roadmap update
[lttv.git] / ltt / branches / poly / ltt / time.h
CommitLineData
9c312311 1/* This file is part of the Linux Trace Toolkit trace reading library
2 * Copyright (C) 2003-2004 Michel Dagenais
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License Version 2.1 as published by the Free Software Foundation.
7 *
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 02111-1307, USA.
17 */
18
308711e5 19#ifndef LTT_TIME_H
20#define LTT_TIME_H
21
a00149f6 22#include <glib.h>
1d1df11d 23#include <ltt/compiler.h>
0a2cbfbe 24#include <math.h>
308711e5 25
26typedef struct _LttTime {
27 unsigned long tv_sec;
28 unsigned long tv_nsec;
29} LttTime;
30
31
0aa6c3a1 32#define NANOSECONDS_PER_SECOND 1000000000
7db8c19d 33
34/* We give the DIV and MUL constants so we can always multiply, for a
35 * division as well as a multiplication of NANOSECONDS_PER_SECOND */
62b45a6e 36/* 2^30/1.07374182400631629848 = 1000000000.0 */
7db8c19d 37#define DOUBLE_SHIFT_CONST_DIV 1.07374182400631629848
62b45a6e 38#define DOUBLE_SHIFT 30
39
7db8c19d 40/* 2^30*0.93132257461547851562 = 1000000000.0000000000 */
41#define DOUBLE_SHIFT_CONST_MUL 0.93132257461547851562
42
43
62b45a6e 44/* 1953125 * 2^9 = NANOSECONDS_PER_SECOND */
45#define LTT_TIME_UINT_SHIFT_CONST 1953125
46#define LTT_TIME_UINT_SHIFT 9
47
308711e5 48
0aa6c3a1 49static const LttTime ltt_time_zero = { 0, 0 };
308711e5 50
18206708 51static const LttTime ltt_time_one = { 0, 1 };
52
0aa6c3a1 53static const LttTime ltt_time_infinite = { G_MAXUINT, NANOSECONDS_PER_SECOND };
308711e5 54
55static inline LttTime ltt_time_sub(LttTime t1, LttTime t2)
56{
57 LttTime res;
58 res.tv_sec = t1.tv_sec - t2.tv_sec;
f3167549 59 res.tv_nsec = t1.tv_nsec - t2.tv_nsec;
1d1df11d 60 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
61 * higher probability of low value for t2.tv_sec, we will habitually
62 * not wrap.
63 */
64 if(unlikely(t1.tv_nsec < t2.tv_nsec)) {
308711e5 65 res.tv_sec--;
f3167549 66 res.tv_nsec += NANOSECONDS_PER_SECOND;
308711e5 67 }
68 return res;
69}
70
71
72static inline LttTime ltt_time_add(LttTime t1, LttTime t2)
73{
74 LttTime res;
308711e5 75 res.tv_nsec = t1.tv_nsec + t2.tv_nsec;
f3167549 76 res.tv_sec = t1.tv_sec + t2.tv_sec;
1d1df11d 77 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
78 * higher probability of low value for t2.tv_sec, we will habitually
79 * not wrap.
80 */
81 if(unlikely(res.tv_nsec >= NANOSECONDS_PER_SECOND)) {
308711e5 82 res.tv_sec++;
83 res.tv_nsec -= NANOSECONDS_PER_SECOND;
84 }
85 return res;
86}
87
280f9968 88/* Fastest comparison : t1 > t2 */
308711e5 89static inline int ltt_time_compare(LttTime t1, LttTime t2)
90{
280f9968 91 int ret=0;
887208b7 92 if(likely(t1.tv_sec > t2.tv_sec)) ret = 1;
93 else if(unlikely(t1.tv_sec < t2.tv_sec)) ret = -1;
94 else if(likely(t1.tv_nsec > t2.tv_nsec)) ret = 1;
95 else if(unlikely(t1.tv_nsec < t2.tv_nsec)) ret = -1;
280f9968 96
97 return ret;
308711e5 98}
99
0aa6c3a1 100#define LTT_TIME_MIN(a,b) ((ltt_time_compare((a),(b)) < 0) ? (a) : (b))
101#define LTT_TIME_MAX(a,b) ((ltt_time_compare((a),(b)) > 0) ? (a) : (b))
102
8aee234c 103#define MAX_TV_SEC_TO_DOUBLE 0x7FFFFF
308711e5 104static inline double ltt_time_to_double(LttTime t1)
105{
8aee234c 106 /* We lose precision if tv_sec is > than (2^23)-1
107 *
108 * Max values that fits in a double (53 bits precision on normalised
109 * mantissa):
110 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
111 *
112 * So we have 53-30 = 23 bits left for tv_sec.
113 * */
c74e0cf9 114#ifdef EXTRA_CHECK
0c5dbe3b 115 g_assert(t1.tv_sec <= MAX_TV_SEC_TO_DOUBLE);
8aee234c 116 if(t1.tv_sec > MAX_TV_SEC_TO_DOUBLE)
117 g_warning("Precision loss in conversion LttTime to double");
c74e0cf9 118#endif //EXTRA_CHECK
21ff84a0 119 return ((double)((guint64)t1.tv_sec<<DOUBLE_SHIFT)
7db8c19d 120 * (double)DOUBLE_SHIFT_CONST_MUL)
21ff84a0 121 + (double)t1.tv_nsec;
308711e5 122}
123
124
125static inline LttTime ltt_time_from_double(double t1)
126{
8aee234c 127 /* We lose precision if tv_sec is > than (2^23)-1
128 *
129 * Max values that fits in a double (53 bits precision on normalised
130 * mantissa):
131 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
132 *
133 * So we have 53-30 = 23 bits left for tv_sec.
134 * */
c74e0cf9 135#ifdef EXTRA_CHECK
0c5dbe3b 136 g_assert(t1 <= MAX_TV_SEC_TO_DOUBLE);
8aee234c 137 if(t1 > MAX_TV_SEC_TO_DOUBLE)
138 g_warning("Conversion from non precise double to LttTime");
c74e0cf9 139#endif //EXTRA_CHECK
308711e5 140 LttTime res;
0ce58d10 141 //res.tv_sec = t1/(double)NANOSECONDS_PER_SECOND;
7db8c19d 142 res.tv_sec = (guint64)(t1 * DOUBLE_SHIFT_CONST_DIV) >> DOUBLE_SHIFT;
21ff84a0 143 res.tv_nsec = (t1 - (((guint64)res.tv_sec<<LTT_TIME_UINT_SHIFT))
62b45a6e 144 * LTT_TIME_UINT_SHIFT_CONST);
308711e5 145 return res;
146}
147
8d1e6362 148/* Use ltt_time_to_double and ltt_time_from_double to check for lack
149 * of precision.
150 */
151static inline LttTime ltt_time_mul(LttTime t1, double d)
152{
153 LttTime res;
154
155 double time_double = ltt_time_to_double(t1);
156
157 time_double = time_double * d;
158
159 res = ltt_time_from_double(time_double);
160
161 return res;
162
163#if 0
164 /* What is that ? (Mathieu) */
165 if(f == 0.0){
166 res.tv_sec = 0;
167 res.tv_nsec = 0;
168 }else{
169 double d;
170 d = 1.0/f;
171 sec = t1.tv_sec / (double)d;
172 res.tv_sec = sec;
173 res.tv_nsec = t1.tv_nsec / (double)d + (sec - res.tv_sec) *
174 NANOSECONDS_PER_SECOND;
175 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
176 res.tv_nsec %= NANOSECONDS_PER_SECOND;
177 }
178 return res;
179#endif //0
180}
181
182
183/* Use ltt_time_to_double and ltt_time_from_double to check for lack
184 * of precision.
185 */
186static inline LttTime ltt_time_div(LttTime t1, double d)
187{
188 LttTime res;
189
190 double time_double = ltt_time_to_double(t1);
191
192 time_double = time_double / d;
193
194 res = ltt_time_from_double(time_double);
195
196 return res;
197
198
199#if 0
200 double sec;
201 LttTime res;
202
203 sec = t1.tv_sec / (double)f;
204 res.tv_sec = sec;
205 res.tv_nsec = t1.tv_nsec / (double)f + (sec - res.tv_sec) *
206 NANOSECONDS_PER_SECOND;
207 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
208 res.tv_nsec %= NANOSECONDS_PER_SECOND;
209 return res;
210#endif //0
211}
212
62b45a6e 213
90ef7e4a 214static inline guint64 ltt_time_to_uint64(LttTime t1)
215{
709c30b4 216 return (((guint64)t1.tv_sec*LTT_TIME_UINT_SHIFT_CONST) << LTT_TIME_UINT_SHIFT)
62b45a6e 217 + (guint64)t1.tv_nsec;
90ef7e4a 218}
219
220
221#define MAX_TV_SEC_TO_UINT64 0x3FFFFFFFFFFFFFFFULL
62b45a6e 222
223/* The likely branch is with sec != 0, because most events in a bloc
224 * will be over 1s from the block start. (see tracefile.c)
225 */
90ef7e4a 226static inline LttTime ltt_time_from_uint64(guint64 t1)
227{
228 /* We lose precision if tv_sec is > than (2^62)-1
229 * */
c74e0cf9 230#ifdef EXTRA_CHECK
90ef7e4a 231 g_assert(t1 <= MAX_TV_SEC_TO_UINT64);
232 if(t1 > MAX_TV_SEC_TO_UINT64)
49f3c39e 233 g_warning("Conversion from uint64 to non precise LttTime");
c74e0cf9 234#endif //EXTRA_CHECK
90ef7e4a 235 LttTime res;
62b45a6e 236 //if(unlikely(t1 >= NANOSECONDS_PER_SECOND)) {
237 if(likely(t1>>LTT_TIME_UINT_SHIFT >= LTT_TIME_UINT_SHIFT_CONST)) {
238 //res.tv_sec = t1/NANOSECONDS_PER_SECOND;
239 res.tv_sec = (t1>>LTT_TIME_UINT_SHIFT)
240 /LTT_TIME_UINT_SHIFT_CONST; // acceleration
49f3c39e 241 res.tv_nsec = (t1 - res.tv_sec*NANOSECONDS_PER_SECOND);
242 } else {
243 res.tv_sec = 0;
244 res.tv_nsec = (guint32)t1;
245 }
90ef7e4a 246 return res;
247}
8d1e6362 248
308711e5 249#endif // LTT_TIME_H
This page took 0.045656 seconds and 4 git commands to generate.