ust: cleanups and functionality
[ust.git] / libtracing / relay.c
CommitLineData
bb07823d
PMF
1/*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
5 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
6 * Copyright (C) 2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
7 *
8 * Moved to kernel/relay.c by Paul Mundt, 2006.
9 * November 2006 - CPU hotplug support by Mathieu Desnoyers
10 * (mathieu.desnoyers@polymtl.ca)
11 *
12 * This file is released under the GPL.
13 */
14//ust// #include <linux/errno.h>
15//ust// #include <linux/stddef.h>
16//ust// #include <linux/slab.h>
17//ust// #include <linux/module.h>
18//ust// #include <linux/string.h>
19//ust// #include <linux/ltt-relay.h>
20//ust// #include <linux/vmalloc.h>
21//ust// #include <linux/mm.h>
22//ust// #include <linux/cpu.h>
23//ust// #include <linux/splice.h>
24//ust// #include <linux/bitops.h>
25#include <sys/mman.h>
26#include "kernelcompat.h"
27#include "list.h"
28#include "relay.h"
29#include "channels.h"
30#include "kref.h"
31#include "tracer.h"
32#include "tracercore.h"
33#include "usterr.h"
34
35/* list of open channels, for cpu hotplug */
36static DEFINE_MUTEX(relay_channels_mutex);
37static LIST_HEAD(relay_channels);
38
c1dea0b3
PMF
39
40static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf);
41
bb07823d
PMF
42/**
43 * relay_alloc_buf - allocate a channel buffer
44 * @buf: the buffer struct
45 * @size: total size of the buffer
46 */
47//ust// static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
48//ust//{
49//ust// unsigned int i, n_pages;
50//ust// struct buf_page *buf_page, *n;
51//ust//
52//ust// *size = PAGE_ALIGN(*size);
53//ust// n_pages = *size >> PAGE_SHIFT;
54//ust//
55//ust// INIT_LIST_HEAD(&buf->pages);
56//ust//
57//ust// for (i = 0; i < n_pages; i++) {
58//ust// buf_page = kmalloc_node(sizeof(*buf_page), GFP_KERNEL,
59//ust// cpu_to_node(buf->cpu));
60//ust// if (unlikely(!buf_page))
61//ust// goto depopulate;
62//ust// buf_page->page = alloc_pages_node(cpu_to_node(buf->cpu),
63//ust// GFP_KERNEL | __GFP_ZERO, 0);
64//ust// if (unlikely(!buf_page->page)) {
65//ust// kfree(buf_page);
66//ust// goto depopulate;
67//ust// }
68//ust// list_add_tail(&buf_page->list, &buf->pages);
69//ust// buf_page->offset = (size_t)i << PAGE_SHIFT;
70//ust// buf_page->buf = buf;
71//ust// set_page_private(buf_page->page, (unsigned long)buf_page);
72//ust// if (i == 0) {
73//ust// buf->wpage = buf_page;
74//ust// buf->hpage[0] = buf_page;
75//ust// buf->hpage[1] = buf_page;
76//ust// buf->rpage = buf_page;
77//ust// }
78//ust// }
79//ust// buf->page_count = n_pages;
80//ust// return 0;
81//ust//
82//ust//depopulate:
83//ust// list_for_each_entry_safe(buf_page, n, &buf->pages, list) {
84//ust// list_del_init(&buf_page->list);
85//ust// __free_page(buf_page->page);
86//ust// kfree(buf_page);
87//ust// }
88//ust// return -ENOMEM;
89//ust//}
90
91static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
92{
93 unsigned int n_pages;
94 struct buf_page *buf_page, *n;
95
96 void *result;
97
98 *size = PAGE_ALIGN(*size);
99
100 /* Maybe do read-ahead */
8d938dbd 101 result = mmap(NULL, *size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
bb07823d
PMF
102 if(result == MAP_FAILED) {
103 PERROR("mmap");
104 return -1;
105 }
106
107 buf->buf_data = result;
108 buf->buf_size = *size;
109
110 return 0;
111}
112
113/**
114 * relay_create_buf - allocate and initialize a channel buffer
115 * @chan: the relay channel
116 * @cpu: cpu the buffer belongs to
117 *
118 * Returns channel buffer if successful, %NULL otherwise.
119 */
120static struct rchan_buf *relay_create_buf(struct rchan *chan)
121{
122 int ret;
123 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
124 if (!buf)
125 return NULL;
126
127// buf->cpu = cpu;
128 ret = relay_alloc_buf(buf, &chan->alloc_size);
129 if (ret)
130 goto free_buf;
131
132 buf->chan = chan;
133 kref_get(&buf->chan->kref);
134 return buf;
135
136free_buf:
137 kfree(buf);
138 return NULL;
139}
140
141/**
142 * relay_destroy_channel - free the channel struct
143 * @kref: target kernel reference that contains the relay channel
144 *
145 * Should only be called from kref_put().
146 */
147static void relay_destroy_channel(struct kref *kref)
148{
149 struct rchan *chan = container_of(kref, struct rchan, kref);
150 kfree(chan);
151}
152
153/**
154 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
155 * @buf: the buffer struct
156 */
157static void relay_destroy_buf(struct rchan_buf *buf)
158{
159 struct rchan *chan = buf->chan;
160 struct buf_page *buf_page, *n;
161 int result;
162
163 result = munmap(buf->buf_data, buf->buf_size);
164 if(result == -1) {
165 PERROR("munmap");
166 }
167
168//ust// chan->buf[buf->cpu] = NULL;
169 kfree(buf);
170 kref_put(&chan->kref, relay_destroy_channel);
171}
172
173/**
174 * relay_remove_buf - remove a channel buffer
175 * @kref: target kernel reference that contains the relay buffer
176 *
177 * Removes the file from the fileystem, which also frees the
178 * rchan_buf_struct and the channel buffer. Should only be called from
179 * kref_put().
180 */
181static void relay_remove_buf(struct kref *kref)
182{
183 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
98963de4 184//ust// buf->chan->cb->remove_buf_file(buf);
bb07823d
PMF
185 relay_destroy_buf(buf);
186}
187
188/*
189 * High-level relay kernel API and associated functions.
190 */
191
192/*
193 * rchan_callback implementations defining default channel behavior. Used
194 * in place of corresponding NULL values in client callback struct.
195 */
196
197/*
198 * create_buf_file_create() default callback. Does nothing.
199 */
200static struct dentry *create_buf_file_default_callback(const char *filename,
201 struct dentry *parent,
202 int mode,
203 struct rchan_buf *buf)
204{
205 return NULL;
206}
207
208/*
209 * remove_buf_file() default callback. Does nothing.
210 */
211static int remove_buf_file_default_callback(struct dentry *dentry)
212{
213 return -EINVAL;
214}
215
216/**
217 * wakeup_readers - wake up readers waiting on a channel
218 * @data: contains the channel buffer
219 *
220 * This is the timer function used to defer reader waking.
221 */
222//ust// static void wakeup_readers(unsigned long data)
223//ust// {
224//ust// struct rchan_buf *buf = (struct rchan_buf *)data;
225//ust// wake_up_interruptible(&buf->read_wait);
226//ust// }
227
228/**
229 * __relay_reset - reset a channel buffer
230 * @buf: the channel buffer
231 * @init: 1 if this is a first-time initialization
232 *
233 * See relay_reset() for description of effect.
234 */
235static void __relay_reset(struct rchan_buf *buf, unsigned int init)
236{
237 if (init) {
238//ust// init_waitqueue_head(&buf->read_wait);
239 kref_init(&buf->kref);
240//ust// setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
241 } else
242//ust// del_timer_sync(&buf->timer);
243
244 buf->finalized = 0;
245}
246
247/*
248 * relay_open_buf - create a new relay channel buffer
249 *
250 * used by relay_open() and CPU hotplug.
251 */
252static struct rchan_buf *relay_open_buf(struct rchan *chan)
253{
254 struct rchan_buf *buf = NULL;
255 struct dentry *dentry;
256//ust// char *tmpname;
257
258//ust// tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
259//ust// if (!tmpname)
260//ust// goto end;
261//ust// snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
262
263 buf = relay_create_buf(chan);
264 if (!buf)
265 goto free_name;
266
267 __relay_reset(buf, 1);
268
269 /* Create file in fs */
270//ust// dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
271//ust// buf);
c1dea0b3
PMF
272
273 ltt_create_buf_file_callback(buf); // ust //
274
bb07823d
PMF
275//ust// if (!dentry)
276//ust// goto free_buf;
277//ust//
278//ust// buf->dentry = dentry;
279
280 goto free_name;
281
282free_buf:
283 relay_destroy_buf(buf);
284 buf = NULL;
285free_name:
286//ust// kfree(tmpname);
287end:
288 return buf;
289}
290
291/**
292 * relay_close_buf - close a channel buffer
293 * @buf: channel buffer
294 *
295 * Marks the buffer finalized and restores the default callbacks.
296 * The channel buffer and channel buffer data structure are then freed
297 * automatically when the last reference is given up.
298 */
299static void relay_close_buf(struct rchan_buf *buf)
300{
301//ust// del_timer_sync(&buf->timer);
302 kref_put(&buf->kref, relay_remove_buf);
303}
304
305//ust// static void setup_callbacks(struct rchan *chan,
306//ust// struct rchan_callbacks *cb)
307//ust// {
308//ust// if (!cb) {
309//ust// chan->cb = &default_channel_callbacks;
310//ust// return;
311//ust// }
312//ust//
313//ust// if (!cb->create_buf_file)
314//ust// cb->create_buf_file = create_buf_file_default_callback;
315//ust// if (!cb->remove_buf_file)
316//ust// cb->remove_buf_file = remove_buf_file_default_callback;
317//ust// chan->cb = cb;
318//ust// }
319
320/**
321 * relay_hotcpu_callback - CPU hotplug callback
322 * @nb: notifier block
323 * @action: hotplug action to take
324 * @hcpu: CPU number
325 *
326 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
327 */
328//ust// static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
329//ust// unsigned long action,
330//ust// void *hcpu)
331//ust// {
332//ust// unsigned int hotcpu = (unsigned long)hcpu;
333//ust// struct rchan *chan;
334//ust//
335//ust// switch (action) {
336//ust// case CPU_UP_PREPARE:
337//ust// case CPU_UP_PREPARE_FROZEN:
338//ust// mutex_lock(&relay_channels_mutex);
339//ust// list_for_each_entry(chan, &relay_channels, list) {
340//ust// if (chan->buf[hotcpu])
341//ust// continue;
342//ust// chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
343//ust// if (!chan->buf[hotcpu]) {
344//ust// printk(KERN_ERR
345//ust// "relay_hotcpu_callback: cpu %d buffer "
346//ust// "creation failed\n", hotcpu);
347//ust// mutex_unlock(&relay_channels_mutex);
348//ust// return NOTIFY_BAD;
349//ust// }
350//ust// }
351//ust// mutex_unlock(&relay_channels_mutex);
352//ust// break;
353//ust// case CPU_DEAD:
354//ust// case CPU_DEAD_FROZEN:
355//ust// /* No need to flush the cpu : will be flushed upon
356//ust// * final relay_flush() call. */
357//ust// break;
358//ust// }
359//ust// return NOTIFY_OK;
360//ust// }
361
362/**
363 * ltt_relay_open - create a new relay channel
364 * @base_filename: base name of files to create
365 * @parent: dentry of parent directory, %NULL for root directory
366 * @subbuf_size: size of sub-buffers
367 * @n_subbufs: number of sub-buffers
368 * @cb: client callback functions
369 * @private_data: user-defined data
370 *
371 * Returns channel pointer if successful, %NULL otherwise.
372 *
373 * Creates a channel buffer for each cpu using the sizes and
374 * attributes specified. The created channel buffer files
375 * will be named base_filename0...base_filenameN-1. File
376 * permissions will be %S_IRUSR.
377 */
378struct rchan *ltt_relay_open(const char *base_filename,
379 struct dentry *parent,
380 size_t subbuf_size,
381 size_t n_subbufs,
382 void *private_data)
383{
384 unsigned int i;
385 struct rchan *chan;
386//ust// if (!base_filename)
387//ust// return NULL;
388
389 if (!(subbuf_size && n_subbufs))
390 return NULL;
391
392 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
393 if (!chan)
394 return NULL;
395
396 chan->version = LTT_RELAY_CHANNEL_VERSION;
397 chan->n_subbufs = n_subbufs;
398 chan->subbuf_size = subbuf_size;
399 chan->subbuf_size_order = get_count_order(subbuf_size);
400 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
401 chan->parent = parent;
402 chan->private_data = private_data;
403//ust// strlcpy(chan->base_filename, base_filename, NAME_MAX);
404//ust// setup_callbacks(chan, cb);
405 kref_init(&chan->kref);
406
407 mutex_lock(&relay_channels_mutex);
408//ust// for_each_online_cpu(i) {
409 chan->buf = relay_open_buf(chan);
410 if (!chan->buf)
411 goto error;
412//ust// }
413 list_add(&chan->list, &relay_channels);
414 mutex_unlock(&relay_channels_mutex);
415
416 return chan;
417
418//ust//free_bufs:
419//ust// for_each_possible_cpu(i) {
420//ust// if (!chan->buf[i])
421//ust// break;
422//ust// relay_close_buf(chan->buf[i]);
423//ust// }
424
425 error:
426 kref_put(&chan->kref, relay_destroy_channel);
427 mutex_unlock(&relay_channels_mutex);
428 return NULL;
429}
430//ust// EXPORT_SYMBOL_GPL(ltt_relay_open);
431
432/**
433 * ltt_relay_close - close the channel
434 * @chan: the channel
435 *
436 * Closes all channel buffers and frees the channel.
437 */
438void ltt_relay_close(struct rchan *chan)
439{
440 unsigned int i;
441
442 if (!chan)
443 return;
444
445 mutex_lock(&relay_channels_mutex);
446//ust// for_each_possible_cpu(i)
447 if (chan->buf)
448 relay_close_buf(chan->buf);
449
450 list_del(&chan->list);
451 kref_put(&chan->kref, relay_destroy_channel);
452 mutex_unlock(&relay_channels_mutex);
453}
454//ust// EXPORT_SYMBOL_GPL(ltt_relay_close);
455
456/*
457 * Start iteration at the previous element. Skip the real list head.
458 */
459//ust// struct buf_page *ltt_relay_find_prev_page(struct rchan_buf *buf,
460//ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
461//ust// {
462//ust// struct buf_page *iter;
463//ust// size_t orig_iter_off;
464//ust// unsigned int i = 0;
465//ust//
466//ust// orig_iter_off = page->offset;
467//ust// list_for_each_entry_reverse(iter, &page->list, list) {
468//ust// /*
469//ust// * Skip the real list head.
470//ust// */
471//ust// if (&iter->list == &buf->pages)
472//ust// continue;
473//ust// i++;
474//ust// if (offset >= iter->offset
475//ust// && offset < iter->offset + PAGE_SIZE) {
476//ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
477//ust// if (i > 1) {
478//ust// printk(KERN_WARNING
479//ust// "Backward random access detected in "
480//ust// "ltt_relay. Iterations %u, "
481//ust// "offset %zu, orig iter->off %zu, "
482//ust// "iter->off %zu diff_offset %zd.\n", i,
483//ust// offset, orig_iter_off, iter->offset,
484//ust// diff_offset);
485//ust// WARN_ON(1);
486//ust// }
487//ust// #endif
488//ust// return iter;
489//ust// }
490//ust// }
491//ust// WARN_ON(1);
492//ust// return NULL;
493//ust// }
494//ust// EXPORT_SYMBOL_GPL(ltt_relay_find_prev_page);
495
496/*
497 * Start iteration at the next element. Skip the real list head.
498 */
499//ust// struct buf_page *ltt_relay_find_next_page(struct rchan_buf *buf,
500//ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
501//ust// {
502//ust// struct buf_page *iter;
503//ust// unsigned int i = 0;
504//ust// size_t orig_iter_off;
505//ust//
506//ust// orig_iter_off = page->offset;
507//ust// list_for_each_entry(iter, &page->list, list) {
508//ust// /*
509//ust// * Skip the real list head.
510//ust// */
511//ust// if (&iter->list == &buf->pages)
512//ust// continue;
513//ust// i++;
514//ust// if (offset >= iter->offset
515//ust// && offset < iter->offset + PAGE_SIZE) {
516//ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
517//ust// if (i > 1) {
518//ust// printk(KERN_WARNING
519//ust// "Forward random access detected in "
520//ust// "ltt_relay. Iterations %u, "
521//ust// "offset %zu, orig iter->off %zu, "
522//ust// "iter->off %zu diff_offset %zd.\n", i,
523//ust// offset, orig_iter_off, iter->offset,
524//ust// diff_offset);
525//ust// WARN_ON(1);
526//ust// }
527//ust// #endif
528//ust// return iter;
529//ust// }
530//ust// }
531//ust// WARN_ON(1);
532//ust// return NULL;
533//ust// }
534//ust// EXPORT_SYMBOL_GPL(ltt_relay_find_next_page);
535
536/**
537 * ltt_relay_write - write data to a ltt_relay buffer.
538 * @buf : buffer
539 * @offset : offset within the buffer
540 * @src : source address
541 * @len : length to write
542 * @page : cached buffer page
543 * @pagecpy : page size copied so far
544 */
545void _ltt_relay_write(struct rchan_buf *buf, size_t offset,
546 const void *src, size_t len, ssize_t cpy)
547{
548 do {
549 len -= cpy;
550 src += cpy;
551 offset += cpy;
552 /*
553 * Underlying layer should never ask for writes across
554 * subbuffers.
555 */
556 WARN_ON(offset >= buf->buf_size);
557
558 cpy = min_t(size_t, len, buf->buf_size - offset);
559 ltt_relay_do_copy(buf->buf_data + offset, src, cpy);
560 } while (unlikely(len != cpy));
561}
562//ust// EXPORT_SYMBOL_GPL(_ltt_relay_write);
563
564/**
565 * ltt_relay_read - read data from ltt_relay_buffer.
566 * @buf : buffer
567 * @offset : offset within the buffer
568 * @dest : destination address
569 * @len : length to write
570 */
571//ust// int ltt_relay_read(struct rchan_buf *buf, size_t offset,
572//ust// void *dest, size_t len)
573//ust// {
574//ust// struct buf_page *page;
575//ust// ssize_t pagecpy, orig_len;
576//ust//
577//ust// orig_len = len;
578//ust// offset &= buf->chan->alloc_size - 1;
579//ust// page = buf->rpage;
580//ust// if (unlikely(!len))
581//ust// return 0;
582//ust// for (;;) {
583//ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
584//ust// pagecpy = min_t(size_t, len, PAGE_SIZE - (offset & ~PAGE_MASK));
585//ust// memcpy(dest, page_address(page->page) + (offset & ~PAGE_MASK),
586//ust// pagecpy);
587//ust// len -= pagecpy;
588//ust// if (likely(!len))
589//ust// break;
590//ust// dest += pagecpy;
591//ust// offset += pagecpy;
592//ust// /*
593//ust// * Underlying layer should never ask for reads across
594//ust// * subbuffers.
595//ust// */
596//ust// WARN_ON(offset >= buf->chan->alloc_size);
597//ust// }
598//ust// return orig_len;
599//ust// }
600//ust// EXPORT_SYMBOL_GPL(ltt_relay_read);
601
602/**
603 * ltt_relay_read_get_page - Get a whole page to read from
604 * @buf : buffer
605 * @offset : offset within the buffer
606 */
607//ust// struct buf_page *ltt_relay_read_get_page(struct rchan_buf *buf, size_t offset)
608//ust// {
609//ust// struct buf_page *page;
610
611//ust// offset &= buf->chan->alloc_size - 1;
612//ust// page = buf->rpage;
613//ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
614//ust// return page;
615//ust// }
616//ust// EXPORT_SYMBOL_GPL(ltt_relay_read_get_page);
617
618/**
619 * ltt_relay_offset_address - get address of a location within the buffer
620 * @buf : buffer
621 * @offset : offset within the buffer.
622 *
623 * Return the address where a given offset is located.
624 * Should be used to get the current subbuffer header pointer. Given we know
625 * it's never on a page boundary, it's safe to write directly to this address,
626 * as long as the write is never bigger than a page size.
627 */
628void *ltt_relay_offset_address(struct rchan_buf *buf, size_t offset)
629{
630//ust// struct buf_page *page;
631//ust// unsigned int odd;
632//ust//
633//ust// offset &= buf->chan->alloc_size - 1;
634//ust// odd = !!(offset & buf->chan->subbuf_size);
635//ust// page = buf->hpage[odd];
636//ust// if (offset < page->offset || offset >= page->offset + PAGE_SIZE)
637//ust// buf->hpage[odd] = page = buf->wpage;
638//ust// page = ltt_relay_cache_page(buf, &buf->hpage[odd], page, offset);
639//ust// return page_address(page->page) + (offset & ~PAGE_MASK);
c1dea0b3 640 return ((char *)buf->buf_data)+offset;
bb07823d
PMF
641 return NULL;
642}
643//ust// EXPORT_SYMBOL_GPL(ltt_relay_offset_address);
644
645/**
646 * relay_file_open - open file op for relay files
647 * @inode: the inode
648 * @filp: the file
649 *
650 * Increments the channel buffer refcount.
651 */
652//ust// static int relay_file_open(struct inode *inode, struct file *filp)
653//ust// {
654//ust// struct rchan_buf *buf = inode->i_private;
655//ust// kref_get(&buf->kref);
656//ust// filp->private_data = buf;
657//ust//
658//ust// return nonseekable_open(inode, filp);
659//ust// }
660
661/**
662 * relay_file_release - release file op for relay files
663 * @inode: the inode
664 * @filp: the file
665 *
666 * Decrements the channel refcount, as the filesystem is
667 * no longer using it.
668 */
669//ust// static int relay_file_release(struct inode *inode, struct file *filp)
670//ust// {
671//ust// struct rchan_buf *buf = filp->private_data;
672//ust// kref_put(&buf->kref, relay_remove_buf);
673//ust//
674//ust// return 0;
675//ust// }
676
677//ust// const struct file_operations ltt_relay_file_operations = {
678//ust// .open = relay_file_open,
679//ust// .release = relay_file_release,
680//ust// };
681//ust// EXPORT_SYMBOL_GPL(ltt_relay_file_operations);
682
683//ust// static __init int relay_init(void)
684//ust// {
685//ust// hotcpu_notifier(relay_hotcpu_callback, 5);
686//ust// return 0;
687//ust// }
688
689//ust// module_init(relay_init);
e1152c37
PMF
690/*
691 * ltt/ltt-relay.c
692 *
693 * (C) Copyright 2005-2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
694 *
695 * LTTng lockless buffer space management (reader/writer).
696 *
697 * Author:
698 * Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
699 *
700 * Inspired from LTT :
701 * Karim Yaghmour (karim@opersys.com)
702 * Tom Zanussi (zanussi@us.ibm.com)
703 * Bob Wisniewski (bob@watson.ibm.com)
704 * And from K42 :
705 * Bob Wisniewski (bob@watson.ibm.com)
706 *
707 * Changelog:
708 * 08/10/08, Cleanup.
709 * 19/10/05, Complete lockless mechanism.
710 * 27/05/05, Modular redesign and rewrite.
711 *
712 * Userspace reader semantic :
713 * while (poll fd != POLLHUP) {
714 * - ioctl RELAY_GET_SUBBUF_SIZE
715 * while (1) {
716 * - ioctl GET_SUBBUF
717 * - splice 1 subbuffer worth of data to a pipe
718 * - splice the data from pipe to disk/network
719 * - ioctl PUT_SUBBUF, check error value
720 * if err val < 0, previous subbuffer was corrupted.
721 * }
722 * }
723 */
724
bb07823d
PMF
725//ust// #include <linux/time.h>
726//ust// #include <linux/ltt-tracer.h>
727//ust// #include <linux/ltt-relay.h>
728//ust// #include <linux/module.h>
729//ust// #include <linux/string.h>
730//ust// #include <linux/slab.h>
731//ust// #include <linux/init.h>
732//ust// #include <linux/rcupdate.h>
733//ust// #include <linux/sched.h>
734//ust// #include <linux/bitops.h>
735//ust// #include <linux/fs.h>
736//ust// #include <linux/smp_lock.h>
737//ust// #include <linux/debugfs.h>
738//ust// #include <linux/stat.h>
739//ust// #include <linux/cpu.h>
740//ust// #include <linux/pipe_fs_i.h>
741//ust// #include <linux/splice.h>
742//ust// #include <asm/atomic.h>
743//ust// #include <asm/local.h>
e1152c37
PMF
744
745#if 0
746#define printk_dbg(fmt, args...) printk(fmt, args)
747#else
748#define printk_dbg(fmt, args...)
749#endif
750
e1152c37
PMF
751/*
752 * Last TSC comparison functions. Check if the current TSC overflows
753 * LTT_TSC_BITS bits from the last TSC read. Reads and writes last_tsc
754 * atomically.
755 */
756
757#if (BITS_PER_LONG == 32)
758static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
759 u64 tsc)
760{
761 ltt_buf->last_tsc = (unsigned long)(tsc >> LTT_TSC_BITS);
762}
763
764static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
765 u64 tsc)
766{
767 unsigned long tsc_shifted = (unsigned long)(tsc >> LTT_TSC_BITS);
768
769 if (unlikely((tsc_shifted - ltt_buf->last_tsc)))
770 return 1;
771 else
772 return 0;
773}
774#else
775static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
776 u64 tsc)
777{
778 ltt_buf->last_tsc = (unsigned long)tsc;
779}
780
781static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
782 u64 tsc)
783{
784 if (unlikely((tsc - ltt_buf->last_tsc) >> LTT_TSC_BITS))
785 return 1;
786 else
787 return 0;
788}
789#endif
790
5f54827b 791//ust// static struct file_operations ltt_file_operations;
e1152c37
PMF
792
793/*
794 * A switch is done during tracing or as a final flush after tracing (so it
795 * won't write in the new sub-buffer).
796 */
797enum force_switch_mode { FORCE_ACTIVE, FORCE_FLUSH };
798
799static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
800 struct ltt_channel_struct *ltt_chan,
801 struct rchan_buf *buf,
e1152c37
PMF
802 unsigned int n_subbufs);
803
bb07823d 804static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan);
e1152c37
PMF
805
806static void ltt_force_switch(struct rchan_buf *buf,
807 enum force_switch_mode mode);
808
809/*
810 * Trace callbacks
811 */
812static void ltt_buffer_begin_callback(struct rchan_buf *buf,
813 u64 tsc, unsigned int subbuf_idx)
814{
815 struct ltt_channel_struct *channel =
816 (struct ltt_channel_struct *)buf->chan->private_data;
817 struct ltt_subbuffer_header *header =
818 (struct ltt_subbuffer_header *)
819 ltt_relay_offset_address(buf,
820 subbuf_idx * buf->chan->subbuf_size);
821
822 header->cycle_count_begin = tsc;
823 header->lost_size = 0xFFFFFFFF; /* for debugging */
824 header->buf_size = buf->chan->subbuf_size;
825 ltt_write_trace_header(channel->trace, header);
826}
827
828/*
829 * offset is assumed to never be 0 here : never deliver a completely empty
830 * subbuffer. The lost size is between 0 and subbuf_size-1.
831 */
832static notrace void ltt_buffer_end_callback(struct rchan_buf *buf,
833 u64 tsc, unsigned int offset, unsigned int subbuf_idx)
834{
835 struct ltt_channel_struct *channel =
836 (struct ltt_channel_struct *)buf->chan->private_data;
bb07823d 837 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
e1152c37
PMF
838 struct ltt_subbuffer_header *header =
839 (struct ltt_subbuffer_header *)
840 ltt_relay_offset_address(buf,
841 subbuf_idx * buf->chan->subbuf_size);
842
843 header->lost_size = SUBBUF_OFFSET((buf->chan->subbuf_size - offset),
844 buf->chan);
845 header->cycle_count_end = tsc;
c1dea0b3
PMF
846 header->events_lost = local_read(&ltt_buf->events_lost);
847 header->subbuf_corrupt = local_read(&ltt_buf->corrupted_subbuffers);
848
e1152c37
PMF
849}
850
851static notrace void ltt_deliver(struct rchan_buf *buf, unsigned int subbuf_idx,
852 void *subbuf)
853{
854 struct ltt_channel_struct *channel =
855 (struct ltt_channel_struct *)buf->chan->private_data;
bb07823d 856 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
e1152c37
PMF
857
858 atomic_set(&ltt_buf->wakeup_readers, 1);
859}
860
c1dea0b3 861static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf)
e1152c37
PMF
862{
863 struct ltt_channel_struct *ltt_chan;
864 int err;
5f54827b 865//ust// struct dentry *dentry;
e1152c37
PMF
866
867 ltt_chan = buf->chan->private_data;
bb07823d 868 err = ltt_relay_create_buffer(ltt_chan->trace, ltt_chan, buf, buf->chan->n_subbufs);
e1152c37
PMF
869 if (err)
870 return ERR_PTR(err);
871
5f54827b
PMF
872//ust// dentry = debugfs_create_file(filename, mode, parent, buf,
873//ust// &ltt_file_operations);
874//ust// if (!dentry)
875//ust// goto error;
876//ust// return dentry;
c1dea0b3 877 return NULL; //ust//
5f54827b 878//ust//error:
bb07823d 879 ltt_relay_destroy_buffer(ltt_chan);
e1152c37
PMF
880 return NULL;
881}
882
bb07823d 883static int ltt_remove_buf_file_callback(struct rchan_buf *buf)
e1152c37 884{
bb07823d 885//ust// struct rchan_buf *buf = dentry->d_inode->i_private;
e1152c37
PMF
886 struct ltt_channel_struct *ltt_chan = buf->chan->private_data;
887
5f54827b 888//ust// debugfs_remove(dentry);
bb07823d 889 ltt_relay_destroy_buffer(ltt_chan);
e1152c37
PMF
890
891 return 0;
892}
893
894/*
895 * Wake writers :
896 *
897 * This must be done after the trace is removed from the RCU list so that there
898 * are no stalled writers.
899 */
bb07823d
PMF
900//ust// static void ltt_relay_wake_writers(struct ltt_channel_buf_struct *ltt_buf)
901//ust// {
902//ust//
903//ust// if (waitqueue_active(&ltt_buf->write_wait))
904//ust// wake_up_interruptible(&ltt_buf->write_wait);
905//ust// }
e1152c37
PMF
906
907/*
908 * This function should not be called from NMI interrupt context
909 */
910static notrace void ltt_buf_unfull(struct rchan_buf *buf,
911 unsigned int subbuf_idx,
912 long offset)
913{
bb07823d
PMF
914//ust// struct ltt_channel_struct *ltt_channel =
915//ust// (struct ltt_channel_struct *)buf->chan->private_data;
916//ust// struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
917//ust//
918//ust// ltt_relay_wake_writers(ltt_buf);
e1152c37
PMF
919}
920
921/**
922 * ltt_open - open file op for ltt files
923 * @inode: opened inode
924 * @file: opened file
925 *
926 * Open implementation. Makes sure only one open instance of a buffer is
927 * done at a given moment.
928 */
bb07823d
PMF
929//ust// static int ltt_open(struct inode *inode, struct file *file)
930//ust// {
931//ust// struct rchan_buf *buf = inode->i_private;
932//ust// struct ltt_channel_struct *ltt_channel =
933//ust// (struct ltt_channel_struct *)buf->chan->private_data;
934//ust// struct ltt_channel_buf_struct *ltt_buf =
935//ust// percpu_ptr(ltt_channel->buf, buf->cpu);
936//ust//
937//ust// if (!atomic_long_add_unless(&ltt_buf->active_readers, 1, 1))
938//ust// return -EBUSY;
939//ust// return ltt_relay_file_operations.open(inode, file);
940//ust// }
e1152c37
PMF
941
942/**
943 * ltt_release - release file op for ltt files
944 * @inode: opened inode
945 * @file: opened file
946 *
947 * Release implementation.
948 */
bb07823d
PMF
949//ust// static int ltt_release(struct inode *inode, struct file *file)
950//ust// {
951//ust// struct rchan_buf *buf = inode->i_private;
952//ust// struct ltt_channel_struct *ltt_channel =
953//ust// (struct ltt_channel_struct *)buf->chan->private_data;
954//ust// struct ltt_channel_buf_struct *ltt_buf =
955//ust// percpu_ptr(ltt_channel->buf, buf->cpu);
956//ust// int ret;
957//ust//
958//ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
959//ust// atomic_long_dec(&ltt_buf->active_readers);
960//ust// ret = ltt_relay_file_operations.release(inode, file);
961//ust// WARN_ON(ret);
962//ust// return ret;
963//ust// }
e1152c37
PMF
964
965/**
966 * ltt_poll - file op for ltt files
967 * @filp: the file
968 * @wait: poll table
969 *
970 * Poll implementation.
971 */
bb07823d
PMF
972//ust// static unsigned int ltt_poll(struct file *filp, poll_table *wait)
973//ust// {
974//ust// unsigned int mask = 0;
975//ust// struct inode *inode = filp->f_dentry->d_inode;
976//ust// struct rchan_buf *buf = inode->i_private;
977//ust// struct ltt_channel_struct *ltt_channel =
978//ust// (struct ltt_channel_struct *)buf->chan->private_data;
979//ust// struct ltt_channel_buf_struct *ltt_buf =
980//ust// percpu_ptr(ltt_channel->buf, buf->cpu);
981//ust//
982//ust// if (filp->f_mode & FMODE_READ) {
983//ust// poll_wait_set_exclusive(wait);
984//ust// poll_wait(filp, &buf->read_wait, wait);
985//ust//
986//ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
987//ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
988//ust// buf->chan)
989//ust// - SUBBUF_TRUNC(atomic_long_read(&ltt_buf->consumed),
990//ust// buf->chan)
991//ust// == 0) {
992//ust// if (buf->finalized)
993//ust// return POLLHUP;
994//ust// else
995//ust// return 0;
996//ust// } else {
997//ust// struct rchan *rchan =
998//ust// ltt_channel->trans_channel_data;
999//ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1000//ust// buf->chan)
1001//ust// - SUBBUF_TRUNC(atomic_long_read(
1002//ust// &ltt_buf->consumed),
1003//ust// buf->chan)
1004//ust// >= rchan->alloc_size)
1005//ust// return POLLPRI | POLLRDBAND;
1006//ust// else
1007//ust// return POLLIN | POLLRDNORM;
1008//ust// }
1009//ust// }
1010//ust// return mask;
1011//ust// }
e1152c37 1012
9c67dc50 1013int ltt_do_get_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, long *pconsumed_old)
e1152c37 1014{
bb07823d 1015 struct ltt_channel_struct *ltt_channel = (struct ltt_channel_struct *)buf->chan->private_data;
e1152c37
PMF
1016 long consumed_old, consumed_idx, commit_count, write_offset;
1017 consumed_old = atomic_long_read(&ltt_buf->consumed);
1018 consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1019 commit_count = local_read(&ltt_buf->commit_count[consumed_idx]);
1020 /*
1021 * Make sure we read the commit count before reading the buffer
1022 * data and the write offset. Correct consumed offset ordering
1023 * wrt commit count is insured by the use of cmpxchg to update
1024 * the consumed offset.
1025 */
1026 smp_rmb();
1027 write_offset = local_read(&ltt_buf->offset);
1028 /*
1029 * Check that the subbuffer we are trying to consume has been
1030 * already fully committed.
1031 */
1032 if (((commit_count - buf->chan->subbuf_size)
1033 & ltt_channel->commit_count_mask)
1034 - (BUFFER_TRUNC(consumed_old, buf->chan)
1035 >> ltt_channel->n_subbufs_order)
1036 != 0) {
1037 return -EAGAIN;
1038 }
1039 /*
1040 * Check that we are not about to read the same subbuffer in
1041 * which the writer head is.
1042 */
1043 if ((SUBBUF_TRUNC(write_offset, buf->chan)
1044 - SUBBUF_TRUNC(consumed_old, buf->chan))
1045 == 0) {
1046 return -EAGAIN;
1047 }
1048
1049 *pconsumed_old = consumed_old;
1050 return 0;
1051}
1052
9c67dc50 1053int ltt_do_put_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, u32 uconsumed_old)
e1152c37
PMF
1054{
1055 long consumed_new, consumed_old;
1056
1057 consumed_old = atomic_long_read(&ltt_buf->consumed);
1058 consumed_old = consumed_old & (~0xFFFFFFFFL);
1059 consumed_old = consumed_old | uconsumed_old;
1060 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1061
1062 spin_lock(&ltt_buf->full_lock);
1063 if (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1064 consumed_new)
1065 != consumed_old) {
1066 /* We have been pushed by the writer : the last
1067 * buffer read _is_ corrupted! It can also
1068 * happen if this is a buffer we never got. */
1069 spin_unlock(&ltt_buf->full_lock);
1070 return -EIO;
1071 } else {
1072 /* tell the client that buffer is now unfull */
1073 int index;
1074 long data;
1075 index = SUBBUF_INDEX(consumed_old, buf->chan);
1076 data = BUFFER_OFFSET(consumed_old, buf->chan);
1077 ltt_buf_unfull(buf, index, data);
1078 spin_unlock(&ltt_buf->full_lock);
1079 }
1080 return 0;
1081}
1082
1083/**
1084 * ltt_ioctl - control on the debugfs file
1085 *
1086 * @inode: the inode
1087 * @filp: the file
1088 * @cmd: the command
1089 * @arg: command arg
1090 *
1091 * This ioctl implements three commands necessary for a minimal
1092 * producer/consumer implementation :
1093 * RELAY_GET_SUBBUF
1094 * Get the next sub buffer that can be read. It never blocks.
1095 * RELAY_PUT_SUBBUF
1096 * Release the currently read sub-buffer. Parameter is the last
1097 * put subbuffer (returned by GET_SUBBUF).
1098 * RELAY_GET_N_BUBBUFS
1099 * returns the number of sub buffers in the per cpu channel.
1100 * RELAY_GET_SUBBUF_SIZE
1101 * returns the size of the sub buffers.
1102 */
5f54827b
PMF
1103//ust// static int ltt_ioctl(struct inode *inode, struct file *filp,
1104//ust// unsigned int cmd, unsigned long arg)
1105//ust// {
1106//ust// struct rchan_buf *buf = inode->i_private;
1107//ust// struct ltt_channel_struct *ltt_channel =
1108//ust// (struct ltt_channel_struct *)buf->chan->private_data;
1109//ust// struct ltt_channel_buf_struct *ltt_buf =
1110//ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1111//ust// u32 __user *argp = (u32 __user *)arg;
1112//ust//
1113//ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1114//ust// switch (cmd) {
1115//ust// case RELAY_GET_SUBBUF:
1116//ust// {
1117//ust// int ret;
1118//ust// ret = ltt_do_get_subbuf(buf, ltt_buf, &consumed_old);
1119//ust// if(ret < 0)
1120//ust// return ret;
1121//ust// return put_user((u32)consumed_old, argp);
1122//ust// }
1123//ust// case RELAY_PUT_SUBBUF:
1124//ust// {
1125//ust// int ret;
1126//ust// u32 uconsumed_old;
1127//ust// ret = get_user(uconsumed_old, argp);
1128//ust// if (ret)
1129//ust// return ret; /* will return -EFAULT */
1130//ust// return ltt_do_put_subbuf(buf, ltt_buf, uconsumed_old);
1131//ust// }
1132//ust// case RELAY_GET_N_SUBBUFS:
1133//ust// return put_user((u32)buf->chan->n_subbufs, argp);
1134//ust// break;
1135//ust// case RELAY_GET_SUBBUF_SIZE:
1136//ust// return put_user((u32)buf->chan->subbuf_size, argp);
1137//ust// break;
1138//ust// default:
1139//ust// return -ENOIOCTLCMD;
1140//ust// }
1141//ust// return 0;
1142//ust// }
1143
1144//ust// #ifdef CONFIG_COMPAT
1145//ust// static long ltt_compat_ioctl(struct file *file, unsigned int cmd,
1146//ust// unsigned long arg)
1147//ust// {
1148//ust// long ret = -ENOIOCTLCMD;
1149//ust//
1150//ust// lock_kernel();
1151//ust// ret = ltt_ioctl(file->f_dentry->d_inode, file, cmd, arg);
1152//ust// unlock_kernel();
1153//ust//
1154//ust// return ret;
1155//ust// }
1156//ust// #endif
1157
1158//ust// static void ltt_relay_pipe_buf_release(struct pipe_inode_info *pipe,
1159//ust// struct pipe_buffer *pbuf)
1160//ust// {
1161//ust// }
1162//ust//
1163//ust// static struct pipe_buf_operations ltt_relay_pipe_buf_ops = {
1164//ust// .can_merge = 0,
1165//ust// .map = generic_pipe_buf_map,
1166//ust// .unmap = generic_pipe_buf_unmap,
1167//ust// .confirm = generic_pipe_buf_confirm,
1168//ust// .release = ltt_relay_pipe_buf_release,
1169//ust// .steal = generic_pipe_buf_steal,
1170//ust// .get = generic_pipe_buf_get,
1171//ust// };
1172
1173//ust// static void ltt_relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1174//ust// {
1175//ust// }
e1152c37
PMF
1176
1177/*
1178 * subbuf_splice_actor - splice up to one subbuf's worth of data
1179 */
bb07823d
PMF
1180//ust// static int subbuf_splice_actor(struct file *in,
1181//ust// loff_t *ppos,
1182//ust// struct pipe_inode_info *pipe,
1183//ust// size_t len,
1184//ust// unsigned int flags)
1185//ust// {
1186//ust// struct rchan_buf *buf = in->private_data;
1187//ust// struct ltt_channel_struct *ltt_channel =
1188//ust// (struct ltt_channel_struct *)buf->chan->private_data;
1189//ust// struct ltt_channel_buf_struct *ltt_buf =
1190//ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1191//ust// unsigned int poff, subbuf_pages, nr_pages;
1192//ust// struct page *pages[PIPE_BUFFERS];
1193//ust// struct partial_page partial[PIPE_BUFFERS];
1194//ust// struct splice_pipe_desc spd = {
1195//ust// .pages = pages,
1196//ust// .nr_pages = 0,
1197//ust// .partial = partial,
1198//ust// .flags = flags,
1199//ust// .ops = &ltt_relay_pipe_buf_ops,
1200//ust// .spd_release = ltt_relay_page_release,
1201//ust// };
1202//ust// long consumed_old, consumed_idx, roffset;
1203//ust// unsigned long bytes_avail;
1204//ust//
1205//ust// /*
1206//ust// * Check that a GET_SUBBUF ioctl has been done before.
1207//ust// */
1208//ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1209//ust// consumed_old = atomic_long_read(&ltt_buf->consumed);
1210//ust// consumed_old += *ppos;
1211//ust// consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1212//ust//
1213//ust// /*
1214//ust// * Adjust read len, if longer than what is available
1215//ust// */
1216//ust// bytes_avail = SUBBUF_TRUNC(local_read(&ltt_buf->offset), buf->chan)
1217//ust// - consumed_old;
1218//ust// WARN_ON(bytes_avail > buf->chan->alloc_size);
1219//ust// len = min_t(size_t, len, bytes_avail);
1220//ust// subbuf_pages = bytes_avail >> PAGE_SHIFT;
1221//ust// nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1222//ust// roffset = consumed_old & PAGE_MASK;
1223//ust// poff = consumed_old & ~PAGE_MASK;
1224//ust// printk_dbg(KERN_DEBUG "SPLICE actor len %zu pos %zd write_pos %ld\n",
1225//ust// len, (ssize_t)*ppos, local_read(&ltt_buf->offset));
1226//ust//
1227//ust// for (; spd.nr_pages < nr_pages; spd.nr_pages++) {
1228//ust// unsigned int this_len;
1229//ust// struct buf_page *page;
1230//ust//
1231//ust// if (!len)
1232//ust// break;
1233//ust// printk_dbg(KERN_DEBUG "SPLICE actor loop len %zu roffset %ld\n",
1234//ust// len, roffset);
1235//ust//
1236//ust// this_len = PAGE_SIZE - poff;
1237//ust// page = ltt_relay_read_get_page(buf, roffset);
1238//ust// spd.pages[spd.nr_pages] = page->page;
1239//ust// spd.partial[spd.nr_pages].offset = poff;
1240//ust// spd.partial[spd.nr_pages].len = this_len;
1241//ust//
1242//ust// poff = 0;
1243//ust// roffset += PAGE_SIZE;
1244//ust// len -= this_len;
1245//ust// }
1246//ust//
1247//ust// if (!spd.nr_pages)
1248//ust// return 0;
1249//ust//
1250//ust// return splice_to_pipe(pipe, &spd);
1251//ust// }
e1152c37 1252
bb07823d
PMF
1253//ust// static ssize_t ltt_relay_file_splice_read(struct file *in,
1254//ust// loff_t *ppos,
1255//ust// struct pipe_inode_info *pipe,
1256//ust// size_t len,
1257//ust// unsigned int flags)
1258//ust// {
1259//ust// ssize_t spliced;
1260//ust// int ret;
1261//ust//
1262//ust// ret = 0;
1263//ust// spliced = 0;
1264//ust//
1265//ust// printk_dbg(KERN_DEBUG "SPLICE read len %zu pos %zd\n",
1266//ust// len, (ssize_t)*ppos);
1267//ust// while (len && !spliced) {
1268//ust// ret = subbuf_splice_actor(in, ppos, pipe, len, flags);
1269//ust// printk_dbg(KERN_DEBUG "SPLICE read loop ret %d\n", ret);
1270//ust// if (ret < 0)
1271//ust// break;
1272//ust// else if (!ret) {
1273//ust// if (flags & SPLICE_F_NONBLOCK)
1274//ust// ret = -EAGAIN;
1275//ust// break;
1276//ust// }
1277//ust//
1278//ust// *ppos += ret;
1279//ust// if (ret > len)
1280//ust// len = 0;
1281//ust// else
1282//ust// len -= ret;
1283//ust// spliced += ret;
1284//ust// }
1285//ust//
1286//ust// if (spliced)
1287//ust// return spliced;
1288//ust//
1289//ust// return ret;
1290//ust// }
e1152c37
PMF
1291
1292static void ltt_relay_print_subbuffer_errors(
1293 struct ltt_channel_struct *ltt_chan,
bb07823d 1294 long cons_off)
e1152c37
PMF
1295{
1296 struct rchan *rchan = ltt_chan->trans_channel_data;
bb07823d 1297 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
e1152c37
PMF
1298 long cons_idx, commit_count, write_offset;
1299
1300 cons_idx = SUBBUF_INDEX(cons_off, rchan);
1301 commit_count = local_read(&ltt_buf->commit_count[cons_idx]);
1302 /*
1303 * No need to order commit_count and write_offset reads because we
1304 * execute after trace is stopped when there are no readers left.
1305 */
1306 write_offset = local_read(&ltt_buf->offset);
1307 printk(KERN_WARNING
1308 "LTT : unread channel %s offset is %ld "
bb07823d
PMF
1309 "and cons_off : %ld\n",
1310 ltt_chan->channel_name, write_offset, cons_off);
e1152c37
PMF
1311 /* Check each sub-buffer for non filled commit count */
1312 if (((commit_count - rchan->subbuf_size) & ltt_chan->commit_count_mask)
1313 - (BUFFER_TRUNC(cons_off, rchan) >> ltt_chan->n_subbufs_order)
1314 != 0)
1315 printk(KERN_ALERT
1316 "LTT : %s : subbuffer %lu has non filled "
1317 "commit count %lu.\n",
1318 ltt_chan->channel_name, cons_idx, commit_count);
1319 printk(KERN_ALERT "LTT : %s : commit count : %lu, subbuf size %zd\n",
1320 ltt_chan->channel_name, commit_count,
1321 rchan->subbuf_size);
1322}
1323
1324static void ltt_relay_print_errors(struct ltt_trace_struct *trace,
bb07823d 1325 struct ltt_channel_struct *ltt_chan)
e1152c37
PMF
1326{
1327 struct rchan *rchan = ltt_chan->trans_channel_data;
bb07823d 1328 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
e1152c37
PMF
1329 long cons_off;
1330
1331 for (cons_off = atomic_long_read(&ltt_buf->consumed);
1332 (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1333 rchan)
1334 - cons_off) > 0;
1335 cons_off = SUBBUF_ALIGN(cons_off, rchan))
bb07823d 1336 ltt_relay_print_subbuffer_errors(ltt_chan, cons_off);
e1152c37
PMF
1337}
1338
bb07823d 1339static void ltt_relay_print_buffer_errors(struct ltt_channel_struct *ltt_chan)
e1152c37
PMF
1340{
1341 struct ltt_trace_struct *trace = ltt_chan->trace;
bb07823d 1342 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
e1152c37
PMF
1343
1344 if (local_read(&ltt_buf->events_lost))
1345 printk(KERN_ALERT
1346 "LTT : %s : %ld events lost "
bb07823d 1347 "in %s channel.\n",
e1152c37
PMF
1348 ltt_chan->channel_name,
1349 local_read(&ltt_buf->events_lost),
bb07823d 1350 ltt_chan->channel_name);
e1152c37
PMF
1351 if (local_read(&ltt_buf->corrupted_subbuffers))
1352 printk(KERN_ALERT
1353 "LTT : %s : %ld corrupted subbuffers "
bb07823d 1354 "in %s channel.\n",
e1152c37
PMF
1355 ltt_chan->channel_name,
1356 local_read(&ltt_buf->corrupted_subbuffers),
bb07823d 1357 ltt_chan->channel_name);
e1152c37 1358
bb07823d 1359 ltt_relay_print_errors(trace, ltt_chan);
e1152c37
PMF
1360}
1361
bb07823d
PMF
1362static void ltt_relay_remove_dirs(struct ltt_trace_struct *trace)
1363{
5f54827b 1364//ust// debugfs_remove(trace->dentry.trace_root);
bb07823d 1365}
e1152c37
PMF
1366
1367static void ltt_relay_release_channel(struct kref *kref)
1368{
1369 struct ltt_channel_struct *ltt_chan = container_of(kref,
1370 struct ltt_channel_struct, kref);
bb07823d 1371 free(ltt_chan->buf);
e1152c37
PMF
1372}
1373
1374/*
1375 * Create ltt buffer.
1376 */
5f54827b
PMF
1377//ust// static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1378//ust// struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1379//ust// unsigned int cpu, unsigned int n_subbufs)
1380//ust// {
1381//ust// struct ltt_channel_buf_struct *ltt_buf =
1382//ust// percpu_ptr(ltt_chan->buf, cpu);
1383//ust// unsigned int j;
1384//ust//
1385//ust// ltt_buf->commit_count =
1386//ust// kzalloc_node(sizeof(ltt_buf->commit_count) * n_subbufs,
1387//ust// GFP_KERNEL, cpu_to_node(cpu));
1388//ust// if (!ltt_buf->commit_count)
1389//ust// return -ENOMEM;
1390//ust// kref_get(&trace->kref);
1391//ust// kref_get(&trace->ltt_transport_kref);
1392//ust// kref_get(&ltt_chan->kref);
1393//ust// local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1394//ust// atomic_long_set(&ltt_buf->consumed, 0);
1395//ust// atomic_long_set(&ltt_buf->active_readers, 0);
1396//ust// for (j = 0; j < n_subbufs; j++)
1397//ust// local_set(&ltt_buf->commit_count[j], 0);
1398//ust// init_waitqueue_head(&ltt_buf->write_wait);
1399//ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1400//ust// spin_lock_init(&ltt_buf->full_lock);
1401//ust//
1402//ust// ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1403//ust// /* atomic_add made on local variable on data that belongs to
1404//ust// * various CPUs : ok because tracing not started (for this cpu). */
1405//ust// local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1406//ust//
1407//ust// local_set(&ltt_buf->events_lost, 0);
1408//ust// local_set(&ltt_buf->corrupted_subbuffers, 0);
1409//ust//
1410//ust// return 0;
1411//ust// }
1412
e1152c37
PMF
1413static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1414 struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
bb07823d 1415 unsigned int n_subbufs)
e1152c37 1416{
5f54827b 1417 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
e1152c37
PMF
1418 unsigned int j;
1419
1420 ltt_buf->commit_count =
c1dea0b3 1421 zmalloc(sizeof(ltt_buf->commit_count) * n_subbufs);
e1152c37
PMF
1422 if (!ltt_buf->commit_count)
1423 return -ENOMEM;
1424 kref_get(&trace->kref);
1425 kref_get(&trace->ltt_transport_kref);
1426 kref_get(&ltt_chan->kref);
c1dea0b3 1427 local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
e1152c37
PMF
1428 atomic_long_set(&ltt_buf->consumed, 0);
1429 atomic_long_set(&ltt_buf->active_readers, 0);
1430 for (j = 0; j < n_subbufs; j++)
1431 local_set(&ltt_buf->commit_count[j], 0);
5f54827b 1432//ust// init_waitqueue_head(&ltt_buf->write_wait);
e1152c37
PMF
1433 atomic_set(&ltt_buf->wakeup_readers, 0);
1434 spin_lock_init(&ltt_buf->full_lock);
1435
1436 ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
e1152c37 1437
c1dea0b3 1438 local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
5f54827b 1439
c1dea0b3
PMF
1440 local_set(&ltt_buf->events_lost, 0);
1441 local_set(&ltt_buf->corrupted_subbuffers, 0);
e1152c37
PMF
1442
1443 return 0;
1444}
1445
bb07823d 1446static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan)
e1152c37
PMF
1447{
1448 struct ltt_trace_struct *trace = ltt_chan->trace;
bb07823d 1449 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
e1152c37
PMF
1450
1451 kref_put(&ltt_chan->trace->ltt_transport_kref,
1452 ltt_release_transport);
bb07823d 1453 ltt_relay_print_buffer_errors(ltt_chan);
e1152c37
PMF
1454 kfree(ltt_buf->commit_count);
1455 ltt_buf->commit_count = NULL;
1456 kref_put(&ltt_chan->kref, ltt_relay_release_channel);
1457 kref_put(&trace->kref, ltt_release_trace);
bb07823d 1458//ust// wake_up_interruptible(&trace->kref_wq);
e1152c37
PMF
1459}
1460
1461/*
1462 * Create channel.
1463 */
1464static int ltt_relay_create_channel(const char *trace_name,
1465 struct ltt_trace_struct *trace, struct dentry *dir,
1466 const char *channel_name, struct ltt_channel_struct *ltt_chan,
1467 unsigned int subbuf_size, unsigned int n_subbufs,
1468 int overwrite)
1469{
1470 char *tmpname;
1471 unsigned int tmpname_len;
1472 int err = 0;
1473
1474 tmpname = kmalloc(PATH_MAX, GFP_KERNEL);
1475 if (!tmpname)
1476 return EPERM;
1477 if (overwrite) {
1478 strncpy(tmpname, LTT_FLIGHT_PREFIX, PATH_MAX-1);
1479 strncat(tmpname, channel_name,
1480 PATH_MAX-1-sizeof(LTT_FLIGHT_PREFIX));
1481 } else {
1482 strncpy(tmpname, channel_name, PATH_MAX-1);
1483 }
1484 strncat(tmpname, "_", PATH_MAX-1-strlen(tmpname));
1485
1486 kref_init(&ltt_chan->kref);
1487
1488 ltt_chan->trace = trace;
1489 ltt_chan->buffer_begin = ltt_buffer_begin_callback;
1490 ltt_chan->buffer_end = ltt_buffer_end_callback;
1491 ltt_chan->overwrite = overwrite;
1492 ltt_chan->n_subbufs_order = get_count_order(n_subbufs);
1493 ltt_chan->commit_count_mask = (~0UL >> ltt_chan->n_subbufs_order);
bb07823d
PMF
1494//ust// ltt_chan->buf = percpu_alloc_mask(sizeof(struct ltt_channel_buf_struct), GFP_KERNEL, cpu_possible_map);
1495 ltt_chan->buf = malloc(sizeof(struct ltt_channel_buf_struct));
e1152c37 1496 if (!ltt_chan->buf)
bb07823d 1497 goto alloc_error;
e1152c37
PMF
1498 ltt_chan->trans_channel_data = ltt_relay_open(tmpname,
1499 dir,
1500 subbuf_size,
1501 n_subbufs,
e1152c37
PMF
1502 ltt_chan);
1503 tmpname_len = strlen(tmpname);
1504 if (tmpname_len > 0) {
1505 /* Remove final _ for pretty printing */
1506 tmpname[tmpname_len-1] = '\0';
1507 }
1508 if (ltt_chan->trans_channel_data == NULL) {
1509 printk(KERN_ERR "LTT : Can't open %s channel for trace %s\n",
1510 tmpname, trace_name);
1511 goto relay_open_error;
1512 }
1513
1514 err = 0;
1515 goto end;
1516
1517relay_open_error:
bb07823d
PMF
1518//ust// percpu_free(ltt_chan->buf);
1519alloc_error:
e1152c37
PMF
1520 err = EPERM;
1521end:
1522 kfree(tmpname);
1523 return err;
1524}
1525
bb07823d
PMF
1526static int ltt_relay_create_dirs(struct ltt_trace_struct *new_trace)
1527{
1528//ust// new_trace->dentry.trace_root = debugfs_create_dir(new_trace->trace_name,
1529//ust// get_ltt_root());
1530//ust// if (new_trace->dentry.trace_root == NULL) {
1531//ust// printk(KERN_ERR "LTT : Trace directory name %s already taken\n",
1532//ust// new_trace->trace_name);
1533//ust// return EEXIST;
1534//ust// }
1535
1536//ust// new_trace->callbacks.create_buf_file = ltt_create_buf_file_callback;
1537//ust// new_trace->callbacks.remove_buf_file = ltt_remove_buf_file_callback;
1538
1539 return 0;
1540}
e1152c37
PMF
1541
1542/*
1543 * LTTng channel flush function.
1544 *
1545 * Must be called when no tracing is active in the channel, because of
1546 * accesses across CPUs.
1547 */
1548static notrace void ltt_relay_buffer_flush(struct rchan_buf *buf)
1549{
1550 buf->finalized = 1;
1551 ltt_force_switch(buf, FORCE_FLUSH);
1552}
1553
1554static void ltt_relay_async_wakeup_chan(struct ltt_channel_struct *ltt_channel)
1555{
bb07823d
PMF
1556//ust// unsigned int i;
1557//ust// struct rchan *rchan = ltt_channel->trans_channel_data;
1558//ust//
1559//ust// for_each_possible_cpu(i) {
1560//ust// struct ltt_channel_buf_struct *ltt_buf =
1561//ust// percpu_ptr(ltt_channel->buf, i);
1562//ust//
1563//ust// if (atomic_read(&ltt_buf->wakeup_readers) == 1) {
1564//ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1565//ust// wake_up_interruptible(&rchan->buf[i]->read_wait);
1566//ust// }
1567//ust// }
e1152c37
PMF
1568}
1569
bb07823d 1570static void ltt_relay_finish_buffer(struct ltt_channel_struct *ltt_channel)
e1152c37
PMF
1571{
1572 struct rchan *rchan = ltt_channel->trans_channel_data;
1573
bb07823d
PMF
1574 if (rchan->buf) {
1575 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
1576 ltt_relay_buffer_flush(rchan->buf);
1577//ust// ltt_relay_wake_writers(ltt_buf);
e1152c37
PMF
1578 }
1579}
1580
1581
1582static void ltt_relay_finish_channel(struct ltt_channel_struct *ltt_channel)
1583{
1584 unsigned int i;
1585
bb07823d
PMF
1586//ust// for_each_possible_cpu(i)
1587 ltt_relay_finish_buffer(ltt_channel);
e1152c37
PMF
1588}
1589
1590static void ltt_relay_remove_channel(struct ltt_channel_struct *channel)
1591{
1592 struct rchan *rchan = channel->trans_channel_data;
1593
1594 ltt_relay_close(rchan);
1595 kref_put(&channel->kref, ltt_relay_release_channel);
1596}
1597
1598struct ltt_reserve_switch_offsets {
1599 long begin, end, old;
1600 long begin_switch, end_switch_current, end_switch_old;
1601 long commit_count, reserve_commit_diff;
1602 size_t before_hdr_pad, size;
1603};
1604
1605/*
1606 * Returns :
1607 * 0 if ok
1608 * !0 if execution must be aborted.
1609 */
1610static inline int ltt_relay_try_reserve(
1611 struct ltt_channel_struct *ltt_channel,
1612 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1613 struct rchan_buf *buf,
1614 struct ltt_reserve_switch_offsets *offsets, size_t data_size,
1615 u64 *tsc, unsigned int *rflags, int largest_align)
1616{
1617 offsets->begin = local_read(&ltt_buf->offset);
1618 offsets->old = offsets->begin;
1619 offsets->begin_switch = 0;
1620 offsets->end_switch_current = 0;
1621 offsets->end_switch_old = 0;
1622
1623 *tsc = trace_clock_read64();
1624 if (last_tsc_overflow(ltt_buf, *tsc))
1625 *rflags = LTT_RFLAG_ID_SIZE_TSC;
1626
1627 if (SUBBUF_OFFSET(offsets->begin, buf->chan) == 0) {
1628 offsets->begin_switch = 1; /* For offsets->begin */
1629 } else {
1630 offsets->size = ltt_get_header_size(ltt_channel,
1631 offsets->begin, data_size,
1632 &offsets->before_hdr_pad, *rflags);
1633 offsets->size += ltt_align(offsets->begin + offsets->size,
1634 largest_align)
1635 + data_size;
1636 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1637 > buf->chan->subbuf_size) {
1638 offsets->end_switch_old = 1; /* For offsets->old */
1639 offsets->begin_switch = 1; /* For offsets->begin */
1640 }
1641 }
1642 if (offsets->begin_switch) {
1643 long subbuf_index;
1644
1645 if (offsets->end_switch_old)
1646 offsets->begin = SUBBUF_ALIGN(offsets->begin,
1647 buf->chan);
1648 offsets->begin = offsets->begin + ltt_subbuffer_header_size();
1649 /* Test new buffer integrity */
1650 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1651 offsets->reserve_commit_diff =
1652 (BUFFER_TRUNC(offsets->begin, buf->chan)
1653 >> ltt_channel->n_subbufs_order)
1654 - (local_read(&ltt_buf->commit_count[subbuf_index])
1655 & ltt_channel->commit_count_mask);
1656 if (offsets->reserve_commit_diff == 0) {
1657 /* Next buffer not corrupted. */
1658 if (!ltt_channel->overwrite &&
1659 (SUBBUF_TRUNC(offsets->begin, buf->chan)
1660 - SUBBUF_TRUNC(atomic_long_read(
1661 &ltt_buf->consumed),
1662 buf->chan))
1663 >= rchan->alloc_size) {
1664 /*
1665 * We do not overwrite non consumed buffers
1666 * and we are full : event is lost.
1667 */
1668 local_inc(&ltt_buf->events_lost);
1669 return -1;
1670 } else {
1671 /*
1672 * next buffer not corrupted, we are either in
1673 * overwrite mode or the buffer is not full.
1674 * It's safe to write in this new subbuffer.
1675 */
1676 }
1677 } else {
1678 /*
1679 * Next subbuffer corrupted. Force pushing reader even
1680 * in normal mode. It's safe to write in this new
1681 * subbuffer.
1682 */
1683 }
1684 offsets->size = ltt_get_header_size(ltt_channel,
1685 offsets->begin, data_size,
1686 &offsets->before_hdr_pad, *rflags);
1687 offsets->size += ltt_align(offsets->begin + offsets->size,
1688 largest_align)
1689 + data_size;
1690 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1691 > buf->chan->subbuf_size) {
1692 /*
1693 * Event too big for subbuffers, report error, don't
1694 * complete the sub-buffer switch.
1695 */
1696 local_inc(&ltt_buf->events_lost);
1697 return -1;
1698 } else {
1699 /*
1700 * We just made a successful buffer switch and the event
1701 * fits in the new subbuffer. Let's write.
1702 */
1703 }
1704 } else {
1705 /*
1706 * Event fits in the current buffer and we are not on a switch
1707 * boundary. It's safe to write.
1708 */
1709 }
1710 offsets->end = offsets->begin + offsets->size;
1711
1712 if ((SUBBUF_OFFSET(offsets->end, buf->chan)) == 0) {
1713 /*
1714 * The offset_end will fall at the very beginning of the next
1715 * subbuffer.
1716 */
1717 offsets->end_switch_current = 1; /* For offsets->begin */
1718 }
1719 return 0;
1720}
1721
1722/*
1723 * Returns :
1724 * 0 if ok
1725 * !0 if execution must be aborted.
1726 */
1727static inline int ltt_relay_try_switch(
1728 enum force_switch_mode mode,
1729 struct ltt_channel_struct *ltt_channel,
1730 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1731 struct rchan_buf *buf,
1732 struct ltt_reserve_switch_offsets *offsets,
1733 u64 *tsc)
1734{
1735 long subbuf_index;
1736
1737 offsets->begin = local_read(&ltt_buf->offset);
1738 offsets->old = offsets->begin;
1739 offsets->begin_switch = 0;
1740 offsets->end_switch_old = 0;
1741
1742 *tsc = trace_clock_read64();
1743
1744 if (SUBBUF_OFFSET(offsets->begin, buf->chan) != 0) {
1745 offsets->begin = SUBBUF_ALIGN(offsets->begin, buf->chan);
1746 offsets->end_switch_old = 1;
1747 } else {
1748 /* we do not have to switch : buffer is empty */
1749 return -1;
1750 }
1751 if (mode == FORCE_ACTIVE)
1752 offsets->begin += ltt_subbuffer_header_size();
1753 /*
1754 * Always begin_switch in FORCE_ACTIVE mode.
1755 * Test new buffer integrity
1756 */
1757 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1758 offsets->reserve_commit_diff =
1759 (BUFFER_TRUNC(offsets->begin, buf->chan)
1760 >> ltt_channel->n_subbufs_order)
1761 - (local_read(&ltt_buf->commit_count[subbuf_index])
1762 & ltt_channel->commit_count_mask);
1763 if (offsets->reserve_commit_diff == 0) {
1764 /* Next buffer not corrupted. */
1765 if (mode == FORCE_ACTIVE
1766 && !ltt_channel->overwrite
1767 && offsets->begin - atomic_long_read(&ltt_buf->consumed)
1768 >= rchan->alloc_size) {
1769 /*
1770 * We do not overwrite non consumed buffers and we are
1771 * full : ignore switch while tracing is active.
1772 */
1773 return -1;
1774 }
1775 } else {
1776 /*
1777 * Next subbuffer corrupted. Force pushing reader even in normal
1778 * mode
1779 */
1780 }
1781 offsets->end = offsets->begin;
1782 return 0;
1783}
1784
1785static inline void ltt_reserve_push_reader(
1786 struct ltt_channel_struct *ltt_channel,
1787 struct ltt_channel_buf_struct *ltt_buf,
1788 struct rchan *rchan,
1789 struct rchan_buf *buf,
1790 struct ltt_reserve_switch_offsets *offsets)
1791{
1792 long consumed_old, consumed_new;
1793
1794 do {
1795 consumed_old = atomic_long_read(&ltt_buf->consumed);
1796 /*
1797 * If buffer is in overwrite mode, push the reader consumed
1798 * count if the write position has reached it and we are not
1799 * at the first iteration (don't push the reader farther than
1800 * the writer). This operation can be done concurrently by many
1801 * writers in the same buffer, the writer being at the farthest
1802 * write position sub-buffer index in the buffer being the one
1803 * which will win this loop.
1804 * If the buffer is not in overwrite mode, pushing the reader
1805 * only happens if a sub-buffer is corrupted.
1806 */
1807 if ((SUBBUF_TRUNC(offsets->end-1, buf->chan)
1808 - SUBBUF_TRUNC(consumed_old, buf->chan))
1809 >= rchan->alloc_size)
1810 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1811 else {
1812 consumed_new = consumed_old;
1813 break;
1814 }
1815 } while (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1816 consumed_new) != consumed_old);
1817
1818 if (consumed_old != consumed_new) {
1819 /*
1820 * Reader pushed : we are the winner of the push, we can
1821 * therefore reequilibrate reserve and commit. Atomic increment
1822 * of the commit count permits other writers to play around
1823 * with this variable before us. We keep track of
1824 * corrupted_subbuffers even in overwrite mode :
1825 * we never want to write over a non completely committed
1826 * sub-buffer : possible causes : the buffer size is too low
1827 * compared to the unordered data input, or there is a writer
1828 * that died between the reserve and the commit.
1829 */
1830 if (offsets->reserve_commit_diff) {
1831 /*
1832 * We have to alter the sub-buffer commit count.
1833 * We do not deliver the previous subbuffer, given it
1834 * was either corrupted or not consumed (overwrite
1835 * mode).
1836 */
1837 local_add(offsets->reserve_commit_diff,
1838 &ltt_buf->commit_count[
1839 SUBBUF_INDEX(offsets->begin,
1840 buf->chan)]);
1841 if (!ltt_channel->overwrite
1842 || offsets->reserve_commit_diff
1843 != rchan->subbuf_size) {
1844 /*
1845 * The reserve commit diff was not subbuf_size :
1846 * it means the subbuffer was partly written to
1847 * and is therefore corrupted. If it is multiple
1848 * of subbuffer size and we are in flight
1849 * recorder mode, we are skipping over a whole
1850 * subbuffer.
1851 */
1852 local_inc(&ltt_buf->corrupted_subbuffers);
1853 }
1854 }
1855 }
1856}
1857
1858
1859/*
1860 * ltt_reserve_switch_old_subbuf: switch old subbuffer
1861 *
1862 * Concurrency safe because we are the last and only thread to alter this
1863 * sub-buffer. As long as it is not delivered and read, no other thread can
1864 * alter the offset, alter the reserve_count or call the
1865 * client_buffer_end_callback on this sub-buffer.
1866 *
1867 * The only remaining threads could be the ones with pending commits. They will
1868 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1869 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1870 * corrupted sub-buffers count and push the readers across these sub-buffers.
1871 *
1872 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1873 * switches in, finding out it's corrupted. The result will be than the old
1874 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1875 * will be declared corrupted too because of the commit count adjustment.
1876 *
1877 * Note : offset_old should never be 0 here.
1878 */
1879static inline void ltt_reserve_switch_old_subbuf(
1880 struct ltt_channel_struct *ltt_channel,
1881 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1882 struct rchan_buf *buf,
1883 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1884{
1885 long oldidx = SUBBUF_INDEX(offsets->old - 1, rchan);
1886
1887 ltt_channel->buffer_end(buf, *tsc, offsets->old, oldidx);
1888 /* Must write buffer end before incrementing commit count */
1889 smp_wmb();
1890 offsets->commit_count =
1891 local_add_return(rchan->subbuf_size
1892 - (SUBBUF_OFFSET(offsets->old - 1, rchan)
1893 + 1),
1894 &ltt_buf->commit_count[oldidx]);
1895 if ((BUFFER_TRUNC(offsets->old - 1, rchan)
1896 >> ltt_channel->n_subbufs_order)
1897 - ((offsets->commit_count - rchan->subbuf_size)
1898 & ltt_channel->commit_count_mask) == 0)
1899 ltt_deliver(buf, oldidx, NULL);
1900}
1901
1902/*
1903 * ltt_reserve_switch_new_subbuf: Populate new subbuffer.
1904 *
1905 * This code can be executed unordered : writers may already have written to the
1906 * sub-buffer before this code gets executed, caution. The commit makes sure
1907 * that this code is executed before the deliver of this sub-buffer.
1908 */
1909static inline void ltt_reserve_switch_new_subbuf(
1910 struct ltt_channel_struct *ltt_channel,
1911 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1912 struct rchan_buf *buf,
1913 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1914{
1915 long beginidx = SUBBUF_INDEX(offsets->begin, rchan);
1916
1917 ltt_channel->buffer_begin(buf, *tsc, beginidx);
1918 /* Must write buffer end before incrementing commit count */
1919 smp_wmb();
1920 offsets->commit_count = local_add_return(ltt_subbuffer_header_size(),
1921 &ltt_buf->commit_count[beginidx]);
1922 /* Check if the written buffer has to be delivered */
1923 if ((BUFFER_TRUNC(offsets->begin, rchan)
1924 >> ltt_channel->n_subbufs_order)
1925 - ((offsets->commit_count - rchan->subbuf_size)
1926 & ltt_channel->commit_count_mask) == 0)
1927 ltt_deliver(buf, beginidx, NULL);
1928}
1929
1930
1931/*
1932 * ltt_reserve_end_switch_current: finish switching current subbuffer
1933 *
1934 * Concurrency safe because we are the last and only thread to alter this
1935 * sub-buffer. As long as it is not delivered and read, no other thread can
1936 * alter the offset, alter the reserve_count or call the
1937 * client_buffer_end_callback on this sub-buffer.
1938 *
1939 * The only remaining threads could be the ones with pending commits. They will
1940 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1941 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1942 * corrupted sub-buffers count and push the readers across these sub-buffers.
1943 *
1944 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1945 * switches in, finding out it's corrupted. The result will be than the old
1946 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1947 * will be declared corrupted too because of the commit count adjustment.
1948 */
1949static inline void ltt_reserve_end_switch_current(
1950 struct ltt_channel_struct *ltt_channel,
1951 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1952 struct rchan_buf *buf,
1953 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1954{
1955 long endidx = SUBBUF_INDEX(offsets->end - 1, rchan);
1956
1957 ltt_channel->buffer_end(buf, *tsc, offsets->end, endidx);
1958 /* Must write buffer begin before incrementing commit count */
1959 smp_wmb();
1960 offsets->commit_count =
1961 local_add_return(rchan->subbuf_size
1962 - (SUBBUF_OFFSET(offsets->end - 1, rchan)
1963 + 1),
1964 &ltt_buf->commit_count[endidx]);
1965 if ((BUFFER_TRUNC(offsets->end - 1, rchan)
1966 >> ltt_channel->n_subbufs_order)
1967 - ((offsets->commit_count - rchan->subbuf_size)
1968 & ltt_channel->commit_count_mask) == 0)
1969 ltt_deliver(buf, endidx, NULL);
1970}
1971
1972/**
1973 * ltt_relay_reserve_slot - Atomic slot reservation in a LTTng buffer.
1974 * @trace: the trace structure to log to.
1975 * @ltt_channel: channel structure
1976 * @transport_data: data structure specific to ltt relay
1977 * @data_size: size of the variable length data to log.
1978 * @slot_size: pointer to total size of the slot (out)
1979 * @buf_offset : pointer to reserved buffer offset (out)
1980 * @tsc: pointer to the tsc at the slot reservation (out)
1981 * @cpu: cpuid
1982 *
1983 * Return : -ENOSPC if not enough space, else returns 0.
1984 * It will take care of sub-buffer switching.
1985 */
1986static notrace int ltt_relay_reserve_slot(struct ltt_trace_struct *trace,
1987 struct ltt_channel_struct *ltt_channel, void **transport_data,
1988 size_t data_size, size_t *slot_size, long *buf_offset, u64 *tsc,
c1dea0b3 1989 unsigned int *rflags, int largest_align)
e1152c37
PMF
1990{
1991 struct rchan *rchan = ltt_channel->trans_channel_data;
bb07823d
PMF
1992 struct rchan_buf *buf = *transport_data = rchan->buf;
1993 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
e1152c37
PMF
1994 struct ltt_reserve_switch_offsets offsets;
1995
1996 offsets.reserve_commit_diff = 0;
1997 offsets.size = 0;
1998
1999 /*
2000 * Perform retryable operations.
2001 */
bb07823d 2002 if (ltt_nesting > 4) {
e1152c37
PMF
2003 local_inc(&ltt_buf->events_lost);
2004 return -EPERM;
2005 }
2006 do {
2007 if (ltt_relay_try_reserve(ltt_channel, ltt_buf,
2008 rchan, buf, &offsets, data_size, tsc, rflags,
2009 largest_align))
2010 return -ENOSPC;
2011 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2012 offsets.end) != offsets.old);
2013
2014 /*
2015 * Atomically update last_tsc. This update races against concurrent
2016 * atomic updates, but the race will always cause supplementary full TSC
2017 * events, never the opposite (missing a full TSC event when it would be
2018 * needed).
2019 */
2020 save_last_tsc(ltt_buf, *tsc);
2021
2022 /*
2023 * Push the reader if necessary
2024 */
2025 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan, buf, &offsets);
2026
2027 /*
2028 * Switch old subbuffer if needed.
2029 */
2030 if (offsets.end_switch_old)
2031 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2032 &offsets, tsc);
2033
2034 /*
2035 * Populate new subbuffer.
2036 */
2037 if (offsets.begin_switch)
2038 ltt_reserve_switch_new_subbuf(ltt_channel, ltt_buf, rchan,
2039 buf, &offsets, tsc);
2040
2041 if (offsets.end_switch_current)
2042 ltt_reserve_end_switch_current(ltt_channel, ltt_buf, rchan,
2043 buf, &offsets, tsc);
2044
2045 *slot_size = offsets.size;
2046 *buf_offset = offsets.begin + offsets.before_hdr_pad;
2047 return 0;
2048}
2049
2050/*
2051 * Force a sub-buffer switch for a per-cpu buffer. This operation is
2052 * completely reentrant : can be called while tracing is active with
2053 * absolutely no lock held.
2054 *
2055 * Note, however, that as a local_cmpxchg is used for some atomic
2056 * operations, this function must be called from the CPU which owns the buffer
2057 * for a ACTIVE flush.
2058 */
2059static notrace void ltt_force_switch(struct rchan_buf *buf,
2060 enum force_switch_mode mode)
2061{
2062 struct ltt_channel_struct *ltt_channel =
2063 (struct ltt_channel_struct *)buf->chan->private_data;
bb07823d 2064 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
e1152c37
PMF
2065 struct rchan *rchan = ltt_channel->trans_channel_data;
2066 struct ltt_reserve_switch_offsets offsets;
2067 u64 tsc;
2068
2069 offsets.reserve_commit_diff = 0;
2070 offsets.size = 0;
2071
2072 /*
2073 * Perform retryable operations.
2074 */
2075 do {
2076 if (ltt_relay_try_switch(mode, ltt_channel, ltt_buf,
2077 rchan, buf, &offsets, &tsc))
2078 return;
2079 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2080 offsets.end) != offsets.old);
2081
2082 /*
2083 * Atomically update last_tsc. This update races against concurrent
2084 * atomic updates, but the race will always cause supplementary full TSC
2085 * events, never the opposite (missing a full TSC event when it would be
2086 * needed).
2087 */
2088 save_last_tsc(ltt_buf, tsc);
2089
2090 /*
2091 * Push the reader if necessary
2092 */
2093 if (mode == FORCE_ACTIVE)
2094 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan,
2095 buf, &offsets);
2096
2097 /*
2098 * Switch old subbuffer if needed.
2099 */
2100 if (offsets.end_switch_old)
2101 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2102 &offsets, &tsc);
2103
2104 /*
2105 * Populate new subbuffer.
2106 */
2107 if (mode == FORCE_ACTIVE)
2108 ltt_reserve_switch_new_subbuf(ltt_channel,
2109 ltt_buf, rchan, buf, &offsets, &tsc);
2110}
2111
2112/*
2113 * for flight recording. must be called after relay_commit.
2114 * This function decrements de subbuffer's lost_size each time the commit count
2115 * reaches back the reserve offset (module subbuffer size). It is useful for
2116 * crash dump.
2117 * We use slot_size - 1 to make sure we deal correctly with the case where we
2118 * fill the subbuffer completely (so the subbuf index stays in the previous
2119 * subbuffer).
2120 */
2121#ifdef CONFIG_LTT_VMCORE
2122static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2123 long buf_offset, size_t slot_size)
2124{
2125 struct ltt_channel_struct *ltt_channel =
2126 (struct ltt_channel_struct *)buf->chan->private_data;
2127 struct ltt_channel_buf_struct *ltt_buf =
2128 percpu_ptr(ltt_channel->buf, buf->cpu);
2129 struct ltt_subbuffer_header *header;
2130 long offset, subbuf_idx, commit_count;
2131 uint32_t lost_old, lost_new;
2132
2133 subbuf_idx = SUBBUF_INDEX(buf_offset - 1, buf->chan);
2134 offset = buf_offset + slot_size;
2135 header = (struct ltt_subbuffer_header *)
2136 ltt_relay_offset_address(buf,
2137 subbuf_idx * buf->chan->subbuf_size);
2138 for (;;) {
2139 lost_old = header->lost_size;
2140 commit_count =
2141 local_read(&ltt_buf->commit_count[subbuf_idx]);
2142 /* SUBBUF_OFFSET includes commit_count_mask */
2143 if (!SUBBUF_OFFSET(offset - commit_count, buf->chan)) {
2144 lost_new = (uint32_t)buf->chan->subbuf_size
2145 - SUBBUF_OFFSET(commit_count, buf->chan);
2146 lost_old = cmpxchg_local(&header->lost_size, lost_old,
2147 lost_new);
2148 if (lost_old <= lost_new)
2149 break;
2150 } else {
2151 break;
2152 }
2153 }
2154}
2155#else
2156static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2157 long buf_offset, size_t slot_size)
2158{
2159}
2160#endif
2161
2162/*
2163 * Atomic unordered slot commit. Increments the commit count in the
2164 * specified sub-buffer, and delivers it if necessary.
2165 *
2166 * Parameters:
2167 *
2168 * @ltt_channel : channel structure
2169 * @transport_data: transport-specific data
2170 * @buf_offset : offset following the event header.
2171 * @slot_size : size of the reserved slot.
2172 */
2173static notrace void ltt_relay_commit_slot(
2174 struct ltt_channel_struct *ltt_channel,
2175 void **transport_data, long buf_offset, size_t slot_size)
2176{
2177 struct rchan_buf *buf = *transport_data;
bb07823d 2178 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
e1152c37
PMF
2179 struct rchan *rchan = buf->chan;
2180 long offset_end = buf_offset;
2181 long endidx = SUBBUF_INDEX(offset_end - 1, rchan);
2182 long commit_count;
2183
2184 /* Must write slot data before incrementing commit count */
2185 smp_wmb();
2186 commit_count = local_add_return(slot_size,
2187 &ltt_buf->commit_count[endidx]);
2188 /* Check if all commits have been done */
2189 if ((BUFFER_TRUNC(offset_end - 1, rchan)
2190 >> ltt_channel->n_subbufs_order)
2191 - ((commit_count - rchan->subbuf_size)
2192 & ltt_channel->commit_count_mask) == 0)
2193 ltt_deliver(buf, endidx, NULL);
2194 /*
2195 * Update lost_size for each commit. It's needed only for extracting
2196 * ltt buffers from vmcore, after crash.
2197 */
2198 ltt_write_commit_counter(buf, buf_offset, slot_size);
2199}
2200
2201/*
2202 * This is called with preemption disabled when user space has requested
2203 * blocking mode. If one of the active traces has free space below a
2204 * specific threshold value, we reenable preemption and block.
2205 */
2206static int ltt_relay_user_blocking(struct ltt_trace_struct *trace,
2207 unsigned int chan_index, size_t data_size,
2208 struct user_dbg_data *dbg)
2209{
bb07823d
PMF
2210//ust// struct rchan *rchan;
2211//ust// struct ltt_channel_buf_struct *ltt_buf;
2212//ust// struct ltt_channel_struct *channel;
2213//ust// struct rchan_buf *relay_buf;
2214//ust// int cpu;
2215//ust// DECLARE_WAITQUEUE(wait, current);
2216//ust//
2217//ust// channel = &trace->channels[chan_index];
2218//ust// rchan = channel->trans_channel_data;
2219//ust// cpu = smp_processor_id();
2220//ust// relay_buf = rchan->buf[cpu];
2221//ust// ltt_buf = percpu_ptr(channel->buf, cpu);
2222//ust//
2223//ust// /*
2224//ust// * Check if data is too big for the channel : do not
2225//ust// * block for it.
2226//ust// */
2227//ust// if (LTT_RESERVE_CRITICAL + data_size > relay_buf->chan->subbuf_size)
2228//ust// return 0;
2229//ust//
2230//ust// /*
2231//ust// * If free space too low, we block. We restart from the
2232//ust// * beginning after we resume (cpu id may have changed
2233//ust// * while preemption is active).
2234//ust// */
2235//ust// spin_lock(&ltt_buf->full_lock);
2236//ust// if (!channel->overwrite) {
2237//ust// dbg->write = local_read(&ltt_buf->offset);
2238//ust// dbg->read = atomic_long_read(&ltt_buf->consumed);
2239//ust// dbg->avail_size = dbg->write + LTT_RESERVE_CRITICAL + data_size
2240//ust// - SUBBUF_TRUNC(dbg->read,
2241//ust// relay_buf->chan);
2242//ust// if (dbg->avail_size > rchan->alloc_size) {
2243//ust// __set_current_state(TASK_INTERRUPTIBLE);
2244//ust// add_wait_queue(&ltt_buf->write_wait, &wait);
2245//ust// spin_unlock(&ltt_buf->full_lock);
2246//ust// preempt_enable();
2247//ust// schedule();
2248//ust// __set_current_state(TASK_RUNNING);
2249//ust// remove_wait_queue(&ltt_buf->write_wait, &wait);
2250//ust// if (signal_pending(current))
2251//ust// return -ERESTARTSYS;
2252//ust// preempt_disable();
2253//ust// return 1;
2254//ust// }
2255//ust// }
2256//ust// spin_unlock(&ltt_buf->full_lock);
e1152c37
PMF
2257 return 0;
2258}
2259
2260static void ltt_relay_print_user_errors(struct ltt_trace_struct *trace,
2261 unsigned int chan_index, size_t data_size,
c1dea0b3 2262 struct user_dbg_data *dbg)
e1152c37
PMF
2263{
2264 struct rchan *rchan;
2265 struct ltt_channel_buf_struct *ltt_buf;
2266 struct ltt_channel_struct *channel;
2267 struct rchan_buf *relay_buf;
2268
2269 channel = &trace->channels[chan_index];
2270 rchan = channel->trans_channel_data;
bb07823d
PMF
2271 relay_buf = rchan->buf;
2272 ltt_buf = channel->buf;
e1152c37
PMF
2273
2274 printk(KERN_ERR "Error in LTT usertrace : "
2275 "buffer full : event lost in blocking "
2276 "mode. Increase LTT_RESERVE_CRITICAL.\n");
bb07823d 2277 printk(KERN_ERR "LTT nesting level is %u.\n", ltt_nesting);
e1152c37
PMF
2278 printk(KERN_ERR "LTT avail size %lu.\n",
2279 dbg->avail_size);
2280 printk(KERN_ERR "avai write : %lu, read : %lu\n",
2281 dbg->write, dbg->read);
2282
2283 dbg->write = local_read(&ltt_buf->offset);
2284 dbg->read = atomic_long_read(&ltt_buf->consumed);
2285
2286 printk(KERN_ERR "LTT cur size %lu.\n",
2287 dbg->write + LTT_RESERVE_CRITICAL + data_size
2288 - SUBBUF_TRUNC(dbg->read, relay_buf->chan));
2289 printk(KERN_ERR "cur write : %lu, read : %lu\n",
2290 dbg->write, dbg->read);
2291}
2292
5f54827b
PMF
2293//ust// static struct ltt_transport ltt_relay_transport = {
2294//ust// .name = "relay",
2295//ust// .owner = THIS_MODULE,
2296//ust// .ops = {
2297//ust// .create_dirs = ltt_relay_create_dirs,
2298//ust// .remove_dirs = ltt_relay_remove_dirs,
2299//ust// .create_channel = ltt_relay_create_channel,
2300//ust// .finish_channel = ltt_relay_finish_channel,
2301//ust// .remove_channel = ltt_relay_remove_channel,
2302//ust// .wakeup_channel = ltt_relay_async_wakeup_chan,
2303//ust// .commit_slot = ltt_relay_commit_slot,
2304//ust// .reserve_slot = ltt_relay_reserve_slot,
2305//ust// .user_blocking = ltt_relay_user_blocking,
2306//ust// .user_errors = ltt_relay_print_user_errors,
2307//ust// },
2308//ust// };
2309
2310static struct ltt_transport ust_relay_transport = {
2311 .name = "ustrelay",
bb07823d 2312//ust// .owner = THIS_MODULE,
e1152c37
PMF
2313 .ops = {
2314 .create_dirs = ltt_relay_create_dirs,
2315 .remove_dirs = ltt_relay_remove_dirs,
2316 .create_channel = ltt_relay_create_channel,
2317 .finish_channel = ltt_relay_finish_channel,
2318 .remove_channel = ltt_relay_remove_channel,
2319 .wakeup_channel = ltt_relay_async_wakeup_chan,
2320 .commit_slot = ltt_relay_commit_slot,
2321 .reserve_slot = ltt_relay_reserve_slot,
2322 .user_blocking = ltt_relay_user_blocking,
2323 .user_errors = ltt_relay_print_user_errors,
2324 },
2325};
2326
5f54827b
PMF
2327//ust// static int __init ltt_relay_init(void)
2328//ust// {
2329//ust// printk(KERN_INFO "LTT : ltt-relay init\n");
2330//ust//
2331//ust// ltt_file_operations = ltt_relay_file_operations;
2332//ust// ltt_file_operations.owner = THIS_MODULE;
2333//ust// ltt_file_operations.open = ltt_open;
2334//ust// ltt_file_operations.release = ltt_release;
2335//ust// ltt_file_operations.poll = ltt_poll;
2336//ust// ltt_file_operations.splice_read = ltt_relay_file_splice_read,
2337//ust// ltt_file_operations.ioctl = ltt_ioctl;
2338//ust//#ifdef CONFIG_COMPAT
2339//ust// ltt_file_operations.compat_ioctl = ltt_compat_ioctl;
2340//ust//#endif
2341//ust//
2342//ust// ltt_transport_register(&ltt_relay_transport);
2343//ust//
2344//ust// return 0;
2345//ust// }
2346
4db647c5
PMF
2347static char initialized = 0;
2348
54d6c4f2 2349void __attribute__((constructor)) init_ustrelay_transport(void)
e1152c37 2350{
4db647c5
PMF
2351 if(!initialized) {
2352 ltt_transport_register(&ust_relay_transport);
2353 initialized = 1;
2354 }
e1152c37
PMF
2355}
2356
2357static void __exit ltt_relay_exit(void)
2358{
5f54827b 2359//ust// printk(KERN_INFO "LTT : ltt-relay exit\n");
e1152c37 2360
bb07823d 2361 ltt_transport_unregister(&ust_relay_transport);
e1152c37
PMF
2362}
2363
5f54827b
PMF
2364//ust// module_init(ltt_relay_init);
2365//ust// module_exit(ltt_relay_exit);
2366//ust//
2367//ust// MODULE_LICENSE("GPL");
2368//ust// MODULE_AUTHOR("Mathieu Desnoyers");
2369//ust// MODULE_DESCRIPTION("Linux Trace Toolkit Next Generation Lockless Relay");
This page took 0.110843 seconds and 4 git commands to generate.