Fix: pass private data to context callbacks
[lttng-ust.git] / liblttng-ust / rculfhash.c
1 /*
2 * SPDX-License-Identifier: LGPL-2.1-or-later
3 *
4 * Copyright 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 * Copyright 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
6 *
7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
8 */
9
10 /*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
19 * Some specificities of this Lock-Free Resizable RCU Hash Table
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
38 * - An index of bucket nodes is kept. These bucket nodes are the hash
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
50 * - Split-counters are used to keep track of the number of
51 * nodes within the hash table for automatic resize triggering.
52 * - Resize operation initiated by long chain detection is executed by a
53 * worker thread, which keeps lock-freedom of add and remove.
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
75 * linked-list (the start node is never removed) and that it does not
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
100 *
101 * Ordering Guarantees:
102 *
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic lttng_ust_lfht_lookup, lttng_ust_lfht_next_duplicate,
105 * lttng_ust_lfht_first, lttng_ust_lfht_next operation, as well as
106 * lttng_ust_lfht_add_unique (failure).
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
110 * - lttng_ust_lfht_lookup followed by iteration with lttng_ust_lfht_next_duplicate
111 * (and/or lttng_ust_lfht_next, although less common).
112 * - lttng_ust_lfht_add_unique (failure) followed by iteration with
113 * lttng_ust_lfht_next_duplicate (and/or lttng_ust_lfht_next, although less
114 * common).
115 * - lttng_ust_lfht_first followed iteration with lttng_ust_lfht_next (and/or
116 * lttng_ust_lfht_next_duplicate, although less common).
117 *
118 * We define "write" operations as any of lttng_ust_lfht_add, lttng_ust_lfht_replace,
119 * lttng_ust_lfht_add_unique (success), lttng_ust_lfht_add_replace, lttng_ust_lfht_del.
120 *
121 * When lttng_ust_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When lttng_ust_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A lttng_ust_lfht_add_unique failure is a
125 * lttng_ust_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or lttng_ust_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a lttng_ust_lfht_lookup() might be passed to a lttng_ust_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
192 *
193 * Bucket node tables:
194 *
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
206 * When growing/shrinking, we only focus on the last bucket node table
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
212 *
213 * A bit of ascii art explanation:
214 *
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
217 *
218 * This shows the nodes for a small table ordered by reversed bits:
219 *
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
231 * reversed-bit order.
232 *
233 * order bits reverse
234 * 0 0 000 000
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
237 * | | | 3 011 110 | <- |
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
242 */
243
244 /*
245 * Note on port to lttng-ust: auto-resize and accounting features are
246 * removed.
247 */
248
249 #define _LGPL_SOURCE
250 #include <stdlib.h>
251 #include <errno.h>
252 #include <assert.h>
253 #include <stdio.h>
254 #include <stdint.h>
255 #include <string.h>
256 #include <sched.h>
257 #include <unistd.h>
258
259 #include <lttng/ust-arch.h>
260 #include <lttng/urcu/pointer.h>
261 #include <urcu/arch.h>
262 #include <urcu/uatomic.h>
263 #include <urcu/compiler.h>
264 #include "rculfhash.h"
265 #include "rculfhash-internal.h"
266 #include <stdio.h>
267 #include <pthread.h>
268 #include <signal.h>
269
270 /*
271 * Split-counters lazily update the global counter each 1024
272 * addition/removal. It automatically keeps track of resize required.
273 * We use the bucket length as indicator for need to expand for small
274 * tables and machines lacking per-cpu data support.
275 */
276 #define COUNT_COMMIT_ORDER 10
277
278 /*
279 * Define the minimum table size.
280 */
281 #define MIN_TABLE_ORDER 0
282 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
283
284 /*
285 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
286 */
287 #define MIN_PARTITION_PER_THREAD_ORDER 12
288 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
289
290 /*
291 * The removed flag needs to be updated atomically with the pointer.
292 * It indicates that no node must attach to the node scheduled for
293 * removal, and that node garbage collection must be performed.
294 * The bucket flag does not require to be updated atomically with the
295 * pointer, but it is added as a pointer low bit flag to save space.
296 * The "removal owner" flag is used to detect which of the "del"
297 * operation that has set the "removed flag" gets to return the removed
298 * node to its caller. Note that the replace operation does not need to
299 * iteract with the "removal owner" flag, because it validates that
300 * the "removed" flag is not set before performing its cmpxchg.
301 */
302 #define REMOVED_FLAG (1UL << 0)
303 #define BUCKET_FLAG (1UL << 1)
304 #define REMOVAL_OWNER_FLAG (1UL << 2)
305 #define FLAGS_MASK ((1UL << 3) - 1)
306
307 /* Value of the end pointer. Should not interact with flags. */
308 #define END_VALUE NULL
309
310 /*
311 * ht_items_count: Split-counters counting the number of node addition
312 * and removal in the table. Only used if the LTTNG_UST_LFHT_ACCOUNTING flag
313 * is set at hash table creation.
314 *
315 * These are free-running counters, never reset to zero. They count the
316 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
317 * operations to update the global counter. We choose a power-of-2 value
318 * for the trigger to deal with 32 or 64-bit overflow of the counter.
319 */
320 struct ht_items_count {
321 unsigned long add, del;
322 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
323
324 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
325
326 static
327 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
328 {
329 iter->lfht = ht;
330 }
331
332 #define lttng_ust_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
333
334 #else
335
336 static
337 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht __attribute__((unused)),
338 struct lttng_ust_lfht_iter *iter __attribute__((unused)))
339 {
340 }
341
342 #define lttng_ust_lfht_iter_debug_assert(...)
343
344 #endif
345
346 /*
347 * Algorithm to reverse bits in a word by lookup table, extended to
348 * 64-bit words.
349 * Source:
350 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
351 * Originally from Public Domain.
352 */
353
354 static const uint8_t BitReverseTable256[256] =
355 {
356 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
357 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
358 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
359 R6(0), R6(2), R6(1), R6(3)
360 };
361 #undef R2
362 #undef R4
363 #undef R6
364
365 static
366 uint8_t bit_reverse_u8(uint8_t v)
367 {
368 return BitReverseTable256[v];
369 }
370
371 #if (CAA_BITS_PER_LONG == 32)
372 static
373 uint32_t bit_reverse_u32(uint32_t v)
374 {
375 return ((uint32_t) bit_reverse_u8(v) << 24) |
376 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
377 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
378 ((uint32_t) bit_reverse_u8(v >> 24));
379 }
380 #else
381 static
382 uint64_t bit_reverse_u64(uint64_t v)
383 {
384 return ((uint64_t) bit_reverse_u8(v) << 56) |
385 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
386 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
387 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
388 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
389 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
390 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
391 ((uint64_t) bit_reverse_u8(v >> 56));
392 }
393 #endif
394
395 static
396 unsigned long bit_reverse_ulong(unsigned long v)
397 {
398 #if (CAA_BITS_PER_LONG == 32)
399 return bit_reverse_u32(v);
400 #else
401 return bit_reverse_u64(v);
402 #endif
403 }
404
405 /*
406 * fls: returns the position of the most significant bit.
407 * Returns 0 if no bit is set, else returns the position of the most
408 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
409 */
410 #if defined(LTTNG_UST_ARCH_X86)
411 static inline
412 unsigned int fls_u32(uint32_t x)
413 {
414 int r;
415
416 __asm__ ("bsrl %1,%0\n\t"
417 "jnz 1f\n\t"
418 "movl $-1,%0\n\t"
419 "1:\n\t"
420 : "=r" (r) : "rm" (x));
421 return r + 1;
422 }
423 #define HAS_FLS_U32
424 #endif
425
426 #if defined(LTTNG_UST_ARCH_AMD64)
427 static inline
428 unsigned int fls_u64(uint64_t x)
429 {
430 long r;
431
432 __asm__ ("bsrq %1,%0\n\t"
433 "jnz 1f\n\t"
434 "movq $-1,%0\n\t"
435 "1:\n\t"
436 : "=r" (r) : "rm" (x));
437 return r + 1;
438 }
439 #define HAS_FLS_U64
440 #endif
441
442 #ifndef HAS_FLS_U64
443 static
444 unsigned int fls_u64(uint64_t x)
445 __attribute__((unused));
446 static
447 unsigned int fls_u64(uint64_t x)
448 {
449 unsigned int r = 64;
450
451 if (!x)
452 return 0;
453
454 if (!(x & 0xFFFFFFFF00000000ULL)) {
455 x <<= 32;
456 r -= 32;
457 }
458 if (!(x & 0xFFFF000000000000ULL)) {
459 x <<= 16;
460 r -= 16;
461 }
462 if (!(x & 0xFF00000000000000ULL)) {
463 x <<= 8;
464 r -= 8;
465 }
466 if (!(x & 0xF000000000000000ULL)) {
467 x <<= 4;
468 r -= 4;
469 }
470 if (!(x & 0xC000000000000000ULL)) {
471 x <<= 2;
472 r -= 2;
473 }
474 if (!(x & 0x8000000000000000ULL)) {
475 x <<= 1;
476 r -= 1;
477 }
478 return r;
479 }
480 #endif
481
482 #ifndef HAS_FLS_U32
483 static
484 unsigned int fls_u32(uint32_t x)
485 __attribute__((unused));
486 static
487 unsigned int fls_u32(uint32_t x)
488 {
489 unsigned int r = 32;
490
491 if (!x)
492 return 0;
493 if (!(x & 0xFFFF0000U)) {
494 x <<= 16;
495 r -= 16;
496 }
497 if (!(x & 0xFF000000U)) {
498 x <<= 8;
499 r -= 8;
500 }
501 if (!(x & 0xF0000000U)) {
502 x <<= 4;
503 r -= 4;
504 }
505 if (!(x & 0xC0000000U)) {
506 x <<= 2;
507 r -= 2;
508 }
509 if (!(x & 0x80000000U)) {
510 x <<= 1;
511 r -= 1;
512 }
513 return r;
514 }
515 #endif
516
517 unsigned int lttng_ust_lfht_fls_ulong(unsigned long x)
518 {
519 #if (CAA_BITS_PER_LONG == 32)
520 return fls_u32(x);
521 #else
522 return fls_u64(x);
523 #endif
524 }
525
526 /*
527 * Return the minimum order for which x <= (1UL << order).
528 * Return -1 if x is 0.
529 */
530 int lttng_ust_lfht_get_count_order_u32(uint32_t x)
531 {
532 if (!x)
533 return -1;
534
535 return fls_u32(x - 1);
536 }
537
538 /*
539 * Return the minimum order for which x <= (1UL << order).
540 * Return -1 if x is 0.
541 */
542 int lttng_ust_lfht_get_count_order_ulong(unsigned long x)
543 {
544 if (!x)
545 return -1;
546
547 return lttng_ust_lfht_fls_ulong(x - 1);
548 }
549
550 static
551 struct lttng_ust_lfht_node *clear_flag(struct lttng_ust_lfht_node *node)
552 {
553 return (struct lttng_ust_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
554 }
555
556 static
557 int is_removed(const struct lttng_ust_lfht_node *node)
558 {
559 return ((unsigned long) node) & REMOVED_FLAG;
560 }
561
562 static
563 int is_bucket(struct lttng_ust_lfht_node *node)
564 {
565 return ((unsigned long) node) & BUCKET_FLAG;
566 }
567
568 static
569 struct lttng_ust_lfht_node *flag_bucket(struct lttng_ust_lfht_node *node)
570 {
571 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
572 }
573
574 static
575 int is_removal_owner(struct lttng_ust_lfht_node *node)
576 {
577 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
578 }
579
580 static
581 struct lttng_ust_lfht_node *flag_removal_owner(struct lttng_ust_lfht_node *node)
582 {
583 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
584 }
585
586 static
587 struct lttng_ust_lfht_node *flag_removed_or_removal_owner(struct lttng_ust_lfht_node *node)
588 {
589 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
590 }
591
592 static
593 struct lttng_ust_lfht_node *get_end(void)
594 {
595 return (struct lttng_ust_lfht_node *) END_VALUE;
596 }
597
598 static
599 int is_end(struct lttng_ust_lfht_node *node)
600 {
601 return clear_flag(node) == (struct lttng_ust_lfht_node *) END_VALUE;
602 }
603
604 static
605 void lttng_ust_lfht_alloc_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
606 {
607 return ht->mm->alloc_bucket_table(ht, order);
608 }
609
610 /*
611 * lttng_ust_lfht_free_bucket_table() should be called with decreasing order.
612 * When lttng_ust_lfht_free_bucket_table(0) is called, it means the whole
613 * lfht is destroyed.
614 */
615 static
616 void lttng_ust_lfht_free_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
617 {
618 return ht->mm->free_bucket_table(ht, order);
619 }
620
621 static inline
622 struct lttng_ust_lfht_node *bucket_at(struct lttng_ust_lfht *ht, unsigned long index)
623 {
624 return ht->bucket_at(ht, index);
625 }
626
627 static inline
628 struct lttng_ust_lfht_node *lookup_bucket(struct lttng_ust_lfht *ht, unsigned long size,
629 unsigned long hash)
630 {
631 assert(size > 0);
632 return bucket_at(ht, hash & (size - 1));
633 }
634
635 /*
636 * Remove all logically deleted nodes from a bucket up to a certain node key.
637 */
638 static
639 void _lttng_ust_lfht_gc_bucket(struct lttng_ust_lfht_node *bucket, struct lttng_ust_lfht_node *node)
640 {
641 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_next;
642
643 assert(!is_bucket(bucket));
644 assert(!is_removed(bucket));
645 assert(!is_removal_owner(bucket));
646 assert(!is_bucket(node));
647 assert(!is_removed(node));
648 assert(!is_removal_owner(node));
649 for (;;) {
650 iter_prev = bucket;
651 /* We can always skip the bucket node initially */
652 iter = lttng_ust_rcu_dereference(iter_prev->next);
653 assert(!is_removed(iter));
654 assert(!is_removal_owner(iter));
655 assert(iter_prev->reverse_hash <= node->reverse_hash);
656 /*
657 * We should never be called with bucket (start of chain)
658 * and logically removed node (end of path compression
659 * marker) being the actual same node. This would be a
660 * bug in the algorithm implementation.
661 */
662 assert(bucket != node);
663 for (;;) {
664 if (caa_unlikely(is_end(iter)))
665 return;
666 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
667 return;
668 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
669 if (caa_likely(is_removed(next)))
670 break;
671 iter_prev = clear_flag(iter);
672 iter = next;
673 }
674 assert(!is_removed(iter));
675 assert(!is_removal_owner(iter));
676 if (is_bucket(iter))
677 new_next = flag_bucket(clear_flag(next));
678 else
679 new_next = clear_flag(next);
680 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
681 }
682 }
683
684 static
685 int _lttng_ust_lfht_replace(struct lttng_ust_lfht *ht, unsigned long size,
686 struct lttng_ust_lfht_node *old_node,
687 struct lttng_ust_lfht_node *old_next,
688 struct lttng_ust_lfht_node *new_node)
689 {
690 struct lttng_ust_lfht_node *bucket, *ret_next;
691
692 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
693 return -ENOENT;
694
695 assert(!is_removed(old_node));
696 assert(!is_removal_owner(old_node));
697 assert(!is_bucket(old_node));
698 assert(!is_removed(new_node));
699 assert(!is_removal_owner(new_node));
700 assert(!is_bucket(new_node));
701 assert(new_node != old_node);
702 for (;;) {
703 /* Insert after node to be replaced */
704 if (is_removed(old_next)) {
705 /*
706 * Too late, the old node has been removed under us
707 * between lookup and replace. Fail.
708 */
709 return -ENOENT;
710 }
711 assert(old_next == clear_flag(old_next));
712 assert(new_node != old_next);
713 /*
714 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
715 * flag. It is either set atomically at the same time
716 * (replace) or after (del).
717 */
718 assert(!is_removal_owner(old_next));
719 new_node->next = old_next;
720 /*
721 * Here is the whole trick for lock-free replace: we add
722 * the replacement node _after_ the node we want to
723 * replace by atomically setting its next pointer at the
724 * same time we set its removal flag. Given that
725 * the lookups/get next use an iterator aware of the
726 * next pointer, they will either skip the old node due
727 * to the removal flag and see the new node, or use
728 * the old node, but will not see the new one.
729 * This is a replacement of a node with another node
730 * that has the same value: we are therefore not
731 * removing a value from the hash table. We set both the
732 * REMOVED and REMOVAL_OWNER flags atomically so we own
733 * the node after successful cmpxchg.
734 */
735 ret_next = uatomic_cmpxchg(&old_node->next,
736 old_next, flag_removed_or_removal_owner(new_node));
737 if (ret_next == old_next)
738 break; /* We performed the replacement. */
739 old_next = ret_next;
740 }
741
742 /*
743 * Ensure that the old node is not visible to readers anymore:
744 * lookup for the node, and remove it (along with any other
745 * logically removed node) if found.
746 */
747 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
748 _lttng_ust_lfht_gc_bucket(bucket, new_node);
749
750 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
751 return 0;
752 }
753
754 /*
755 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
756 * mode. A NULL unique_ret allows creation of duplicate keys.
757 */
758 static
759 void _lttng_ust_lfht_add(struct lttng_ust_lfht *ht,
760 unsigned long hash,
761 lttng_ust_lfht_match_fct match,
762 const void *key,
763 unsigned long size,
764 struct lttng_ust_lfht_node *node,
765 struct lttng_ust_lfht_iter *unique_ret,
766 int bucket_flag)
767 {
768 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
769 *return_node;
770 struct lttng_ust_lfht_node *bucket;
771
772 assert(!is_bucket(node));
773 assert(!is_removed(node));
774 assert(!is_removal_owner(node));
775 bucket = lookup_bucket(ht, size, hash);
776 for (;;) {
777 /*
778 * iter_prev points to the non-removed node prior to the
779 * insert location.
780 */
781 iter_prev = bucket;
782 /* We can always skip the bucket node initially */
783 iter = lttng_ust_rcu_dereference(iter_prev->next);
784 assert(iter_prev->reverse_hash <= node->reverse_hash);
785 for (;;) {
786 if (caa_unlikely(is_end(iter)))
787 goto insert;
788 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
789 goto insert;
790
791 /* bucket node is the first node of the identical-hash-value chain */
792 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
793 goto insert;
794
795 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
796 if (caa_unlikely(is_removed(next)))
797 goto gc_node;
798
799 /* uniquely add */
800 if (unique_ret
801 && !is_bucket(next)
802 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
803 struct lttng_ust_lfht_iter d_iter = {
804 .node = node,
805 .next = iter,
806 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
807 .lfht = ht,
808 #endif
809 };
810
811 /*
812 * uniquely adding inserts the node as the first
813 * node of the identical-hash-value node chain.
814 *
815 * This semantic ensures no duplicated keys
816 * should ever be observable in the table
817 * (including traversing the table node by
818 * node by forward iterations)
819 */
820 lttng_ust_lfht_next_duplicate(ht, match, key, &d_iter);
821 if (!d_iter.node)
822 goto insert;
823
824 *unique_ret = d_iter;
825 return;
826 }
827
828 iter_prev = clear_flag(iter);
829 iter = next;
830 }
831
832 insert:
833 assert(node != clear_flag(iter));
834 assert(!is_removed(iter_prev));
835 assert(!is_removal_owner(iter_prev));
836 assert(!is_removed(iter));
837 assert(!is_removal_owner(iter));
838 assert(iter_prev != node);
839 if (!bucket_flag)
840 node->next = clear_flag(iter);
841 else
842 node->next = flag_bucket(clear_flag(iter));
843 if (is_bucket(iter))
844 new_node = flag_bucket(node);
845 else
846 new_node = node;
847 if (uatomic_cmpxchg(&iter_prev->next, iter,
848 new_node) != iter) {
849 continue; /* retry */
850 } else {
851 return_node = node;
852 goto end;
853 }
854
855 gc_node:
856 assert(!is_removed(iter));
857 assert(!is_removal_owner(iter));
858 if (is_bucket(iter))
859 new_next = flag_bucket(clear_flag(next));
860 else
861 new_next = clear_flag(next);
862 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
863 /* retry */
864 }
865 end:
866 if (unique_ret) {
867 unique_ret->node = return_node;
868 /* unique_ret->next left unset, never used. */
869 }
870 }
871
872 static
873 int _lttng_ust_lfht_del(struct lttng_ust_lfht *ht, unsigned long size,
874 struct lttng_ust_lfht_node *node)
875 {
876 struct lttng_ust_lfht_node *bucket, *next;
877
878 if (!node) /* Return -ENOENT if asked to delete NULL node */
879 return -ENOENT;
880
881 /* logically delete the node */
882 assert(!is_bucket(node));
883 assert(!is_removed(node));
884 assert(!is_removal_owner(node));
885
886 /*
887 * We are first checking if the node had previously been
888 * logically removed (this check is not atomic with setting the
889 * logical removal flag). Return -ENOENT if the node had
890 * previously been removed.
891 */
892 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
893 if (caa_unlikely(is_removed(next)))
894 return -ENOENT;
895 assert(!is_bucket(next));
896 /*
897 * The del operation semantic guarantees a full memory barrier
898 * before the uatomic_or atomic commit of the deletion flag.
899 */
900 cmm_smp_mb__before_uatomic_or();
901 /*
902 * We set the REMOVED_FLAG unconditionally. Note that there may
903 * be more than one concurrent thread setting this flag.
904 * Knowing which wins the race will be known after the garbage
905 * collection phase, stay tuned!
906 */
907 uatomic_or(&node->next, REMOVED_FLAG);
908 /* We performed the (logical) deletion. */
909
910 /*
911 * Ensure that the node is not visible to readers anymore: lookup for
912 * the node, and remove it (along with any other logically removed node)
913 * if found.
914 */
915 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
916 _lttng_ust_lfht_gc_bucket(bucket, node);
917
918 assert(is_removed(CMM_LOAD_SHARED(node->next)));
919 /*
920 * Last phase: atomically exchange node->next with a version
921 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
922 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
923 * the node and win the removal race.
924 * It is interesting to note that all "add" paths are forbidden
925 * to change the next pointer starting from the point where the
926 * REMOVED_FLAG is set, so here using a read, followed by a
927 * xchg() suffice to guarantee that the xchg() will ever only
928 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
929 * was already set).
930 */
931 if (!is_removal_owner(uatomic_xchg(&node->next,
932 flag_removal_owner(node->next))))
933 return 0;
934 else
935 return -ENOENT;
936 }
937
938 /*
939 * Never called with size < 1.
940 */
941 static
942 void lttng_ust_lfht_create_bucket(struct lttng_ust_lfht *ht, unsigned long size)
943 {
944 struct lttng_ust_lfht_node *prev, *node;
945 unsigned long order, len, i;
946 int bucket_order;
947
948 lttng_ust_lfht_alloc_bucket_table(ht, 0);
949
950 dbg_printf("create bucket: order 0 index 0 hash 0\n");
951 node = bucket_at(ht, 0);
952 node->next = flag_bucket(get_end());
953 node->reverse_hash = 0;
954
955 bucket_order = lttng_ust_lfht_get_count_order_ulong(size);
956 assert(bucket_order >= 0);
957
958 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
959 len = 1UL << (order - 1);
960 lttng_ust_lfht_alloc_bucket_table(ht, order);
961
962 for (i = 0; i < len; i++) {
963 /*
964 * Now, we are trying to init the node with the
965 * hash=(len+i) (which is also a bucket with the
966 * index=(len+i)) and insert it into the hash table,
967 * so this node has to be inserted after the bucket
968 * with the index=(len+i)&(len-1)=i. And because there
969 * is no other non-bucket node nor bucket node with
970 * larger index/hash inserted, so the bucket node
971 * being inserted should be inserted directly linked
972 * after the bucket node with index=i.
973 */
974 prev = bucket_at(ht, i);
975 node = bucket_at(ht, len + i);
976
977 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
978 order, len + i, len + i);
979 node->reverse_hash = bit_reverse_ulong(len + i);
980
981 /* insert after prev */
982 assert(is_bucket(prev->next));
983 node->next = prev->next;
984 prev->next = flag_bucket(node);
985 }
986 }
987 }
988
989 #if (CAA_BITS_PER_LONG > 32)
990 /*
991 * For 64-bit architectures, with max number of buckets small enough not to
992 * use the entire 64-bit memory mapping space (and allowing a fair number of
993 * hash table instances), use the mmap allocator, which is faster. Otherwise,
994 * fallback to the order allocator.
995 */
996 static
997 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
998 {
999 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1000 return &lttng_ust_lfht_mm_mmap;
1001 else
1002 return &lttng_ust_lfht_mm_order;
1003 }
1004 #else
1005 /*
1006 * For 32-bit architectures, use the order allocator.
1007 */
1008 static
1009 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1010 {
1011 return &lttng_ust_lfht_mm_order;
1012 }
1013 #endif
1014
1015 struct lttng_ust_lfht *lttng_ust_lfht_new(unsigned long init_size,
1016 unsigned long min_nr_alloc_buckets,
1017 unsigned long max_nr_buckets,
1018 int flags,
1019 const struct lttng_ust_lfht_mm_type *mm)
1020 {
1021 struct lttng_ust_lfht *ht;
1022 unsigned long order;
1023
1024 /* min_nr_alloc_buckets must be power of two */
1025 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1026 return NULL;
1027
1028 /* init_size must be power of two */
1029 if (!init_size || (init_size & (init_size - 1)))
1030 return NULL;
1031
1032 /*
1033 * Memory management plugin default.
1034 */
1035 if (!mm)
1036 mm = get_mm_type(max_nr_buckets);
1037
1038 /* max_nr_buckets == 0 for order based mm means infinite */
1039 if (mm == &lttng_ust_lfht_mm_order && !max_nr_buckets)
1040 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1041
1042 /* max_nr_buckets must be power of two */
1043 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1044 return NULL;
1045
1046 if (flags & LTTNG_UST_LFHT_AUTO_RESIZE)
1047 return NULL;
1048
1049 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1050 init_size = max(init_size, MIN_TABLE_SIZE);
1051 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1052 init_size = min(init_size, max_nr_buckets);
1053
1054 ht = mm->alloc_lttng_ust_lfht(min_nr_alloc_buckets, max_nr_buckets);
1055 assert(ht);
1056 assert(ht->mm == mm);
1057 assert(ht->bucket_at == mm->bucket_at);
1058
1059 ht->flags = flags;
1060 /* this mutex should not nest in read-side C.S. */
1061 pthread_mutex_init(&ht->resize_mutex, NULL);
1062 order = lttng_ust_lfht_get_count_order_ulong(init_size);
1063 ht->resize_target = 1UL << order;
1064 lttng_ust_lfht_create_bucket(ht, 1UL << order);
1065 ht->size = 1UL << order;
1066 return ht;
1067 }
1068
1069 void lttng_ust_lfht_lookup(struct lttng_ust_lfht *ht, unsigned long hash,
1070 lttng_ust_lfht_match_fct match, const void *key,
1071 struct lttng_ust_lfht_iter *iter)
1072 {
1073 struct lttng_ust_lfht_node *node, *next, *bucket;
1074 unsigned long reverse_hash, size;
1075
1076 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1077
1078 reverse_hash = bit_reverse_ulong(hash);
1079
1080 size = lttng_ust_rcu_dereference(ht->size);
1081 bucket = lookup_bucket(ht, size, hash);
1082 /* We can always skip the bucket node initially */
1083 node = lttng_ust_rcu_dereference(bucket->next);
1084 node = clear_flag(node);
1085 for (;;) {
1086 if (caa_unlikely(is_end(node))) {
1087 node = next = NULL;
1088 break;
1089 }
1090 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1091 node = next = NULL;
1092 break;
1093 }
1094 next = lttng_ust_rcu_dereference(node->next);
1095 assert(node == clear_flag(node));
1096 if (caa_likely(!is_removed(next))
1097 && !is_bucket(next)
1098 && node->reverse_hash == reverse_hash
1099 && caa_likely(match(node, key))) {
1100 break;
1101 }
1102 node = clear_flag(next);
1103 }
1104 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1105 iter->node = node;
1106 iter->next = next;
1107 }
1108
1109 void lttng_ust_lfht_next_duplicate(struct lttng_ust_lfht *ht __attribute__((unused)),
1110 lttng_ust_lfht_match_fct match,
1111 const void *key, struct lttng_ust_lfht_iter *iter)
1112 {
1113 struct lttng_ust_lfht_node *node, *next;
1114 unsigned long reverse_hash;
1115
1116 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1117 node = iter->node;
1118 reverse_hash = node->reverse_hash;
1119 next = iter->next;
1120 node = clear_flag(next);
1121
1122 for (;;) {
1123 if (caa_unlikely(is_end(node))) {
1124 node = next = NULL;
1125 break;
1126 }
1127 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1128 node = next = NULL;
1129 break;
1130 }
1131 next = lttng_ust_rcu_dereference(node->next);
1132 if (caa_likely(!is_removed(next))
1133 && !is_bucket(next)
1134 && caa_likely(match(node, key))) {
1135 break;
1136 }
1137 node = clear_flag(next);
1138 }
1139 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1140 iter->node = node;
1141 iter->next = next;
1142 }
1143
1144 void lttng_ust_lfht_next(struct lttng_ust_lfht *ht __attribute__((unused)),
1145 struct lttng_ust_lfht_iter *iter)
1146 {
1147 struct lttng_ust_lfht_node *node, *next;
1148
1149 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1150 node = clear_flag(iter->next);
1151 for (;;) {
1152 if (caa_unlikely(is_end(node))) {
1153 node = next = NULL;
1154 break;
1155 }
1156 next = lttng_ust_rcu_dereference(node->next);
1157 if (caa_likely(!is_removed(next))
1158 && !is_bucket(next)) {
1159 break;
1160 }
1161 node = clear_flag(next);
1162 }
1163 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1164 iter->node = node;
1165 iter->next = next;
1166 }
1167
1168 void lttng_ust_lfht_first(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1169 {
1170 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1171 /*
1172 * Get next after first bucket node. The first bucket node is the
1173 * first node of the linked list.
1174 */
1175 iter->next = bucket_at(ht, 0)->next;
1176 lttng_ust_lfht_next(ht, iter);
1177 }
1178
1179 void lttng_ust_lfht_add(struct lttng_ust_lfht *ht, unsigned long hash,
1180 struct lttng_ust_lfht_node *node)
1181 {
1182 unsigned long size;
1183
1184 node->reverse_hash = bit_reverse_ulong(hash);
1185 size = lttng_ust_rcu_dereference(ht->size);
1186 _lttng_ust_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1187 }
1188
1189 struct lttng_ust_lfht_node *lttng_ust_lfht_add_unique(struct lttng_ust_lfht *ht,
1190 unsigned long hash,
1191 lttng_ust_lfht_match_fct match,
1192 const void *key,
1193 struct lttng_ust_lfht_node *node)
1194 {
1195 unsigned long size;
1196 struct lttng_ust_lfht_iter iter;
1197
1198 node->reverse_hash = bit_reverse_ulong(hash);
1199 size = lttng_ust_rcu_dereference(ht->size);
1200 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1201 return iter.node;
1202 }
1203
1204 struct lttng_ust_lfht_node *lttng_ust_lfht_add_replace(struct lttng_ust_lfht *ht,
1205 unsigned long hash,
1206 lttng_ust_lfht_match_fct match,
1207 const void *key,
1208 struct lttng_ust_lfht_node *node)
1209 {
1210 unsigned long size;
1211 struct lttng_ust_lfht_iter iter;
1212
1213 node->reverse_hash = bit_reverse_ulong(hash);
1214 size = lttng_ust_rcu_dereference(ht->size);
1215 for (;;) {
1216 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1217 if (iter.node == node) {
1218 return NULL;
1219 }
1220
1221 if (!_lttng_ust_lfht_replace(ht, size, iter.node, iter.next, node))
1222 return iter.node;
1223 }
1224 }
1225
1226 int lttng_ust_lfht_replace(struct lttng_ust_lfht *ht,
1227 struct lttng_ust_lfht_iter *old_iter,
1228 unsigned long hash,
1229 lttng_ust_lfht_match_fct match,
1230 const void *key,
1231 struct lttng_ust_lfht_node *new_node)
1232 {
1233 unsigned long size;
1234
1235 new_node->reverse_hash = bit_reverse_ulong(hash);
1236 if (!old_iter->node)
1237 return -ENOENT;
1238 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1239 return -EINVAL;
1240 if (caa_unlikely(!match(old_iter->node, key)))
1241 return -EINVAL;
1242 size = lttng_ust_rcu_dereference(ht->size);
1243 return _lttng_ust_lfht_replace(ht, size, old_iter->node, old_iter->next,
1244 new_node);
1245 }
1246
1247 int lttng_ust_lfht_del(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_node *node)
1248 {
1249 unsigned long size;
1250
1251 size = lttng_ust_rcu_dereference(ht->size);
1252 return _lttng_ust_lfht_del(ht, size, node);
1253 }
1254
1255 int lttng_ust_lfht_is_node_deleted(const struct lttng_ust_lfht_node *node)
1256 {
1257 return is_removed(CMM_LOAD_SHARED(node->next));
1258 }
1259
1260 static
1261 int lttng_ust_lfht_delete_bucket(struct lttng_ust_lfht *ht)
1262 {
1263 struct lttng_ust_lfht_node *node;
1264 unsigned long order, i, size;
1265
1266 /* Check that the table is empty */
1267 node = bucket_at(ht, 0);
1268 do {
1269 node = clear_flag(node)->next;
1270 if (!is_bucket(node))
1271 return -EPERM;
1272 assert(!is_removed(node));
1273 assert(!is_removal_owner(node));
1274 } while (!is_end(node));
1275 /*
1276 * size accessed without lttng_ust_rcu_dereference because hash table is
1277 * being destroyed.
1278 */
1279 size = ht->size;
1280 /* Internal sanity check: all nodes left should be buckets */
1281 for (i = 0; i < size; i++) {
1282 node = bucket_at(ht, i);
1283 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1284 i, i, bit_reverse_ulong(node->reverse_hash));
1285 assert(is_bucket(node->next));
1286 }
1287
1288 for (order = lttng_ust_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1289 lttng_ust_lfht_free_bucket_table(ht, order);
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Should only be called when no more concurrent readers nor writers can
1296 * possibly access the table.
1297 */
1298 int lttng_ust_lfht_destroy(struct lttng_ust_lfht *ht)
1299 {
1300 int ret;
1301
1302 ret = lttng_ust_lfht_delete_bucket(ht);
1303 if (ret)
1304 return ret;
1305 ret = pthread_mutex_destroy(&ht->resize_mutex);
1306 if (ret)
1307 ret = -EBUSY;
1308 poison_free(ht);
1309 return ret;
1310 }
This page took 0.068921 seconds and 4 git commands to generate.