Move to kernel style SPDX license identifiers
[lttng-ust.git] / liblttng-ust / rculfhash.c
1 /*
2 * SPDX-License-Identifier: LGPL-2.1-or-later
3 *
4 * Copyright 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 * Copyright 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
6 *
7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
8 */
9
10 /*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
19 * Some specificities of this Lock-Free Resizable RCU Hash Table
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
38 * - An index of bucket nodes is kept. These bucket nodes are the hash
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
50 * - Split-counters are used to keep track of the number of
51 * nodes within the hash table for automatic resize triggering.
52 * - Resize operation initiated by long chain detection is executed by a
53 * worker thread, which keeps lock-freedom of add and remove.
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
75 * linked-list (the start node is never removed) and that it does not
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
100 *
101 * Ordering Guarantees:
102 *
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic lttng_ust_lfht_lookup, lttng_ust_lfht_next_duplicate,
105 * lttng_ust_lfht_first, lttng_ust_lfht_next operation, as well as
106 * lttng_ust_lfht_add_unique (failure).
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
110 * - lttng_ust_lfht_lookup followed by iteration with lttng_ust_lfht_next_duplicate
111 * (and/or lttng_ust_lfht_next, although less common).
112 * - lttng_ust_lfht_add_unique (failure) followed by iteration with
113 * lttng_ust_lfht_next_duplicate (and/or lttng_ust_lfht_next, although less
114 * common).
115 * - lttng_ust_lfht_first followed iteration with lttng_ust_lfht_next (and/or
116 * lttng_ust_lfht_next_duplicate, although less common).
117 *
118 * We define "write" operations as any of lttng_ust_lfht_add, lttng_ust_lfht_replace,
119 * lttng_ust_lfht_add_unique (success), lttng_ust_lfht_add_replace, lttng_ust_lfht_del.
120 *
121 * When lttng_ust_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When lttng_ust_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A lttng_ust_lfht_add_unique failure is a
125 * lttng_ust_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or lttng_ust_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a lttng_ust_lfht_lookup() might be passed to a lttng_ust_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
192 *
193 * Bucket node tables:
194 *
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
206 * When growing/shrinking, we only focus on the last bucket node table
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
212 *
213 * A bit of ascii art explanation:
214 *
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
217 *
218 * This shows the nodes for a small table ordered by reversed bits:
219 *
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
231 * reversed-bit order.
232 *
233 * order bits reverse
234 * 0 0 000 000
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
237 * | | | 3 011 110 | <- |
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
242 */
243
244 /*
245 * Note on port to lttng-ust: auto-resize and accounting features are
246 * removed.
247 */
248
249 #define _LGPL_SOURCE
250 #include <stdlib.h>
251 #include <errno.h>
252 #include <assert.h>
253 #include <stdio.h>
254 #include <stdint.h>
255 #include <string.h>
256 #include <sched.h>
257 #include <unistd.h>
258
259 #include <lttng/urcu/pointer.h>
260 #include <urcu/arch.h>
261 #include <urcu/uatomic.h>
262 #include <urcu/compiler.h>
263 #include "rculfhash.h"
264 #include "rculfhash-internal.h"
265 #include <stdio.h>
266 #include <pthread.h>
267 #include <signal.h>
268
269 /*
270 * Split-counters lazily update the global counter each 1024
271 * addition/removal. It automatically keeps track of resize required.
272 * We use the bucket length as indicator for need to expand for small
273 * tables and machines lacking per-cpu data support.
274 */
275 #define COUNT_COMMIT_ORDER 10
276
277 /*
278 * Define the minimum table size.
279 */
280 #define MIN_TABLE_ORDER 0
281 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
282
283 /*
284 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
285 */
286 #define MIN_PARTITION_PER_THREAD_ORDER 12
287 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
288
289 /*
290 * The removed flag needs to be updated atomically with the pointer.
291 * It indicates that no node must attach to the node scheduled for
292 * removal, and that node garbage collection must be performed.
293 * The bucket flag does not require to be updated atomically with the
294 * pointer, but it is added as a pointer low bit flag to save space.
295 * The "removal owner" flag is used to detect which of the "del"
296 * operation that has set the "removed flag" gets to return the removed
297 * node to its caller. Note that the replace operation does not need to
298 * iteract with the "removal owner" flag, because it validates that
299 * the "removed" flag is not set before performing its cmpxchg.
300 */
301 #define REMOVED_FLAG (1UL << 0)
302 #define BUCKET_FLAG (1UL << 1)
303 #define REMOVAL_OWNER_FLAG (1UL << 2)
304 #define FLAGS_MASK ((1UL << 3) - 1)
305
306 /* Value of the end pointer. Should not interact with flags. */
307 #define END_VALUE NULL
308
309 /*
310 * ht_items_count: Split-counters counting the number of node addition
311 * and removal in the table. Only used if the LTTNG_UST_LFHT_ACCOUNTING flag
312 * is set at hash table creation.
313 *
314 * These are free-running counters, never reset to zero. They count the
315 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
316 * operations to update the global counter. We choose a power-of-2 value
317 * for the trigger to deal with 32 or 64-bit overflow of the counter.
318 */
319 struct ht_items_count {
320 unsigned long add, del;
321 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
322
323 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
324
325 static
326 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
327 {
328 iter->lfht = ht;
329 }
330
331 #define lttng_ust_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
332
333 #else
334
335 static
336 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
337 {
338 }
339
340 #define lttng_ust_lfht_iter_debug_assert(...)
341
342 #endif
343
344 /*
345 * Algorithm to reverse bits in a word by lookup table, extended to
346 * 64-bit words.
347 * Source:
348 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
349 * Originally from Public Domain.
350 */
351
352 static const uint8_t BitReverseTable256[256] =
353 {
354 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
355 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
356 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
357 R6(0), R6(2), R6(1), R6(3)
358 };
359 #undef R2
360 #undef R4
361 #undef R6
362
363 static
364 uint8_t bit_reverse_u8(uint8_t v)
365 {
366 return BitReverseTable256[v];
367 }
368
369 #if (CAA_BITS_PER_LONG == 32)
370 static
371 uint32_t bit_reverse_u32(uint32_t v)
372 {
373 return ((uint32_t) bit_reverse_u8(v) << 24) |
374 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
375 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
376 ((uint32_t) bit_reverse_u8(v >> 24));
377 }
378 #else
379 static
380 uint64_t bit_reverse_u64(uint64_t v)
381 {
382 return ((uint64_t) bit_reverse_u8(v) << 56) |
383 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
384 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
385 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
386 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
387 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
388 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
389 ((uint64_t) bit_reverse_u8(v >> 56));
390 }
391 #endif
392
393 static
394 unsigned long bit_reverse_ulong(unsigned long v)
395 {
396 #if (CAA_BITS_PER_LONG == 32)
397 return bit_reverse_u32(v);
398 #else
399 return bit_reverse_u64(v);
400 #endif
401 }
402
403 /*
404 * fls: returns the position of the most significant bit.
405 * Returns 0 if no bit is set, else returns the position of the most
406 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
407 */
408 #if defined(__i386) || defined(__x86_64)
409 static inline
410 unsigned int fls_u32(uint32_t x)
411 {
412 int r;
413
414 __asm__ ("bsrl %1,%0\n\t"
415 "jnz 1f\n\t"
416 "movl $-1,%0\n\t"
417 "1:\n\t"
418 : "=r" (r) : "rm" (x));
419 return r + 1;
420 }
421 #define HAS_FLS_U32
422 #endif
423
424 #if defined(__x86_64)
425 static inline
426 unsigned int fls_u64(uint64_t x)
427 {
428 long r;
429
430 __asm__ ("bsrq %1,%0\n\t"
431 "jnz 1f\n\t"
432 "movq $-1,%0\n\t"
433 "1:\n\t"
434 : "=r" (r) : "rm" (x));
435 return r + 1;
436 }
437 #define HAS_FLS_U64
438 #endif
439
440 #ifndef HAS_FLS_U64
441 static __attribute__((unused))
442 unsigned int fls_u64(uint64_t x)
443 {
444 unsigned int r = 64;
445
446 if (!x)
447 return 0;
448
449 if (!(x & 0xFFFFFFFF00000000ULL)) {
450 x <<= 32;
451 r -= 32;
452 }
453 if (!(x & 0xFFFF000000000000ULL)) {
454 x <<= 16;
455 r -= 16;
456 }
457 if (!(x & 0xFF00000000000000ULL)) {
458 x <<= 8;
459 r -= 8;
460 }
461 if (!(x & 0xF000000000000000ULL)) {
462 x <<= 4;
463 r -= 4;
464 }
465 if (!(x & 0xC000000000000000ULL)) {
466 x <<= 2;
467 r -= 2;
468 }
469 if (!(x & 0x8000000000000000ULL)) {
470 x <<= 1;
471 r -= 1;
472 }
473 return r;
474 }
475 #endif
476
477 #ifndef HAS_FLS_U32
478 static __attribute__((unused))
479 unsigned int fls_u32(uint32_t x)
480 {
481 unsigned int r = 32;
482
483 if (!x)
484 return 0;
485 if (!(x & 0xFFFF0000U)) {
486 x <<= 16;
487 r -= 16;
488 }
489 if (!(x & 0xFF000000U)) {
490 x <<= 8;
491 r -= 8;
492 }
493 if (!(x & 0xF0000000U)) {
494 x <<= 4;
495 r -= 4;
496 }
497 if (!(x & 0xC0000000U)) {
498 x <<= 2;
499 r -= 2;
500 }
501 if (!(x & 0x80000000U)) {
502 x <<= 1;
503 r -= 1;
504 }
505 return r;
506 }
507 #endif
508
509 unsigned int lttng_ust_lfht_fls_ulong(unsigned long x)
510 {
511 #if (CAA_BITS_PER_LONG == 32)
512 return fls_u32(x);
513 #else
514 return fls_u64(x);
515 #endif
516 }
517
518 /*
519 * Return the minimum order for which x <= (1UL << order).
520 * Return -1 if x is 0.
521 */
522 int lttng_ust_lfht_get_count_order_u32(uint32_t x)
523 {
524 if (!x)
525 return -1;
526
527 return fls_u32(x - 1);
528 }
529
530 /*
531 * Return the minimum order for which x <= (1UL << order).
532 * Return -1 if x is 0.
533 */
534 int lttng_ust_lfht_get_count_order_ulong(unsigned long x)
535 {
536 if (!x)
537 return -1;
538
539 return lttng_ust_lfht_fls_ulong(x - 1);
540 }
541
542 static
543 struct lttng_ust_lfht_node *clear_flag(struct lttng_ust_lfht_node *node)
544 {
545 return (struct lttng_ust_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
546 }
547
548 static
549 int is_removed(const struct lttng_ust_lfht_node *node)
550 {
551 return ((unsigned long) node) & REMOVED_FLAG;
552 }
553
554 static
555 int is_bucket(struct lttng_ust_lfht_node *node)
556 {
557 return ((unsigned long) node) & BUCKET_FLAG;
558 }
559
560 static
561 struct lttng_ust_lfht_node *flag_bucket(struct lttng_ust_lfht_node *node)
562 {
563 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
564 }
565
566 static
567 int is_removal_owner(struct lttng_ust_lfht_node *node)
568 {
569 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
570 }
571
572 static
573 struct lttng_ust_lfht_node *flag_removal_owner(struct lttng_ust_lfht_node *node)
574 {
575 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
576 }
577
578 static
579 struct lttng_ust_lfht_node *flag_removed_or_removal_owner(struct lttng_ust_lfht_node *node)
580 {
581 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
582 }
583
584 static
585 struct lttng_ust_lfht_node *get_end(void)
586 {
587 return (struct lttng_ust_lfht_node *) END_VALUE;
588 }
589
590 static
591 int is_end(struct lttng_ust_lfht_node *node)
592 {
593 return clear_flag(node) == (struct lttng_ust_lfht_node *) END_VALUE;
594 }
595
596 static
597 void lttng_ust_lfht_alloc_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
598 {
599 return ht->mm->alloc_bucket_table(ht, order);
600 }
601
602 /*
603 * lttng_ust_lfht_free_bucket_table() should be called with decreasing order.
604 * When lttng_ust_lfht_free_bucket_table(0) is called, it means the whole
605 * lfht is destroyed.
606 */
607 static
608 void lttng_ust_lfht_free_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
609 {
610 return ht->mm->free_bucket_table(ht, order);
611 }
612
613 static inline
614 struct lttng_ust_lfht_node *bucket_at(struct lttng_ust_lfht *ht, unsigned long index)
615 {
616 return ht->bucket_at(ht, index);
617 }
618
619 static inline
620 struct lttng_ust_lfht_node *lookup_bucket(struct lttng_ust_lfht *ht, unsigned long size,
621 unsigned long hash)
622 {
623 assert(size > 0);
624 return bucket_at(ht, hash & (size - 1));
625 }
626
627 /*
628 * Remove all logically deleted nodes from a bucket up to a certain node key.
629 */
630 static
631 void _lttng_ust_lfht_gc_bucket(struct lttng_ust_lfht_node *bucket, struct lttng_ust_lfht_node *node)
632 {
633 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_next;
634
635 assert(!is_bucket(bucket));
636 assert(!is_removed(bucket));
637 assert(!is_removal_owner(bucket));
638 assert(!is_bucket(node));
639 assert(!is_removed(node));
640 assert(!is_removal_owner(node));
641 for (;;) {
642 iter_prev = bucket;
643 /* We can always skip the bucket node initially */
644 iter = lttng_ust_rcu_dereference(iter_prev->next);
645 assert(!is_removed(iter));
646 assert(!is_removal_owner(iter));
647 assert(iter_prev->reverse_hash <= node->reverse_hash);
648 /*
649 * We should never be called with bucket (start of chain)
650 * and logically removed node (end of path compression
651 * marker) being the actual same node. This would be a
652 * bug in the algorithm implementation.
653 */
654 assert(bucket != node);
655 for (;;) {
656 if (caa_unlikely(is_end(iter)))
657 return;
658 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
659 return;
660 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
661 if (caa_likely(is_removed(next)))
662 break;
663 iter_prev = clear_flag(iter);
664 iter = next;
665 }
666 assert(!is_removed(iter));
667 assert(!is_removal_owner(iter));
668 if (is_bucket(iter))
669 new_next = flag_bucket(clear_flag(next));
670 else
671 new_next = clear_flag(next);
672 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
673 }
674 }
675
676 static
677 int _lttng_ust_lfht_replace(struct lttng_ust_lfht *ht, unsigned long size,
678 struct lttng_ust_lfht_node *old_node,
679 struct lttng_ust_lfht_node *old_next,
680 struct lttng_ust_lfht_node *new_node)
681 {
682 struct lttng_ust_lfht_node *bucket, *ret_next;
683
684 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
685 return -ENOENT;
686
687 assert(!is_removed(old_node));
688 assert(!is_removal_owner(old_node));
689 assert(!is_bucket(old_node));
690 assert(!is_removed(new_node));
691 assert(!is_removal_owner(new_node));
692 assert(!is_bucket(new_node));
693 assert(new_node != old_node);
694 for (;;) {
695 /* Insert after node to be replaced */
696 if (is_removed(old_next)) {
697 /*
698 * Too late, the old node has been removed under us
699 * between lookup and replace. Fail.
700 */
701 return -ENOENT;
702 }
703 assert(old_next == clear_flag(old_next));
704 assert(new_node != old_next);
705 /*
706 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
707 * flag. It is either set atomically at the same time
708 * (replace) or after (del).
709 */
710 assert(!is_removal_owner(old_next));
711 new_node->next = old_next;
712 /*
713 * Here is the whole trick for lock-free replace: we add
714 * the replacement node _after_ the node we want to
715 * replace by atomically setting its next pointer at the
716 * same time we set its removal flag. Given that
717 * the lookups/get next use an iterator aware of the
718 * next pointer, they will either skip the old node due
719 * to the removal flag and see the new node, or use
720 * the old node, but will not see the new one.
721 * This is a replacement of a node with another node
722 * that has the same value: we are therefore not
723 * removing a value from the hash table. We set both the
724 * REMOVED and REMOVAL_OWNER flags atomically so we own
725 * the node after successful cmpxchg.
726 */
727 ret_next = uatomic_cmpxchg(&old_node->next,
728 old_next, flag_removed_or_removal_owner(new_node));
729 if (ret_next == old_next)
730 break; /* We performed the replacement. */
731 old_next = ret_next;
732 }
733
734 /*
735 * Ensure that the old node is not visible to readers anymore:
736 * lookup for the node, and remove it (along with any other
737 * logically removed node) if found.
738 */
739 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
740 _lttng_ust_lfht_gc_bucket(bucket, new_node);
741
742 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
743 return 0;
744 }
745
746 /*
747 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
748 * mode. A NULL unique_ret allows creation of duplicate keys.
749 */
750 static
751 void _lttng_ust_lfht_add(struct lttng_ust_lfht *ht,
752 unsigned long hash,
753 lttng_ust_lfht_match_fct match,
754 const void *key,
755 unsigned long size,
756 struct lttng_ust_lfht_node *node,
757 struct lttng_ust_lfht_iter *unique_ret,
758 int bucket_flag)
759 {
760 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
761 *return_node;
762 struct lttng_ust_lfht_node *bucket;
763
764 assert(!is_bucket(node));
765 assert(!is_removed(node));
766 assert(!is_removal_owner(node));
767 bucket = lookup_bucket(ht, size, hash);
768 for (;;) {
769 /*
770 * iter_prev points to the non-removed node prior to the
771 * insert location.
772 */
773 iter_prev = bucket;
774 /* We can always skip the bucket node initially */
775 iter = lttng_ust_rcu_dereference(iter_prev->next);
776 assert(iter_prev->reverse_hash <= node->reverse_hash);
777 for (;;) {
778 if (caa_unlikely(is_end(iter)))
779 goto insert;
780 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
781 goto insert;
782
783 /* bucket node is the first node of the identical-hash-value chain */
784 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
785 goto insert;
786
787 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
788 if (caa_unlikely(is_removed(next)))
789 goto gc_node;
790
791 /* uniquely add */
792 if (unique_ret
793 && !is_bucket(next)
794 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
795 struct lttng_ust_lfht_iter d_iter = {
796 .node = node,
797 .next = iter,
798 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
799 .lfht = ht,
800 #endif
801 };
802
803 /*
804 * uniquely adding inserts the node as the first
805 * node of the identical-hash-value node chain.
806 *
807 * This semantic ensures no duplicated keys
808 * should ever be observable in the table
809 * (including traversing the table node by
810 * node by forward iterations)
811 */
812 lttng_ust_lfht_next_duplicate(ht, match, key, &d_iter);
813 if (!d_iter.node)
814 goto insert;
815
816 *unique_ret = d_iter;
817 return;
818 }
819
820 iter_prev = clear_flag(iter);
821 iter = next;
822 }
823
824 insert:
825 assert(node != clear_flag(iter));
826 assert(!is_removed(iter_prev));
827 assert(!is_removal_owner(iter_prev));
828 assert(!is_removed(iter));
829 assert(!is_removal_owner(iter));
830 assert(iter_prev != node);
831 if (!bucket_flag)
832 node->next = clear_flag(iter);
833 else
834 node->next = flag_bucket(clear_flag(iter));
835 if (is_bucket(iter))
836 new_node = flag_bucket(node);
837 else
838 new_node = node;
839 if (uatomic_cmpxchg(&iter_prev->next, iter,
840 new_node) != iter) {
841 continue; /* retry */
842 } else {
843 return_node = node;
844 goto end;
845 }
846
847 gc_node:
848 assert(!is_removed(iter));
849 assert(!is_removal_owner(iter));
850 if (is_bucket(iter))
851 new_next = flag_bucket(clear_flag(next));
852 else
853 new_next = clear_flag(next);
854 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
855 /* retry */
856 }
857 end:
858 if (unique_ret) {
859 unique_ret->node = return_node;
860 /* unique_ret->next left unset, never used. */
861 }
862 }
863
864 static
865 int _lttng_ust_lfht_del(struct lttng_ust_lfht *ht, unsigned long size,
866 struct lttng_ust_lfht_node *node)
867 {
868 struct lttng_ust_lfht_node *bucket, *next;
869
870 if (!node) /* Return -ENOENT if asked to delete NULL node */
871 return -ENOENT;
872
873 /* logically delete the node */
874 assert(!is_bucket(node));
875 assert(!is_removed(node));
876 assert(!is_removal_owner(node));
877
878 /*
879 * We are first checking if the node had previously been
880 * logically removed (this check is not atomic with setting the
881 * logical removal flag). Return -ENOENT if the node had
882 * previously been removed.
883 */
884 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
885 if (caa_unlikely(is_removed(next)))
886 return -ENOENT;
887 assert(!is_bucket(next));
888 /*
889 * The del operation semantic guarantees a full memory barrier
890 * before the uatomic_or atomic commit of the deletion flag.
891 */
892 cmm_smp_mb__before_uatomic_or();
893 /*
894 * We set the REMOVED_FLAG unconditionally. Note that there may
895 * be more than one concurrent thread setting this flag.
896 * Knowing which wins the race will be known after the garbage
897 * collection phase, stay tuned!
898 */
899 uatomic_or(&node->next, REMOVED_FLAG);
900 /* We performed the (logical) deletion. */
901
902 /*
903 * Ensure that the node is not visible to readers anymore: lookup for
904 * the node, and remove it (along with any other logically removed node)
905 * if found.
906 */
907 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
908 _lttng_ust_lfht_gc_bucket(bucket, node);
909
910 assert(is_removed(CMM_LOAD_SHARED(node->next)));
911 /*
912 * Last phase: atomically exchange node->next with a version
913 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
914 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
915 * the node and win the removal race.
916 * It is interesting to note that all "add" paths are forbidden
917 * to change the next pointer starting from the point where the
918 * REMOVED_FLAG is set, so here using a read, followed by a
919 * xchg() suffice to guarantee that the xchg() will ever only
920 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
921 * was already set).
922 */
923 if (!is_removal_owner(uatomic_xchg(&node->next,
924 flag_removal_owner(node->next))))
925 return 0;
926 else
927 return -ENOENT;
928 }
929
930 /*
931 * Never called with size < 1.
932 */
933 static
934 void lttng_ust_lfht_create_bucket(struct lttng_ust_lfht *ht, unsigned long size)
935 {
936 struct lttng_ust_lfht_node *prev, *node;
937 unsigned long order, len, i;
938 int bucket_order;
939
940 lttng_ust_lfht_alloc_bucket_table(ht, 0);
941
942 dbg_printf("create bucket: order 0 index 0 hash 0\n");
943 node = bucket_at(ht, 0);
944 node->next = flag_bucket(get_end());
945 node->reverse_hash = 0;
946
947 bucket_order = lttng_ust_lfht_get_count_order_ulong(size);
948 assert(bucket_order >= 0);
949
950 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
951 len = 1UL << (order - 1);
952 lttng_ust_lfht_alloc_bucket_table(ht, order);
953
954 for (i = 0; i < len; i++) {
955 /*
956 * Now, we are trying to init the node with the
957 * hash=(len+i) (which is also a bucket with the
958 * index=(len+i)) and insert it into the hash table,
959 * so this node has to be inserted after the bucket
960 * with the index=(len+i)&(len-1)=i. And because there
961 * is no other non-bucket node nor bucket node with
962 * larger index/hash inserted, so the bucket node
963 * being inserted should be inserted directly linked
964 * after the bucket node with index=i.
965 */
966 prev = bucket_at(ht, i);
967 node = bucket_at(ht, len + i);
968
969 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
970 order, len + i, len + i);
971 node->reverse_hash = bit_reverse_ulong(len + i);
972
973 /* insert after prev */
974 assert(is_bucket(prev->next));
975 node->next = prev->next;
976 prev->next = flag_bucket(node);
977 }
978 }
979 }
980
981 #if (CAA_BITS_PER_LONG > 32)
982 /*
983 * For 64-bit architectures, with max number of buckets small enough not to
984 * use the entire 64-bit memory mapping space (and allowing a fair number of
985 * hash table instances), use the mmap allocator, which is faster. Otherwise,
986 * fallback to the order allocator.
987 */
988 static
989 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
990 {
991 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
992 return &lttng_ust_lfht_mm_mmap;
993 else
994 return &lttng_ust_lfht_mm_order;
995 }
996 #else
997 /*
998 * For 32-bit architectures, use the order allocator.
999 */
1000 static
1001 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1002 {
1003 return &lttng_ust_lfht_mm_order;
1004 }
1005 #endif
1006
1007 struct lttng_ust_lfht *lttng_ust_lfht_new(unsigned long init_size,
1008 unsigned long min_nr_alloc_buckets,
1009 unsigned long max_nr_buckets,
1010 int flags,
1011 const struct lttng_ust_lfht_mm_type *mm)
1012 {
1013 struct lttng_ust_lfht *ht;
1014 unsigned long order;
1015
1016 /* min_nr_alloc_buckets must be power of two */
1017 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1018 return NULL;
1019
1020 /* init_size must be power of two */
1021 if (!init_size || (init_size & (init_size - 1)))
1022 return NULL;
1023
1024 /*
1025 * Memory management plugin default.
1026 */
1027 if (!mm)
1028 mm = get_mm_type(max_nr_buckets);
1029
1030 /* max_nr_buckets == 0 for order based mm means infinite */
1031 if (mm == &lttng_ust_lfht_mm_order && !max_nr_buckets)
1032 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1033
1034 /* max_nr_buckets must be power of two */
1035 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1036 return NULL;
1037
1038 if (flags & LTTNG_UST_LFHT_AUTO_RESIZE)
1039 return NULL;
1040
1041 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1042 init_size = max(init_size, MIN_TABLE_SIZE);
1043 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1044 init_size = min(init_size, max_nr_buckets);
1045
1046 ht = mm->alloc_lttng_ust_lfht(min_nr_alloc_buckets, max_nr_buckets);
1047 assert(ht);
1048 assert(ht->mm == mm);
1049 assert(ht->bucket_at == mm->bucket_at);
1050
1051 ht->flags = flags;
1052 /* this mutex should not nest in read-side C.S. */
1053 pthread_mutex_init(&ht->resize_mutex, NULL);
1054 order = lttng_ust_lfht_get_count_order_ulong(init_size);
1055 ht->resize_target = 1UL << order;
1056 lttng_ust_lfht_create_bucket(ht, 1UL << order);
1057 ht->size = 1UL << order;
1058 return ht;
1059 }
1060
1061 void lttng_ust_lfht_lookup(struct lttng_ust_lfht *ht, unsigned long hash,
1062 lttng_ust_lfht_match_fct match, const void *key,
1063 struct lttng_ust_lfht_iter *iter)
1064 {
1065 struct lttng_ust_lfht_node *node, *next, *bucket;
1066 unsigned long reverse_hash, size;
1067
1068 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1069
1070 reverse_hash = bit_reverse_ulong(hash);
1071
1072 size = lttng_ust_rcu_dereference(ht->size);
1073 bucket = lookup_bucket(ht, size, hash);
1074 /* We can always skip the bucket node initially */
1075 node = lttng_ust_rcu_dereference(bucket->next);
1076 node = clear_flag(node);
1077 for (;;) {
1078 if (caa_unlikely(is_end(node))) {
1079 node = next = NULL;
1080 break;
1081 }
1082 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1083 node = next = NULL;
1084 break;
1085 }
1086 next = lttng_ust_rcu_dereference(node->next);
1087 assert(node == clear_flag(node));
1088 if (caa_likely(!is_removed(next))
1089 && !is_bucket(next)
1090 && node->reverse_hash == reverse_hash
1091 && caa_likely(match(node, key))) {
1092 break;
1093 }
1094 node = clear_flag(next);
1095 }
1096 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1097 iter->node = node;
1098 iter->next = next;
1099 }
1100
1101 void lttng_ust_lfht_next_duplicate(struct lttng_ust_lfht *ht, lttng_ust_lfht_match_fct match,
1102 const void *key, struct lttng_ust_lfht_iter *iter)
1103 {
1104 struct lttng_ust_lfht_node *node, *next;
1105 unsigned long reverse_hash;
1106
1107 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1108 node = iter->node;
1109 reverse_hash = node->reverse_hash;
1110 next = iter->next;
1111 node = clear_flag(next);
1112
1113 for (;;) {
1114 if (caa_unlikely(is_end(node))) {
1115 node = next = NULL;
1116 break;
1117 }
1118 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1119 node = next = NULL;
1120 break;
1121 }
1122 next = lttng_ust_rcu_dereference(node->next);
1123 if (caa_likely(!is_removed(next))
1124 && !is_bucket(next)
1125 && caa_likely(match(node, key))) {
1126 break;
1127 }
1128 node = clear_flag(next);
1129 }
1130 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1131 iter->node = node;
1132 iter->next = next;
1133 }
1134
1135 void lttng_ust_lfht_next(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1136 {
1137 struct lttng_ust_lfht_node *node, *next;
1138
1139 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1140 node = clear_flag(iter->next);
1141 for (;;) {
1142 if (caa_unlikely(is_end(node))) {
1143 node = next = NULL;
1144 break;
1145 }
1146 next = lttng_ust_rcu_dereference(node->next);
1147 if (caa_likely(!is_removed(next))
1148 && !is_bucket(next)) {
1149 break;
1150 }
1151 node = clear_flag(next);
1152 }
1153 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1154 iter->node = node;
1155 iter->next = next;
1156 }
1157
1158 void lttng_ust_lfht_first(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1159 {
1160 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1161 /*
1162 * Get next after first bucket node. The first bucket node is the
1163 * first node of the linked list.
1164 */
1165 iter->next = bucket_at(ht, 0)->next;
1166 lttng_ust_lfht_next(ht, iter);
1167 }
1168
1169 void lttng_ust_lfht_add(struct lttng_ust_lfht *ht, unsigned long hash,
1170 struct lttng_ust_lfht_node *node)
1171 {
1172 unsigned long size;
1173
1174 node->reverse_hash = bit_reverse_ulong(hash);
1175 size = lttng_ust_rcu_dereference(ht->size);
1176 _lttng_ust_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1177 }
1178
1179 struct lttng_ust_lfht_node *lttng_ust_lfht_add_unique(struct lttng_ust_lfht *ht,
1180 unsigned long hash,
1181 lttng_ust_lfht_match_fct match,
1182 const void *key,
1183 struct lttng_ust_lfht_node *node)
1184 {
1185 unsigned long size;
1186 struct lttng_ust_lfht_iter iter;
1187
1188 node->reverse_hash = bit_reverse_ulong(hash);
1189 size = lttng_ust_rcu_dereference(ht->size);
1190 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1191 return iter.node;
1192 }
1193
1194 struct lttng_ust_lfht_node *lttng_ust_lfht_add_replace(struct lttng_ust_lfht *ht,
1195 unsigned long hash,
1196 lttng_ust_lfht_match_fct match,
1197 const void *key,
1198 struct lttng_ust_lfht_node *node)
1199 {
1200 unsigned long size;
1201 struct lttng_ust_lfht_iter iter;
1202
1203 node->reverse_hash = bit_reverse_ulong(hash);
1204 size = lttng_ust_rcu_dereference(ht->size);
1205 for (;;) {
1206 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1207 if (iter.node == node) {
1208 return NULL;
1209 }
1210
1211 if (!_lttng_ust_lfht_replace(ht, size, iter.node, iter.next, node))
1212 return iter.node;
1213 }
1214 }
1215
1216 int lttng_ust_lfht_replace(struct lttng_ust_lfht *ht,
1217 struct lttng_ust_lfht_iter *old_iter,
1218 unsigned long hash,
1219 lttng_ust_lfht_match_fct match,
1220 const void *key,
1221 struct lttng_ust_lfht_node *new_node)
1222 {
1223 unsigned long size;
1224
1225 new_node->reverse_hash = bit_reverse_ulong(hash);
1226 if (!old_iter->node)
1227 return -ENOENT;
1228 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1229 return -EINVAL;
1230 if (caa_unlikely(!match(old_iter->node, key)))
1231 return -EINVAL;
1232 size = lttng_ust_rcu_dereference(ht->size);
1233 return _lttng_ust_lfht_replace(ht, size, old_iter->node, old_iter->next,
1234 new_node);
1235 }
1236
1237 int lttng_ust_lfht_del(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_node *node)
1238 {
1239 unsigned long size;
1240
1241 size = lttng_ust_rcu_dereference(ht->size);
1242 return _lttng_ust_lfht_del(ht, size, node);
1243 }
1244
1245 int lttng_ust_lfht_is_node_deleted(const struct lttng_ust_lfht_node *node)
1246 {
1247 return is_removed(CMM_LOAD_SHARED(node->next));
1248 }
1249
1250 static
1251 int lttng_ust_lfht_delete_bucket(struct lttng_ust_lfht *ht)
1252 {
1253 struct lttng_ust_lfht_node *node;
1254 unsigned long order, i, size;
1255
1256 /* Check that the table is empty */
1257 node = bucket_at(ht, 0);
1258 do {
1259 node = clear_flag(node)->next;
1260 if (!is_bucket(node))
1261 return -EPERM;
1262 assert(!is_removed(node));
1263 assert(!is_removal_owner(node));
1264 } while (!is_end(node));
1265 /*
1266 * size accessed without lttng_ust_rcu_dereference because hash table is
1267 * being destroyed.
1268 */
1269 size = ht->size;
1270 /* Internal sanity check: all nodes left should be buckets */
1271 for (i = 0; i < size; i++) {
1272 node = bucket_at(ht, i);
1273 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1274 i, i, bit_reverse_ulong(node->reverse_hash));
1275 assert(is_bucket(node->next));
1276 }
1277
1278 for (order = lttng_ust_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1279 lttng_ust_lfht_free_bucket_table(ht, order);
1280
1281 return 0;
1282 }
1283
1284 /*
1285 * Should only be called when no more concurrent readers nor writers can
1286 * possibly access the table.
1287 */
1288 int lttng_ust_lfht_destroy(struct lttng_ust_lfht *ht)
1289 {
1290 int ret;
1291
1292 ret = lttng_ust_lfht_delete_bucket(ht);
1293 if (ret)
1294 return ret;
1295 ret = pthread_mutex_destroy(&ht->resize_mutex);
1296 if (ret)
1297 ret = -EBUSY;
1298 poison_free(ht);
1299 return ret;
1300 }
This page took 0.083322 seconds and 4 git commands to generate.