8aa8bc3e71a518c30d76a543a29c112d5c828f00
[lttng-ust.git] / liblttng-ust / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * worker thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic lttng_ust_lfht_lookup, lttng_ust_lfht_next_duplicate,
119 * lttng_ust_lfht_first, lttng_ust_lfht_next operation, as well as
120 * lttng_ust_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - lttng_ust_lfht_lookup followed by iteration with lttng_ust_lfht_next_duplicate
125 * (and/or lttng_ust_lfht_next, although less common).
126 * - lttng_ust_lfht_add_unique (failure) followed by iteration with
127 * lttng_ust_lfht_next_duplicate (and/or lttng_ust_lfht_next, although less
128 * common).
129 * - lttng_ust_lfht_first followed iteration with lttng_ust_lfht_next (and/or
130 * lttng_ust_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of lttng_ust_lfht_add, lttng_ust_lfht_replace,
133 * lttng_ust_lfht_add_unique (success), lttng_ust_lfht_add_replace, lttng_ust_lfht_del.
134 *
135 * When lttng_ust_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When lttng_ust_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A lttng_ust_lfht_add_unique failure is a
139 * lttng_ust_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or lttng_ust_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a lttng_ust_lfht_lookup() might be passed to a lttng_ust_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 /*
259 * Note on port to lttng-ust: auto-resize and accounting features are
260 * removed.
261 */
262
263 #define _LGPL_SOURCE
264 #include <stdlib.h>
265 #include <errno.h>
266 #include <assert.h>
267 #include <stdio.h>
268 #include <stdint.h>
269 #include <string.h>
270 #include <sched.h>
271 #include <unistd.h>
272
273 #include <lttng/urcu/pointer.h>
274 #include <urcu/arch.h>
275 #include <urcu/uatomic.h>
276 #include <urcu/compiler.h>
277 #include "rculfhash.h"
278 #include "rculfhash-internal.h"
279 #include <stdio.h>
280 #include <pthread.h>
281 #include <signal.h>
282
283 /*
284 * Split-counters lazily update the global counter each 1024
285 * addition/removal. It automatically keeps track of resize required.
286 * We use the bucket length as indicator for need to expand for small
287 * tables and machines lacking per-cpu data support.
288 */
289 #define COUNT_COMMIT_ORDER 10
290
291 /*
292 * Define the minimum table size.
293 */
294 #define MIN_TABLE_ORDER 0
295 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
296
297 /*
298 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
299 */
300 #define MIN_PARTITION_PER_THREAD_ORDER 12
301 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
302
303 /*
304 * The removed flag needs to be updated atomically with the pointer.
305 * It indicates that no node must attach to the node scheduled for
306 * removal, and that node garbage collection must be performed.
307 * The bucket flag does not require to be updated atomically with the
308 * pointer, but it is added as a pointer low bit flag to save space.
309 * The "removal owner" flag is used to detect which of the "del"
310 * operation that has set the "removed flag" gets to return the removed
311 * node to its caller. Note that the replace operation does not need to
312 * iteract with the "removal owner" flag, because it validates that
313 * the "removed" flag is not set before performing its cmpxchg.
314 */
315 #define REMOVED_FLAG (1UL << 0)
316 #define BUCKET_FLAG (1UL << 1)
317 #define REMOVAL_OWNER_FLAG (1UL << 2)
318 #define FLAGS_MASK ((1UL << 3) - 1)
319
320 /* Value of the end pointer. Should not interact with flags. */
321 #define END_VALUE NULL
322
323 /*
324 * ht_items_count: Split-counters counting the number of node addition
325 * and removal in the table. Only used if the LTTNG_UST_LFHT_ACCOUNTING flag
326 * is set at hash table creation.
327 *
328 * These are free-running counters, never reset to zero. They count the
329 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
330 * operations to update the global counter. We choose a power-of-2 value
331 * for the trigger to deal with 32 or 64-bit overflow of the counter.
332 */
333 struct ht_items_count {
334 unsigned long add, del;
335 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
336
337 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
338
339 static
340 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
341 {
342 iter->lfht = ht;
343 }
344
345 #define lttng_ust_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
346
347 #else
348
349 static
350 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
351 {
352 }
353
354 #define lttng_ust_lfht_iter_debug_assert(...)
355
356 #endif
357
358 /*
359 * Algorithm to reverse bits in a word by lookup table, extended to
360 * 64-bit words.
361 * Source:
362 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
363 * Originally from Public Domain.
364 */
365
366 static const uint8_t BitReverseTable256[256] =
367 {
368 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
369 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
370 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
371 R6(0), R6(2), R6(1), R6(3)
372 };
373 #undef R2
374 #undef R4
375 #undef R6
376
377 static
378 uint8_t bit_reverse_u8(uint8_t v)
379 {
380 return BitReverseTable256[v];
381 }
382
383 #if (CAA_BITS_PER_LONG == 32)
384 static
385 uint32_t bit_reverse_u32(uint32_t v)
386 {
387 return ((uint32_t) bit_reverse_u8(v) << 24) |
388 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
389 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
390 ((uint32_t) bit_reverse_u8(v >> 24));
391 }
392 #else
393 static
394 uint64_t bit_reverse_u64(uint64_t v)
395 {
396 return ((uint64_t) bit_reverse_u8(v) << 56) |
397 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
398 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
399 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
400 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
401 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
402 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
403 ((uint64_t) bit_reverse_u8(v >> 56));
404 }
405 #endif
406
407 static
408 unsigned long bit_reverse_ulong(unsigned long v)
409 {
410 #if (CAA_BITS_PER_LONG == 32)
411 return bit_reverse_u32(v);
412 #else
413 return bit_reverse_u64(v);
414 #endif
415 }
416
417 /*
418 * fls: returns the position of the most significant bit.
419 * Returns 0 if no bit is set, else returns the position of the most
420 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
421 */
422 #if defined(__i386) || defined(__x86_64)
423 static inline
424 unsigned int fls_u32(uint32_t x)
425 {
426 int r;
427
428 __asm__ ("bsrl %1,%0\n\t"
429 "jnz 1f\n\t"
430 "movl $-1,%0\n\t"
431 "1:\n\t"
432 : "=r" (r) : "rm" (x));
433 return r + 1;
434 }
435 #define HAS_FLS_U32
436 #endif
437
438 #if defined(__x86_64)
439 static inline
440 unsigned int fls_u64(uint64_t x)
441 {
442 long r;
443
444 __asm__ ("bsrq %1,%0\n\t"
445 "jnz 1f\n\t"
446 "movq $-1,%0\n\t"
447 "1:\n\t"
448 : "=r" (r) : "rm" (x));
449 return r + 1;
450 }
451 #define HAS_FLS_U64
452 #endif
453
454 #ifndef HAS_FLS_U64
455 static __attribute__((unused))
456 unsigned int fls_u64(uint64_t x)
457 {
458 unsigned int r = 64;
459
460 if (!x)
461 return 0;
462
463 if (!(x & 0xFFFFFFFF00000000ULL)) {
464 x <<= 32;
465 r -= 32;
466 }
467 if (!(x & 0xFFFF000000000000ULL)) {
468 x <<= 16;
469 r -= 16;
470 }
471 if (!(x & 0xFF00000000000000ULL)) {
472 x <<= 8;
473 r -= 8;
474 }
475 if (!(x & 0xF000000000000000ULL)) {
476 x <<= 4;
477 r -= 4;
478 }
479 if (!(x & 0xC000000000000000ULL)) {
480 x <<= 2;
481 r -= 2;
482 }
483 if (!(x & 0x8000000000000000ULL)) {
484 x <<= 1;
485 r -= 1;
486 }
487 return r;
488 }
489 #endif
490
491 #ifndef HAS_FLS_U32
492 static __attribute__((unused))
493 unsigned int fls_u32(uint32_t x)
494 {
495 unsigned int r = 32;
496
497 if (!x)
498 return 0;
499 if (!(x & 0xFFFF0000U)) {
500 x <<= 16;
501 r -= 16;
502 }
503 if (!(x & 0xFF000000U)) {
504 x <<= 8;
505 r -= 8;
506 }
507 if (!(x & 0xF0000000U)) {
508 x <<= 4;
509 r -= 4;
510 }
511 if (!(x & 0xC0000000U)) {
512 x <<= 2;
513 r -= 2;
514 }
515 if (!(x & 0x80000000U)) {
516 x <<= 1;
517 r -= 1;
518 }
519 return r;
520 }
521 #endif
522
523 unsigned int lttng_ust_lfht_fls_ulong(unsigned long x)
524 {
525 #if (CAA_BITS_PER_LONG == 32)
526 return fls_u32(x);
527 #else
528 return fls_u64(x);
529 #endif
530 }
531
532 /*
533 * Return the minimum order for which x <= (1UL << order).
534 * Return -1 if x is 0.
535 */
536 int lttng_ust_lfht_get_count_order_u32(uint32_t x)
537 {
538 if (!x)
539 return -1;
540
541 return fls_u32(x - 1);
542 }
543
544 /*
545 * Return the minimum order for which x <= (1UL << order).
546 * Return -1 if x is 0.
547 */
548 int lttng_ust_lfht_get_count_order_ulong(unsigned long x)
549 {
550 if (!x)
551 return -1;
552
553 return lttng_ust_lfht_fls_ulong(x - 1);
554 }
555
556 static
557 struct lttng_ust_lfht_node *clear_flag(struct lttng_ust_lfht_node *node)
558 {
559 return (struct lttng_ust_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
560 }
561
562 static
563 int is_removed(const struct lttng_ust_lfht_node *node)
564 {
565 return ((unsigned long) node) & REMOVED_FLAG;
566 }
567
568 static
569 int is_bucket(struct lttng_ust_lfht_node *node)
570 {
571 return ((unsigned long) node) & BUCKET_FLAG;
572 }
573
574 static
575 struct lttng_ust_lfht_node *flag_bucket(struct lttng_ust_lfht_node *node)
576 {
577 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
578 }
579
580 static
581 int is_removal_owner(struct lttng_ust_lfht_node *node)
582 {
583 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
584 }
585
586 static
587 struct lttng_ust_lfht_node *flag_removal_owner(struct lttng_ust_lfht_node *node)
588 {
589 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
590 }
591
592 static
593 struct lttng_ust_lfht_node *flag_removed_or_removal_owner(struct lttng_ust_lfht_node *node)
594 {
595 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
596 }
597
598 static
599 struct lttng_ust_lfht_node *get_end(void)
600 {
601 return (struct lttng_ust_lfht_node *) END_VALUE;
602 }
603
604 static
605 int is_end(struct lttng_ust_lfht_node *node)
606 {
607 return clear_flag(node) == (struct lttng_ust_lfht_node *) END_VALUE;
608 }
609
610 static
611 void lttng_ust_lfht_alloc_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
612 {
613 return ht->mm->alloc_bucket_table(ht, order);
614 }
615
616 /*
617 * lttng_ust_lfht_free_bucket_table() should be called with decreasing order.
618 * When lttng_ust_lfht_free_bucket_table(0) is called, it means the whole
619 * lfht is destroyed.
620 */
621 static
622 void lttng_ust_lfht_free_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
623 {
624 return ht->mm->free_bucket_table(ht, order);
625 }
626
627 static inline
628 struct lttng_ust_lfht_node *bucket_at(struct lttng_ust_lfht *ht, unsigned long index)
629 {
630 return ht->bucket_at(ht, index);
631 }
632
633 static inline
634 struct lttng_ust_lfht_node *lookup_bucket(struct lttng_ust_lfht *ht, unsigned long size,
635 unsigned long hash)
636 {
637 assert(size > 0);
638 return bucket_at(ht, hash & (size - 1));
639 }
640
641 /*
642 * Remove all logically deleted nodes from a bucket up to a certain node key.
643 */
644 static
645 void _lttng_ust_lfht_gc_bucket(struct lttng_ust_lfht_node *bucket, struct lttng_ust_lfht_node *node)
646 {
647 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_next;
648
649 assert(!is_bucket(bucket));
650 assert(!is_removed(bucket));
651 assert(!is_removal_owner(bucket));
652 assert(!is_bucket(node));
653 assert(!is_removed(node));
654 assert(!is_removal_owner(node));
655 for (;;) {
656 iter_prev = bucket;
657 /* We can always skip the bucket node initially */
658 iter = lttng_ust_rcu_dereference(iter_prev->next);
659 assert(!is_removed(iter));
660 assert(!is_removal_owner(iter));
661 assert(iter_prev->reverse_hash <= node->reverse_hash);
662 /*
663 * We should never be called with bucket (start of chain)
664 * and logically removed node (end of path compression
665 * marker) being the actual same node. This would be a
666 * bug in the algorithm implementation.
667 */
668 assert(bucket != node);
669 for (;;) {
670 if (caa_unlikely(is_end(iter)))
671 return;
672 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
673 return;
674 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
675 if (caa_likely(is_removed(next)))
676 break;
677 iter_prev = clear_flag(iter);
678 iter = next;
679 }
680 assert(!is_removed(iter));
681 assert(!is_removal_owner(iter));
682 if (is_bucket(iter))
683 new_next = flag_bucket(clear_flag(next));
684 else
685 new_next = clear_flag(next);
686 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
687 }
688 }
689
690 static
691 int _lttng_ust_lfht_replace(struct lttng_ust_lfht *ht, unsigned long size,
692 struct lttng_ust_lfht_node *old_node,
693 struct lttng_ust_lfht_node *old_next,
694 struct lttng_ust_lfht_node *new_node)
695 {
696 struct lttng_ust_lfht_node *bucket, *ret_next;
697
698 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
699 return -ENOENT;
700
701 assert(!is_removed(old_node));
702 assert(!is_removal_owner(old_node));
703 assert(!is_bucket(old_node));
704 assert(!is_removed(new_node));
705 assert(!is_removal_owner(new_node));
706 assert(!is_bucket(new_node));
707 assert(new_node != old_node);
708 for (;;) {
709 /* Insert after node to be replaced */
710 if (is_removed(old_next)) {
711 /*
712 * Too late, the old node has been removed under us
713 * between lookup and replace. Fail.
714 */
715 return -ENOENT;
716 }
717 assert(old_next == clear_flag(old_next));
718 assert(new_node != old_next);
719 /*
720 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
721 * flag. It is either set atomically at the same time
722 * (replace) or after (del).
723 */
724 assert(!is_removal_owner(old_next));
725 new_node->next = old_next;
726 /*
727 * Here is the whole trick for lock-free replace: we add
728 * the replacement node _after_ the node we want to
729 * replace by atomically setting its next pointer at the
730 * same time we set its removal flag. Given that
731 * the lookups/get next use an iterator aware of the
732 * next pointer, they will either skip the old node due
733 * to the removal flag and see the new node, or use
734 * the old node, but will not see the new one.
735 * This is a replacement of a node with another node
736 * that has the same value: we are therefore not
737 * removing a value from the hash table. We set both the
738 * REMOVED and REMOVAL_OWNER flags atomically so we own
739 * the node after successful cmpxchg.
740 */
741 ret_next = uatomic_cmpxchg(&old_node->next,
742 old_next, flag_removed_or_removal_owner(new_node));
743 if (ret_next == old_next)
744 break; /* We performed the replacement. */
745 old_next = ret_next;
746 }
747
748 /*
749 * Ensure that the old node is not visible to readers anymore:
750 * lookup for the node, and remove it (along with any other
751 * logically removed node) if found.
752 */
753 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
754 _lttng_ust_lfht_gc_bucket(bucket, new_node);
755
756 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
757 return 0;
758 }
759
760 /*
761 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
762 * mode. A NULL unique_ret allows creation of duplicate keys.
763 */
764 static
765 void _lttng_ust_lfht_add(struct lttng_ust_lfht *ht,
766 unsigned long hash,
767 lttng_ust_lfht_match_fct match,
768 const void *key,
769 unsigned long size,
770 struct lttng_ust_lfht_node *node,
771 struct lttng_ust_lfht_iter *unique_ret,
772 int bucket_flag)
773 {
774 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
775 *return_node;
776 struct lttng_ust_lfht_node *bucket;
777
778 assert(!is_bucket(node));
779 assert(!is_removed(node));
780 assert(!is_removal_owner(node));
781 bucket = lookup_bucket(ht, size, hash);
782 for (;;) {
783 /*
784 * iter_prev points to the non-removed node prior to the
785 * insert location.
786 */
787 iter_prev = bucket;
788 /* We can always skip the bucket node initially */
789 iter = lttng_ust_rcu_dereference(iter_prev->next);
790 assert(iter_prev->reverse_hash <= node->reverse_hash);
791 for (;;) {
792 if (caa_unlikely(is_end(iter)))
793 goto insert;
794 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
795 goto insert;
796
797 /* bucket node is the first node of the identical-hash-value chain */
798 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
799 goto insert;
800
801 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
802 if (caa_unlikely(is_removed(next)))
803 goto gc_node;
804
805 /* uniquely add */
806 if (unique_ret
807 && !is_bucket(next)
808 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
809 struct lttng_ust_lfht_iter d_iter = {
810 .node = node,
811 .next = iter,
812 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
813 .lfht = ht,
814 #endif
815 };
816
817 /*
818 * uniquely adding inserts the node as the first
819 * node of the identical-hash-value node chain.
820 *
821 * This semantic ensures no duplicated keys
822 * should ever be observable in the table
823 * (including traversing the table node by
824 * node by forward iterations)
825 */
826 lttng_ust_lfht_next_duplicate(ht, match, key, &d_iter);
827 if (!d_iter.node)
828 goto insert;
829
830 *unique_ret = d_iter;
831 return;
832 }
833
834 iter_prev = clear_flag(iter);
835 iter = next;
836 }
837
838 insert:
839 assert(node != clear_flag(iter));
840 assert(!is_removed(iter_prev));
841 assert(!is_removal_owner(iter_prev));
842 assert(!is_removed(iter));
843 assert(!is_removal_owner(iter));
844 assert(iter_prev != node);
845 if (!bucket_flag)
846 node->next = clear_flag(iter);
847 else
848 node->next = flag_bucket(clear_flag(iter));
849 if (is_bucket(iter))
850 new_node = flag_bucket(node);
851 else
852 new_node = node;
853 if (uatomic_cmpxchg(&iter_prev->next, iter,
854 new_node) != iter) {
855 continue; /* retry */
856 } else {
857 return_node = node;
858 goto end;
859 }
860
861 gc_node:
862 assert(!is_removed(iter));
863 assert(!is_removal_owner(iter));
864 if (is_bucket(iter))
865 new_next = flag_bucket(clear_flag(next));
866 else
867 new_next = clear_flag(next);
868 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
869 /* retry */
870 }
871 end:
872 if (unique_ret) {
873 unique_ret->node = return_node;
874 /* unique_ret->next left unset, never used. */
875 }
876 }
877
878 static
879 int _lttng_ust_lfht_del(struct lttng_ust_lfht *ht, unsigned long size,
880 struct lttng_ust_lfht_node *node)
881 {
882 struct lttng_ust_lfht_node *bucket, *next;
883
884 if (!node) /* Return -ENOENT if asked to delete NULL node */
885 return -ENOENT;
886
887 /* logically delete the node */
888 assert(!is_bucket(node));
889 assert(!is_removed(node));
890 assert(!is_removal_owner(node));
891
892 /*
893 * We are first checking if the node had previously been
894 * logically removed (this check is not atomic with setting the
895 * logical removal flag). Return -ENOENT if the node had
896 * previously been removed.
897 */
898 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
899 if (caa_unlikely(is_removed(next)))
900 return -ENOENT;
901 assert(!is_bucket(next));
902 /*
903 * The del operation semantic guarantees a full memory barrier
904 * before the uatomic_or atomic commit of the deletion flag.
905 */
906 cmm_smp_mb__before_uatomic_or();
907 /*
908 * We set the REMOVED_FLAG unconditionally. Note that there may
909 * be more than one concurrent thread setting this flag.
910 * Knowing which wins the race will be known after the garbage
911 * collection phase, stay tuned!
912 */
913 uatomic_or(&node->next, REMOVED_FLAG);
914 /* We performed the (logical) deletion. */
915
916 /*
917 * Ensure that the node is not visible to readers anymore: lookup for
918 * the node, and remove it (along with any other logically removed node)
919 * if found.
920 */
921 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
922 _lttng_ust_lfht_gc_bucket(bucket, node);
923
924 assert(is_removed(CMM_LOAD_SHARED(node->next)));
925 /*
926 * Last phase: atomically exchange node->next with a version
927 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
928 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
929 * the node and win the removal race.
930 * It is interesting to note that all "add" paths are forbidden
931 * to change the next pointer starting from the point where the
932 * REMOVED_FLAG is set, so here using a read, followed by a
933 * xchg() suffice to guarantee that the xchg() will ever only
934 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
935 * was already set).
936 */
937 if (!is_removal_owner(uatomic_xchg(&node->next,
938 flag_removal_owner(node->next))))
939 return 0;
940 else
941 return -ENOENT;
942 }
943
944 /*
945 * Never called with size < 1.
946 */
947 static
948 void lttng_ust_lfht_create_bucket(struct lttng_ust_lfht *ht, unsigned long size)
949 {
950 struct lttng_ust_lfht_node *prev, *node;
951 unsigned long order, len, i;
952 int bucket_order;
953
954 lttng_ust_lfht_alloc_bucket_table(ht, 0);
955
956 dbg_printf("create bucket: order 0 index 0 hash 0\n");
957 node = bucket_at(ht, 0);
958 node->next = flag_bucket(get_end());
959 node->reverse_hash = 0;
960
961 bucket_order = lttng_ust_lfht_get_count_order_ulong(size);
962 assert(bucket_order >= 0);
963
964 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
965 len = 1UL << (order - 1);
966 lttng_ust_lfht_alloc_bucket_table(ht, order);
967
968 for (i = 0; i < len; i++) {
969 /*
970 * Now, we are trying to init the node with the
971 * hash=(len+i) (which is also a bucket with the
972 * index=(len+i)) and insert it into the hash table,
973 * so this node has to be inserted after the bucket
974 * with the index=(len+i)&(len-1)=i. And because there
975 * is no other non-bucket node nor bucket node with
976 * larger index/hash inserted, so the bucket node
977 * being inserted should be inserted directly linked
978 * after the bucket node with index=i.
979 */
980 prev = bucket_at(ht, i);
981 node = bucket_at(ht, len + i);
982
983 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
984 order, len + i, len + i);
985 node->reverse_hash = bit_reverse_ulong(len + i);
986
987 /* insert after prev */
988 assert(is_bucket(prev->next));
989 node->next = prev->next;
990 prev->next = flag_bucket(node);
991 }
992 }
993 }
994
995 #if (CAA_BITS_PER_LONG > 32)
996 /*
997 * For 64-bit architectures, with max number of buckets small enough not to
998 * use the entire 64-bit memory mapping space (and allowing a fair number of
999 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1000 * fallback to the order allocator.
1001 */
1002 static
1003 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1004 {
1005 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1006 return &lttng_ust_lfht_mm_mmap;
1007 else
1008 return &lttng_ust_lfht_mm_order;
1009 }
1010 #else
1011 /*
1012 * For 32-bit architectures, use the order allocator.
1013 */
1014 static
1015 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1016 {
1017 return &lttng_ust_lfht_mm_order;
1018 }
1019 #endif
1020
1021 struct lttng_ust_lfht *lttng_ust_lfht_new(unsigned long init_size,
1022 unsigned long min_nr_alloc_buckets,
1023 unsigned long max_nr_buckets,
1024 int flags,
1025 const struct lttng_ust_lfht_mm_type *mm)
1026 {
1027 struct lttng_ust_lfht *ht;
1028 unsigned long order;
1029
1030 /* min_nr_alloc_buckets must be power of two */
1031 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1032 return NULL;
1033
1034 /* init_size must be power of two */
1035 if (!init_size || (init_size & (init_size - 1)))
1036 return NULL;
1037
1038 /*
1039 * Memory management plugin default.
1040 */
1041 if (!mm)
1042 mm = get_mm_type(max_nr_buckets);
1043
1044 /* max_nr_buckets == 0 for order based mm means infinite */
1045 if (mm == &lttng_ust_lfht_mm_order && !max_nr_buckets)
1046 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1047
1048 /* max_nr_buckets must be power of two */
1049 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1050 return NULL;
1051
1052 if (flags & LTTNG_UST_LFHT_AUTO_RESIZE)
1053 return NULL;
1054
1055 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1056 init_size = max(init_size, MIN_TABLE_SIZE);
1057 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1058 init_size = min(init_size, max_nr_buckets);
1059
1060 ht = mm->alloc_lttng_ust_lfht(min_nr_alloc_buckets, max_nr_buckets);
1061 assert(ht);
1062 assert(ht->mm == mm);
1063 assert(ht->bucket_at == mm->bucket_at);
1064
1065 ht->flags = flags;
1066 /* this mutex should not nest in read-side C.S. */
1067 pthread_mutex_init(&ht->resize_mutex, NULL);
1068 order = lttng_ust_lfht_get_count_order_ulong(init_size);
1069 ht->resize_target = 1UL << order;
1070 lttng_ust_lfht_create_bucket(ht, 1UL << order);
1071 ht->size = 1UL << order;
1072 return ht;
1073 }
1074
1075 void lttng_ust_lfht_lookup(struct lttng_ust_lfht *ht, unsigned long hash,
1076 lttng_ust_lfht_match_fct match, const void *key,
1077 struct lttng_ust_lfht_iter *iter)
1078 {
1079 struct lttng_ust_lfht_node *node, *next, *bucket;
1080 unsigned long reverse_hash, size;
1081
1082 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1083
1084 reverse_hash = bit_reverse_ulong(hash);
1085
1086 size = lttng_ust_rcu_dereference(ht->size);
1087 bucket = lookup_bucket(ht, size, hash);
1088 /* We can always skip the bucket node initially */
1089 node = lttng_ust_rcu_dereference(bucket->next);
1090 node = clear_flag(node);
1091 for (;;) {
1092 if (caa_unlikely(is_end(node))) {
1093 node = next = NULL;
1094 break;
1095 }
1096 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1097 node = next = NULL;
1098 break;
1099 }
1100 next = lttng_ust_rcu_dereference(node->next);
1101 assert(node == clear_flag(node));
1102 if (caa_likely(!is_removed(next))
1103 && !is_bucket(next)
1104 && node->reverse_hash == reverse_hash
1105 && caa_likely(match(node, key))) {
1106 break;
1107 }
1108 node = clear_flag(next);
1109 }
1110 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1111 iter->node = node;
1112 iter->next = next;
1113 }
1114
1115 void lttng_ust_lfht_next_duplicate(struct lttng_ust_lfht *ht, lttng_ust_lfht_match_fct match,
1116 const void *key, struct lttng_ust_lfht_iter *iter)
1117 {
1118 struct lttng_ust_lfht_node *node, *next;
1119 unsigned long reverse_hash;
1120
1121 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1122 node = iter->node;
1123 reverse_hash = node->reverse_hash;
1124 next = iter->next;
1125 node = clear_flag(next);
1126
1127 for (;;) {
1128 if (caa_unlikely(is_end(node))) {
1129 node = next = NULL;
1130 break;
1131 }
1132 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1133 node = next = NULL;
1134 break;
1135 }
1136 next = lttng_ust_rcu_dereference(node->next);
1137 if (caa_likely(!is_removed(next))
1138 && !is_bucket(next)
1139 && caa_likely(match(node, key))) {
1140 break;
1141 }
1142 node = clear_flag(next);
1143 }
1144 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1145 iter->node = node;
1146 iter->next = next;
1147 }
1148
1149 void lttng_ust_lfht_next(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1150 {
1151 struct lttng_ust_lfht_node *node, *next;
1152
1153 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1154 node = clear_flag(iter->next);
1155 for (;;) {
1156 if (caa_unlikely(is_end(node))) {
1157 node = next = NULL;
1158 break;
1159 }
1160 next = lttng_ust_rcu_dereference(node->next);
1161 if (caa_likely(!is_removed(next))
1162 && !is_bucket(next)) {
1163 break;
1164 }
1165 node = clear_flag(next);
1166 }
1167 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1168 iter->node = node;
1169 iter->next = next;
1170 }
1171
1172 void lttng_ust_lfht_first(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1173 {
1174 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1175 /*
1176 * Get next after first bucket node. The first bucket node is the
1177 * first node of the linked list.
1178 */
1179 iter->next = bucket_at(ht, 0)->next;
1180 lttng_ust_lfht_next(ht, iter);
1181 }
1182
1183 void lttng_ust_lfht_add(struct lttng_ust_lfht *ht, unsigned long hash,
1184 struct lttng_ust_lfht_node *node)
1185 {
1186 unsigned long size;
1187
1188 node->reverse_hash = bit_reverse_ulong(hash);
1189 size = lttng_ust_rcu_dereference(ht->size);
1190 _lttng_ust_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1191 }
1192
1193 struct lttng_ust_lfht_node *lttng_ust_lfht_add_unique(struct lttng_ust_lfht *ht,
1194 unsigned long hash,
1195 lttng_ust_lfht_match_fct match,
1196 const void *key,
1197 struct lttng_ust_lfht_node *node)
1198 {
1199 unsigned long size;
1200 struct lttng_ust_lfht_iter iter;
1201
1202 node->reverse_hash = bit_reverse_ulong(hash);
1203 size = lttng_ust_rcu_dereference(ht->size);
1204 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1205 return iter.node;
1206 }
1207
1208 struct lttng_ust_lfht_node *lttng_ust_lfht_add_replace(struct lttng_ust_lfht *ht,
1209 unsigned long hash,
1210 lttng_ust_lfht_match_fct match,
1211 const void *key,
1212 struct lttng_ust_lfht_node *node)
1213 {
1214 unsigned long size;
1215 struct lttng_ust_lfht_iter iter;
1216
1217 node->reverse_hash = bit_reverse_ulong(hash);
1218 size = lttng_ust_rcu_dereference(ht->size);
1219 for (;;) {
1220 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1221 if (iter.node == node) {
1222 return NULL;
1223 }
1224
1225 if (!_lttng_ust_lfht_replace(ht, size, iter.node, iter.next, node))
1226 return iter.node;
1227 }
1228 }
1229
1230 int lttng_ust_lfht_replace(struct lttng_ust_lfht *ht,
1231 struct lttng_ust_lfht_iter *old_iter,
1232 unsigned long hash,
1233 lttng_ust_lfht_match_fct match,
1234 const void *key,
1235 struct lttng_ust_lfht_node *new_node)
1236 {
1237 unsigned long size;
1238
1239 new_node->reverse_hash = bit_reverse_ulong(hash);
1240 if (!old_iter->node)
1241 return -ENOENT;
1242 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1243 return -EINVAL;
1244 if (caa_unlikely(!match(old_iter->node, key)))
1245 return -EINVAL;
1246 size = lttng_ust_rcu_dereference(ht->size);
1247 return _lttng_ust_lfht_replace(ht, size, old_iter->node, old_iter->next,
1248 new_node);
1249 }
1250
1251 int lttng_ust_lfht_del(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_node *node)
1252 {
1253 unsigned long size;
1254
1255 size = lttng_ust_rcu_dereference(ht->size);
1256 return _lttng_ust_lfht_del(ht, size, node);
1257 }
1258
1259 int lttng_ust_lfht_is_node_deleted(const struct lttng_ust_lfht_node *node)
1260 {
1261 return is_removed(CMM_LOAD_SHARED(node->next));
1262 }
1263
1264 static
1265 int lttng_ust_lfht_delete_bucket(struct lttng_ust_lfht *ht)
1266 {
1267 struct lttng_ust_lfht_node *node;
1268 unsigned long order, i, size;
1269
1270 /* Check that the table is empty */
1271 node = bucket_at(ht, 0);
1272 do {
1273 node = clear_flag(node)->next;
1274 if (!is_bucket(node))
1275 return -EPERM;
1276 assert(!is_removed(node));
1277 assert(!is_removal_owner(node));
1278 } while (!is_end(node));
1279 /*
1280 * size accessed without lttng_ust_rcu_dereference because hash table is
1281 * being destroyed.
1282 */
1283 size = ht->size;
1284 /* Internal sanity check: all nodes left should be buckets */
1285 for (i = 0; i < size; i++) {
1286 node = bucket_at(ht, i);
1287 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1288 i, i, bit_reverse_ulong(node->reverse_hash));
1289 assert(is_bucket(node->next));
1290 }
1291
1292 for (order = lttng_ust_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1293 lttng_ust_lfht_free_bucket_table(ht, order);
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * Should only be called when no more concurrent readers nor writers can
1300 * possibly access the table.
1301 */
1302 int lttng_ust_lfht_destroy(struct lttng_ust_lfht *ht)
1303 {
1304 int ret;
1305
1306 ret = lttng_ust_lfht_delete_bucket(ht);
1307 if (ret)
1308 return ret;
1309 ret = pthread_mutex_destroy(&ht->resize_mutex);
1310 if (ret)
1311 ret = -EBUSY;
1312 poison_free(ht);
1313 return ret;
1314 }
This page took 0.056981 seconds and 3 git commands to generate.