Fix: auto-resize hash table destroy deadlock
[urcu.git] / src / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * worker thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #include <stdlib.h>
260 #include <errno.h>
261 #include <assert.h>
262 #include <stdio.h>
263 #include <stdint.h>
264 #include <string.h>
265 #include <sched.h>
266 #include <unistd.h>
267
268 #include "compat-getcpu.h"
269 #include <urcu/pointer.h>
270 #include <urcu/call-rcu.h>
271 #include <urcu/flavor.h>
272 #include <urcu/arch.h>
273 #include <urcu/uatomic.h>
274 #include <urcu/compiler.h>
275 #include <urcu/rculfhash.h>
276 #include <urcu/static/urcu-signal-nr.h>
277 #include <stdio.h>
278 #include <pthread.h>
279 #include <signal.h>
280 #include "rculfhash-internal.h"
281 #include "workqueue.h"
282 #include "urcu-die.h"
283 #include "urcu-utils.h"
284 #include "compat-smp.h"
285
286 /*
287 * Split-counters lazily update the global counter each 1024
288 * addition/removal. It automatically keeps track of resize required.
289 * We use the bucket length as indicator for need to expand for small
290 * tables and machines lacking per-cpu data support.
291 */
292 #define COUNT_COMMIT_ORDER 10
293 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
294 #define CHAIN_LEN_TARGET 1
295 #define CHAIN_LEN_RESIZE_THRESHOLD 3
296
297 /*
298 * Define the minimum table size.
299 */
300 #define MIN_TABLE_ORDER 0
301 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
302
303 /*
304 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
305 */
306 #define MIN_PARTITION_PER_THREAD_ORDER 12
307 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
308
309 /*
310 * The removed flag needs to be updated atomically with the pointer.
311 * It indicates that no node must attach to the node scheduled for
312 * removal, and that node garbage collection must be performed.
313 * The bucket flag does not require to be updated atomically with the
314 * pointer, but it is added as a pointer low bit flag to save space.
315 * The "removal owner" flag is used to detect which of the "del"
316 * operation that has set the "removed flag" gets to return the removed
317 * node to its caller. Note that the replace operation does not need to
318 * iteract with the "removal owner" flag, because it validates that
319 * the "removed" flag is not set before performing its cmpxchg.
320 */
321 #define REMOVED_FLAG (1UL << 0)
322 #define BUCKET_FLAG (1UL << 1)
323 #define REMOVAL_OWNER_FLAG (1UL << 2)
324 #define FLAGS_MASK ((1UL << 3) - 1)
325
326 /* Value of the end pointer. Should not interact with flags. */
327 #define END_VALUE NULL
328
329 /*
330 * ht_items_count: Split-counters counting the number of node addition
331 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
332 * is set at hash table creation.
333 *
334 * These are free-running counters, never reset to zero. They count the
335 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
336 * operations to update the global counter. We choose a power-of-2 value
337 * for the trigger to deal with 32 or 64-bit overflow of the counter.
338 */
339 struct ht_items_count {
340 unsigned long add, del;
341 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
342
343 /*
344 * resize_work: Contains arguments passed to worker thread
345 * responsible for performing lazy resize.
346 */
347 struct resize_work {
348 struct urcu_work work;
349 struct cds_lfht *ht;
350 };
351
352 /*
353 * partition_resize_work: Contains arguments passed to worker threads
354 * executing the hash table resize on partitions of the hash table
355 * assigned to each processor's worker thread.
356 */
357 struct partition_resize_work {
358 pthread_t thread_id;
359 struct cds_lfht *ht;
360 unsigned long i, start, len;
361 void (*fct)(struct cds_lfht *ht, unsigned long i,
362 unsigned long start, unsigned long len);
363 };
364
365 static struct urcu_workqueue *cds_lfht_workqueue;
366
367 /*
368 * Mutex ensuring mutual exclusion between workqueue initialization and
369 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
370 */
371 static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
372
373 static struct urcu_atfork cds_lfht_atfork;
374
375 /*
376 * atfork handler nesting counters. Handle being registered to many urcu
377 * flavors, thus being possibly invoked more than once in the
378 * pthread_atfork list of callbacks.
379 */
380 static int cds_lfht_workqueue_atfork_nesting;
381
382 static void __attribute__((destructor)) cds_lfht_exit(void);
383 static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
384
385 #ifdef CONFIG_CDS_LFHT_ITER_DEBUG
386
387 static
388 void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
389 {
390 iter->lfht = ht;
391 }
392
393 #define cds_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
394
395 #else
396
397 static
398 void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht __attribute__((unused)),
399 struct cds_lfht_iter *iter __attribute__((unused)))
400 {
401 }
402
403 #define cds_lfht_iter_debug_assert(...)
404
405 #endif
406
407 /*
408 * Algorithm to reverse bits in a word by lookup table, extended to
409 * 64-bit words.
410 * Source:
411 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
412 * Originally from Public Domain.
413 */
414
415 static const uint8_t BitReverseTable256[256] =
416 {
417 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
418 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
419 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
420 R6(0), R6(2), R6(1), R6(3)
421 };
422 #undef R2
423 #undef R4
424 #undef R6
425
426 static
427 uint8_t bit_reverse_u8(uint8_t v)
428 {
429 return BitReverseTable256[v];
430 }
431
432 #if (CAA_BITS_PER_LONG == 32)
433 static
434 uint32_t bit_reverse_u32(uint32_t v)
435 {
436 return ((uint32_t) bit_reverse_u8(v) << 24) |
437 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
438 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
439 ((uint32_t) bit_reverse_u8(v >> 24));
440 }
441 #else
442 static
443 uint64_t bit_reverse_u64(uint64_t v)
444 {
445 return ((uint64_t) bit_reverse_u8(v) << 56) |
446 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
447 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
448 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
449 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
450 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
451 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
452 ((uint64_t) bit_reverse_u8(v >> 56));
453 }
454 #endif
455
456 static
457 unsigned long bit_reverse_ulong(unsigned long v)
458 {
459 #if (CAA_BITS_PER_LONG == 32)
460 return bit_reverse_u32(v);
461 #else
462 return bit_reverse_u64(v);
463 #endif
464 }
465
466 /*
467 * fls: returns the position of the most significant bit.
468 * Returns 0 if no bit is set, else returns the position of the most
469 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
470 */
471 #if defined(__i386) || defined(__x86_64)
472 static inline
473 unsigned int fls_u32(uint32_t x)
474 {
475 int r;
476
477 __asm__ ("bsrl %1,%0\n\t"
478 "jnz 1f\n\t"
479 "movl $-1,%0\n\t"
480 "1:\n\t"
481 : "=r" (r) : "rm" (x));
482 return r + 1;
483 }
484 #define HAS_FLS_U32
485 #endif
486
487 #if defined(__x86_64)
488 static inline
489 unsigned int fls_u64(uint64_t x)
490 {
491 long r;
492
493 __asm__ ("bsrq %1,%0\n\t"
494 "jnz 1f\n\t"
495 "movq $-1,%0\n\t"
496 "1:\n\t"
497 : "=r" (r) : "rm" (x));
498 return r + 1;
499 }
500 #define HAS_FLS_U64
501 #endif
502
503 #ifndef HAS_FLS_U64
504 static __attribute__((unused))
505 unsigned int fls_u64(uint64_t x)
506 {
507 unsigned int r = 64;
508
509 if (!x)
510 return 0;
511
512 if (!(x & 0xFFFFFFFF00000000ULL)) {
513 x <<= 32;
514 r -= 32;
515 }
516 if (!(x & 0xFFFF000000000000ULL)) {
517 x <<= 16;
518 r -= 16;
519 }
520 if (!(x & 0xFF00000000000000ULL)) {
521 x <<= 8;
522 r -= 8;
523 }
524 if (!(x & 0xF000000000000000ULL)) {
525 x <<= 4;
526 r -= 4;
527 }
528 if (!(x & 0xC000000000000000ULL)) {
529 x <<= 2;
530 r -= 2;
531 }
532 if (!(x & 0x8000000000000000ULL)) {
533 x <<= 1;
534 r -= 1;
535 }
536 return r;
537 }
538 #endif
539
540 #ifndef HAS_FLS_U32
541 static __attribute__((unused))
542 unsigned int fls_u32(uint32_t x)
543 {
544 unsigned int r = 32;
545
546 if (!x)
547 return 0;
548 if (!(x & 0xFFFF0000U)) {
549 x <<= 16;
550 r -= 16;
551 }
552 if (!(x & 0xFF000000U)) {
553 x <<= 8;
554 r -= 8;
555 }
556 if (!(x & 0xF0000000U)) {
557 x <<= 4;
558 r -= 4;
559 }
560 if (!(x & 0xC0000000U)) {
561 x <<= 2;
562 r -= 2;
563 }
564 if (!(x & 0x80000000U)) {
565 x <<= 1;
566 r -= 1;
567 }
568 return r;
569 }
570 #endif
571
572 unsigned int cds_lfht_fls_ulong(unsigned long x)
573 {
574 #if (CAA_BITS_PER_LONG == 32)
575 return fls_u32(x);
576 #else
577 return fls_u64(x);
578 #endif
579 }
580
581 /*
582 * Return the minimum order for which x <= (1UL << order).
583 * Return -1 if x is 0.
584 */
585 static
586 int cds_lfht_get_count_order_u32(uint32_t x)
587 {
588 if (!x)
589 return -1;
590
591 return fls_u32(x - 1);
592 }
593
594 /*
595 * Return the minimum order for which x <= (1UL << order).
596 * Return -1 if x is 0.
597 */
598 int cds_lfht_get_count_order_ulong(unsigned long x)
599 {
600 if (!x)
601 return -1;
602
603 return cds_lfht_fls_ulong(x - 1);
604 }
605
606 static
607 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
608
609 static
610 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
611 unsigned long count);
612
613 static void mutex_lock(pthread_mutex_t *mutex)
614 {
615 int ret;
616
617 #ifndef DISTRUST_SIGNALS_EXTREME
618 ret = pthread_mutex_lock(mutex);
619 if (ret)
620 urcu_die(ret);
621 #else /* #ifndef DISTRUST_SIGNALS_EXTREME */
622 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
623 if (ret != EBUSY && ret != EINTR)
624 urcu_die(ret);
625 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
626 cmm_smp_mb();
627 _CMM_STORE_SHARED(URCU_TLS(rcu_reader).need_mb, 0);
628 cmm_smp_mb();
629 }
630 (void) poll(NULL, 0, 10);
631 }
632 #endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
633 }
634
635 static void mutex_unlock(pthread_mutex_t *mutex)
636 {
637 int ret;
638
639 ret = pthread_mutex_unlock(mutex);
640 if (ret)
641 urcu_die(ret);
642 }
643
644 static long nr_cpus_mask = -1;
645 static long split_count_mask = -1;
646 static int split_count_order = -1;
647
648 static void ht_init_nr_cpus_mask(void)
649 {
650 long maxcpus;
651
652 maxcpus = get_possible_cpus_array_len();
653 if (maxcpus <= 0) {
654 nr_cpus_mask = -2;
655 return;
656 }
657 /*
658 * round up number of CPUs to next power of two, so we
659 * can use & for modulo.
660 */
661 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
662 nr_cpus_mask = maxcpus - 1;
663 }
664
665 static
666 void alloc_split_items_count(struct cds_lfht *ht)
667 {
668 if (nr_cpus_mask == -1) {
669 ht_init_nr_cpus_mask();
670 if (nr_cpus_mask < 0)
671 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
672 else
673 split_count_mask = nr_cpus_mask;
674 split_count_order =
675 cds_lfht_get_count_order_ulong(split_count_mask + 1);
676 }
677
678 assert(split_count_mask >= 0);
679
680 if (ht->flags & CDS_LFHT_ACCOUNTING) {
681 ht->split_count = calloc(split_count_mask + 1,
682 sizeof(struct ht_items_count));
683 assert(ht->split_count);
684 } else {
685 ht->split_count = NULL;
686 }
687 }
688
689 static
690 void free_split_items_count(struct cds_lfht *ht)
691 {
692 poison_free(ht->split_count);
693 }
694
695 static
696 int ht_get_split_count_index(unsigned long hash)
697 {
698 int cpu;
699
700 assert(split_count_mask >= 0);
701 cpu = urcu_sched_getcpu();
702 if (caa_unlikely(cpu < 0))
703 return hash & split_count_mask;
704 else
705 return cpu & split_count_mask;
706 }
707
708 static
709 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
710 {
711 unsigned long split_count, count;
712 int index;
713
714 if (caa_unlikely(!ht->split_count))
715 return;
716 index = ht_get_split_count_index(hash);
717 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
718 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
719 return;
720 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
721
722 dbg_printf("add split count %lu\n", split_count);
723 count = uatomic_add_return(&ht->count,
724 1UL << COUNT_COMMIT_ORDER);
725 if (caa_likely(count & (count - 1)))
726 return;
727 /* Only if global count is power of 2 */
728
729 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
730 return;
731 dbg_printf("add set global %lu\n", count);
732 cds_lfht_resize_lazy_count(ht, size,
733 count >> (CHAIN_LEN_TARGET - 1));
734 }
735
736 static
737 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
738 {
739 unsigned long split_count, count;
740 int index;
741
742 if (caa_unlikely(!ht->split_count))
743 return;
744 index = ht_get_split_count_index(hash);
745 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
746 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
747 return;
748 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
749
750 dbg_printf("del split count %lu\n", split_count);
751 count = uatomic_add_return(&ht->count,
752 -(1UL << COUNT_COMMIT_ORDER));
753 if (caa_likely(count & (count - 1)))
754 return;
755 /* Only if global count is power of 2 */
756
757 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
758 return;
759 dbg_printf("del set global %lu\n", count);
760 /*
761 * Don't shrink table if the number of nodes is below a
762 * certain threshold.
763 */
764 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
765 return;
766 cds_lfht_resize_lazy_count(ht, size,
767 count >> (CHAIN_LEN_TARGET - 1));
768 }
769
770 static
771 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
772 {
773 unsigned long count;
774
775 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
776 return;
777 count = uatomic_read(&ht->count);
778 /*
779 * Use bucket-local length for small table expand and for
780 * environments lacking per-cpu data support.
781 */
782 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
783 return;
784 if (chain_len > 100)
785 dbg_printf("WARNING: large chain length: %u.\n",
786 chain_len);
787 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
788 int growth;
789
790 /*
791 * Ideal growth calculated based on chain length.
792 */
793 growth = cds_lfht_get_count_order_u32(chain_len
794 - (CHAIN_LEN_TARGET - 1));
795 if ((ht->flags & CDS_LFHT_ACCOUNTING)
796 && (size << growth)
797 >= (1UL << (COUNT_COMMIT_ORDER
798 + split_count_order))) {
799 /*
800 * If ideal growth expands the hash table size
801 * beyond the "small hash table" sizes, use the
802 * maximum small hash table size to attempt
803 * expanding the hash table. This only applies
804 * when node accounting is available, otherwise
805 * the chain length is used to expand the hash
806 * table in every case.
807 */
808 growth = COUNT_COMMIT_ORDER + split_count_order
809 - cds_lfht_get_count_order_ulong(size);
810 if (growth <= 0)
811 return;
812 }
813 cds_lfht_resize_lazy_grow(ht, size, growth);
814 }
815 }
816
817 static
818 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
819 {
820 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
821 }
822
823 static
824 int is_removed(const struct cds_lfht_node *node)
825 {
826 return ((unsigned long) node) & REMOVED_FLAG;
827 }
828
829 static
830 int is_bucket(struct cds_lfht_node *node)
831 {
832 return ((unsigned long) node) & BUCKET_FLAG;
833 }
834
835 static
836 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
837 {
838 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
839 }
840
841 static
842 int is_removal_owner(struct cds_lfht_node *node)
843 {
844 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
845 }
846
847 static
848 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
849 {
850 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
851 }
852
853 static
854 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
855 {
856 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
857 }
858
859 static
860 struct cds_lfht_node *get_end(void)
861 {
862 return (struct cds_lfht_node *) END_VALUE;
863 }
864
865 static
866 int is_end(struct cds_lfht_node *node)
867 {
868 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
869 }
870
871 static
872 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
873 unsigned long v)
874 {
875 unsigned long old1, old2;
876
877 old1 = uatomic_read(ptr);
878 do {
879 old2 = old1;
880 if (old2 >= v)
881 return old2;
882 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
883 return old2;
884 }
885
886 static
887 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
888 {
889 return ht->mm->alloc_bucket_table(ht, order);
890 }
891
892 /*
893 * cds_lfht_free_bucket_table() should be called with decreasing order.
894 * When cds_lfht_free_bucket_table(0) is called, it means the whole
895 * lfht is destroyed.
896 */
897 static
898 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
899 {
900 return ht->mm->free_bucket_table(ht, order);
901 }
902
903 static inline
904 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
905 {
906 return ht->bucket_at(ht, index);
907 }
908
909 static inline
910 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
911 unsigned long hash)
912 {
913 assert(size > 0);
914 return bucket_at(ht, hash & (size - 1));
915 }
916
917 /*
918 * Remove all logically deleted nodes from a bucket up to a certain node key.
919 */
920 static
921 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
922 {
923 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
924
925 assert(!is_bucket(bucket));
926 assert(!is_removed(bucket));
927 assert(!is_removal_owner(bucket));
928 assert(!is_bucket(node));
929 assert(!is_removed(node));
930 assert(!is_removal_owner(node));
931 for (;;) {
932 iter_prev = bucket;
933 /* We can always skip the bucket node initially */
934 iter = rcu_dereference(iter_prev->next);
935 assert(!is_removed(iter));
936 assert(!is_removal_owner(iter));
937 assert(iter_prev->reverse_hash <= node->reverse_hash);
938 /*
939 * We should never be called with bucket (start of chain)
940 * and logically removed node (end of path compression
941 * marker) being the actual same node. This would be a
942 * bug in the algorithm implementation.
943 */
944 assert(bucket != node);
945 for (;;) {
946 if (caa_unlikely(is_end(iter)))
947 return;
948 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
949 return;
950 next = rcu_dereference(clear_flag(iter)->next);
951 if (caa_likely(is_removed(next)))
952 break;
953 iter_prev = clear_flag(iter);
954 iter = next;
955 }
956 assert(!is_removed(iter));
957 assert(!is_removal_owner(iter));
958 if (is_bucket(iter))
959 new_next = flag_bucket(clear_flag(next));
960 else
961 new_next = clear_flag(next);
962 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
963 }
964 }
965
966 static
967 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
968 struct cds_lfht_node *old_node,
969 struct cds_lfht_node *old_next,
970 struct cds_lfht_node *new_node)
971 {
972 struct cds_lfht_node *bucket, *ret_next;
973
974 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
975 return -ENOENT;
976
977 assert(!is_removed(old_node));
978 assert(!is_removal_owner(old_node));
979 assert(!is_bucket(old_node));
980 assert(!is_removed(new_node));
981 assert(!is_removal_owner(new_node));
982 assert(!is_bucket(new_node));
983 assert(new_node != old_node);
984 for (;;) {
985 /* Insert after node to be replaced */
986 if (is_removed(old_next)) {
987 /*
988 * Too late, the old node has been removed under us
989 * between lookup and replace. Fail.
990 */
991 return -ENOENT;
992 }
993 assert(old_next == clear_flag(old_next));
994 assert(new_node != old_next);
995 /*
996 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
997 * flag. It is either set atomically at the same time
998 * (replace) or after (del).
999 */
1000 assert(!is_removal_owner(old_next));
1001 new_node->next = old_next;
1002 /*
1003 * Here is the whole trick for lock-free replace: we add
1004 * the replacement node _after_ the node we want to
1005 * replace by atomically setting its next pointer at the
1006 * same time we set its removal flag. Given that
1007 * the lookups/get next use an iterator aware of the
1008 * next pointer, they will either skip the old node due
1009 * to the removal flag and see the new node, or use
1010 * the old node, but will not see the new one.
1011 * This is a replacement of a node with another node
1012 * that has the same value: we are therefore not
1013 * removing a value from the hash table. We set both the
1014 * REMOVED and REMOVAL_OWNER flags atomically so we own
1015 * the node after successful cmpxchg.
1016 */
1017 ret_next = uatomic_cmpxchg(&old_node->next,
1018 old_next, flag_removed_or_removal_owner(new_node));
1019 if (ret_next == old_next)
1020 break; /* We performed the replacement. */
1021 old_next = ret_next;
1022 }
1023
1024 /*
1025 * Ensure that the old node is not visible to readers anymore:
1026 * lookup for the node, and remove it (along with any other
1027 * logically removed node) if found.
1028 */
1029 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1030 _cds_lfht_gc_bucket(bucket, new_node);
1031
1032 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
1033 return 0;
1034 }
1035
1036 /*
1037 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1038 * mode. A NULL unique_ret allows creation of duplicate keys.
1039 */
1040 static
1041 void _cds_lfht_add(struct cds_lfht *ht,
1042 unsigned long hash,
1043 cds_lfht_match_fct match,
1044 const void *key,
1045 unsigned long size,
1046 struct cds_lfht_node *node,
1047 struct cds_lfht_iter *unique_ret,
1048 int bucket_flag)
1049 {
1050 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
1051 *return_node;
1052 struct cds_lfht_node *bucket;
1053
1054 assert(!is_bucket(node));
1055 assert(!is_removed(node));
1056 assert(!is_removal_owner(node));
1057 bucket = lookup_bucket(ht, size, hash);
1058 for (;;) {
1059 uint32_t chain_len = 0;
1060
1061 /*
1062 * iter_prev points to the non-removed node prior to the
1063 * insert location.
1064 */
1065 iter_prev = bucket;
1066 /* We can always skip the bucket node initially */
1067 iter = rcu_dereference(iter_prev->next);
1068 assert(iter_prev->reverse_hash <= node->reverse_hash);
1069 for (;;) {
1070 if (caa_unlikely(is_end(iter)))
1071 goto insert;
1072 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1073 goto insert;
1074
1075 /* bucket node is the first node of the identical-hash-value chain */
1076 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1077 goto insert;
1078
1079 next = rcu_dereference(clear_flag(iter)->next);
1080 if (caa_unlikely(is_removed(next)))
1081 goto gc_node;
1082
1083 /* uniquely add */
1084 if (unique_ret
1085 && !is_bucket(next)
1086 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1087 struct cds_lfht_iter d_iter = {
1088 .node = node,
1089 .next = iter,
1090 #ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1091 .lfht = ht,
1092 #endif
1093 };
1094
1095 /*
1096 * uniquely adding inserts the node as the first
1097 * node of the identical-hash-value node chain.
1098 *
1099 * This semantic ensures no duplicated keys
1100 * should ever be observable in the table
1101 * (including traversing the table node by
1102 * node by forward iterations)
1103 */
1104 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1105 if (!d_iter.node)
1106 goto insert;
1107
1108 *unique_ret = d_iter;
1109 return;
1110 }
1111
1112 /* Only account for identical reverse hash once */
1113 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1114 && !is_bucket(next))
1115 check_resize(ht, size, ++chain_len);
1116 iter_prev = clear_flag(iter);
1117 iter = next;
1118 }
1119
1120 insert:
1121 assert(node != clear_flag(iter));
1122 assert(!is_removed(iter_prev));
1123 assert(!is_removal_owner(iter_prev));
1124 assert(!is_removed(iter));
1125 assert(!is_removal_owner(iter));
1126 assert(iter_prev != node);
1127 if (!bucket_flag)
1128 node->next = clear_flag(iter);
1129 else
1130 node->next = flag_bucket(clear_flag(iter));
1131 if (is_bucket(iter))
1132 new_node = flag_bucket(node);
1133 else
1134 new_node = node;
1135 if (uatomic_cmpxchg(&iter_prev->next, iter,
1136 new_node) != iter) {
1137 continue; /* retry */
1138 } else {
1139 return_node = node;
1140 goto end;
1141 }
1142
1143 gc_node:
1144 assert(!is_removed(iter));
1145 assert(!is_removal_owner(iter));
1146 if (is_bucket(iter))
1147 new_next = flag_bucket(clear_flag(next));
1148 else
1149 new_next = clear_flag(next);
1150 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1151 /* retry */
1152 }
1153 end:
1154 if (unique_ret) {
1155 unique_ret->node = return_node;
1156 /* unique_ret->next left unset, never used. */
1157 }
1158 }
1159
1160 static
1161 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1162 struct cds_lfht_node *node)
1163 {
1164 struct cds_lfht_node *bucket, *next;
1165
1166 if (!node) /* Return -ENOENT if asked to delete NULL node */
1167 return -ENOENT;
1168
1169 /* logically delete the node */
1170 assert(!is_bucket(node));
1171 assert(!is_removed(node));
1172 assert(!is_removal_owner(node));
1173
1174 /*
1175 * We are first checking if the node had previously been
1176 * logically removed (this check is not atomic with setting the
1177 * logical removal flag). Return -ENOENT if the node had
1178 * previously been removed.
1179 */
1180 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1181 if (caa_unlikely(is_removed(next)))
1182 return -ENOENT;
1183 assert(!is_bucket(next));
1184 /*
1185 * The del operation semantic guarantees a full memory barrier
1186 * before the uatomic_or atomic commit of the deletion flag.
1187 */
1188 cmm_smp_mb__before_uatomic_or();
1189 /*
1190 * We set the REMOVED_FLAG unconditionally. Note that there may
1191 * be more than one concurrent thread setting this flag.
1192 * Knowing which wins the race will be known after the garbage
1193 * collection phase, stay tuned!
1194 */
1195 uatomic_or(&node->next, REMOVED_FLAG);
1196 /* We performed the (logical) deletion. */
1197
1198 /*
1199 * Ensure that the node is not visible to readers anymore: lookup for
1200 * the node, and remove it (along with any other logically removed node)
1201 * if found.
1202 */
1203 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1204 _cds_lfht_gc_bucket(bucket, node);
1205
1206 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1207 /*
1208 * Last phase: atomically exchange node->next with a version
1209 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1210 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1211 * the node and win the removal race.
1212 * It is interesting to note that all "add" paths are forbidden
1213 * to change the next pointer starting from the point where the
1214 * REMOVED_FLAG is set, so here using a read, followed by a
1215 * xchg() suffice to guarantee that the xchg() will ever only
1216 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1217 * was already set).
1218 */
1219 if (!is_removal_owner(uatomic_xchg(&node->next,
1220 flag_removal_owner(node->next))))
1221 return 0;
1222 else
1223 return -ENOENT;
1224 }
1225
1226 static
1227 void *partition_resize_thread(void *arg)
1228 {
1229 struct partition_resize_work *work = arg;
1230
1231 work->ht->flavor->register_thread();
1232 work->fct(work->ht, work->i, work->start, work->len);
1233 work->ht->flavor->unregister_thread();
1234 return NULL;
1235 }
1236
1237 static
1238 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1239 unsigned long len,
1240 void (*fct)(struct cds_lfht *ht, unsigned long i,
1241 unsigned long start, unsigned long len))
1242 {
1243 unsigned long partition_len, start = 0;
1244 struct partition_resize_work *work;
1245 int ret;
1246 unsigned long thread, nr_threads;
1247
1248 assert(nr_cpus_mask != -1);
1249 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1250 goto fallback;
1251
1252 /*
1253 * Note: nr_cpus_mask + 1 is always power of 2.
1254 * We spawn just the number of threads we need to satisfy the minimum
1255 * partition size, up to the number of CPUs in the system.
1256 */
1257 if (nr_cpus_mask > 0) {
1258 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
1259 len >> MIN_PARTITION_PER_THREAD_ORDER);
1260 } else {
1261 nr_threads = 1;
1262 }
1263 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1264 work = calloc(nr_threads, sizeof(*work));
1265 if (!work) {
1266 dbg_printf("error allocating for resize, single-threading\n");
1267 goto fallback;
1268 }
1269 for (thread = 0; thread < nr_threads; thread++) {
1270 work[thread].ht = ht;
1271 work[thread].i = i;
1272 work[thread].len = partition_len;
1273 work[thread].start = thread * partition_len;
1274 work[thread].fct = fct;
1275 ret = pthread_create(&(work[thread].thread_id),
1276 ht->caller_resize_attr ? &ht->resize_attr : NULL,
1277 partition_resize_thread, &work[thread]);
1278 if (ret == EAGAIN) {
1279 /*
1280 * Out of resources: wait and join the threads
1281 * we've created, then handle leftovers.
1282 */
1283 dbg_printf("error spawning for resize, single-threading\n");
1284 start = work[thread].start;
1285 len -= start;
1286 nr_threads = thread;
1287 break;
1288 }
1289 assert(!ret);
1290 }
1291 for (thread = 0; thread < nr_threads; thread++) {
1292 ret = pthread_join(work[thread].thread_id, NULL);
1293 assert(!ret);
1294 }
1295 free(work);
1296
1297 /*
1298 * A pthread_create failure above will either lead in us having
1299 * no threads to join or starting at a non-zero offset,
1300 * fallback to single thread processing of leftovers.
1301 */
1302 if (start == 0 && nr_threads > 0)
1303 return;
1304 fallback:
1305 fct(ht, i, start, len);
1306 }
1307
1308 /*
1309 * Holding RCU read lock to protect _cds_lfht_add against memory
1310 * reclaim that could be performed by other worker threads (ABA
1311 * problem).
1312 *
1313 * When we reach a certain length, we can split this population phase over
1314 * many worker threads, based on the number of CPUs available in the system.
1315 * This should therefore take care of not having the expand lagging behind too
1316 * many concurrent insertion threads by using the scheduler's ability to
1317 * schedule bucket node population fairly with insertions.
1318 */
1319 static
1320 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1321 unsigned long start, unsigned long len)
1322 {
1323 unsigned long j, size = 1UL << (i - 1);
1324
1325 assert(i > MIN_TABLE_ORDER);
1326 ht->flavor->read_lock();
1327 for (j = size + start; j < size + start + len; j++) {
1328 struct cds_lfht_node *new_node = bucket_at(ht, j);
1329
1330 assert(j >= size && j < (size << 1));
1331 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1332 i, j, j);
1333 new_node->reverse_hash = bit_reverse_ulong(j);
1334 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1335 }
1336 ht->flavor->read_unlock();
1337 }
1338
1339 static
1340 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1341 unsigned long len)
1342 {
1343 partition_resize_helper(ht, i, len, init_table_populate_partition);
1344 }
1345
1346 static
1347 void init_table(struct cds_lfht *ht,
1348 unsigned long first_order, unsigned long last_order)
1349 {
1350 unsigned long i;
1351
1352 dbg_printf("init table: first_order %lu last_order %lu\n",
1353 first_order, last_order);
1354 assert(first_order > MIN_TABLE_ORDER);
1355 for (i = first_order; i <= last_order; i++) {
1356 unsigned long len;
1357
1358 len = 1UL << (i - 1);
1359 dbg_printf("init order %lu len: %lu\n", i, len);
1360
1361 /* Stop expand if the resize target changes under us */
1362 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1363 break;
1364
1365 cds_lfht_alloc_bucket_table(ht, i);
1366
1367 /*
1368 * Set all bucket nodes reverse hash values for a level and
1369 * link all bucket nodes into the table.
1370 */
1371 init_table_populate(ht, i, len);
1372
1373 /*
1374 * Update table size.
1375 */
1376 cmm_smp_wmb(); /* populate data before RCU size */
1377 CMM_STORE_SHARED(ht->size, 1UL << i);
1378
1379 dbg_printf("init new size: %lu\n", 1UL << i);
1380 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1381 break;
1382 }
1383 }
1384
1385 /*
1386 * Holding RCU read lock to protect _cds_lfht_remove against memory
1387 * reclaim that could be performed by other worker threads (ABA
1388 * problem).
1389 * For a single level, we logically remove and garbage collect each node.
1390 *
1391 * As a design choice, we perform logical removal and garbage collection on a
1392 * node-per-node basis to simplify this algorithm. We also assume keeping good
1393 * cache locality of the operation would overweight possible performance gain
1394 * that could be achieved by batching garbage collection for multiple levels.
1395 * However, this would have to be justified by benchmarks.
1396 *
1397 * Concurrent removal and add operations are helping us perform garbage
1398 * collection of logically removed nodes. We guarantee that all logically
1399 * removed nodes have been garbage-collected (unlinked) before work
1400 * enqueue is invoked to free a hole level of bucket nodes (after a
1401 * grace period).
1402 *
1403 * Logical removal and garbage collection can therefore be done in batch
1404 * or on a node-per-node basis, as long as the guarantee above holds.
1405 *
1406 * When we reach a certain length, we can split this removal over many worker
1407 * threads, based on the number of CPUs available in the system. This should
1408 * take care of not letting resize process lag behind too many concurrent
1409 * updater threads actively inserting into the hash table.
1410 */
1411 static
1412 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1413 unsigned long start, unsigned long len)
1414 {
1415 unsigned long j, size = 1UL << (i - 1);
1416
1417 assert(i > MIN_TABLE_ORDER);
1418 ht->flavor->read_lock();
1419 for (j = size + start; j < size + start + len; j++) {
1420 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1421 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1422
1423 assert(j >= size && j < (size << 1));
1424 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1425 i, j, j);
1426 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1427 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1428 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1429 }
1430 ht->flavor->read_unlock();
1431 }
1432
1433 static
1434 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1435 {
1436 partition_resize_helper(ht, i, len, remove_table_partition);
1437 }
1438
1439 /*
1440 * fini_table() is never called for first_order == 0, which is why
1441 * free_by_rcu_order == 0 can be used as criterion to know if free must
1442 * be called.
1443 */
1444 static
1445 void fini_table(struct cds_lfht *ht,
1446 unsigned long first_order, unsigned long last_order)
1447 {
1448 unsigned long free_by_rcu_order = 0, i;
1449
1450 dbg_printf("fini table: first_order %lu last_order %lu\n",
1451 first_order, last_order);
1452 assert(first_order > MIN_TABLE_ORDER);
1453 for (i = last_order; i >= first_order; i--) {
1454 unsigned long len;
1455
1456 len = 1UL << (i - 1);
1457 dbg_printf("fini order %ld len: %lu\n", i, len);
1458
1459 /* Stop shrink if the resize target changes under us */
1460 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1461 break;
1462
1463 cmm_smp_wmb(); /* populate data before RCU size */
1464 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1465
1466 /*
1467 * We need to wait for all add operations to reach Q.S. (and
1468 * thus use the new table for lookups) before we can start
1469 * releasing the old bucket nodes. Otherwise their lookup will
1470 * return a logically removed node as insert position.
1471 */
1472 ht->flavor->update_synchronize_rcu();
1473 if (free_by_rcu_order)
1474 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1475
1476 /*
1477 * Set "removed" flag in bucket nodes about to be removed.
1478 * Unlink all now-logically-removed bucket node pointers.
1479 * Concurrent add/remove operation are helping us doing
1480 * the gc.
1481 */
1482 remove_table(ht, i, len);
1483
1484 free_by_rcu_order = i;
1485
1486 dbg_printf("fini new size: %lu\n", 1UL << i);
1487 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1488 break;
1489 }
1490
1491 if (free_by_rcu_order) {
1492 ht->flavor->update_synchronize_rcu();
1493 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1494 }
1495 }
1496
1497 /*
1498 * Never called with size < 1.
1499 */
1500 static
1501 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1502 {
1503 struct cds_lfht_node *prev, *node;
1504 unsigned long order, len, i;
1505 int bucket_order;
1506
1507 cds_lfht_alloc_bucket_table(ht, 0);
1508
1509 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1510 node = bucket_at(ht, 0);
1511 node->next = flag_bucket(get_end());
1512 node->reverse_hash = 0;
1513
1514 bucket_order = cds_lfht_get_count_order_ulong(size);
1515 assert(bucket_order >= 0);
1516
1517 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
1518 len = 1UL << (order - 1);
1519 cds_lfht_alloc_bucket_table(ht, order);
1520
1521 for (i = 0; i < len; i++) {
1522 /*
1523 * Now, we are trying to init the node with the
1524 * hash=(len+i) (which is also a bucket with the
1525 * index=(len+i)) and insert it into the hash table,
1526 * so this node has to be inserted after the bucket
1527 * with the index=(len+i)&(len-1)=i. And because there
1528 * is no other non-bucket node nor bucket node with
1529 * larger index/hash inserted, so the bucket node
1530 * being inserted should be inserted directly linked
1531 * after the bucket node with index=i.
1532 */
1533 prev = bucket_at(ht, i);
1534 node = bucket_at(ht, len + i);
1535
1536 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1537 order, len + i, len + i);
1538 node->reverse_hash = bit_reverse_ulong(len + i);
1539
1540 /* insert after prev */
1541 assert(is_bucket(prev->next));
1542 node->next = prev->next;
1543 prev->next = flag_bucket(node);
1544 }
1545 }
1546 }
1547
1548 #if (CAA_BITS_PER_LONG > 32)
1549 /*
1550 * For 64-bit architectures, with max number of buckets small enough not to
1551 * use the entire 64-bit memory mapping space (and allowing a fair number of
1552 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1553 * fallback to the order allocator.
1554 */
1555 static
1556 const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1557 {
1558 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1559 return &cds_lfht_mm_mmap;
1560 else
1561 return &cds_lfht_mm_order;
1562 }
1563 #else
1564 /*
1565 * For 32-bit architectures, use the order allocator.
1566 */
1567 static
1568 const struct cds_lfht_mm_type *get_mm_type(
1569 unsigned long max_nr_buckets __attribute__((unused)))
1570 {
1571 return &cds_lfht_mm_order;
1572 }
1573 #endif
1574
1575 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1576 unsigned long min_nr_alloc_buckets,
1577 unsigned long max_nr_buckets,
1578 int flags,
1579 const struct cds_lfht_mm_type *mm,
1580 const struct rcu_flavor_struct *flavor,
1581 pthread_attr_t *attr)
1582 {
1583 struct cds_lfht *ht;
1584 unsigned long order;
1585
1586 /* min_nr_alloc_buckets must be power of two */
1587 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1588 return NULL;
1589
1590 /* init_size must be power of two */
1591 if (!init_size || (init_size & (init_size - 1)))
1592 return NULL;
1593
1594 /*
1595 * Memory management plugin default.
1596 */
1597 if (!mm)
1598 mm = get_mm_type(max_nr_buckets);
1599
1600 /* max_nr_buckets == 0 for order based mm means infinite */
1601 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1602 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1603
1604 /* max_nr_buckets must be power of two */
1605 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1606 return NULL;
1607
1608 if (flags & CDS_LFHT_AUTO_RESIZE)
1609 cds_lfht_init_worker(flavor);
1610
1611 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1612 init_size = max(init_size, MIN_TABLE_SIZE);
1613 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1614 init_size = min(init_size, max_nr_buckets);
1615
1616 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1617 assert(ht);
1618 assert(ht->mm == mm);
1619 assert(ht->bucket_at == mm->bucket_at);
1620
1621 ht->flags = flags;
1622 ht->flavor = flavor;
1623 ht->caller_resize_attr = attr;
1624 if (attr)
1625 ht->resize_attr = *attr;
1626 alloc_split_items_count(ht);
1627 /* this mutex should not nest in read-side C.S. */
1628 pthread_mutex_init(&ht->resize_mutex, NULL);
1629 order = cds_lfht_get_count_order_ulong(init_size);
1630 ht->resize_target = 1UL << order;
1631 cds_lfht_create_bucket(ht, 1UL << order);
1632 ht->size = 1UL << order;
1633 return ht;
1634 }
1635
1636 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1637 cds_lfht_match_fct match, const void *key,
1638 struct cds_lfht_iter *iter)
1639 {
1640 struct cds_lfht_node *node, *next, *bucket;
1641 unsigned long reverse_hash, size;
1642
1643 cds_lfht_iter_debug_set_ht(ht, iter);
1644
1645 reverse_hash = bit_reverse_ulong(hash);
1646
1647 size = rcu_dereference(ht->size);
1648 bucket = lookup_bucket(ht, size, hash);
1649 /* We can always skip the bucket node initially */
1650 node = rcu_dereference(bucket->next);
1651 node = clear_flag(node);
1652 for (;;) {
1653 if (caa_unlikely(is_end(node))) {
1654 node = next = NULL;
1655 break;
1656 }
1657 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1658 node = next = NULL;
1659 break;
1660 }
1661 next = rcu_dereference(node->next);
1662 assert(node == clear_flag(node));
1663 if (caa_likely(!is_removed(next))
1664 && !is_bucket(next)
1665 && node->reverse_hash == reverse_hash
1666 && caa_likely(match(node, key))) {
1667 break;
1668 }
1669 node = clear_flag(next);
1670 }
1671 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1672 iter->node = node;
1673 iter->next = next;
1674 }
1675
1676 void cds_lfht_next_duplicate(struct cds_lfht *ht __attribute__((unused)),
1677 cds_lfht_match_fct match,
1678 const void *key, struct cds_lfht_iter *iter)
1679 {
1680 struct cds_lfht_node *node, *next;
1681 unsigned long reverse_hash;
1682
1683 cds_lfht_iter_debug_assert(ht == iter->lfht);
1684 node = iter->node;
1685 reverse_hash = node->reverse_hash;
1686 next = iter->next;
1687 node = clear_flag(next);
1688
1689 for (;;) {
1690 if (caa_unlikely(is_end(node))) {
1691 node = next = NULL;
1692 break;
1693 }
1694 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1695 node = next = NULL;
1696 break;
1697 }
1698 next = rcu_dereference(node->next);
1699 if (caa_likely(!is_removed(next))
1700 && !is_bucket(next)
1701 && caa_likely(match(node, key))) {
1702 break;
1703 }
1704 node = clear_flag(next);
1705 }
1706 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1707 iter->node = node;
1708 iter->next = next;
1709 }
1710
1711 void cds_lfht_next(struct cds_lfht *ht __attribute__((unused)),
1712 struct cds_lfht_iter *iter)
1713 {
1714 struct cds_lfht_node *node, *next;
1715
1716 cds_lfht_iter_debug_assert(ht == iter->lfht);
1717 node = clear_flag(iter->next);
1718 for (;;) {
1719 if (caa_unlikely(is_end(node))) {
1720 node = next = NULL;
1721 break;
1722 }
1723 next = rcu_dereference(node->next);
1724 if (caa_likely(!is_removed(next))
1725 && !is_bucket(next)) {
1726 break;
1727 }
1728 node = clear_flag(next);
1729 }
1730 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1731 iter->node = node;
1732 iter->next = next;
1733 }
1734
1735 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1736 {
1737 cds_lfht_iter_debug_set_ht(ht, iter);
1738 /*
1739 * Get next after first bucket node. The first bucket node is the
1740 * first node of the linked list.
1741 */
1742 iter->next = bucket_at(ht, 0)->next;
1743 cds_lfht_next(ht, iter);
1744 }
1745
1746 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1747 struct cds_lfht_node *node)
1748 {
1749 unsigned long size;
1750
1751 node->reverse_hash = bit_reverse_ulong(hash);
1752 size = rcu_dereference(ht->size);
1753 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1754 ht_count_add(ht, size, hash);
1755 }
1756
1757 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1758 unsigned long hash,
1759 cds_lfht_match_fct match,
1760 const void *key,
1761 struct cds_lfht_node *node)
1762 {
1763 unsigned long size;
1764 struct cds_lfht_iter iter;
1765
1766 node->reverse_hash = bit_reverse_ulong(hash);
1767 size = rcu_dereference(ht->size);
1768 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1769 if (iter.node == node)
1770 ht_count_add(ht, size, hash);
1771 return iter.node;
1772 }
1773
1774 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1775 unsigned long hash,
1776 cds_lfht_match_fct match,
1777 const void *key,
1778 struct cds_lfht_node *node)
1779 {
1780 unsigned long size;
1781 struct cds_lfht_iter iter;
1782
1783 node->reverse_hash = bit_reverse_ulong(hash);
1784 size = rcu_dereference(ht->size);
1785 for (;;) {
1786 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1787 if (iter.node == node) {
1788 ht_count_add(ht, size, hash);
1789 return NULL;
1790 }
1791
1792 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1793 return iter.node;
1794 }
1795 }
1796
1797 int cds_lfht_replace(struct cds_lfht *ht,
1798 struct cds_lfht_iter *old_iter,
1799 unsigned long hash,
1800 cds_lfht_match_fct match,
1801 const void *key,
1802 struct cds_lfht_node *new_node)
1803 {
1804 unsigned long size;
1805
1806 new_node->reverse_hash = bit_reverse_ulong(hash);
1807 if (!old_iter->node)
1808 return -ENOENT;
1809 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1810 return -EINVAL;
1811 if (caa_unlikely(!match(old_iter->node, key)))
1812 return -EINVAL;
1813 size = rcu_dereference(ht->size);
1814 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1815 new_node);
1816 }
1817
1818 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1819 {
1820 unsigned long size;
1821 int ret;
1822
1823 size = rcu_dereference(ht->size);
1824 ret = _cds_lfht_del(ht, size, node);
1825 if (!ret) {
1826 unsigned long hash;
1827
1828 hash = bit_reverse_ulong(node->reverse_hash);
1829 ht_count_del(ht, size, hash);
1830 }
1831 return ret;
1832 }
1833
1834 int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
1835 {
1836 return is_removed(CMM_LOAD_SHARED(node->next));
1837 }
1838
1839 static
1840 bool cds_lfht_is_empty(struct cds_lfht *ht)
1841 {
1842 struct cds_lfht_node *node, *next;
1843 bool empty = true;
1844 bool was_online;
1845
1846 was_online = ht->flavor->read_ongoing();
1847 if (!was_online) {
1848 ht->flavor->thread_online();
1849 ht->flavor->read_lock();
1850 }
1851 /* Check that the table is empty */
1852 node = bucket_at(ht, 0);
1853 do {
1854 next = rcu_dereference(node->next);
1855 if (!is_bucket(next)) {
1856 empty = false;
1857 break;
1858 }
1859 node = clear_flag(next);
1860 } while (!is_end(node));
1861 if (!was_online) {
1862 ht->flavor->read_unlock();
1863 ht->flavor->thread_offline();
1864 }
1865 return empty;
1866 }
1867
1868 static
1869 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1870 {
1871 struct cds_lfht_node *node;
1872 unsigned long order, i, size;
1873
1874 /* Check that the table is empty */
1875 node = bucket_at(ht, 0);
1876 do {
1877 node = clear_flag(node)->next;
1878 if (!is_bucket(node))
1879 return -EPERM;
1880 assert(!is_removed(node));
1881 assert(!is_removal_owner(node));
1882 } while (!is_end(node));
1883 /*
1884 * size accessed without rcu_dereference because hash table is
1885 * being destroyed.
1886 */
1887 size = ht->size;
1888 /* Internal sanity check: all nodes left should be buckets */
1889 for (i = 0; i < size; i++) {
1890 node = bucket_at(ht, i);
1891 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1892 i, i, bit_reverse_ulong(node->reverse_hash));
1893 assert(is_bucket(node->next));
1894 }
1895
1896 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1897 cds_lfht_free_bucket_table(ht, order);
1898
1899 return 0;
1900 }
1901
1902 static
1903 void do_auto_resize_destroy_cb(struct urcu_work *work)
1904 {
1905 struct cds_lfht *ht = caa_container_of(work, struct cds_lfht, destroy_work);
1906 int ret;
1907
1908 ht->flavor->register_thread();
1909 ret = cds_lfht_delete_bucket(ht);
1910 if (ret)
1911 urcu_die(ret);
1912 free_split_items_count(ht);
1913 ret = pthread_mutex_destroy(&ht->resize_mutex);
1914 if (ret)
1915 urcu_die(ret);
1916 ht->flavor->unregister_thread();
1917 poison_free(ht);
1918 }
1919
1920 /*
1921 * Should only be called when no more concurrent readers nor writers can
1922 * possibly access the table.
1923 */
1924 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1925 {
1926 int ret;
1927
1928 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
1929 /*
1930 * Perform error-checking for emptiness before queuing
1931 * work, so we can return error to the caller. This runs
1932 * concurrently with ongoing resize.
1933 */
1934 if (!cds_lfht_is_empty(ht))
1935 return -EPERM;
1936 /* Cancel ongoing resize operations. */
1937 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1938 if (attr) {
1939 *attr = ht->caller_resize_attr;
1940 ht->caller_resize_attr = NULL;
1941 }
1942 /*
1943 * Queue destroy work after prior queued resize
1944 * operations. Given there are no concurrent writers
1945 * accessing the hash table at this point, no resize
1946 * operations can be queued after this destroy work.
1947 */
1948 urcu_workqueue_queue_work(cds_lfht_workqueue,
1949 &ht->destroy_work, do_auto_resize_destroy_cb);
1950 return 0;
1951 }
1952 ret = cds_lfht_delete_bucket(ht);
1953 if (ret)
1954 return ret;
1955 free_split_items_count(ht);
1956 if (attr)
1957 *attr = ht->caller_resize_attr;
1958 ret = pthread_mutex_destroy(&ht->resize_mutex);
1959 if (ret)
1960 ret = -EBUSY;
1961 poison_free(ht);
1962 return ret;
1963 }
1964
1965 void cds_lfht_count_nodes(struct cds_lfht *ht,
1966 long *approx_before,
1967 unsigned long *count,
1968 long *approx_after)
1969 {
1970 struct cds_lfht_node *node, *next;
1971 unsigned long nr_bucket = 0, nr_removed = 0;
1972
1973 *approx_before = 0;
1974 if (ht->split_count) {
1975 int i;
1976
1977 for (i = 0; i < split_count_mask + 1; i++) {
1978 *approx_before += uatomic_read(&ht->split_count[i].add);
1979 *approx_before -= uatomic_read(&ht->split_count[i].del);
1980 }
1981 }
1982
1983 *count = 0;
1984
1985 /* Count non-bucket nodes in the table */
1986 node = bucket_at(ht, 0);
1987 do {
1988 next = rcu_dereference(node->next);
1989 if (is_removed(next)) {
1990 if (!is_bucket(next))
1991 (nr_removed)++;
1992 else
1993 (nr_bucket)++;
1994 } else if (!is_bucket(next))
1995 (*count)++;
1996 else
1997 (nr_bucket)++;
1998 node = clear_flag(next);
1999 } while (!is_end(node));
2000 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
2001 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
2002 *approx_after = 0;
2003 if (ht->split_count) {
2004 int i;
2005
2006 for (i = 0; i < split_count_mask + 1; i++) {
2007 *approx_after += uatomic_read(&ht->split_count[i].add);
2008 *approx_after -= uatomic_read(&ht->split_count[i].del);
2009 }
2010 }
2011 }
2012
2013 /* called with resize mutex held */
2014 static
2015 void _do_cds_lfht_grow(struct cds_lfht *ht,
2016 unsigned long old_size, unsigned long new_size)
2017 {
2018 unsigned long old_order, new_order;
2019
2020 old_order = cds_lfht_get_count_order_ulong(old_size);
2021 new_order = cds_lfht_get_count_order_ulong(new_size);
2022 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2023 old_size, old_order, new_size, new_order);
2024 assert(new_size > old_size);
2025 init_table(ht, old_order + 1, new_order);
2026 }
2027
2028 /* called with resize mutex held */
2029 static
2030 void _do_cds_lfht_shrink(struct cds_lfht *ht,
2031 unsigned long old_size, unsigned long new_size)
2032 {
2033 unsigned long old_order, new_order;
2034
2035 new_size = max(new_size, MIN_TABLE_SIZE);
2036 old_order = cds_lfht_get_count_order_ulong(old_size);
2037 new_order = cds_lfht_get_count_order_ulong(new_size);
2038 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2039 old_size, old_order, new_size, new_order);
2040 assert(new_size < old_size);
2041
2042 /* Remove and unlink all bucket nodes to remove. */
2043 fini_table(ht, new_order + 1, old_order);
2044 }
2045
2046
2047 /* called with resize mutex held */
2048 static
2049 void _do_cds_lfht_resize(struct cds_lfht *ht)
2050 {
2051 unsigned long new_size, old_size;
2052
2053 /*
2054 * Resize table, re-do if the target size has changed under us.
2055 */
2056 do {
2057 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
2058 break;
2059 ht->resize_initiated = 1;
2060 old_size = ht->size;
2061 new_size = CMM_LOAD_SHARED(ht->resize_target);
2062 if (old_size < new_size)
2063 _do_cds_lfht_grow(ht, old_size, new_size);
2064 else if (old_size > new_size)
2065 _do_cds_lfht_shrink(ht, old_size, new_size);
2066 ht->resize_initiated = 0;
2067 /* write resize_initiated before read resize_target */
2068 cmm_smp_mb();
2069 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
2070 }
2071
2072 static
2073 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
2074 {
2075 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
2076 }
2077
2078 static
2079 void resize_target_update_count(struct cds_lfht *ht,
2080 unsigned long count)
2081 {
2082 count = max(count, MIN_TABLE_SIZE);
2083 count = min(count, ht->max_nr_buckets);
2084 uatomic_set(&ht->resize_target, count);
2085 }
2086
2087 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
2088 {
2089 resize_target_update_count(ht, new_size);
2090 CMM_STORE_SHARED(ht->resize_initiated, 1);
2091 mutex_lock(&ht->resize_mutex);
2092 _do_cds_lfht_resize(ht);
2093 mutex_unlock(&ht->resize_mutex);
2094 }
2095
2096 static
2097 void do_resize_cb(struct urcu_work *work)
2098 {
2099 struct resize_work *resize_work =
2100 caa_container_of(work, struct resize_work, work);
2101 struct cds_lfht *ht = resize_work->ht;
2102
2103 ht->flavor->register_thread();
2104 mutex_lock(&ht->resize_mutex);
2105 _do_cds_lfht_resize(ht);
2106 mutex_unlock(&ht->resize_mutex);
2107 ht->flavor->unregister_thread();
2108 poison_free(work);
2109 }
2110
2111 static
2112 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
2113 {
2114 struct resize_work *work;
2115
2116 /* Store resize_target before read resize_initiated */
2117 cmm_smp_mb();
2118 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
2119 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
2120 return;
2121 }
2122 work = malloc(sizeof(*work));
2123 if (work == NULL) {
2124 dbg_printf("error allocating resize work, bailing out\n");
2125 return;
2126 }
2127 work->ht = ht;
2128 urcu_workqueue_queue_work(cds_lfht_workqueue,
2129 &work->work, do_resize_cb);
2130 CMM_STORE_SHARED(ht->resize_initiated, 1);
2131 }
2132 }
2133
2134 static
2135 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2136 {
2137 unsigned long target_size = size << growth;
2138
2139 target_size = min(target_size, ht->max_nr_buckets);
2140 if (resize_target_grow(ht, target_size) >= target_size)
2141 return;
2142
2143 __cds_lfht_resize_lazy_launch(ht);
2144 }
2145
2146 /*
2147 * We favor grow operations over shrink. A shrink operation never occurs
2148 * if a grow operation is queued for lazy execution. A grow operation
2149 * cancels any pending shrink lazy execution.
2150 */
2151 static
2152 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2153 unsigned long count)
2154 {
2155 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2156 return;
2157 count = max(count, MIN_TABLE_SIZE);
2158 count = min(count, ht->max_nr_buckets);
2159 if (count == size)
2160 return; /* Already the right size, no resize needed */
2161 if (count > size) { /* lazy grow */
2162 if (resize_target_grow(ht, count) >= count)
2163 return;
2164 } else { /* lazy shrink */
2165 for (;;) {
2166 unsigned long s;
2167
2168 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2169 if (s == size)
2170 break; /* no resize needed */
2171 if (s > size)
2172 return; /* growing is/(was just) in progress */
2173 if (s <= count)
2174 return; /* some other thread do shrink */
2175 size = s;
2176 }
2177 }
2178 __cds_lfht_resize_lazy_launch(ht);
2179 }
2180
2181 static void cds_lfht_before_fork(void *priv __attribute__((unused)))
2182 {
2183 if (cds_lfht_workqueue_atfork_nesting++)
2184 return;
2185 mutex_lock(&cds_lfht_fork_mutex);
2186 if (!cds_lfht_workqueue)
2187 return;
2188 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2189 }
2190
2191 static void cds_lfht_after_fork_parent(void *priv __attribute__((unused)))
2192 {
2193 if (--cds_lfht_workqueue_atfork_nesting)
2194 return;
2195 if (!cds_lfht_workqueue)
2196 goto end;
2197 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2198 end:
2199 mutex_unlock(&cds_lfht_fork_mutex);
2200 }
2201
2202 static void cds_lfht_after_fork_child(void *priv __attribute__((unused)))
2203 {
2204 if (--cds_lfht_workqueue_atfork_nesting)
2205 return;
2206 if (!cds_lfht_workqueue)
2207 goto end;
2208 urcu_workqueue_create_worker(cds_lfht_workqueue);
2209 end:
2210 mutex_unlock(&cds_lfht_fork_mutex);
2211 }
2212
2213 static struct urcu_atfork cds_lfht_atfork = {
2214 .before_fork = cds_lfht_before_fork,
2215 .after_fork_parent = cds_lfht_after_fork_parent,
2216 .after_fork_child = cds_lfht_after_fork_child,
2217 };
2218
2219 /*
2220 * Block all signals for the workqueue worker thread to ensure we don't
2221 * disturb the application. The SIGRCU signal needs to be unblocked for
2222 * the urcu-signal flavor.
2223 */
2224 static void cds_lfht_worker_init(
2225 struct urcu_workqueue *workqueue __attribute__((unused)),
2226 void *priv __attribute__((unused)))
2227 {
2228 int ret;
2229 sigset_t mask;
2230
2231 ret = sigfillset(&mask);
2232 if (ret)
2233 urcu_die(errno);
2234 ret = sigdelset(&mask, SIGRCU);
2235 if (ret)
2236 urcu_die(errno);
2237 ret = pthread_sigmask(SIG_SETMASK, &mask, NULL);
2238 if (ret)
2239 urcu_die(ret);
2240 }
2241
2242 static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2243 {
2244 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2245
2246 mutex_lock(&cds_lfht_fork_mutex);
2247 if (!cds_lfht_workqueue)
2248 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2249 NULL, cds_lfht_worker_init, NULL, NULL, NULL, NULL, NULL);
2250 mutex_unlock(&cds_lfht_fork_mutex);
2251 }
2252
2253 static void cds_lfht_exit(void)
2254 {
2255 mutex_lock(&cds_lfht_fork_mutex);
2256 if (cds_lfht_workqueue) {
2257 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
2258 urcu_workqueue_destroy(cds_lfht_workqueue);
2259 cds_lfht_workqueue = NULL;
2260 }
2261 mutex_unlock(&cds_lfht_fork_mutex);
2262 }
This page took 0.120124 seconds and 4 git commands to generate.