #include <sys/ipc.h>
28 #include <sys/shm.h>
29 #include "list.h"
30 #include "relay.h"
31 #include "channels.h"
32 #include "kref.h"
33 #include "tracer.h"
34 #include "tracercore.h"
35 #include "usterr.h"
36
37 /* list of open channels, for cpu hotplug */
38 static DEFINE_MUTEX(relay_channels_mutex);
39 static LIST_HEAD(relay_channels);
40
41
42 static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf);
43
44 /**
45 * relay_alloc_buf - allocate a channel buffer
46 * @buf: the buffer struct
47 * @size: total size of the buffer
48 */
49 //ust// static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
50 //ust//{
51 //ust// unsigned int i, n_pages;
52 //ust// struct buf_page *buf_page, *n;
53 //ust//
54 //ust// *size = PAGE_ALIGN(*size);
55 //ust// n_pages = *size >> PAGE_SHIFT;
56 //ust//
57 //ust// INIT_LIST_HEAD(&buf->pages);
58 //ust//
59 //ust// for (i = 0; i < n_pages; i++) {
60 //ust// buf_page = kmalloc_node(sizeof(*buf_page), GFP_KERNEL,
61 //ust// cpu_to_node(buf->cpu));
62 //ust// if (unlikely(!buf_page))
63 //ust// goto depopulate;
64 //ust// buf_page->page = alloc_pages_node(cpu_to_node(buf->cpu),
65 //ust// GFP_KERNEL | __GFP_ZERO, 0);
66 //ust// if (unlikely(!buf_page->page)) {
67 //ust// kfree(buf_page);
68 //ust// goto depopulate;
69 //ust// }
70 //ust// list_add_tail(&buf_page->list, &buf->pages);
71 //ust// buf_page->offset = (size_t)i << PAGE_SHIFT;
72 //ust// buf_page->buf = buf;
73 //ust// set_page_private(buf_page->page, (unsigned long)buf_page);
74 //ust// if (i == 0) {
75 //ust// buf->wpage = buf_page;
76 //ust// buf->hpage[0] = buf_page;
77 //ust// buf->hpage[1] = buf_page;
78 //ust// buf->rpage = buf_page;
79 //ust// }
80 //ust// }
81 //ust// buf->page_count = n_pages;
82 //ust// return 0;
83 //ust//
84 //ust//depopulate:
85 //ust// list_for_each_entry_safe(buf_page, n, &buf->pages, list) {
86 //ust// list_del_init(&buf_page->list);
87 //ust// __free_page(buf_page->page);
88 //ust// kfree(buf_page);
89 //ust// }
90 //ust// return -ENOMEM;
91 //ust//}
92
93 static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
94 {
95 unsigned int n_pages;
96 struct buf_page *buf_page, *n;
97
98 void *ptr;
99 int result;
100
101 *size = PAGE_ALIGN(*size);
102
103 result = buf->shmid = shmget(getpid(), *size, IPC_CREAT | IPC_EXCL | 0700);
104 if(buf->shmid == -1) {
105 PERROR("shmget");
106 return -1;
107 }
108
109 ptr = shmat(buf->shmid, NULL, 0);
110 if(ptr == (void *) -1) {
111 perror("shmat");
112 goto destroy_shmem;
113 }
114
115 /* Already mark the shared memory for destruction. This will occur only
116 * when all users have detached.
117 */
118 result = shmctl(buf->shmid, IPC_RMID, NULL);
119 if(result == -1) {
120 perror("shmctl");
121 return -1;
122 }
123
124 buf->buf_data = ptr;
125 buf->buf_size = *size;
126
127 return 0;
128
129 destroy_shmem:
130 result = shmctl(buf->shmid, IPC_RMID, NULL);
131 if(result == -1) {
132 perror("shmctl");
133 }
134
135 return -1;
136 }
137
138 /**
139 * relay_create_buf - allocate and initialize a channel buffer
140 * @chan: the relay channel
141 * @cpu: cpu the buffer belongs to
142 *
143 * Returns channel buffer if successful, %NULL otherwise.
144 */
145 static struct rchan_buf *relay_create_buf(struct rchan *chan)
146 {
147 int ret;
148 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
149 if (!buf)
150 return NULL;
151
152 // buf->cpu = cpu;
153 ret = relay_alloc_buf(buf, &chan->alloc_size);
154 if (ret)
155 goto free_buf;
156
157 buf->chan = chan;
158 kref_get(&buf->chan->kref);
159 return buf;
160
161 free_buf:
162 kfree(buf);
163 return NULL;
164 }
165
166 /**
167 * relay_destroy_channel - free the channel struct
168 * @kref: target kernel reference that contains the relay channel
169 *
170 * Should only be called from kref_put().
171 */
172 static void relay_destroy_channel(struct kref *kref)
173 {
174 struct rchan *chan = container_of(kref, struct rchan, kref);
175 kfree(chan);
176 }
177
178 /**
179 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
180 * @buf: the buffer struct
181 */
182 static void relay_destroy_buf(struct rchan_buf *buf)
183 {
184 struct rchan *chan = buf->chan;
185 struct buf_page *buf_page, *n;
186 int result;
187
188 result = munmap(buf->buf_data, buf->buf_size);
189 if(result == -1) {
190 PERROR("munmap");
191 }
192
193 //ust// chan->buf[buf->cpu] = NULL;
194 kfree(buf);
195 kref_put(&chan->kref, relay_destroy_channel);
196 }
197
198 /**
199 * relay_remove_buf - remove a channel buffer
200 * @kref: target kernel reference that contains the relay buffer
201 *
202 * Removes the file from the fileystem, which also frees the
203 * rchan_buf_struct and the channel buffer. Should only be called from
204 * kref_put().
205 */
206 static void relay_remove_buf(struct kref *kref)
207 {
208 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
209 //ust// buf->chan->cb->remove_buf_file(buf);
210 relay_destroy_buf(buf);
211 }
212
213 /*
214 * High-level relay kernel API and associated functions.
215 */
216
217 /*
218 * rchan_callback implementations defining default channel behavior. Used
219 * in place of corresponding NULL values in client callback struct.
220 */
221
222 /*
223 * create_buf_file_create() default callback. Does nothing.
224 */
225 static struct dentry *create_buf_file_default_callback(const char *filename,
226 struct dentry *parent,
227 int mode,
228 struct rchan_buf *buf)
229 {
230 return NULL;
231 }
232
233 /*
234 * remove_buf_file() default callback. Does nothing.
235 */
236 static int remove_buf_file_default_callback(struct dentry *dentry)
237 {
238 return -EINVAL;
239 }
240
241 /**
242 * wakeup_readers - wake up readers waiting on a channel
243 * @data: contains the channel buffer
244 *
245 * This is the timer function used to defer reader waking.
246 */
247 //ust// static void wakeup_readers(unsigned long data)
248 //ust// {
249 //ust// struct rchan_buf *buf = (struct rchan_buf *)data;
250 //ust// wake_up_interruptible(&buf->read_wait);
251 //ust// }
252
253 /**
254 * __relay_reset - reset a channel buffer
255 * @buf: the channel buffer
256 * @init: 1 if this is a first-time initialization
257 *
258 * See relay_reset() for description of effect.
259 */
260 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
261 {
262 if (init) {
263 //ust// init_waitqueue_head(&buf->read_wait);
264 kref_init(&buf->kref);
265 //ust// setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
266 } else
267 //ust// del_timer_sync(&buf->timer);
268
269 buf->finalized = 0;
270 }
271
272 /*
273 * relay_open_buf - create a new relay channel buffer
274 *
275 * used by relay_open() and CPU hotplug.
276 */
277 static struct rchan_buf *relay_open_buf(struct rchan *chan)
278 {
279 struct rchan_buf *buf = NULL;
280 struct dentry *dentry;
281 //ust// char *tmpname;
282
283 //ust// tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
284 //ust// if (!tmpname)
285 //ust// goto end;
286 //ust// snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
287
288 buf = relay_create_buf(chan);
289 if (!buf)
290 goto free_name;
291
292 __relay_reset(buf, 1);
293
294 /* Create file in fs */
295 //ust// dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
296 //ust// buf);
297
298 ltt_create_buf_file_callback(buf); // ust //
299
300 //ust// if (!dentry)
301 //ust// goto free_buf;
302 //ust//
303 //ust// buf->dentry = dentry;
304
305 goto free_name;
306
307 free_buf:
308 relay_destroy_buf(buf);
309 buf = NULL;
310 free_name:
311 //ust// kfree(tmpname);
312 end:
313 return buf;
314 }
315
316 /**
317 * relay_close_buf - close a channel buffer
318 * @buf: channel buffer
319 *
320 * Marks the buffer finalized and restores the default callbacks.
321 * The channel buffer and channel buffer data structure are then freed
322 * automatically when the last reference is given up.
323 */
324 static void relay_close_buf(struct rchan_buf *buf)
325 {
326 //ust// del_timer_sync(&buf->timer);
327 kref_put(&buf->kref, relay_remove_buf);
328 }
329
330 //ust// static void setup_callbacks(struct rchan *chan,
331 //ust// struct rchan_callbacks *cb)
332 //ust// {
333 //ust// if (!cb) {
334 //ust// chan->cb = &default_channel_callbacks;
335 //ust// return;
336 //ust// }
337 //ust//
338 //ust// if (!cb->create_buf_file)
339 //ust// cb->create_buf_file = create_buf_file_default_callback;
340 //ust// if (!cb->remove_buf_file)
341 //ust// cb->remove_buf_file = remove_buf_file_default_callback;
342 //ust// chan->cb = cb;
343 //ust// }
344
345 /**
346 * relay_hotcpu_callback - CPU hotplug callback
347 * @nb: notifier block
348 * @action: hotplug action to take
349 * @hcpu: CPU number
350 *
351 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
352 */
353 //ust// static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
354 //ust// unsigned long action,
355 //ust// void *hcpu)
356 //ust// {
357 //ust// unsigned int hotcpu = (unsigned long)hcpu;
358 //ust// struct rchan *chan;
359 //ust//
360 //ust// switch (action) {
361 //ust// case CPU_UP_PREPARE:
362 //ust// case CPU_UP_PREPARE_FROZEN:
363 //ust// mutex_lock(&relay_channels_mutex);
364 //ust// list_for_each_entry(chan, &relay_channels, list) {
365 //ust// if (chan->buf[hotcpu])
366 //ust// continue;
367 //ust// chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
368 //ust// if (!chan->buf[hotcpu]) {
369 //ust// printk(KERN_ERR
370 //ust// "relay_hotcpu_callback: cpu %d buffer "
371 //ust// "creation failed\n", hotcpu);
372 //ust// mutex_unlock(&relay_channels_mutex);
373 //ust// return NOTIFY_BAD;
374 //ust// }
375 //ust// }
376 //ust// mutex_unlock(&relay_channels_mutex);
377 //ust// break;
378 //ust// case CPU_DEAD:
379 //ust// case CPU_DEAD_FROZEN:
380 //ust// /* No need to flush the cpu : will be flushed upon
381 //ust// * final relay_flush() call. */
382 //ust// break;
383 //ust// }
384 //ust// return NOTIFY_OK;
385 //ust// }
386
387 /**
388 * ltt_relay_open - create a new relay channel
389 * @base_filename: base name of files to create
390 * @parent: dentry of parent directory, %NULL for root directory
391 * @subbuf_size: size of sub-buffers
392 * @n_subbufs: number of sub-buffers
393 * @cb: client callback functions
394 * @private_data: user-defined data
395 *
396 * Returns channel pointer if successful, %NULL otherwise.
397 *
398 * Creates a channel buffer for each cpu using the sizes and
399 * attributes specified. The created channel buffer files
400 * will be named base_filename0...base_filenameN-1. File
401 * permissions will be %S_IRUSR.
402 */
403 struct rchan *ltt_relay_open(const char *base_filename,
404 struct dentry *parent,
405 size_t subbuf_size,
406 size_t n_subbufs,
407 void *private_data)
408 {
409 unsigned int i;
410 struct rchan *chan;
411 //ust// if (!base_filename)
412 //ust// return NULL;
413
414 if (!(subbuf_size && n_subbufs))
415 return NULL;
416
417 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
418 if (!chan)
419 return NULL;
420
421 chan->version = LTT_RELAY_CHANNEL_VERSION;
422 chan->n_subbufs = n_subbufs;
423 chan->subbuf_size = subbuf_size;
424 chan->subbuf_size_order = get_count_order(subbuf_size);
425 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
426 chan->parent = parent;
427 chan->private_data = private_data;
428 //ust// strlcpy(chan->base_filename, base_filename, NAME_MAX);
429 //ust// setup_callbacks(chan, cb);
430 kref_init(&chan->kref);
431
432 mutex_lock(&relay_channels_mutex);
433 //ust// for_each_online_cpu(i) {
434 chan->buf = relay_open_buf(chan);
435 if (!chan->buf)
436 goto error;
437 //ust// }
438 list_add(&chan->list, &relay_channels);
439 mutex_unlock(&relay_channels_mutex);
440
441 return chan;
442
443 //ust//free_bufs:
444 //ust// for_each_possible_cpu(i) {
445 //ust// if (!chan->buf[i])
446 //ust// break;
447 //ust// relay_close_buf(chan->buf[i]);
448 //ust// }
449
450 error:
451 kref_put(&chan->kref, relay_destroy_channel);
452 mutex_unlock(&relay_channels_mutex);
453 return NULL;
454 }
455 //ust// EXPORT_SYMBOL_GPL(ltt_relay_open);
456
457 /**
458 * ltt_relay_close - close the channel
459 * @chan: the channel
460 *
461 * Closes all channel buffers and frees the channel.
462 */
463 void ltt_relay_close(struct rchan *chan)
464 {
465 unsigned int i;
466
467 if (!chan)
468 return;
469
470 mutex_lock(&relay_channels_mutex);
471 //ust// for_each_possible_cpu(i)
472 if (chan->buf)
473 relay_close_buf(chan->buf);
474
475 list_del(&chan->list);
476 kref_put(&chan->kref, relay_destroy_channel);
477 mutex_unlock(&relay_channels_mutex);
478 }
479 //ust// EXPORT_SYMBOL_GPL(ltt_relay_close);
480
481 /*
482 * Start iteration at the previous element. Skip the real list head.
483 */
484 //ust// struct buf_page *ltt_relay_find_prev_page(struct rchan_buf *buf,
485 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
486 //ust// {
487 //ust// struct buf_page *iter;
488 //ust// size_t orig_iter_off;
489 //ust// unsigned int i = 0;
490 //ust//
491 //ust// orig_iter_off = page->offset;
492 //ust// list_for_each_entry_reverse(iter, &page->list, list) {
493 //ust// /*
494 //ust// * Skip the real list head.
495 //ust// */
496 //ust// if (&iter->list == &buf->pages)
497 //ust// continue;
498 //ust// i++;
499 //ust// if (offset >= iter->offset
500 //ust// && offset < iter->offset + PAGE_SIZE) {
501 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
502 //ust// if (i > 1) {
503 //ust// printk(KERN_WARNING
504 //ust// "Backward random access detected in "
505 //ust// "ltt_relay. Iterations %u, "
506 //ust// "offset %zu, orig iter->off %zu, "
507 //ust// "iter->off %zu diff_offset %zd.\n", i,
508 //ust// offset, orig_iter_off, iter->offset,
509 //ust// diff_offset);
510 //ust// WARN_ON(1);
511 //ust// }
512 //ust// #endif
513 //ust// return iter;
514 //ust// }
515 //ust// }
516 //ust// WARN_ON(1);
517 //ust// return NULL;
518 //ust// }
519 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_prev_page);
520
521 /*
522 * Start iteration at the next element. Skip the real list head.
523 */
524 //ust// struct buf_page *ltt_relay_find_next_page(struct rchan_buf *buf,
525 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
526 //ust// {
527 //ust// struct buf_page *iter;
528 //ust// unsigned int i = 0;
529 //ust// size_t orig_iter_off;
530 //ust//
531 //ust// orig_iter_off = page->offset;
532 //ust// list_for_each_entry(iter, &page->list, list) {
533 //ust// /*
534 //ust// * Skip the real list head.
535 //ust// */
536 //ust// if (&iter->list == &buf->pages)
537 //ust// continue;
538 //ust// i++;
539 //ust// if (offset >= iter->offset
540 //ust// && offset < iter->offset + PAGE_SIZE) {
541 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
542 //ust// if (i > 1) {
543 //ust// printk(KERN_WARNING
544 //ust// "Forward random access detected in "
545 //ust// "ltt_relay. Iterations %u, "
546 //ust// "offset %zu, orig iter->off %zu, "
547 //ust// "iter->off %zu diff_offset %zd.\n", i,
548 //ust// offset, orig_iter_off, iter->offset,
549 //ust// diff_offset);
550 //ust// WARN_ON(1);
551 //ust// }
552 //ust// #endif
553 //ust// return iter;
554 //ust// }
555 //ust// }
556 //ust// WARN_ON(1);
557 //ust// return NULL;
558 //ust// }
559 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_next_page);
560
561 /**
562 * ltt_relay_write - write data to a ltt_relay buffer.
563 * @buf : buffer
564 * @offset : offset within the buffer
565 * @src : source address
566 * @len : length to write
567 * @page : cached buffer page
568 * @pagecpy : page size copied so far
569 */
570 void _ltt_relay_write(struct rchan_buf *buf, size_t offset,
571 const void *src, size_t len, ssize_t cpy)
572 {
573 do {
574 len -= cpy;
575 src += cpy;
576 offset += cpy;
577 /*
578 * Underlying layer should never ask for writes across
579 * subbuffers.
580 */
581 WARN_ON(offset >= buf->buf_size);
582
583 cpy = min_t(size_t, len, buf->buf_size - offset);
584 ltt_relay_do_copy(buf->buf_data + offset, src, cpy);
585 } while (unlikely(len != cpy));
586 }
587 //ust// EXPORT_SYMBOL_GPL(_ltt_relay_write);
588
589 /**
590 * ltt_relay_read - read data from ltt_relay_buffer.
591 * @buf : buffer
592 * @offset : offset within the buffer
593 * @dest : destination address
594 * @len : length to write
595 */
596 //ust// int ltt_relay_read(struct rchan_buf *buf, size_t offset,
597 //ust// void *dest, size_t len)
598 //ust// {
599 //ust// struct buf_page *page;
600 //ust// ssize_t pagecpy, orig_len;
601 //ust//
602 //ust// orig_len = len;
603 //ust// offset &= buf->chan->alloc_size - 1;
604 //ust// page = buf->rpage;
605 //ust// if (unlikely(!len))
606 //ust// return 0;
607 //ust// for (;;) {
608 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
609 //ust// pagecpy = min_t(size_t, len, PAGE_SIZE - (offset & ~PAGE_MASK));
610 //ust// memcpy(dest, page_address(page->page) + (offset & ~PAGE_MASK),
611 //ust// pagecpy);
612 //ust// len -= pagecpy;
613 //ust// if (likely(!len))
614 //ust// break;
615 //ust// dest += pagecpy;
616 //ust// offset += pagecpy;
617 //ust// /*
618 //ust// * Underlying layer should never ask for reads across
619 //ust// * subbuffers.
620 //ust// */
621 //ust// WARN_ON(offset >= buf->chan->alloc_size);
622 //ust// }
623 //ust// return orig_len;
624 //ust// }
625 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read);
626
627 /**
628 * ltt_relay_read_get_page - Get a whole page to read from
629 * @buf : buffer
630 * @offset : offset within the buffer
631 */
632 //ust// struct buf_page *ltt_relay_read_get_page(struct rchan_buf *buf, size_t offset)
633 //ust// {
634 //ust// struct buf_page *page;
635
636 //ust// offset &= buf->chan->alloc_size - 1;
637 //ust// page = buf->rpage;
638 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
639 //ust// return page;
640 //ust// }
641 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read_get_page);
642
643 /**
644 * ltt_relay_offset_address - get address of a location within the buffer
645 * @buf : buffer
646 * @offset : offset within the buffer.
647 *
648 * Return the address where a given offset is located.
649 * Should be used to get the current subbuffer header pointer. Given we know
650 * it's never on a page boundary, it's safe to write directly to this address,
651 * as long as the write is never bigger than a page size.
652 */
653 void *ltt_relay_offset_address(struct rchan_buf *buf, size_t offset)
654 {
655 //ust// struct buf_page *page;
656 //ust// unsigned int odd;
657 //ust//
658 //ust// offset &= buf->chan->alloc_size - 1;
659 //ust// odd = !!(offset & buf->chan->subbuf_size);
660 //ust// page = buf->hpage[odd];
661 //ust// if (offset < page->offset || offset >= page->offset + PAGE_SIZE)
662 //ust// buf->hpage[odd] = page = buf->wpage;
663 //ust// page = ltt_relay_cache_page(buf, &buf->hpage[odd], page, offset);
664 //ust// return page_address(page->page) + (offset & ~PAGE_MASK);
665 return ((char *)buf->buf_data)+offset;
666 return NULL;
667 }
668 //ust// EXPORT_SYMBOL_GPL(ltt_relay_offset_address);
669
670 /**
671 * relay_file_open - open file op for relay files
672 * @inode: the inode
673 * @filp: the file
674 *
675 * Increments the channel buffer refcount.
676 */
677 //ust// static int relay_file_open(struct inode *inode, struct file *filp)
678 //ust// {
679 //ust// struct rchan_buf *buf = inode->i_private;
680 //ust// kref_get(&buf->kref);
681 //ust// filp->private_data = buf;
682 //ust//
683 //ust// return nonseekable_open(inode, filp);
684 //ust// }
685
686 /**
687 * relay_file_release - release file op for relay files
688 * @inode: the inode
689 * @filp: the file
690 *
691 * Decrements the channel refcount, as the filesystem is
692 * no longer using it.
693 */
694 //ust// static int relay_file_release(struct inode *inode, struct file *filp)
695 //ust// {
696 //ust// struct rchan_buf *buf = filp->private_data;
697 //ust// kref_put(&buf->kref, relay_remove_buf);
698 //ust//
699 //ust// return 0;
700 //ust// }
701
702 //ust// const struct file_operations ltt_relay_file_operations = {
703 //ust// .open = relay_file_open,
704 //ust// .release = relay_file_release,
705 //ust// };
706 //ust// EXPORT_SYMBOL_GPL(ltt_relay_file_operations);
707
708 //ust// static __init int relay_init(void)
709 //ust// {
710 //ust// hotcpu_notifier(relay_hotcpu_callback, 5);
711 //ust// return 0;
712 //ust// }
713
714 //ust// module_init(relay_init);
715 /*
716 * ltt/ltt-relay.c
717 *
718 * (C) Copyright 2005-2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
719 *
720 * LTTng lockless buffer space management (reader/writer).
721 *
722 * Author:
723 * Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
724 *
725 * Inspired from LTT :
726 * Karim Yaghmour (karim@opersys.com)
727 * Tom Zanussi (zanussi@us.ibm.com)
728 * Bob Wisniewski (bob@watson.ibm.com)
729 * And from K42 :
730 * Bob Wisniewski (bob@watson.ibm.com)
731 *
732 * Changelog:
733 * 08/10/08, Cleanup.
734 * 19/10/05, Complete lockless mechanism.
735 * 27/05/05, Modular redesign and rewrite.
736 *
737 * Userspace reader semantic :
738 * while (poll fd != POLLHUP) {
739 * - ioctl RELAY_GET_SUBBUF_SIZE
740 * while (1) {
741 * - ioctl GET_SUBBUF
742 * - splice 1 subbuffer worth of data to a pipe
743 * - splice the data from pipe to disk/network
744 * - ioctl PUT_SUBBUF, check error value
745 * if err val < 0, previous subbuffer was corrupted.
746 * }
747 * }
748 */
749
750 //ust// #include <linux/time.h>
751 //ust// #include <linux/ltt-tracer.h>
752 //ust// #include <linux/ltt-relay.h>
753 //ust// #include <linux/module.h>
754 //ust// #include <linux/string.h>
755 //ust// #include <linux/slab.h>
756 //ust// #include <linux/init.h>
757 //ust// #include <linux/rcupdate.h>
758 //ust// #include <linux/sched.h>
759 //ust// #include <linux/bitops.h>
760 //ust// #include <linux/fs.h>
761 //ust// #include <linux/smp_lock.h>
762 //ust// #include <linux/debugfs.h>
763 //ust// #include <linux/stat.h>
764 //ust// #include <linux/cpu.h>
765 //ust// #include <linux/pipe_fs_i.h>
766 //ust// #include <linux/splice.h>
767 //ust// #include <asm/atomic.h>
768 //ust// #include <asm/local.h>
769
770 #if 0
771 #define printk_dbg(fmt, args...) printk(fmt, args)
772 #else
773 #define printk_dbg(fmt, args...)
774 #endif
775
776 /*
777 * Last TSC comparison functions. Check if the current TSC overflows
778 * LTT_TSC_BITS bits from the last TSC read. Reads and writes last_tsc
779 * atomically.
780 */
781
782 #if (BITS_PER_LONG == 32)
783 static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
784 u64 tsc)
785 {
786 ltt_buf->last_tsc = (unsigned long)(tsc >> LTT_TSC_BITS);
787 }
788
789 static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
790 u64 tsc)
791 {
792 unsigned long tsc_shifted = (unsigned long)(tsc >> LTT_TSC_BITS);
793
794 if (unlikely((tsc_shifted - ltt_buf->last_tsc)))
795 return 1;
796 else
797 return 0;
798 }
799 #else
800 static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
801 u64 tsc)
802 {
803 ltt_buf->last_tsc = (unsigned long)tsc;
804 }
805
806 static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
807 u64 tsc)
808 {
809 if (unlikely((tsc - ltt_buf->last_tsc) >> LTT_TSC_BITS))
810 return 1;
811 else
812 return 0;
813 }
814 #endif
815
816 //ust// static struct file_operations ltt_file_operations;
817
818 /*
819 * A switch is done during tracing or as a final flush after tracing (so it
820 * won't write in the new sub-buffer).
821 */
822 enum force_switch_mode { FORCE_ACTIVE, FORCE_FLUSH };
823
824 static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
825 struct ltt_channel_struct *ltt_chan,
826 struct rchan_buf *buf,
827 unsigned int n_subbufs);
828
829 static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan);
830
831 static void ltt_force_switch(struct rchan_buf *buf,
832 enum force_switch_mode mode);
833
834 /*
835 * Trace callbacks
836 */
837 static void ltt_buffer_begin_callback(struct rchan_buf *buf,
838 u64 tsc, unsigned int subbuf_idx)
839 {
840 struct ltt_channel_struct *channel =
841 (struct ltt_channel_struct *)buf->chan->private_data;
842 struct ltt_subbuffer_header *header =
843 (struct ltt_subbuffer_header *)
844 ltt_relay_offset_address(buf,
845 subbuf_idx * buf->chan->subbuf_size);
846
847 header->cycle_count_begin = tsc;
848 header->lost_size = 0xFFFFFFFF; /* for debugging */
849 header->buf_size = buf->chan->subbuf_size;
850 ltt_write_trace_header(channel->trace, header);
851 }
852
853 /*
854 * offset is assumed to never be 0 here : never deliver a completely empty
855 * subbuffer. The lost size is between 0 and subbuf_size-1.
856 */
857 static notrace void ltt_buffer_end_callback(struct rchan_buf *buf,
858 u64 tsc, unsigned int offset, unsigned int subbuf_idx)
859 {
860 struct ltt_channel_struct *channel =
861 (struct ltt_channel_struct *)buf->chan->private_data;
862 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
863 struct ltt_subbuffer_header *header =
864 (struct ltt_subbuffer_header *)
865 ltt_relay_offset_address(buf,
866 subbuf_idx * buf->chan->subbuf_size);
867
868 header->lost_size = SUBBUF_OFFSET((buf->chan->subbuf_size - offset),
869 buf->chan);
870 header->cycle_count_end = tsc;
871 header->events_lost = local_read(&ltt_buf->events_lost);
872 header->subbuf_corrupt = local_read(&ltt_buf->corrupted_subbuffers);
873
874 }
875
876 void (*wake_consumer)(void *, int) = NULL;
877
878 void relay_set_wake_consumer(void (*wake)(void *, int))
879 {
880 wake_consumer = wake;
881 }
882
883 void relay_wake_consumer(void *arg, int finished)
884 {
885 if(wake_consumer)
886 wake_consumer(arg, finished);
887 }
888
889 static notrace void ltt_deliver(struct rchan_buf *buf, unsigned int subbuf_idx,
890 void *subbuf)
891 {
892 struct ltt_channel_struct *channel =
893 (struct ltt_channel_struct *)buf->chan->private_data;
894 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
895
896 if(ltt_buf->call_wake_consumer)
897 relay_wake_consumer(ACCESS_ONCE(ltt_buf->wake_consumer_arg), 0);
898 //ust// atomic_set(&ltt_buf->wakeup_readers, 1);
899 }
900
901 static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf)
902 {
903 struct ltt_channel_struct *ltt_chan;
904 int err;
905 //ust// struct dentry *dentry;
906
907 ltt_chan = buf->chan->private_data;
908 err = ltt_relay_create_buffer(ltt_chan->trace, ltt_chan, buf, buf->chan->n_subbufs);
909 if (err)
910 return ERR_PTR(err);
911
912 //ust// dentry = debugfs_create_file(filename, mode, parent, buf,
913 //ust// &ltt_file_operations);
914 //ust// if (!dentry)
915 //ust// goto error;
916 //ust// return dentry;
917 return NULL; //ust//
918 //ust//error:
919 ltt_relay_destroy_buffer(ltt_chan);
920 return NULL;
921 }
922
923 static int ltt_remove_buf_file_callback(struct rchan_buf *buf)
924 {
925 //ust// struct rchan_buf *buf = dentry->d_inode->i_private;
926 struct ltt_channel_struct *ltt_chan = buf->chan->private_data;
927
928 //ust// debugfs_remove(dentry);
929 ltt_relay_destroy_buffer(ltt_chan);
930
931 return 0;
932 }
933
934 /*
935 * Wake writers :
936 *
937 * This must be done after the trace is removed from the RCU list so that there
938 * are no stalled writers.
939 */
940 //ust// static void ltt_relay_wake_writers(struct ltt_channel_buf_struct *ltt_buf)
941 //ust// {
942 //ust//
943 //ust// if (waitqueue_active(&ltt_buf->write_wait))
944 //ust// wake_up_interruptible(&ltt_buf->write_wait);
945 //ust// }
946
947 /*
948 * This function should not be called from NMI interrupt context
949 */
950 static notrace void ltt_buf_unfull(struct rchan_buf *buf,
951 unsigned int subbuf_idx,
952 long offset)
953 {
954 //ust// struct ltt_channel_struct *ltt_channel =
955 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
956 //ust// struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
957 //ust//
958 //ust// ltt_relay_wake_writers(ltt_buf);
959 }
960
961 /**
962 * ltt_open - open file op for ltt files
963 * @inode: opened inode
964 * @file: opened file
965 *
966 * Open implementation. Makes sure only one open instance of a buffer is
967 * done at a given moment.
968 */
969 //ust// static int ltt_open(struct inode *inode, struct file *file)
970 //ust// {
971 //ust// struct rchan_buf *buf = inode->i_private;
972 //ust// struct ltt_channel_struct *ltt_channel =
973 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
974 //ust// struct ltt_channel_buf_struct *ltt_buf =
975 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
976 //ust//
977 //ust// if (!atomic_long_add_unless(&ltt_buf->active_readers, 1, 1))
978 //ust// return -EBUSY;
979 //ust// return ltt_relay_file_operations.open(inode, file);
980 //ust// }
981
982 /**
983 * ltt_release - release file op for ltt files
984 * @inode: opened inode
985 * @file: opened file
986 *
987 * Release implementation.
988 */
989 //ust// static int ltt_release(struct inode *inode, struct file *file)
990 //ust// {
991 //ust// struct rchan_buf *buf = inode->i_private;
992 //ust// struct ltt_channel_struct *ltt_channel =
993 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
994 //ust// struct ltt_channel_buf_struct *ltt_buf =
995 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
996 //ust// int ret;
997 //ust//
998 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
999 //ust// atomic_long_dec(&ltt_buf->active_readers);
1000 //ust// ret = ltt_relay_file_operations.release(inode, file);
1001 //ust// WARN_ON(ret);
1002 //ust// return ret;
1003 //ust// }
1004
1005 /**
1006 * ltt_poll - file op for ltt files
1007 * @filp: the file
1008 * @wait: poll table
1009 *
1010 * Poll implementation.
1011 */
1012 //ust// static unsigned int ltt_poll(struct file *filp, poll_table *wait)
1013 //ust// {
1014 //ust// unsigned int mask = 0;
1015 //ust// struct inode *inode = filp->f_dentry->d_inode;
1016 //ust// struct rchan_buf *buf = inode->i_private;
1017 //ust// struct ltt_channel_struct *ltt_channel =
1018 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1019 //ust// struct ltt_channel_buf_struct *ltt_buf =
1020 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1021 //ust//
1022 //ust// if (filp->f_mode & FMODE_READ) {
1023 //ust// poll_wait_set_exclusive(wait);
1024 //ust// poll_wait(filp, &buf->read_wait, wait);
1025 //ust//
1026 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1027 //ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1028 //ust// buf->chan)
1029 //ust// - SUBBUF_TRUNC(atomic_long_read(&ltt_buf->consumed),
1030 //ust// buf->chan)
1031 //ust// == 0) {
1032 //ust// if (buf->finalized)
1033 //ust// return POLLHUP;
1034 //ust// else
1035 //ust// return 0;
1036 //ust// } else {
1037 //ust// struct rchan *rchan =
1038 //ust// ltt_channel->trans_channel_data;
1039 //ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1040 //ust// buf->chan)
1041 //ust// - SUBBUF_TRUNC(atomic_long_read(
1042 //ust// &ltt_buf->consumed),
1043 //ust// buf->chan)
1044 //ust// >= rchan->alloc_size)
1045 //ust// return POLLPRI | POLLRDBAND;
1046 //ust// else
1047 //ust// return POLLIN | POLLRDNORM;
1048 //ust// }
1049 //ust// }
1050 //ust// return mask;
1051 //ust// }
1052
1053 int ltt_do_get_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, long *pconsumed_old)
1054 {
1055 struct ltt_channel_struct *ltt_channel = (struct ltt_channel_struct *)buf->chan->private_data;
1056 long consumed_old, consumed_idx, commit_count, write_offset;
1057 consumed_old = atomic_long_read(&ltt_buf->consumed);
1058 consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1059 commit_count = local_read(&ltt_buf->commit_count[consumed_idx]);
1060 /*
1061 * Make sure we read the commit count before reading the buffer
1062 * data and the write offset. Correct consumed offset ordering
1063 * wrt commit count is insured by the use of cmpxchg to update
1064 * the consumed offset.
1065 */
1066 smp_rmb();
1067 write_offset = local_read(&ltt_buf->offset);
1068 /*
1069 * Check that the subbuffer we are trying to consume has been
1070 * already fully committed.
1071 */
1072 if (((commit_count - buf->chan->subbuf_size)
1073 & ltt_channel->commit_count_mask)
1074 - (BUFFER_TRUNC(consumed_old, buf->chan)
1075 >> ltt_channel->n_subbufs_order)
1076 != 0) {
1077 return -EAGAIN;
1078 }
1079 /*
1080 * Check that we are not about to read the same subbuffer in
1081 * which the writer head is.
1082 */
1083 if ((SUBBUF_TRUNC(write_offset, buf->chan)
1084 - SUBBUF_TRUNC(consumed_old, buf->chan))
1085 == 0) {
1086 return -EAGAIN;
1087 }
1088
1089 *pconsumed_old = consumed_old;
1090 return 0;
1091 }
1092
1093 int ltt_do_put_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, u32 uconsumed_old)
1094 {
1095 long consumed_new, consumed_old;
1096
1097 consumed_old = atomic_long_read(&ltt_buf->consumed);
1098 consumed_old = consumed_old & (~0xFFFFFFFFL);
1099 consumed_old = consumed_old | uconsumed_old;
1100 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1101
1102 //ust// spin_lock(&ltt_buf->full_lock);
1103 if (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1104 consumed_new)
1105 != consumed_old) {
1106 /* We have been pushed by the writer : the last
1107 * buffer read _is_ corrupted! It can also
1108 * happen if this is a buffer we never got. */
1109 //ust// spin_unlock(&ltt_buf->full_lock);
1110 return -EIO;
1111 } else {
1112 /* tell the client that buffer is now unfull */
1113 int index;
1114 long data;
1115 index = SUBBUF_INDEX(consumed_old, buf->chan);
1116 data = BUFFER_OFFSET(consumed_old, buf->chan);
1117 ltt_buf_unfull(buf, index, data);
1118 //ust// spin_unlock(&ltt_buf->full_lock);
1119 }
1120 return 0;
1121 }
1122
1123 /**
1124 * ltt_ioctl - control on the debugfs file
1125 *
1126 * @inode: the inode
1127 * @filp: the file
1128 * @cmd: the command
1129 * @arg: command arg
1130 *
1131 * This ioctl implements three commands necessary for a minimal
1132 * producer/consumer implementation :
1133 * RELAY_GET_SUBBUF
1134 * Get the next sub buffer that can be read. It never blocks.
1135 * RELAY_PUT_SUBBUF
1136 * Release the currently read sub-buffer. Parameter is the last
1137 * put subbuffer (returned by GET_SUBBUF).
1138 * RELAY_GET_N_BUBBUFS
1139 * returns the number of sub buffers in the per cpu channel.
1140 * RELAY_GET_SUBBUF_SIZE
1141 * returns the size of the sub buffers.
1142 */
1143 //ust// static int ltt_ioctl(struct inode *inode, struct file *filp,
1144 //ust// unsigned int cmd, unsigned long arg)
1145 //ust// {
1146 //ust// struct rchan_buf *buf = inode->i_private;
1147 //ust// struct ltt_channel_struct *ltt_channel =
1148 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1149 //ust// struct ltt_channel_buf_struct *ltt_buf =
1150 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1151 //ust// u32 __user *argp = (u32 __user *)arg;
1152 //ust//
1153 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1154 //ust// switch (cmd) {
1155 //ust// case RELAY_GET_SUBBUF:
1156 //ust// {
1157 //ust// int ret;
1158 //ust// ret = ltt_do_get_subbuf(buf, ltt_buf, &consumed_old);
1159 //ust// if(ret < 0)
1160 //ust// return ret;
1161 //ust// return put_user((u32)consumed_old, argp);
1162 //ust// }
1163 //ust// case RELAY_PUT_SUBBUF:
1164 //ust// {
1165 //ust// int ret;
1166 //ust// u32 uconsumed_old;
1167 //ust// ret = get_user(uconsumed_old, argp);
1168 //ust// if (ret)
1169 //ust// return ret; /* will return -EFAULT */
1170 //ust// return ltt_do_put_subbuf(buf, ltt_buf, uconsumed_old);
1171 //ust// }
1172 //ust// case RELAY_GET_N_SUBBUFS:
1173 //ust// return put_user((u32)buf->chan->n_subbufs, argp);
1174 //ust// break;
1175 //ust// case RELAY_GET_SUBBUF_SIZE:
1176 //ust// return put_user((u32)buf->chan->subbuf_size, argp);
1177 //ust// break;
1178 //ust// default:
1179 //ust// return -ENOIOCTLCMD;
1180 //ust// }
1181 //ust// return 0;
1182 //ust// }
1183
1184 //ust// #ifdef CONFIG_COMPAT
1185 //ust// static long ltt_compat_ioctl(struct file *file, unsigned int cmd,
1186 //ust// unsigned long arg)
1187 //ust// {
1188 //ust// long ret = -ENOIOCTLCMD;
1189 //ust//
1190 //ust// lock_kernel();
1191 //ust// ret = ltt_ioctl(file->f_dentry->d_inode, file, cmd, arg);
1192 //ust// unlock_kernel();
1193 //ust//
1194 //ust// return ret;
1195 //ust// }
1196 //ust// #endif
1197
1198 //ust// static void ltt_relay_pipe_buf_release(struct pipe_inode_info *pipe,
1199 //ust// struct pipe_buffer *pbuf)
1200 //ust// {
1201 //ust// }
1202 //ust//
1203 //ust// static struct pipe_buf_operations ltt_relay_pipe_buf_ops = {
1204 //ust// .can_merge = 0,
1205 //ust// .map = generic_pipe_buf_map,
1206 //ust// .unmap = generic_pipe_buf_unmap,
1207 //ust// .confirm = generic_pipe_buf_confirm,
1208 //ust// .release = ltt_relay_pipe_buf_release,
1209 //ust// .steal = generic_pipe_buf_steal,
1210 //ust// .get = generic_pipe_buf_get,
1211 //ust// };
1212
1213 //ust// static void ltt_relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1214 //ust// {
1215 //ust// }
1216
1217 /*
1218 * subbuf_splice_actor - splice up to one subbuf's worth of data
1219 */
1220 //ust// static int subbuf_splice_actor(struct file *in,
1221 //ust// loff_t *ppos,
1222 //ust// struct pipe_inode_info *pipe,
1223 //ust// size_t len,
1224 //ust// unsigned int flags)
1225 //ust// {
1226 //ust// struct rchan_buf *buf = in->private_data;
1227 //ust// struct ltt_channel_struct *ltt_channel =
1228 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1229 //ust// struct ltt_channel_buf_struct *ltt_buf =
1230 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1231 //ust// unsigned int poff, subbuf_pages, nr_pages;
1232 //ust// struct page *pages[PIPE_BUFFERS];
1233 //ust// struct partial_page partial[PIPE_BUFFERS];
1234 //ust// struct splice_pipe_desc spd = {
1235 //ust// .pages = pages,
1236 //ust// .nr_pages = 0,
1237 //ust// .partial = partial,
1238 //ust// .flags = flags,
1239 //ust// .ops = &ltt_relay_pipe_buf_ops,
1240 //ust// .spd_release = ltt_relay_page_release,
1241 //ust// };
1242 //ust// long consumed_old, consumed_idx, roffset;
1243 //ust// unsigned long bytes_avail;
1244 //ust//
1245 //ust// /*
1246 //ust// * Check that a GET_SUBBUF ioctl has been done before.
1247 //ust// */
1248 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1249 //ust// consumed_old = atomic_long_read(&ltt_buf->consumed);
1250 //ust// consumed_old += *ppos;
1251 //ust// consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1252 //ust//
1253 //ust// /*
1254 //ust// * Adjust read len, if longer than what is available
1255 //ust// */
1256 //ust// bytes_avail = SUBBUF_TRUNC(local_read(&ltt_buf->offset), buf->chan)
1257 //ust// - consumed_old;
1258 //ust// WARN_ON(bytes_avail > buf->chan->alloc_size);
1259 //ust// len = min_t(size_t, len, bytes_avail);
1260 //ust// subbuf_pages = bytes_avail >> PAGE_SHIFT;
1261 //ust// nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1262 //ust// roffset = consumed_old & PAGE_MASK;
1263 //ust// poff = consumed_old & ~PAGE_MASK;
1264 //ust// printk_dbg(KERN_DEBUG "SPLICE actor len %zu pos %zd write_pos %ld\n",
1265 //ust// len, (ssize_t)*ppos, local_read(&ltt_buf->offset));
1266 //ust//
1267 //ust// for (; spd.nr_pages < nr_pages; spd.nr_pages++) {
1268 //ust// unsigned int this_len;
1269 //ust// struct buf_page *page;
1270 //ust//
1271 //ust// if (!len)
1272 //ust// break;
1273 //ust// printk_dbg(KERN_DEBUG "SPLICE actor loop len %zu roffset %ld\n",
1274 //ust// len, roffset);
1275 //ust//
1276 //ust// this_len = PAGE_SIZE - poff;
1277 //ust// page = ltt_relay_read_get_page(buf, roffset);
1278 //ust// spd.pages[spd.nr_pages] = page->page;
1279 //ust// spd.partial[spd.nr_pages].offset = poff;
1280 //ust// spd.partial[spd.nr_pages].len = this_len;
1281 //ust//
1282 //ust// poff = 0;
1283 //ust// roffset += PAGE_SIZE;
1284 //ust// len -= this_len;
1285 //ust// }
1286 //ust//
1287 //ust// if (!spd.nr_pages)
1288 //ust// return 0;
1289 //ust//
1290 //ust// return splice_to_pipe(pipe, &spd);
1291 //ust// }
1292
1293 //ust// static ssize_t ltt_relay_file_splice_read(struct file *in,
1294 //ust// loff_t *ppos,
1295 //ust// struct pipe_inode_info *pipe,
1296 //ust// size_t len,
1297 //ust// unsigned int flags)
1298 //ust// {
1299 //ust// ssize_t spliced;
1300 //ust// int ret;
1301 //ust//
1302 //ust// ret = 0;
1303 //ust// spliced = 0;
1304 //ust//
1305 //ust// printk_dbg(KERN_DEBUG "SPLICE read len %zu pos %zd\n",
1306 //ust// len, (ssize_t)*ppos);
1307 //ust// while (len && !spliced) {
1308 //ust// ret = subbuf_splice_actor(in, ppos, pipe, len, flags);
1309 //ust// printk_dbg(KERN_DEBUG "SPLICE read loop ret %d\n", ret);
1310 //ust// if (ret < 0)
1311 //ust// break;
1312 //ust// else if (!ret) {
1313 //ust// if (flags & SPLICE_F_NONBLOCK)
1314 //ust// ret = -EAGAIN;
1315 //ust// break;
1316 //ust// }
1317 //ust//
1318 //ust// *ppos += ret;
1319 //ust// if (ret > len)
1320 //ust// len = 0;
1321 //ust// else
1322 //ust// len -= ret;
1323 //ust// spliced += ret;
1324 //ust// }
1325 //ust//
1326 //ust// if (spliced)
1327 //ust// return spliced;
1328 //ust//
1329 //ust// return ret;
1330 //ust// }
1331
1332 static void ltt_relay_print_subbuffer_errors(
1333 struct ltt_channel_struct *ltt_chan,
1334 long cons_off)
1335 {
1336 struct rchan *rchan = ltt_chan->trans_channel_data;
1337 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1338 long cons_idx, commit_count, write_offset;
1339
1340 cons_idx = SUBBUF_INDEX(cons_off, rchan);
1341 commit_count = local_read(&ltt_buf->commit_count[cons_idx]);
1342 /*
1343 * No need to order commit_count and write_offset reads because we
1344 * execute after trace is stopped when there are no readers left.
1345 */
1346 write_offset = local_read(&ltt_buf->offset);
1347 printk(KERN_WARNING
1348 "LTT : unread channel %s offset is %ld "
1349 "and cons_off : %ld\n",
1350 ltt_chan->channel_name, write_offset, cons_off);
1351 /* Check each sub-buffer for non filled commit count */
1352 if (((commit_count - rchan->subbuf_size) & ltt_chan->commit_count_mask)
1353 - (BUFFER_TRUNC(cons_off, rchan) >> ltt_chan->n_subbufs_order)
1354 != 0)
1355 printk(KERN_ALERT
1356 "LTT : %s : subbuffer %lu has non filled "
1357 "commit count %lu.\n",
1358 ltt_chan->channel_name, cons_idx, commit_count);
1359 printk(KERN_ALERT "LTT : %s : commit count : %lu, subbuf size %zd\n",
1360 ltt_chan->channel_name, commit_count,
1361 rchan->subbuf_size);
1362 }
1363
1364 static void ltt_relay_print_errors(struct ltt_trace_struct *trace,
1365 struct ltt_channel_struct *ltt_chan)
1366 {
1367 struct rchan *rchan = ltt_chan->trans_channel_data;
1368 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1369 long cons_off;
1370
1371 for (cons_off = atomic_long_read(&ltt_buf->consumed);
1372 (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1373 rchan)
1374 - cons_off) > 0;
1375 cons_off = SUBBUF_ALIGN(cons_off, rchan))
1376 ltt_relay_print_subbuffer_errors(ltt_chan, cons_off);
1377 }
1378
1379 static void ltt_relay_print_buffer_errors(struct ltt_channel_struct *ltt_chan)
1380 {
1381 struct ltt_trace_struct *trace = ltt_chan->trace;
1382 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1383
1384 if (local_read(&ltt_buf->events_lost))
1385 printk(KERN_ALERT
1386 "LTT : %s : %ld events lost "
1387 "in %s channel.\n",
1388 ltt_chan->channel_name,
1389 local_read(&ltt_buf->events_lost),
1390 ltt_chan->channel_name);
1391 if (local_read(&ltt_buf->corrupted_subbuffers))
1392 printk(KERN_ALERT
1393 "LTT : %s : %ld corrupted subbuffers "
1394 "in %s channel.\n",
1395 ltt_chan->channel_name,
1396 local_read(&ltt_buf->corrupted_subbuffers),
1397 ltt_chan->channel_name);
1398
1399 ltt_relay_print_errors(trace, ltt_chan);
1400 }
1401
1402 static void ltt_relay_remove_dirs(struct ltt_trace_struct *trace)
1403 {
1404 //ust// debugfs_remove(trace->dentry.trace_root);
1405 }
1406
1407 static void ltt_relay_release_channel(struct kref *kref)
1408 {
1409 struct ltt_channel_struct *ltt_chan = container_of(kref,
1410 struct ltt_channel_struct, kref);
1411 free(ltt_chan->buf);
1412 }
1413
1414 /*
1415 * Create ltt buffer.
1416 */
1417 //ust// static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1418 //ust// struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1419 //ust// unsigned int cpu, unsigned int n_subbufs)
1420 //ust// {
1421 //ust// struct ltt_channel_buf_struct *ltt_buf =
1422 //ust// percpu_ptr(ltt_chan->buf, cpu);
1423 //ust// unsigned int j;
1424 //ust//
1425 //ust// ltt_buf->commit_count =
1426 //ust// kzalloc_node(sizeof(ltt_buf->commit_count) * n_subbufs,
1427 //ust// GFP_KERNEL, cpu_to_node(cpu));
1428 //ust// if (!ltt_buf->commit_count)
1429 //ust// return -ENOMEM;
1430 //ust// kref_get(&trace->kref);
1431 //ust// kref_get(&trace->ltt_transport_kref);
1432 //ust// kref_get(&ltt_chan->kref);
1433 //ust// local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1434 //ust// atomic_long_set(&ltt_buf->consumed, 0);
1435 //ust// atomic_long_set(&ltt_buf->active_readers, 0);
1436 //ust// for (j = 0; j < n_subbufs; j++)
1437 //ust// local_set(&ltt_buf->commit_count[j], 0);
1438 //ust// init_waitqueue_head(&ltt_buf->write_wait);
1439 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1440 //ust// spin_lock_init(&ltt_buf->full_lock);
1441 //ust//
1442 //ust// ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1443 //ust// /* atomic_add made on local variable on data that belongs to
1444 //ust// * various CPUs : ok because tracing not started (for this cpu). */
1445 //ust// local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1446 //ust//
1447 //ust// local_set(&ltt_buf->events_lost, 0);
1448 //ust// local_set(&ltt_buf->corrupted_subbuffers, 0);
1449 //ust//
1450 //ust// return 0;
1451 //ust// }
1452
1453 static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1454 struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1455 unsigned int n_subbufs)
1456 {
1457 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1458 unsigned int j;
1459
1460 ltt_buf->commit_count =
1461 zmalloc(sizeof(ltt_buf->commit_count) * n_subbufs);
1462 if (!ltt_buf->commit_count)
1463 return -ENOMEM;
1464 kref_get(&trace->kref);
1465 kref_get(&trace->ltt_transport_kref);
1466 kref_get(&ltt_chan->kref);
1467 local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1468 atomic_long_set(&ltt_buf->consumed, 0);
1469 atomic_long_set(&ltt_buf->active_readers, 0);
1470 for (j = 0; j < n_subbufs; j++)
1471 local_set(&ltt_buf->commit_count[j], 0);
1472 //ust// init_waitqueue_head(&ltt_buf->write_wait);
1473 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1474 //ust// spin_lock_init(&ltt_buf->full_lock);
1475
1476 ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1477
1478 local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1479
1480 local_set(&ltt_buf->events_lost, 0);
1481 local_set(&ltt_buf->corrupted_subbuffers, 0);
1482
1483 ltt_buf->call_wake_consumer = 0;
1484 ltt_buf->wake_consumer_arg = NULL;
1485
1486 return 0;
1487 }
1488
1489 static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan)
1490 {
1491 struct ltt_trace_struct *trace = ltt_chan->trace;
1492 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1493
1494 kref_put(&ltt_chan->trace->ltt_transport_kref,
1495 ltt_release_transport);
1496 ltt_relay_print_buffer_errors(ltt_chan);
1497 kfree(ltt_buf->commit_count);
1498 ltt_buf->commit_count = NULL;
1499 kref_put(&ltt_chan->kref, ltt_relay_release_channel);
1500 kref_put(&trace->kref, ltt_release_trace);
1501 //ust// wake_up_interruptible(&trace->kref_wq);
1502 }
1503
1504 /*
1505 * Create channel.
1506 */
1507 static int ltt_relay_create_channel(const char *trace_name,
1508 struct ltt_trace_struct *trace, struct dentry *dir,
1509 const char *channel_name, struct ltt_channel_struct *ltt_chan,
1510 unsigned int subbuf_size, unsigned int n_subbufs,
1511 int overwrite)
1512 {
1513 char *tmpname;
1514 unsigned int tmpname_len;
1515 int err = 0;
1516
1517 tmpname = kmalloc(PATH_MAX, GFP_KERNEL);
1518 if (!tmpname)
1519 return EPERM;
1520 if (overwrite) {
1521 strncpy(tmpname, LTT_FLIGHT_PREFIX, PATH_MAX-1);
1522 strncat(tmpname, channel_name,
1523 PATH_MAX-1-sizeof(LTT_FLIGHT_PREFIX));
1524 } else {
1525 strncpy(tmpname, channel_name, PATH_MAX-1);
1526 }
1527 strncat(tmpname, "_", PATH_MAX-1-strlen(tmpname));
1528
1529 kref_init(&ltt_chan->kref);
1530
1531 ltt_chan->trace = trace;
1532 ltt_chan->buffer_begin = ltt_buffer_begin_callback;
1533 ltt_chan->buffer_end = ltt_buffer_end_callback;
1534 ltt_chan->overwrite = overwrite;
1535 ltt_chan->n_subbufs_order = get_count_order(n_subbufs);
1536 ltt_chan->commit_count_mask = (~0UL >> ltt_chan->n_subbufs_order);
1537 //ust// ltt_chan->buf = percpu_alloc_mask(sizeof(struct ltt_channel_buf_struct), GFP_KERNEL, cpu_possible_map);
1538 ltt_chan->buf = malloc(sizeof(struct ltt_channel_buf_struct));
1539 if (!ltt_chan->buf)
1540 goto alloc_error;
1541 ltt_chan->trans_channel_data = ltt_relay_open(tmpname,
1542 dir,
1543 subbuf_size,
1544 n_subbufs,
1545 ltt_chan);
1546 tmpname_len = strlen(tmpname);
1547 if (tmpname_len > 0) {
1548 /* Remove final _ for pretty printing */
1549 tmpname[tmpname_len-1] = '\0';
1550 }
1551 if (ltt_chan->trans_channel_data == NULL) {
1552 printk(KERN_ERR "LTT : Can't open %s channel for trace %s\n",
1553 tmpname, trace_name);
1554 goto relay_open_error;
1555 }
1556
1557 err = 0;
1558 goto end;
1559
1560 relay_open_error:
1561 //ust// percpu_free(ltt_chan->buf);
1562 alloc_error:
1563 err = EPERM;
1564 end:
1565 kfree(tmpname);
1566 return err;
1567 }
1568
1569 static int ltt_relay_create_dirs(struct ltt_trace_struct *new_trace)
1570 {
1571 //ust// new_trace->dentry.trace_root = debugfs_create_dir(new_trace->trace_name,
1572 //ust// get_ltt_root());
1573 //ust// if (new_trace->dentry.trace_root == NULL) {
1574 //ust// printk(KERN_ERR "LTT : Trace directory name %s already taken\n",
1575 //ust// new_trace->trace_name);
1576 //ust// return EEXIST;
1577 //ust// }
1578
1579 //ust// new_trace->callbacks.create_buf_file = ltt_create_buf_file_callback;
1580 //ust// new_trace->callbacks.remove_buf_file = ltt_remove_buf_file_callback;
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * LTTng channel flush function.
1587 *
1588 * Must be called when no tracing is active in the channel, because of
1589 * accesses across CPUs.
1590 */
1591 static notrace void ltt_relay_buffer_flush(struct rchan_buf *buf)
1592 {
1593 struct ltt_channel_struct *channel =
1594 (struct ltt_channel_struct *)buf->chan->private_data;
1595 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
1596
1597 buf->finalized = 1;
1598 ltt_force_switch(buf, FORCE_FLUSH);
1599
1600 relay_wake_consumer(ltt_buf, 1);
1601 }
1602
1603 static void ltt_relay_async_wakeup_chan(struct ltt_channel_struct *ltt_channel)
1604 {
1605 //ust// unsigned int i;
1606 //ust// struct rchan *rchan = ltt_channel->trans_channel_data;
1607 //ust//
1608 //ust// for_each_possible_cpu(i) {
1609 //ust// struct ltt_channel_buf_struct *ltt_buf =
1610 //ust// percpu_ptr(ltt_channel->buf, i);
1611 //ust//
1612 //ust// if (atomic_read(&ltt_buf->wakeup_readers) == 1) {
1613 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1614 //ust// wake_up_interruptible(&rchan->buf[i]->read_wait);
1615 //ust// }
1616 //ust// }
1617 }
1618
1619 static void ltt_relay_finish_buffer(struct ltt_channel_struct *ltt_channel)
1620 {
1621 struct rchan *rchan = ltt_channel->trans_channel_data;
1622
1623 if (rchan->buf) {
1624 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
1625 ltt_relay_buffer_flush(rchan->buf);
1626 //ust// ltt_relay_wake_writers(ltt_buf);
1627 }
1628 }
1629
1630
1631 static void ltt_relay_finish_channel(struct ltt_channel_struct *ltt_channel)
1632 {
1633 unsigned int i;
1634
1635 //ust// for_each_possible_cpu(i)
1636 ltt_relay_finish_buffer(ltt_channel);
1637 }
1638
1639 static void ltt_relay_remove_channel(struct ltt_channel_struct *channel)
1640 {
1641 struct rchan *rchan = channel->trans_channel_data;
1642
1643 ltt_relay_close(rchan);
1644 kref_put(&channel->kref, ltt_relay_release_channel);
1645 }
1646
1647 struct ltt_reserve_switch_offsets {
1648 long begin, end, old;
1649 long begin_switch, end_switch_current, end_switch_old;
1650 long commit_count, reserve_commit_diff;
1651 size_t before_hdr_pad, size;
1652 };
1653
1654 /*
1655 * Returns :
1656 * 0 if ok
1657 * !0 if execution must be aborted.
1658 */
1659 static inline int ltt_relay_try_reserve(
1660 struct ltt_channel_struct *ltt_channel,
1661 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1662 struct rchan_buf *buf,
1663 struct ltt_reserve_switch_offsets *offsets, size_t data_size,
1664 u64 *tsc, unsigned int *rflags, int largest_align)
1665 {
1666 offsets->begin = local_read(&ltt_buf->offset);
1667 offsets->old = offsets->begin;
1668 offsets->begin_switch = 0;
1669 offsets->end_switch_current = 0;
1670 offsets->end_switch_old = 0;
1671
1672 *tsc = trace_clock_read64();
1673 if (last_tsc_overflow(ltt_buf, *tsc))
1674 *rflags = LTT_RFLAG_ID_SIZE_TSC;
1675
1676 if (SUBBUF_OFFSET(offsets->begin, buf->chan) == 0) {
1677 offsets->begin_switch = 1; /* For offsets->begin */
1678 } else {
1679 offsets->size = ltt_get_header_size(ltt_channel,
1680 offsets->begin, data_size,
1681 &offsets->before_hdr_pad, *rflags);
1682 offsets->size += ltt_align(offsets->begin + offsets->size,
1683 largest_align)
1684 + data_size;
1685 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1686 > buf->chan->subbuf_size) {
1687 offsets->end_switch_old = 1; /* For offsets->old */
1688 offsets->begin_switch = 1; /* For offsets->begin */
1689 }
1690 }
1691 if (offsets->begin_switch) {
1692 long subbuf_index;
1693
1694 if (offsets->end_switch_old)
1695 offsets->begin = SUBBUF_ALIGN(offsets->begin,
1696 buf->chan);
1697 offsets->begin = offsets->begin + ltt_subbuffer_header_size();
1698 /* Test new buffer integrity */
1699 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1700 offsets->reserve_commit_diff =
1701 (BUFFER_TRUNC(offsets->begin, buf->chan)
1702 >> ltt_channel->n_subbufs_order)
1703 - (local_read(&ltt_buf->commit_count[subbuf_index])
1704 & ltt_channel->commit_count_mask);
1705 if (offsets->reserve_commit_diff == 0) {
1706 /* Next buffer not corrupted. */
1707 if (!ltt_channel->overwrite &&
1708 (SUBBUF_TRUNC(offsets->begin, buf->chan)
1709 - SUBBUF_TRUNC(atomic_long_read(
1710 &ltt_buf->consumed),
1711 buf->chan))
1712 >= rchan->alloc_size) {
1713 /*
1714 * We do not overwrite non consumed buffers
1715 * and we are full : event is lost.
1716 */
1717 local_inc(&ltt_buf->events_lost);
1718 return -1;
1719 } else {
1720 /*
1721 * next buffer not corrupted, we are either in
1722 * overwrite mode or the buffer is not full.
1723 * It's safe to write in this new subbuffer.
1724 */
1725 }
1726 } else {
1727 /*
1728 * Next subbuffer corrupted. Force pushing reader even
1729 * in normal mode. It's safe to write in this new
1730 * subbuffer.
1731 */
1732 }
1733 offsets->size = ltt_get_header_size(ltt_channel,
1734 offsets->begin, data_size,
1735 &offsets->before_hdr_pad, *rflags);
1736 offsets->size += ltt_align(offsets->begin + offsets->size,
1737 largest_align)
1738 + data_size;
1739 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1740 > buf->chan->subbuf_size) {
1741 /*
1742 * Event too big for subbuffers, report error, don't
1743 * complete the sub-buffer switch.
1744 */
1745 local_inc(&ltt_buf->events_lost);
1746 return -1;
1747 } else {
1748 /*
1749 * We just made a successful buffer switch and the event
1750 * fits in the new subbuffer. Let's write.
1751 */
1752 }
1753 } else {
1754 /*
1755 * Event fits in the current buffer and we are not on a switch
1756 * boundary. It's safe to write.
1757 */
1758 }
1759 offsets->end = offsets->begin + offsets->size;
1760
1761 if ((SUBBUF_OFFSET(offsets->end, buf->chan)) == 0) {
1762 /*
1763 * The offset_end will fall at the very beginning of the next
1764 * subbuffer.
1765 */
1766 offsets->end_switch_current = 1; /* For offsets->begin */
1767 }
1768 return 0;
1769 }
1770
1771 /*
1772 * Returns :
1773 * 0 if ok
1774 * !0 if execution must be aborted.
1775 */
1776 static inline int ltt_relay_try_switch(
1777 enum force_switch_mode mode,
1778 struct ltt_channel_struct *ltt_channel,
1779 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1780 struct rchan_buf *buf,
1781 struct ltt_reserve_switch_offsets *offsets,
1782 u64 *tsc)
1783 {
1784 long subbuf_index;
1785
1786 offsets->begin = local_read(&ltt_buf->offset);
1787 offsets->old = offsets->begin;
1788 offsets->begin_switch = 0;
1789 offsets->end_switch_old = 0;
1790
1791 *tsc = trace_clock_read64();
1792
1793 if (SUBBUF_OFFSET(offsets->begin, buf->chan) != 0) {
1794 offsets->begin = SUBBUF_ALIGN(offsets->begin, buf->chan);
1795 offsets->end_switch_old = 1;
1796 } else {
1797 /* we do not have to switch : buffer is empty */
1798 return -1;
1799 }
1800 if (mode == FORCE_ACTIVE)
1801 offsets->begin += ltt_subbuffer_header_size();
1802 /*
1803 * Always begin_switch in FORCE_ACTIVE mode.
1804 * Test new buffer integrity
1805 */
1806 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1807 offsets->reserve_commit_diff =
1808 (BUFFER_TRUNC(offsets->begin, buf->chan)
1809 >> ltt_channel->n_subbufs_order)
1810 - (local_read(&ltt_buf->commit_count[subbuf_index])
1811 & ltt_channel->commit_count_mask);
1812 if (offsets->reserve_commit_diff == 0) {
1813 /* Next buffer not corrupted. */
1814 if (mode == FORCE_ACTIVE
1815 && !ltt_channel->overwrite
1816 && offsets->begin - atomic_long_read(&ltt_buf->consumed)
1817 >= rchan->alloc_size) {
1818 /*
1819 * We do not overwrite non consumed buffers and we are
1820 * full : ignore switch while tracing is active.
1821 */
1822 return -1;
1823 }
1824 } else {
1825 /*
1826 * Next subbuffer corrupted. Force pushing reader even in normal
1827 * mode
1828 */
1829 }
1830 offsets->end = offsets->begin;
1831 return 0;
1832 }
1833
1834 static inline void ltt_reserve_push_reader(
1835 struct ltt_channel_struct *ltt_channel,
1836 struct ltt_channel_buf_struct *ltt_buf,
1837 struct rchan *rchan,
1838 struct rchan_buf *buf,
1839 struct ltt_reserve_switch_offsets *offsets)
1840 {
1841 long consumed_old, consumed_new;
1842
1843 do {
1844 consumed_old = atomic_long_read(&ltt_buf->consumed);
1845 /*
1846 * If buffer is in overwrite mode, push the reader consumed
1847 * count if the write position has reached it and we are not
1848 * at the first iteration (don't push the reader farther than
1849 * the writer). This operation can be done concurrently by many
1850 * writers in the same buffer, the writer being at the farthest
1851 * write position sub-buffer index in the buffer being the one
1852 * which will win this loop.
1853 * If the buffer is not in overwrite mode, pushing the reader
1854 * only happens if a sub-buffer is corrupted.
1855 */
1856 if ((SUBBUF_TRUNC(offsets->end-1, buf->chan)
1857 - SUBBUF_TRUNC(consumed_old, buf->chan))
1858 >= rchan->alloc_size)
1859 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1860 else {
1861 consumed_new = consumed_old;
1862 break;
1863 }
1864 } while (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1865 consumed_new) != consumed_old);
1866
1867 if (consumed_old != consumed_new) {
1868 /*
1869 * Reader pushed : we are the winner of the push, we can
1870 * therefore reequilibrate reserve and commit. Atomic increment
1871 * of the commit count permits other writers to play around
1872 * with this variable before us. We keep track of
1873 * corrupted_subbuffers even in overwrite mode :
1874 * we never want to write over a non completely committed
1875 * sub-buffer : possible causes : the buffer size is too low
1876 * compared to the unordered data input, or there is a writer
1877 * that died between the reserve and the commit.
1878 */
1879 if (offsets->reserve_commit_diff) {
1880 /*
1881 * We have to alter the sub-buffer commit count.
1882 * We do not deliver the previous subbuffer, given it
1883 * was either corrupted or not consumed (overwrite
1884 * mode).
1885 */
1886 local_add(offsets->reserve_commit_diff,
1887 &ltt_buf->commit_count[
1888 SUBBUF_INDEX(offsets->begin,
1889 buf->chan)]);
1890 if (!ltt_channel->overwrite
1891 || offsets->reserve_commit_diff
1892 != rchan->subbuf_size) {
1893 /*
1894 * The reserve commit diff was not subbuf_size :
1895 * it means the subbuffer was partly written to
1896 * and is therefore corrupted. If it is multiple
1897 * of subbuffer size and we are in flight
1898 * recorder mode, we are skipping over a whole
1899 * subbuffer.
1900 */
1901 local_inc(&ltt_buf->corrupted_subbuffers);
1902 }
1903 }
1904 }
1905 }
1906
1907
1908 /*
1909 * ltt_reserve_switch_old_subbuf: switch old subbuffer
1910 *
1911 * Concurrency safe because we are the last and only thread to alter this
1912 * sub-buffer. As long as it is not delivered and read, no other thread can
1913 * alter the offset, alter the reserve_count or call the
1914 * client_buffer_end_callback on this sub-buffer.
1915 *
1916 * The only remaining threads could be the ones with pending commits. They will
1917 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1918 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1919 * corrupted sub-buffers count and push the readers across these sub-buffers.
1920 *
1921 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1922 * switches in, finding out it's corrupted. The result will be than the old
1923 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1924 * will be declared corrupted too because of the commit count adjustment.
1925 *
1926 * Note : offset_old should never be 0 here.
1927 */
1928 static inline void ltt_reserve_switch_old_subbuf(
1929 struct ltt_channel_struct *ltt_channel,
1930 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1931 struct rchan_buf *buf,
1932 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1933 {
1934 long oldidx = SUBBUF_INDEX(offsets->old - 1, rchan);
1935
1936 ltt_channel->buffer_end(buf, *tsc, offsets->old, oldidx);
1937 /* Must write buffer end before incrementing commit count */
1938 smp_wmb();
1939 offsets->commit_count =
1940 local_add_return(rchan->subbuf_size
1941 - (SUBBUF_OFFSET(offsets->old - 1, rchan)
1942 + 1),
1943 &ltt_buf->commit_count[oldidx]);
1944 if ((BUFFER_TRUNC(offsets->old - 1, rchan)
1945 >> ltt_channel->n_subbufs_order)
1946 - ((offsets->commit_count - rchan->subbuf_size)
1947 & ltt_channel->commit_count_mask) == 0)
1948 ltt_deliver(buf, oldidx, NULL);
1949 }
1950
1951 /*
1952 * ltt_reserve_switch_new_subbuf: Populate new subbuffer.
1953 *
1954 * This code can be executed unordered : writers may already have written to the
1955 * sub-buffer before this code gets executed, caution. The commit makes sure
1956 * that this code is executed before the deliver of this sub-buffer.
1957 */
1958 static inline void ltt_reserve_switch_new_subbuf(
1959 struct ltt_channel_struct *ltt_channel,
1960 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1961 struct rchan_buf *buf,
1962 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1963 {
1964 long beginidx = SUBBUF_INDEX(offsets->begin, rchan);
1965
1966 ltt_channel->buffer_begin(buf, *tsc, beginidx);
1967 /* Must write buffer end before incrementing commit count */
1968 smp_wmb();
1969 offsets->commit_count = local_add_return(ltt_subbuffer_header_size(),
1970 &ltt_buf->commit_count[beginidx]);
1971 /* Check if the written buffer has to be delivered */
1972 if ((BUFFER_TRUNC(offsets->begin, rchan)
1973 >> ltt_channel->n_subbufs_order)
1974 - ((offsets->commit_count - rchan->subbuf_size)
1975 & ltt_channel->commit_count_mask) == 0)
1976 ltt_deliver(buf, beginidx, NULL);
1977 }
1978
1979
1980 /*
1981 * ltt_reserve_end_switch_current: finish switching current subbuffer
1982 *
1983 * Concurrency safe because we are the last and only thread to alter this
1984 * sub-buffer. As long as it is not delivered and read, no other thread can
1985 * alter the offset, alter the reserve_count or call the
1986 * client_buffer_end_callback on this sub-buffer.
1987 *
1988 * The only remaining threads could be the ones with pending commits. They will
1989 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1990 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1991 * corrupted sub-buffers count and push the readers across these sub-buffers.
1992 *
1993 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1994 * switches in, finding out it's corrupted. The result will be than the old
1995 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1996 * will be declared corrupted too because of the commit count adjustment.
1997 */
1998 static inline void ltt_reserve_end_switch_current(
1999 struct ltt_channel_struct *ltt_channel,
2000 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
2001 struct rchan_buf *buf,
2002 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
2003 {
2004 long endidx = SUBBUF_INDEX(offsets->end - 1, rchan);
2005
2006 ltt_channel->buffer_end(buf, *tsc, offsets->end, endidx);
2007 /* Must write buffer begin before incrementing commit count */
2008 smp_wmb();
2009 offsets->commit_count =
2010 local_add_return(rchan->subbuf_size
2011 - (SUBBUF_OFFSET(offsets->end - 1, rchan)
2012 + 1),
2013 &ltt_buf->commit_count[endidx]);
2014 if ((BUFFER_TRUNC(offsets->end - 1, rchan)
2015 >> ltt_channel->n_subbufs_order)
2016 - ((offsets->commit_count - rchan->subbuf_size)
2017 & ltt_channel->commit_count_mask) == 0)
2018 ltt_deliver(buf, endidx, NULL);
2019 }
2020
2021 /**
2022 * ltt_relay_reserve_slot - Atomic slot reservation in a LTTng buffer.
2023 * @trace: the trace structure to log to.
2024 * @ltt_channel: channel structure
2025 * @transport_data: data structure specific to ltt relay
2026 * @data_size: size of the variable length data to log.
2027 * @slot_size: pointer to total size of the slot (out)
2028 * @buf_offset : pointer to reserved buffer offset (out)
2029 * @tsc: pointer to the tsc at the slot reservation (out)
2030 * @cpu: cpuid
2031 *
2032 * Return : -ENOSPC if not enough space, else returns 0.
2033 * It will take care of sub-buffer switching.
2034 */
2035 static notrace int ltt_relay_reserve_slot(struct ltt_trace_struct *trace,
2036 struct ltt_channel_struct *ltt_channel, void **transport_data,
2037 size_t data_size, size_t *slot_size, long *buf_offset, u64 *tsc,
2038 unsigned int *rflags, int largest_align)
2039 {
2040 struct rchan *rchan = ltt_channel->trans_channel_data;
2041 struct rchan_buf *buf = *transport_data = rchan->buf;
2042 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2043 struct ltt_reserve_switch_offsets offsets;
2044
2045 offsets.reserve_commit_diff = 0;
2046 offsets.size = 0;
2047
2048 /*
2049 * Perform retryable operations.
2050 */
2051 if (ltt_nesting > 4) {
2052 local_inc(&ltt_buf->events_lost);
2053 return -EPERM;
2054 }
2055 do {
2056 if (ltt_relay_try_reserve(ltt_channel, ltt_buf,
2057 rchan, buf, &offsets, data_size, tsc, rflags,
2058 largest_align))
2059 return -ENOSPC;
2060 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2061 offsets.end) != offsets.old);
2062
2063 /*
2064 * Atomically update last_tsc. This update races against concurrent
2065 * atomic updates, but the race will always cause supplementary full TSC
2066 * events, never the opposite (missing a full TSC event when it would be
2067 * needed).
2068 */
2069 save_last_tsc(ltt_buf, *tsc);
2070
2071 /*
2072 * Push the reader if necessary
2073 */
2074 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan, buf, &offsets);
2075
2076 /*
2077 * Switch old subbuffer if needed.
2078 */
2079 if (offsets.end_switch_old)
2080 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2081 &offsets, tsc);
2082
2083 /*
2084 * Populate new subbuffer.
2085 */
2086 if (offsets.begin_switch)
2087 ltt_reserve_switch_new_subbuf(ltt_channel, ltt_buf, rchan,
2088 buf, &offsets, tsc);
2089
2090 if (offsets.end_switch_current)
2091 ltt_reserve_end_switch_current(ltt_channel, ltt_buf, rchan,
2092 buf, &offsets, tsc);
2093
2094 *slot_size = offsets.size;
2095 *buf_offset = offsets.begin + offsets.before_hdr_pad;
2096 return 0;
2097 }
2098
2099 /*
2100 * Force a sub-buffer switch for a per-cpu buffer. This operation is
2101 * completely reentrant : can be called while tracing is active with
2102 * absolutely no lock held.
2103 *
2104 * Note, however, that as a local_cmpxchg is used for some atomic
2105 * operations, this function must be called from the CPU which owns the buffer
2106 * for a ACTIVE flush.
2107 */
2108 static notrace void ltt_force_switch(struct rchan_buf *buf,
2109 enum force_switch_mode mode)
2110 {
2111 struct ltt_channel_struct *ltt_channel =
2112 (struct ltt_channel_struct *)buf->chan->private_data;
2113 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2114 struct rchan *rchan = ltt_channel->trans_channel_data;
2115 struct ltt_reserve_switch_offsets offsets;
2116 u64 tsc;
2117
2118 offsets.reserve_commit_diff = 0;
2119 offsets.size = 0;
2120
2121 /*
2122 * Perform retryable operations.
2123 */
2124 do {
2125 if (ltt_relay_try_switch(mode, ltt_channel, ltt_buf,
2126 rchan, buf, &offsets, &tsc))
2127 return;
2128 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2129 offsets.end) != offsets.old);
2130
2131 /*
2132 * Atomically update last_tsc. This update races against concurrent
2133 * atomic updates, but the race will always cause supplementary full TSC
2134 * events, never the opposite (missing a full TSC event when it would be
2135 * needed).
2136 */
2137 save_last_tsc(ltt_buf, tsc);
2138
2139 /*
2140 * Push the reader if necessary
2141 */
2142 if (mode == FORCE_ACTIVE)
2143 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan,
2144 buf, &offsets);
2145
2146 /*
2147 * Switch old subbuffer if needed.
2148 */
2149 if (offsets.end_switch_old)
2150 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2151 &offsets, &tsc);
2152
2153 /*
2154 * Populate new subbuffer.
2155 */
2156 if (mode == FORCE_ACTIVE)
2157 ltt_reserve_switch_new_subbuf(ltt_channel,
2158 ltt_buf, rchan, buf, &offsets, &tsc);
2159 }
2160
2161 /*
2162 * for flight recording. must be called after relay_commit.
2163 * This function decrements de subbuffer's lost_size each time the commit count
2164 * reaches back the reserve offset (module subbuffer size). It is useful for
2165 * crash dump.
2166 * We use slot_size - 1 to make sure we deal correctly with the case where we
2167 * fill the subbuffer completely (so the subbuf index stays in the previous
2168 * subbuffer).
2169 */
2170 #ifdef CONFIG_LTT_VMCORE
2171 static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2172 long buf_offset, size_t slot_size)
2173 {
2174 struct ltt_channel_struct *ltt_channel =
2175 (struct ltt_channel_struct *)buf->chan->private_data;
2176 struct ltt_channel_buf_struct *ltt_buf =
2177 percpu_ptr(ltt_channel->buf, buf->cpu);
2178 struct ltt_subbuffer_header *header;
2179 long offset, subbuf_idx, commit_count;
2180 uint32_t lost_old, lost_new;
2181
2182 subbuf_idx = SUBBUF_INDEX(buf_offset - 1, buf->chan);
2183 offset = buf_offset + slot_size;
2184 header = (struct ltt_subbuffer_header *)
2185 ltt_relay_offset_address(buf,
2186 subbuf_idx * buf->chan->subbuf_size);
2187 for (;;) {
2188 lost_old = header->lost_size;
2189 commit_count =
2190 local_read(&ltt_buf->commit_count[subbuf_idx]);
2191 /* SUBBUF_OFFSET includes commit_count_mask */
2192 if (!SUBBUF_OFFSET(offset - commit_count, buf->chan)) {
2193 lost_new = (uint32_t)buf->chan->subbuf_size
2194 - SUBBUF_OFFSET(commit_count, buf->chan);
2195 lost_old = cmpxchg_local(&header->lost_size, lost_old,
2196 lost_new);
2197 if (lost_old <= lost_new)
2198 break;
2199 } else {
2200 break;
2201 }
2202 }
2203 }
2204 #else
2205 static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2206 long buf_offset, size_t slot_size)
2207 {
2208 }
2209 #endif
2210
2211 /*
2212 * Atomic unordered slot commit. Increments the commit count in the
2213 * specified sub-buffer, and delivers it if necessary.
2214 *
2215 * Parameters:
2216 *
2217 * @ltt_channel : channel structure
2218 * @transport_data: transport-specific data
2219 * @buf_offset : offset following the event header.
2220 * @slot_size : size of the reserved slot.
2221 */
2222 static notrace void ltt_relay_commit_slot(
2223 struct ltt_channel_struct *ltt_channel,
2224 void **transport_data, long buf_offset, size_t slot_size)
2225 {
2226 struct rchan_buf *buf = *transport_data;
2227 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2228 struct rchan *rchan = buf->chan;
2229 long offset_end = buf_offset;
2230 long endidx = SUBBUF_INDEX(offset_end - 1, rchan);
2231 long commit_count;
2232
2233 /* Must write slot data before incrementing commit count */
2234 smp_wmb();
2235 commit_count = local_add_return(slot_size,
2236 &ltt_buf->commit_count[endidx]);
2237 /* Check if all commits have been done */
2238 if ((BUFFER_TRUNC(offset_end - 1, rchan)
2239 >> ltt_channel->n_subbufs_order)
2240 - ((commit_count - rchan->subbuf_size)
2241 & ltt_channel->commit_count_mask) == 0)
2242 ltt_deliver(buf, endidx, NULL);
2243 /*
2244 * Update lost_size for each commit. It's needed only for extracting
2245 * ltt buffers from vmcore, after crash.
2246 */
2247 ltt_write_commit_counter(buf, buf_offset, slot_size);
2248 }
2249
2250 /*
2251 * This is called with preemption disabled when user space has requested
2252 * blocking mode. If one of the active traces has free space below a
2253 * specific threshold value, we reenable preemption and block.
2254 */
2255 static int ltt_relay_user_blocking(struct ltt_trace_struct *trace,
2256 unsigned int chan_index, size_t data_size,
2257 struct user_dbg_data *dbg)
2258 {
2259 //ust// struct rchan *rchan;
2260 //ust// struct ltt_channel_buf_struct *ltt_buf;
2261 //ust// struct ltt_channel_struct *channel;
2262 //ust// struct rchan_buf *relay_buf;
2263 //ust// int cpu;
2264 //ust// DECLARE_WAITQUEUE(wait, current);
2265 //ust//
2266 //ust// channel = &trace->channels[chan_index];
2267 //ust// rchan = channel->trans_channel_data;
2268 //ust// cpu = smp_processor_id();
2269 //ust// relay_buf = rchan->buf[cpu];
2270 //ust// ltt_buf = percpu_ptr(channel->buf, cpu);
2271 //ust//
2272 //ust// /*
2273 //ust// * Check if data is too big for the channel : do not
2274 //ust// * block for it.
2275 //ust// */
2276 //ust// if (LTT_RESERVE_CRITICAL + data_size > relay_buf->chan->subbuf_size)
2277 //ust// return 0;
2278 //ust//
2279 //ust// /*
2280 //ust// * If free space too low, we block. We restart from the
2281 //ust// * beginning after we resume (cpu id may have changed
2282 //ust// * while preemption is active).
2283 //ust// */
2284 //ust// spin_lock(&ltt_buf->full_lock);
2285 //ust// if (!channel->overwrite) {
2286 //ust// dbg->write = local_read(&ltt_buf->offset);
2287 //ust// dbg->read = atomic_long_read(&ltt_buf->consumed);
2288 //ust// dbg->avail_size = dbg->write + LTT_RESERVE_CRITICAL + data_size
2289 //ust// - SUBBUF_TRUNC(dbg->read,
2290 //ust// relay_buf->chan);
2291 //ust// if (dbg->avail_size > rchan->alloc_size) {
2292 //ust// __set_current_state(TASK_INTERRUPTIBLE);
2293 //ust// add_wait_queue(&ltt_buf->write_wait, &wait);
2294 //ust// spin_unlock(&ltt_buf->full_lock);
2295 //ust// preempt_enable();
2296 //ust// schedule();
2297 //ust// __set_current_state(TASK_RUNNING);
2298 //ust// remove_wait_queue(&ltt_buf->write_wait, &wait);
2299 //ust// if (signal_pending(current))
2300 //ust// return -ERESTARTSYS;
2301 //ust// preempt_disable();
2302 //ust// return 1;
2303 //ust// }
2304 //ust// }
2305 //ust// spin_unlock(&ltt_buf->full_lock);
2306 return 0;
2307 }
2308
2309 static void ltt_relay_print_user_errors(struct ltt_trace_struct *trace,
2310 unsigned int chan_index, size_t data_size,
2311 struct user_dbg_data *dbg)
2312 {
2313 struct rchan *rchan;
2314 struct ltt_channel_buf_struct *ltt_buf;
2315 struct ltt_channel_struct *channel;
2316 struct rchan_buf *relay_buf;
2317
2318 channel = &trace->channels[chan_index];
2319 rchan = channel->trans_channel_data;
2320 relay_buf = rchan->buf;
2321 ltt_buf = channel->buf;
2322
2323 printk(KERN_ERR "Error in LTT usertrace : "
2324 "buffer full : event lost in blocking "
2325 "mode. Increase LTT_RESERVE_CRITICAL.\n");
2326 printk(KERN_ERR "LTT nesting level is %u.\n", ltt_nesting);
2327 printk(KERN_ERR "LTT avail size %lu.\n",
2328 dbg->avail_size);
2329 printk(KERN_ERR "avai write : %lu, read : %lu\n",
2330 dbg->write, dbg->read);
2331
2332 dbg->write = local_read(&ltt_buf->offset);
2333 dbg->read = atomic_long_read(&ltt_buf->consumed);
2334
2335 printk(KERN_ERR "LTT cur size %lu.\n",
2336 dbg->write + LTT_RESERVE_CRITICAL + data_size
2337 - SUBBUF_TRUNC(dbg->read, relay_buf->chan));
2338 printk(KERN_ERR "cur write : %lu, read : %lu\n",
2339 dbg->write, dbg->read);
2340 }
2341
2342 //ust// static struct ltt_transport ltt_relay_transport = {
2343 //ust// .name = "relay",
2344 //ust// .owner = THIS_MODULE,
2345 //ust// .ops = {
2346 //ust// .create_dirs = ltt_relay_create_dirs,
2347 //ust// .remove_dirs = ltt_relay_remove_dirs,
2348 //ust// .create_channel = ltt_relay_create_channel,
2349 //ust// .finish_channel = ltt_relay_finish_channel,
2350 //ust// .remove_channel = ltt_relay_remove_channel,
2351 //ust// .wakeup_channel = ltt_relay_async_wakeup_chan,
2352 //ust// .commit_slot = ltt_relay_commit_slot,
2353 //ust// .reserve_slot = ltt_relay_reserve_slot,
2354 //ust// .user_blocking = ltt_relay_user_blocking,
2355 //ust// .user_errors = ltt_relay_print_user_errors,
2356 //ust// },
2357 //ust// };
2358
2359 static struct ltt_transport ust_relay_transport = {
2360 .name = "ustrelay",
2361 //ust// .owner = THIS_MODULE,
2362 .ops = {
2363 .create_dirs = ltt_relay_create_dirs,
2364 .remove_dirs = ltt_relay_remove_dirs,
2365 .create_channel = ltt_relay_create_channel,
2366 .finish_channel = ltt_relay_finish_channel,
2367 .remove_channel = ltt_relay_remove_channel,
2368 .wakeup_channel = ltt_relay_async_wakeup_chan,
2369 .commit_slot = ltt_relay_commit_slot,
2370 .reserve_slot = ltt_relay_reserve_slot,
2371 .user_blocking = ltt_relay_user_blocking,
2372 .user_errors = ltt_relay_print_user_errors,
2373 },
2374 };
2375
2376 //ust// static int __init ltt_relay_init(void)
2377 //ust// {
2378 //ust// printk(KERN_INFO "LTT : ltt-relay init\n");
2379 //ust//
2380 //ust// ltt_file_operations = ltt_relay_file_operations;
2381 //ust// ltt_file_operations.owner = THIS_MODULE;
2382 //ust// ltt_file_operations.open = ltt_open;
2383 //ust// ltt_file_operations.release = ltt_release;
2384 //ust// ltt_file_operations.poll = ltt_poll;
2385 //ust// ltt_file_operations.splice_read = ltt_relay_file_splice_read,
2386 //ust// ltt_file_operations.ioctl = ltt_ioctl;
2387 //ust//#ifdef CONFIG_COMPAT
2388 //ust// ltt_file_operations.compat_ioctl = ltt_compat_ioctl;
2389 //ust//#endif
2390 //ust//
2391 //ust// ltt_transport_register(&ltt_relay_transport);
2392 //ust//
2393 //ust// return 0;
2394 //ust// }
2395
2396 static char initialized = 0;
2397
2398 void __attribute__((constructor)) init_ustrelay_transport(void)
2399 {
2400 if(!initialized) {
2401 ltt_transport_register(&ust_relay_transport);
2402 initialized = 1;
2403 }
2404 }
2405
2406 static void __exit ltt_relay_exit(void)
2407 {
2408 //ust// printk(KERN_INFO "LTT : ltt-relay exit\n");
2409
2410 ltt_transport_unregister(&ust_relay_transport);
2411 }
2412
2413 //ust// module_init(ltt_relay_init);
2414 //ust// module_exit(ltt_relay_exit);
2415 //ust//
2416 //ust// MODULE_LICENSE("GPL");
2417 //ust// MODULE_AUTHOR("Mathieu Desnoyers");
2418 //ust// MODULE_DESCRIPTION("Linux Trace Toolkit Next Generation Lockless Relay");
This page took 0.115859 seconds and 3 git commands to generate.