ddfca408b07739b6d18b9853b168b1a60bad5594
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = (uint64_t) -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = (uint64_t) -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290 struct lttng_consumer_stream *stream, *stmp;
291
292 DBG("Consumer delete channel key %" PRIu64, channel->key);
293
294 pthread_mutex_lock(&consumer_data.lock);
295 pthread_mutex_lock(&channel->lock);
296
297 switch (consumer_data.type) {
298 case LTTNG_CONSUMER_KERNEL:
299 break;
300 case LTTNG_CONSUMER32_UST:
301 case LTTNG_CONSUMER64_UST:
302 /* Delete streams that might have been left in the stream list. */
303 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
304 send_node) {
305 cds_list_del(&stream->send_node);
306 lttng_ustconsumer_del_stream(stream);
307 free(stream);
308 }
309 lttng_ustconsumer_del_channel(channel);
310 break;
311 default:
312 ERR("Unknown consumer_data type");
313 assert(0);
314 goto end;
315 }
316
317 rcu_read_lock();
318 iter.iter.node = &channel->node.node;
319 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
320 assert(!ret);
321 rcu_read_unlock();
322
323 call_rcu(&channel->node.head, free_channel_rcu);
324 end:
325 pthread_mutex_unlock(&channel->lock);
326 pthread_mutex_unlock(&consumer_data.lock);
327 }
328
329 /*
330 * Iterate over the relayd hash table and destroy each element. Finally,
331 * destroy the whole hash table.
332 */
333 static void cleanup_relayd_ht(void)
334 {
335 struct lttng_ht_iter iter;
336 struct consumer_relayd_sock_pair *relayd;
337
338 rcu_read_lock();
339
340 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
341 node.node) {
342 destroy_relayd(relayd);
343 }
344
345 rcu_read_unlock();
346
347 lttng_ht_destroy(consumer_data.relayd_ht);
348 }
349
350 /*
351 * Update the end point status of all streams having the given network sequence
352 * index (relayd index).
353 *
354 * It's atomically set without having the stream mutex locked which is fine
355 * because we handle the write/read race with a pipe wakeup for each thread.
356 */
357 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
358 enum consumer_endpoint_status status)
359 {
360 struct lttng_ht_iter iter;
361 struct lttng_consumer_stream *stream;
362
363 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
364
365 rcu_read_lock();
366
367 /* Let's begin with metadata */
368 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
369 if (stream->net_seq_idx == net_seq_idx) {
370 uatomic_set(&stream->endpoint_status, status);
371 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
372 }
373 }
374
375 /* Follow up by the data streams */
376 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
377 if (stream->net_seq_idx == net_seq_idx) {
378 uatomic_set(&stream->endpoint_status, status);
379 DBG("Delete flag set to data stream %d", stream->wait_fd);
380 }
381 }
382 rcu_read_unlock();
383 }
384
385 /*
386 * Cleanup a relayd object by flagging every associated streams for deletion,
387 * destroying the object meaning removing it from the relayd hash table,
388 * closing the sockets and freeing the memory in a RCU call.
389 *
390 * If a local data context is available, notify the threads that the streams'
391 * state have changed.
392 */
393 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
394 struct lttng_consumer_local_data *ctx)
395 {
396 uint64_t netidx;
397
398 assert(relayd);
399
400 DBG("Cleaning up relayd sockets");
401
402 /* Save the net sequence index before destroying the object */
403 netidx = relayd->net_seq_idx;
404
405 /*
406 * Delete the relayd from the relayd hash table, close the sockets and free
407 * the object in a RCU call.
408 */
409 destroy_relayd(relayd);
410
411 /* Set inactive endpoint to all streams */
412 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
413
414 /*
415 * With a local data context, notify the threads that the streams' state
416 * have changed. The write() action on the pipe acts as an "implicit"
417 * memory barrier ordering the updates of the end point status from the
418 * read of this status which happens AFTER receiving this notify.
419 */
420 if (ctx) {
421 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
422 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
423 }
424 }
425
426 /*
427 * Flag a relayd socket pair for destruction. Destroy it if the refcount
428 * reaches zero.
429 *
430 * RCU read side lock MUST be aquired before calling this function.
431 */
432 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
433 {
434 assert(relayd);
435
436 /* Set destroy flag for this object */
437 uatomic_set(&relayd->destroy_flag, 1);
438
439 /* Destroy the relayd if refcount is 0 */
440 if (uatomic_read(&relayd->refcount) == 0) {
441 destroy_relayd(relayd);
442 }
443 }
444
445 /*
446 * Remove a stream from the global list protected by a mutex. This
447 * function is also responsible for freeing its data structures.
448 */
449 void consumer_del_stream(struct lttng_consumer_stream *stream,
450 struct lttng_ht *ht)
451 {
452 int ret;
453 struct lttng_ht_iter iter;
454 struct lttng_consumer_channel *free_chan = NULL;
455 struct consumer_relayd_sock_pair *relayd;
456
457 assert(stream);
458
459 DBG("Consumer del stream %d", stream->wait_fd);
460
461 if (ht == NULL) {
462 /* Means the stream was allocated but not successfully added */
463 goto free_stream_rcu;
464 }
465
466 pthread_mutex_lock(&consumer_data.lock);
467 pthread_mutex_lock(&stream->lock);
468
469 switch (consumer_data.type) {
470 case LTTNG_CONSUMER_KERNEL:
471 if (stream->mmap_base != NULL) {
472 ret = munmap(stream->mmap_base, stream->mmap_len);
473 if (ret != 0) {
474 PERROR("munmap");
475 }
476 }
477
478 if (stream->wait_fd >= 0) {
479 ret = close(stream->wait_fd);
480 if (ret) {
481 PERROR("close");
482 }
483 }
484 break;
485 case LTTNG_CONSUMER32_UST:
486 case LTTNG_CONSUMER64_UST:
487 lttng_ustconsumer_del_stream(stream);
488 break;
489 default:
490 ERR("Unknown consumer_data type");
491 assert(0);
492 goto end;
493 }
494
495 rcu_read_lock();
496 iter.iter.node = &stream->node.node;
497 ret = lttng_ht_del(ht, &iter);
498 assert(!ret);
499
500 iter.iter.node = &stream->node_channel_id.node;
501 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
502 assert(!ret);
503
504 iter.iter.node = &stream->node_session_id.node;
505 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
506 assert(!ret);
507 rcu_read_unlock();
508
509 assert(consumer_data.stream_count > 0);
510 consumer_data.stream_count--;
511
512 if (stream->out_fd >= 0) {
513 ret = close(stream->out_fd);
514 if (ret) {
515 PERROR("close");
516 }
517 }
518
519 /* Check and cleanup relayd */
520 rcu_read_lock();
521 relayd = consumer_find_relayd(stream->net_seq_idx);
522 if (relayd != NULL) {
523 uatomic_dec(&relayd->refcount);
524 assert(uatomic_read(&relayd->refcount) >= 0);
525
526 /* Closing streams requires to lock the control socket. */
527 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
528 ret = relayd_send_close_stream(&relayd->control_sock,
529 stream->relayd_stream_id,
530 stream->next_net_seq_num - 1);
531 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
532 if (ret < 0) {
533 DBG("Unable to close stream on the relayd. Continuing");
534 /*
535 * Continue here. There is nothing we can do for the relayd.
536 * Chances are that the relayd has closed the socket so we just
537 * continue cleaning up.
538 */
539 }
540
541 /* Both conditions are met, we destroy the relayd. */
542 if (uatomic_read(&relayd->refcount) == 0 &&
543 uatomic_read(&relayd->destroy_flag)) {
544 destroy_relayd(relayd);
545 }
546 }
547 rcu_read_unlock();
548
549 if (!uatomic_sub_return(&stream->chan->refcount, 1)
550 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
551 free_chan = stream->chan;
552 }
553
554 end:
555 consumer_data.need_update = 1;
556 pthread_mutex_unlock(&stream->lock);
557 pthread_mutex_unlock(&consumer_data.lock);
558
559 if (free_chan) {
560 consumer_del_channel(free_chan);
561 }
562
563 free_stream_rcu:
564 call_rcu(&stream->node.head, free_stream_rcu);
565 }
566
567 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
568 uint64_t stream_key,
569 enum lttng_consumer_stream_state state,
570 const char *channel_name,
571 uid_t uid,
572 gid_t gid,
573 uint64_t relayd_id,
574 uint64_t session_id,
575 int cpu,
576 int *alloc_ret,
577 enum consumer_channel_type type)
578 {
579 int ret;
580 struct lttng_consumer_stream *stream;
581
582 stream = zmalloc(sizeof(*stream));
583 if (stream == NULL) {
584 PERROR("malloc struct lttng_consumer_stream");
585 ret = -ENOMEM;
586 goto end;
587 }
588
589 rcu_read_lock();
590
591 stream->key = stream_key;
592 stream->out_fd = -1;
593 stream->out_fd_offset = 0;
594 stream->state = state;
595 stream->uid = uid;
596 stream->gid = gid;
597 stream->net_seq_idx = relayd_id;
598 stream->session_id = session_id;
599 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
600 pthread_mutex_init(&stream->lock, NULL);
601
602 /* If channel is the metadata, flag this stream as metadata. */
603 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
604 stream->metadata_flag = 1;
605 /* Metadata is flat out. */
606 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
607 } else {
608 /* Format stream name to <channel_name>_<cpu_number> */
609 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
610 channel_name, cpu);
611 if (ret < 0) {
612 PERROR("snprintf stream name");
613 goto error;
614 }
615 }
616
617 /* Key is always the wait_fd for streams. */
618 lttng_ht_node_init_u64(&stream->node, stream->key);
619
620 /* Init node per channel id key */
621 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
622
623 /* Init session id node with the stream session id */
624 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
625
626 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
627 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
628
629 rcu_read_unlock();
630 return stream;
631
632 error:
633 rcu_read_unlock();
634 free(stream);
635 end:
636 if (alloc_ret) {
637 *alloc_ret = ret;
638 }
639 return NULL;
640 }
641
642 /*
643 * Add a stream to the global list protected by a mutex.
644 */
645 static int add_stream(struct lttng_consumer_stream *stream,
646 struct lttng_ht *ht)
647 {
648 int ret = 0;
649 struct consumer_relayd_sock_pair *relayd;
650
651 assert(stream);
652 assert(ht);
653
654 DBG3("Adding consumer stream %" PRIu64, stream->key);
655
656 pthread_mutex_lock(&consumer_data.lock);
657 pthread_mutex_lock(&stream->chan->lock);
658 pthread_mutex_lock(&stream->chan->timer_lock);
659 pthread_mutex_lock(&stream->lock);
660 rcu_read_lock();
661
662 /* Steal stream identifier to avoid having streams with the same key */
663 steal_stream_key(stream->key, ht);
664
665 lttng_ht_add_unique_u64(ht, &stream->node);
666
667 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
668 &stream->node_channel_id);
669
670 /*
671 * Add stream to the stream_list_ht of the consumer data. No need to steal
672 * the key since the HT does not use it and we allow to add redundant keys
673 * into this table.
674 */
675 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
676
677 /* Check and cleanup relayd */
678 relayd = consumer_find_relayd(stream->net_seq_idx);
679 if (relayd != NULL) {
680 uatomic_inc(&relayd->refcount);
681 }
682
683 /*
684 * When nb_init_stream_left reaches 0, we don't need to trigger any action
685 * in terms of destroying the associated channel, because the action that
686 * causes the count to become 0 also causes a stream to be added. The
687 * channel deletion will thus be triggered by the following removal of this
688 * stream.
689 */
690 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
691 /* Increment refcount before decrementing nb_init_stream_left */
692 cmm_smp_wmb();
693 uatomic_dec(&stream->chan->nb_init_stream_left);
694 }
695
696 /* Update consumer data once the node is inserted. */
697 consumer_data.stream_count++;
698 consumer_data.need_update = 1;
699
700 rcu_read_unlock();
701 pthread_mutex_unlock(&stream->lock);
702 pthread_mutex_unlock(&stream->chan->timer_lock);
703 pthread_mutex_unlock(&stream->chan->lock);
704 pthread_mutex_unlock(&consumer_data.lock);
705
706 return ret;
707 }
708
709 /*
710 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
711 * be acquired before calling this.
712 */
713 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
714 {
715 int ret = 0;
716 struct lttng_ht_node_u64 *node;
717 struct lttng_ht_iter iter;
718
719 assert(relayd);
720
721 lttng_ht_lookup(consumer_data.relayd_ht,
722 &relayd->net_seq_idx, &iter);
723 node = lttng_ht_iter_get_node_u64(&iter);
724 if (node != NULL) {
725 goto end;
726 }
727 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
728
729 end:
730 return ret;
731 }
732
733 /*
734 * Allocate and return a consumer relayd socket.
735 */
736 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
737 uint64_t net_seq_idx)
738 {
739 struct consumer_relayd_sock_pair *obj = NULL;
740
741 /* net sequence index of -1 is a failure */
742 if (net_seq_idx == (uint64_t) -1ULL) {
743 goto error;
744 }
745
746 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
747 if (obj == NULL) {
748 PERROR("zmalloc relayd sock");
749 goto error;
750 }
751
752 obj->net_seq_idx = net_seq_idx;
753 obj->refcount = 0;
754 obj->destroy_flag = 0;
755 obj->control_sock.sock.fd = -1;
756 obj->data_sock.sock.fd = -1;
757 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
758 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
759
760 error:
761 return obj;
762 }
763
764 /*
765 * Find a relayd socket pair in the global consumer data.
766 *
767 * Return the object if found else NULL.
768 * RCU read-side lock must be held across this call and while using the
769 * returned object.
770 */
771 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
772 {
773 struct lttng_ht_iter iter;
774 struct lttng_ht_node_u64 *node;
775 struct consumer_relayd_sock_pair *relayd = NULL;
776
777 /* Negative keys are lookup failures */
778 if (key == (uint64_t) -1ULL) {
779 goto error;
780 }
781
782 lttng_ht_lookup(consumer_data.relayd_ht, &key,
783 &iter);
784 node = lttng_ht_iter_get_node_u64(&iter);
785 if (node != NULL) {
786 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
787 }
788
789 error:
790 return relayd;
791 }
792
793 /*
794 * Handle stream for relayd transmission if the stream applies for network
795 * streaming where the net sequence index is set.
796 *
797 * Return destination file descriptor or negative value on error.
798 */
799 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
800 size_t data_size, unsigned long padding,
801 struct consumer_relayd_sock_pair *relayd)
802 {
803 int outfd = -1, ret;
804 struct lttcomm_relayd_data_hdr data_hdr;
805
806 /* Safety net */
807 assert(stream);
808 assert(relayd);
809
810 /* Reset data header */
811 memset(&data_hdr, 0, sizeof(data_hdr));
812
813 if (stream->metadata_flag) {
814 /* Caller MUST acquire the relayd control socket lock */
815 ret = relayd_send_metadata(&relayd->control_sock, data_size);
816 if (ret < 0) {
817 goto error;
818 }
819
820 /* Metadata are always sent on the control socket. */
821 outfd = relayd->control_sock.sock.fd;
822 } else {
823 /* Set header with stream information */
824 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
825 data_hdr.data_size = htobe32(data_size);
826 data_hdr.padding_size = htobe32(padding);
827 /*
828 * Note that net_seq_num below is assigned with the *current* value of
829 * next_net_seq_num and only after that the next_net_seq_num will be
830 * increment. This is why when issuing a command on the relayd using
831 * this next value, 1 should always be substracted in order to compare
832 * the last seen sequence number on the relayd side to the last sent.
833 */
834 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
835 /* Other fields are zeroed previously */
836
837 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
838 sizeof(data_hdr));
839 if (ret < 0) {
840 goto error;
841 }
842
843 ++stream->next_net_seq_num;
844
845 /* Set to go on data socket */
846 outfd = relayd->data_sock.sock.fd;
847 }
848
849 error:
850 return outfd;
851 }
852
853 /*
854 * Allocate and return a new lttng_consumer_channel object using the given key
855 * to initialize the hash table node.
856 *
857 * On error, return NULL.
858 */
859 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
860 uint64_t session_id,
861 const char *pathname,
862 const char *name,
863 uid_t uid,
864 gid_t gid,
865 uint64_t relayd_id,
866 enum lttng_event_output output,
867 uint64_t tracefile_size,
868 uint64_t tracefile_count,
869 uint64_t session_id_per_pid)
870 {
871 struct lttng_consumer_channel *channel;
872
873 channel = zmalloc(sizeof(*channel));
874 if (channel == NULL) {
875 PERROR("malloc struct lttng_consumer_channel");
876 goto end;
877 }
878
879 channel->key = key;
880 channel->refcount = 0;
881 channel->session_id = session_id;
882 channel->session_id_per_pid = session_id_per_pid;
883 channel->uid = uid;
884 channel->gid = gid;
885 channel->relayd_id = relayd_id;
886 channel->output = output;
887 channel->tracefile_size = tracefile_size;
888 channel->tracefile_count = tracefile_count;
889 pthread_mutex_init(&channel->lock, NULL);
890 pthread_mutex_init(&channel->timer_lock, NULL);
891
892 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
893 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
894
895 strncpy(channel->name, name, sizeof(channel->name));
896 channel->name[sizeof(channel->name) - 1] = '\0';
897
898 lttng_ht_node_init_u64(&channel->node, channel->key);
899
900 channel->wait_fd = -1;
901
902 CDS_INIT_LIST_HEAD(&channel->streams.head);
903
904 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
905
906 end:
907 return channel;
908 }
909
910 /*
911 * Add a channel to the global list protected by a mutex.
912 *
913 * On success 0 is returned else a negative value.
914 */
915 int consumer_add_channel(struct lttng_consumer_channel *channel,
916 struct lttng_consumer_local_data *ctx)
917 {
918 int ret = 0;
919 struct lttng_ht_node_u64 *node;
920 struct lttng_ht_iter iter;
921
922 pthread_mutex_lock(&consumer_data.lock);
923 pthread_mutex_lock(&channel->lock);
924 pthread_mutex_lock(&channel->timer_lock);
925 rcu_read_lock();
926
927 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
928 node = lttng_ht_iter_get_node_u64(&iter);
929 if (node != NULL) {
930 /* Channel already exist. Ignore the insertion */
931 ERR("Consumer add channel key %" PRIu64 " already exists!",
932 channel->key);
933 ret = -EEXIST;
934 goto end;
935 }
936
937 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
938
939 end:
940 rcu_read_unlock();
941 pthread_mutex_unlock(&channel->timer_lock);
942 pthread_mutex_unlock(&channel->lock);
943 pthread_mutex_unlock(&consumer_data.lock);
944
945 if (!ret && channel->wait_fd != -1 &&
946 channel->metadata_stream == NULL) {
947 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
948 }
949 return ret;
950 }
951
952 /*
953 * Allocate the pollfd structure and the local view of the out fds to avoid
954 * doing a lookup in the linked list and concurrency issues when writing is
955 * needed. Called with consumer_data.lock held.
956 *
957 * Returns the number of fds in the structures.
958 */
959 static int update_poll_array(struct lttng_consumer_local_data *ctx,
960 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
961 struct lttng_ht *ht)
962 {
963 int i = 0;
964 struct lttng_ht_iter iter;
965 struct lttng_consumer_stream *stream;
966
967 assert(ctx);
968 assert(ht);
969 assert(pollfd);
970 assert(local_stream);
971
972 DBG("Updating poll fd array");
973 rcu_read_lock();
974 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
975 /*
976 * Only active streams with an active end point can be added to the
977 * poll set and local stream storage of the thread.
978 *
979 * There is a potential race here for endpoint_status to be updated
980 * just after the check. However, this is OK since the stream(s) will
981 * be deleted once the thread is notified that the end point state has
982 * changed where this function will be called back again.
983 */
984 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
985 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
986 continue;
987 }
988 /*
989 * This clobbers way too much the debug output. Uncomment that if you
990 * need it for debugging purposes.
991 *
992 * DBG("Active FD %d", stream->wait_fd);
993 */
994 (*pollfd)[i].fd = stream->wait_fd;
995 (*pollfd)[i].events = POLLIN | POLLPRI;
996 local_stream[i] = stream;
997 i++;
998 }
999 rcu_read_unlock();
1000
1001 /*
1002 * Insert the consumer_data_pipe at the end of the array and don't
1003 * increment i so nb_fd is the number of real FD.
1004 */
1005 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1006 (*pollfd)[i].events = POLLIN | POLLPRI;
1007 return i;
1008 }
1009
1010 /*
1011 * Poll on the should_quit pipe and the command socket return -1 on error and
1012 * should exit, 0 if data is available on the command socket
1013 */
1014 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1015 {
1016 int num_rdy;
1017
1018 restart:
1019 num_rdy = poll(consumer_sockpoll, 2, -1);
1020 if (num_rdy == -1) {
1021 /*
1022 * Restart interrupted system call.
1023 */
1024 if (errno == EINTR) {
1025 goto restart;
1026 }
1027 PERROR("Poll error");
1028 goto exit;
1029 }
1030 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1031 DBG("consumer_should_quit wake up");
1032 goto exit;
1033 }
1034 return 0;
1035
1036 exit:
1037 return -1;
1038 }
1039
1040 /*
1041 * Set the error socket.
1042 */
1043 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1044 int sock)
1045 {
1046 ctx->consumer_error_socket = sock;
1047 }
1048
1049 /*
1050 * Set the command socket path.
1051 */
1052 void lttng_consumer_set_command_sock_path(
1053 struct lttng_consumer_local_data *ctx, char *sock)
1054 {
1055 ctx->consumer_command_sock_path = sock;
1056 }
1057
1058 /*
1059 * Send return code to the session daemon.
1060 * If the socket is not defined, we return 0, it is not a fatal error
1061 */
1062 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1063 {
1064 if (ctx->consumer_error_socket > 0) {
1065 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1066 sizeof(enum lttcomm_sessiond_command));
1067 }
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * Close all the tracefiles and stream fds and MUST be called when all
1074 * instances are destroyed i.e. when all threads were joined and are ended.
1075 */
1076 void lttng_consumer_cleanup(void)
1077 {
1078 struct lttng_ht_iter iter;
1079 struct lttng_consumer_channel *channel;
1080
1081 rcu_read_lock();
1082
1083 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1084 node.node) {
1085 consumer_del_channel(channel);
1086 }
1087
1088 rcu_read_unlock();
1089
1090 lttng_ht_destroy(consumer_data.channel_ht);
1091
1092 cleanup_relayd_ht();
1093
1094 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1095
1096 /*
1097 * This HT contains streams that are freed by either the metadata thread or
1098 * the data thread so we do *nothing* on the hash table and simply destroy
1099 * it.
1100 */
1101 lttng_ht_destroy(consumer_data.stream_list_ht);
1102 }
1103
1104 /*
1105 * Called from signal handler.
1106 */
1107 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1108 {
1109 int ret;
1110 consumer_quit = 1;
1111 do {
1112 ret = write(ctx->consumer_should_quit[1], "4", 1);
1113 } while (ret < 0 && errno == EINTR);
1114 if (ret < 0 || ret != 1) {
1115 PERROR("write consumer quit");
1116 }
1117
1118 DBG("Consumer flag that it should quit");
1119 }
1120
1121 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1122 off_t orig_offset)
1123 {
1124 int outfd = stream->out_fd;
1125
1126 /*
1127 * This does a blocking write-and-wait on any page that belongs to the
1128 * subbuffer prior to the one we just wrote.
1129 * Don't care about error values, as these are just hints and ways to
1130 * limit the amount of page cache used.
1131 */
1132 if (orig_offset < stream->max_sb_size) {
1133 return;
1134 }
1135 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1136 stream->max_sb_size,
1137 SYNC_FILE_RANGE_WAIT_BEFORE
1138 | SYNC_FILE_RANGE_WRITE
1139 | SYNC_FILE_RANGE_WAIT_AFTER);
1140 /*
1141 * Give hints to the kernel about how we access the file:
1142 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1143 * we write it.
1144 *
1145 * We need to call fadvise again after the file grows because the
1146 * kernel does not seem to apply fadvise to non-existing parts of the
1147 * file.
1148 *
1149 * Call fadvise _after_ having waited for the page writeback to
1150 * complete because the dirty page writeback semantic is not well
1151 * defined. So it can be expected to lead to lower throughput in
1152 * streaming.
1153 */
1154 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1155 stream->max_sb_size, POSIX_FADV_DONTNEED);
1156 }
1157
1158 /*
1159 * Initialise the necessary environnement :
1160 * - create a new context
1161 * - create the poll_pipe
1162 * - create the should_quit pipe (for signal handler)
1163 * - create the thread pipe (for splice)
1164 *
1165 * Takes a function pointer as argument, this function is called when data is
1166 * available on a buffer. This function is responsible to do the
1167 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1168 * buffer configuration and then kernctl_put_next_subbuf at the end.
1169 *
1170 * Returns a pointer to the new context or NULL on error.
1171 */
1172 struct lttng_consumer_local_data *lttng_consumer_create(
1173 enum lttng_consumer_type type,
1174 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1175 struct lttng_consumer_local_data *ctx),
1176 int (*recv_channel)(struct lttng_consumer_channel *channel),
1177 int (*recv_stream)(struct lttng_consumer_stream *stream),
1178 int (*update_stream)(uint64_t stream_key, uint32_t state))
1179 {
1180 int ret;
1181 struct lttng_consumer_local_data *ctx;
1182
1183 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1184 consumer_data.type == type);
1185 consumer_data.type = type;
1186
1187 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1188 if (ctx == NULL) {
1189 PERROR("allocating context");
1190 goto error;
1191 }
1192
1193 ctx->consumer_error_socket = -1;
1194 ctx->consumer_metadata_socket = -1;
1195 /* assign the callbacks */
1196 ctx->on_buffer_ready = buffer_ready;
1197 ctx->on_recv_channel = recv_channel;
1198 ctx->on_recv_stream = recv_stream;
1199 ctx->on_update_stream = update_stream;
1200
1201 ctx->consumer_data_pipe = lttng_pipe_open(0);
1202 if (!ctx->consumer_data_pipe) {
1203 goto error_poll_pipe;
1204 }
1205
1206 ret = pipe(ctx->consumer_should_quit);
1207 if (ret < 0) {
1208 PERROR("Error creating recv pipe");
1209 goto error_quit_pipe;
1210 }
1211
1212 ret = pipe(ctx->consumer_thread_pipe);
1213 if (ret < 0) {
1214 PERROR("Error creating thread pipe");
1215 goto error_thread_pipe;
1216 }
1217
1218 ret = pipe(ctx->consumer_channel_pipe);
1219 if (ret < 0) {
1220 PERROR("Error creating channel pipe");
1221 goto error_channel_pipe;
1222 }
1223
1224 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1225 if (!ctx->consumer_metadata_pipe) {
1226 goto error_metadata_pipe;
1227 }
1228
1229 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1230 if (ret < 0) {
1231 goto error_splice_pipe;
1232 }
1233
1234 return ctx;
1235
1236 error_splice_pipe:
1237 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1238 error_metadata_pipe:
1239 utils_close_pipe(ctx->consumer_channel_pipe);
1240 error_channel_pipe:
1241 utils_close_pipe(ctx->consumer_thread_pipe);
1242 error_thread_pipe:
1243 utils_close_pipe(ctx->consumer_should_quit);
1244 error_quit_pipe:
1245 lttng_pipe_destroy(ctx->consumer_data_pipe);
1246 error_poll_pipe:
1247 free(ctx);
1248 error:
1249 return NULL;
1250 }
1251
1252 /*
1253 * Close all fds associated with the instance and free the context.
1254 */
1255 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1256 {
1257 int ret;
1258
1259 DBG("Consumer destroying it. Closing everything.");
1260
1261 ret = close(ctx->consumer_error_socket);
1262 if (ret) {
1263 PERROR("close");
1264 }
1265 ret = close(ctx->consumer_metadata_socket);
1266 if (ret) {
1267 PERROR("close");
1268 }
1269 utils_close_pipe(ctx->consumer_thread_pipe);
1270 utils_close_pipe(ctx->consumer_channel_pipe);
1271 lttng_pipe_destroy(ctx->consumer_data_pipe);
1272 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1273 utils_close_pipe(ctx->consumer_should_quit);
1274 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1275
1276 unlink(ctx->consumer_command_sock_path);
1277 free(ctx);
1278 }
1279
1280 /*
1281 * Write the metadata stream id on the specified file descriptor.
1282 */
1283 static int write_relayd_metadata_id(int fd,
1284 struct lttng_consumer_stream *stream,
1285 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1286 {
1287 int ret;
1288 struct lttcomm_relayd_metadata_payload hdr;
1289
1290 hdr.stream_id = htobe64(stream->relayd_stream_id);
1291 hdr.padding_size = htobe32(padding);
1292 do {
1293 ret = write(fd, (void *) &hdr, sizeof(hdr));
1294 } while (ret < 0 && errno == EINTR);
1295 if (ret < 0 || ret != sizeof(hdr)) {
1296 /*
1297 * This error means that the fd's end is closed so ignore the perror
1298 * not to clubber the error output since this can happen in a normal
1299 * code path.
1300 */
1301 if (errno != EPIPE) {
1302 PERROR("write metadata stream id");
1303 }
1304 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1305 /*
1306 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1307 * handle writting the missing part so report that as an error and
1308 * don't lie to the caller.
1309 */
1310 ret = -1;
1311 goto end;
1312 }
1313 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1314 stream->relayd_stream_id, padding);
1315
1316 end:
1317 return ret;
1318 }
1319
1320 /*
1321 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1322 * core function for writing trace buffers to either the local filesystem or
1323 * the network.
1324 *
1325 * It must be called with the stream lock held.
1326 *
1327 * Careful review MUST be put if any changes occur!
1328 *
1329 * Returns the number of bytes written
1330 */
1331 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1332 struct lttng_consumer_local_data *ctx,
1333 struct lttng_consumer_stream *stream, unsigned long len,
1334 unsigned long padding)
1335 {
1336 unsigned long mmap_offset;
1337 void *mmap_base;
1338 ssize_t ret = 0, written = 0;
1339 off_t orig_offset = stream->out_fd_offset;
1340 /* Default is on the disk */
1341 int outfd = stream->out_fd;
1342 struct consumer_relayd_sock_pair *relayd = NULL;
1343 unsigned int relayd_hang_up = 0;
1344
1345 /* RCU lock for the relayd pointer */
1346 rcu_read_lock();
1347
1348 /* Flag that the current stream if set for network streaming. */
1349 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1350 relayd = consumer_find_relayd(stream->net_seq_idx);
1351 if (relayd == NULL) {
1352 goto end;
1353 }
1354 }
1355
1356 /* get the offset inside the fd to mmap */
1357 switch (consumer_data.type) {
1358 case LTTNG_CONSUMER_KERNEL:
1359 mmap_base = stream->mmap_base;
1360 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1361 break;
1362 case LTTNG_CONSUMER32_UST:
1363 case LTTNG_CONSUMER64_UST:
1364 mmap_base = lttng_ustctl_get_mmap_base(stream);
1365 if (!mmap_base) {
1366 ERR("read mmap get mmap base for stream %s", stream->name);
1367 written = -1;
1368 goto end;
1369 }
1370 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1371
1372 break;
1373 default:
1374 ERR("Unknown consumer_data type");
1375 assert(0);
1376 }
1377 if (ret != 0) {
1378 errno = -ret;
1379 PERROR("tracer ctl get_mmap_read_offset");
1380 written = ret;
1381 goto end;
1382 }
1383
1384 /* Handle stream on the relayd if the output is on the network */
1385 if (relayd) {
1386 unsigned long netlen = len;
1387
1388 /*
1389 * Lock the control socket for the complete duration of the function
1390 * since from this point on we will use the socket.
1391 */
1392 if (stream->metadata_flag) {
1393 /* Metadata requires the control socket. */
1394 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1395 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1396 }
1397
1398 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1399 if (ret >= 0) {
1400 /* Use the returned socket. */
1401 outfd = ret;
1402
1403 /* Write metadata stream id before payload */
1404 if (stream->metadata_flag) {
1405 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1406 if (ret < 0) {
1407 written = ret;
1408 /* Socket operation failed. We consider the relayd dead */
1409 if (ret == -EPIPE || ret == -EINVAL) {
1410 relayd_hang_up = 1;
1411 goto write_error;
1412 }
1413 goto end;
1414 }
1415 }
1416 } else {
1417 /* Socket operation failed. We consider the relayd dead */
1418 if (ret == -EPIPE || ret == -EINVAL) {
1419 relayd_hang_up = 1;
1420 goto write_error;
1421 }
1422 /* Else, use the default set before which is the filesystem. */
1423 }
1424 } else {
1425 /* No streaming, we have to set the len with the full padding */
1426 len += padding;
1427
1428 /*
1429 * Check if we need to change the tracefile before writing the packet.
1430 */
1431 if (stream->chan->tracefile_size > 0 &&
1432 (stream->tracefile_size_current + len) >
1433 stream->chan->tracefile_size) {
1434 ret = utils_rotate_stream_file(stream->chan->pathname,
1435 stream->name, stream->chan->tracefile_size,
1436 stream->chan->tracefile_count, stream->uid, stream->gid,
1437 stream->out_fd, &(stream->tracefile_count_current));
1438 if (ret < 0) {
1439 ERR("Rotating output file");
1440 goto end;
1441 }
1442 outfd = stream->out_fd = ret;
1443 /* Reset current size because we just perform a rotation. */
1444 stream->tracefile_size_current = 0;
1445 }
1446 stream->tracefile_size_current += len;
1447 }
1448
1449 while (len > 0) {
1450 do {
1451 ret = write(outfd, mmap_base + mmap_offset, len);
1452 } while (ret < 0 && errno == EINTR);
1453 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1454 if (ret < 0) {
1455 /*
1456 * This is possible if the fd is closed on the other side (outfd)
1457 * or any write problem. It can be verbose a bit for a normal
1458 * execution if for instance the relayd is stopped abruptly. This
1459 * can happen so set this to a DBG statement.
1460 */
1461 DBG("Error in file write mmap");
1462 if (written == 0) {
1463 written = ret;
1464 }
1465 /* Socket operation failed. We consider the relayd dead */
1466 if (errno == EPIPE || errno == EINVAL) {
1467 relayd_hang_up = 1;
1468 goto write_error;
1469 }
1470 goto end;
1471 } else if (ret > len) {
1472 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1473 written += ret;
1474 goto end;
1475 } else {
1476 len -= ret;
1477 mmap_offset += ret;
1478 }
1479
1480 /* This call is useless on a socket so better save a syscall. */
1481 if (!relayd) {
1482 /* This won't block, but will start writeout asynchronously */
1483 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1484 SYNC_FILE_RANGE_WRITE);
1485 stream->out_fd_offset += ret;
1486 }
1487 written += ret;
1488 }
1489 lttng_consumer_sync_trace_file(stream, orig_offset);
1490
1491 write_error:
1492 /*
1493 * This is a special case that the relayd has closed its socket. Let's
1494 * cleanup the relayd object and all associated streams.
1495 */
1496 if (relayd && relayd_hang_up) {
1497 cleanup_relayd(relayd, ctx);
1498 }
1499
1500 end:
1501 /* Unlock only if ctrl socket used */
1502 if (relayd && stream->metadata_flag) {
1503 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1504 }
1505
1506 rcu_read_unlock();
1507 return written;
1508 }
1509
1510 /*
1511 * Splice the data from the ring buffer to the tracefile.
1512 *
1513 * It must be called with the stream lock held.
1514 *
1515 * Returns the number of bytes spliced.
1516 */
1517 ssize_t lttng_consumer_on_read_subbuffer_splice(
1518 struct lttng_consumer_local_data *ctx,
1519 struct lttng_consumer_stream *stream, unsigned long len,
1520 unsigned long padding)
1521 {
1522 ssize_t ret = 0, written = 0, ret_splice = 0;
1523 loff_t offset = 0;
1524 off_t orig_offset = stream->out_fd_offset;
1525 int fd = stream->wait_fd;
1526 /* Default is on the disk */
1527 int outfd = stream->out_fd;
1528 struct consumer_relayd_sock_pair *relayd = NULL;
1529 int *splice_pipe;
1530 unsigned int relayd_hang_up = 0;
1531
1532 switch (consumer_data.type) {
1533 case LTTNG_CONSUMER_KERNEL:
1534 break;
1535 case LTTNG_CONSUMER32_UST:
1536 case LTTNG_CONSUMER64_UST:
1537 /* Not supported for user space tracing */
1538 return -ENOSYS;
1539 default:
1540 ERR("Unknown consumer_data type");
1541 assert(0);
1542 }
1543
1544 /* RCU lock for the relayd pointer */
1545 rcu_read_lock();
1546
1547 /* Flag that the current stream if set for network streaming. */
1548 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1549 relayd = consumer_find_relayd(stream->net_seq_idx);
1550 if (relayd == NULL) {
1551 goto end;
1552 }
1553 }
1554
1555 /*
1556 * Choose right pipe for splice. Metadata and trace data are handled by
1557 * different threads hence the use of two pipes in order not to race or
1558 * corrupt the written data.
1559 */
1560 if (stream->metadata_flag) {
1561 splice_pipe = ctx->consumer_splice_metadata_pipe;
1562 } else {
1563 splice_pipe = ctx->consumer_thread_pipe;
1564 }
1565
1566 /* Write metadata stream id before payload */
1567 if (relayd) {
1568 int total_len = len;
1569
1570 if (stream->metadata_flag) {
1571 /*
1572 * Lock the control socket for the complete duration of the function
1573 * since from this point on we will use the socket.
1574 */
1575 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1576
1577 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1578 padding);
1579 if (ret < 0) {
1580 written = ret;
1581 /* Socket operation failed. We consider the relayd dead */
1582 if (ret == -EBADF) {
1583 WARN("Remote relayd disconnected. Stopping");
1584 relayd_hang_up = 1;
1585 goto write_error;
1586 }
1587 goto end;
1588 }
1589
1590 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1591 }
1592
1593 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1594 if (ret >= 0) {
1595 /* Use the returned socket. */
1596 outfd = ret;
1597 } else {
1598 /* Socket operation failed. We consider the relayd dead */
1599 if (ret == -EBADF) {
1600 WARN("Remote relayd disconnected. Stopping");
1601 relayd_hang_up = 1;
1602 goto write_error;
1603 }
1604 goto end;
1605 }
1606 } else {
1607 /* No streaming, we have to set the len with the full padding */
1608 len += padding;
1609
1610 /*
1611 * Check if we need to change the tracefile before writing the packet.
1612 */
1613 if (stream->chan->tracefile_size > 0 &&
1614 (stream->tracefile_size_current + len) >
1615 stream->chan->tracefile_size) {
1616 ret = utils_rotate_stream_file(stream->chan->pathname,
1617 stream->name, stream->chan->tracefile_size,
1618 stream->chan->tracefile_count, stream->uid, stream->gid,
1619 stream->out_fd, &(stream->tracefile_count_current));
1620 if (ret < 0) {
1621 ERR("Rotating output file");
1622 goto end;
1623 }
1624 outfd = stream->out_fd = ret;
1625 /* Reset current size because we just perform a rotation. */
1626 stream->tracefile_size_current = 0;
1627 }
1628 stream->tracefile_size_current += len;
1629 }
1630
1631 while (len > 0) {
1632 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1633 (unsigned long)offset, len, fd, splice_pipe[1]);
1634 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1635 SPLICE_F_MOVE | SPLICE_F_MORE);
1636 DBG("splice chan to pipe, ret %zd", ret_splice);
1637 if (ret_splice < 0) {
1638 PERROR("Error in relay splice");
1639 if (written == 0) {
1640 written = ret_splice;
1641 }
1642 ret = errno;
1643 goto splice_error;
1644 }
1645
1646 /* Handle stream on the relayd if the output is on the network */
1647 if (relayd) {
1648 if (stream->metadata_flag) {
1649 size_t metadata_payload_size =
1650 sizeof(struct lttcomm_relayd_metadata_payload);
1651
1652 /* Update counter to fit the spliced data */
1653 ret_splice += metadata_payload_size;
1654 len += metadata_payload_size;
1655 /*
1656 * We do this so the return value can match the len passed as
1657 * argument to this function.
1658 */
1659 written -= metadata_payload_size;
1660 }
1661 }
1662
1663 /* Splice data out */
1664 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1665 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1666 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1667 if (ret_splice < 0) {
1668 PERROR("Error in file splice");
1669 if (written == 0) {
1670 written = ret_splice;
1671 }
1672 /* Socket operation failed. We consider the relayd dead */
1673 if (errno == EBADF || errno == EPIPE) {
1674 WARN("Remote relayd disconnected. Stopping");
1675 relayd_hang_up = 1;
1676 goto write_error;
1677 }
1678 ret = errno;
1679 goto splice_error;
1680 } else if (ret_splice > len) {
1681 errno = EINVAL;
1682 PERROR("Wrote more data than requested %zd (len: %lu)",
1683 ret_splice, len);
1684 written += ret_splice;
1685 ret = errno;
1686 goto splice_error;
1687 }
1688 len -= ret_splice;
1689
1690 /* This call is useless on a socket so better save a syscall. */
1691 if (!relayd) {
1692 /* This won't block, but will start writeout asynchronously */
1693 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1694 SYNC_FILE_RANGE_WRITE);
1695 stream->out_fd_offset += ret_splice;
1696 }
1697 written += ret_splice;
1698 }
1699 lttng_consumer_sync_trace_file(stream, orig_offset);
1700
1701 ret = ret_splice;
1702
1703 goto end;
1704
1705 write_error:
1706 /*
1707 * This is a special case that the relayd has closed its socket. Let's
1708 * cleanup the relayd object and all associated streams.
1709 */
1710 if (relayd && relayd_hang_up) {
1711 cleanup_relayd(relayd, ctx);
1712 /* Skip splice error so the consumer does not fail */
1713 goto end;
1714 }
1715
1716 splice_error:
1717 /* send the appropriate error description to sessiond */
1718 switch (ret) {
1719 case EINVAL:
1720 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1721 break;
1722 case ENOMEM:
1723 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1724 break;
1725 case ESPIPE:
1726 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1727 break;
1728 }
1729
1730 end:
1731 if (relayd && stream->metadata_flag) {
1732 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1733 }
1734
1735 rcu_read_unlock();
1736 return written;
1737 }
1738
1739 /*
1740 * Take a snapshot for a specific fd
1741 *
1742 * Returns 0 on success, < 0 on error
1743 */
1744 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1745 {
1746 switch (consumer_data.type) {
1747 case LTTNG_CONSUMER_KERNEL:
1748 return lttng_kconsumer_take_snapshot(stream);
1749 case LTTNG_CONSUMER32_UST:
1750 case LTTNG_CONSUMER64_UST:
1751 return lttng_ustconsumer_take_snapshot(stream);
1752 default:
1753 ERR("Unknown consumer_data type");
1754 assert(0);
1755 return -ENOSYS;
1756 }
1757 }
1758
1759 /*
1760 * Get the produced position
1761 *
1762 * Returns 0 on success, < 0 on error
1763 */
1764 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1765 unsigned long *pos)
1766 {
1767 switch (consumer_data.type) {
1768 case LTTNG_CONSUMER_KERNEL:
1769 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1770 case LTTNG_CONSUMER32_UST:
1771 case LTTNG_CONSUMER64_UST:
1772 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1773 default:
1774 ERR("Unknown consumer_data type");
1775 assert(0);
1776 return -ENOSYS;
1777 }
1778 }
1779
1780 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1781 int sock, struct pollfd *consumer_sockpoll)
1782 {
1783 switch (consumer_data.type) {
1784 case LTTNG_CONSUMER_KERNEL:
1785 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1786 case LTTNG_CONSUMER32_UST:
1787 case LTTNG_CONSUMER64_UST:
1788 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1789 default:
1790 ERR("Unknown consumer_data type");
1791 assert(0);
1792 return -ENOSYS;
1793 }
1794 }
1795
1796 /*
1797 * Iterate over all streams of the hashtable and free them properly.
1798 *
1799 * WARNING: *MUST* be used with data stream only.
1800 */
1801 static void destroy_data_stream_ht(struct lttng_ht *ht)
1802 {
1803 struct lttng_ht_iter iter;
1804 struct lttng_consumer_stream *stream;
1805
1806 if (ht == NULL) {
1807 return;
1808 }
1809
1810 rcu_read_lock();
1811 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1812 /*
1813 * Ignore return value since we are currently cleaning up so any error
1814 * can't be handled.
1815 */
1816 (void) consumer_del_stream(stream, ht);
1817 }
1818 rcu_read_unlock();
1819
1820 lttng_ht_destroy(ht);
1821 }
1822
1823 /*
1824 * Iterate over all streams of the hashtable and free them properly.
1825 *
1826 * XXX: Should not be only for metadata stream or else use an other name.
1827 */
1828 static void destroy_stream_ht(struct lttng_ht *ht)
1829 {
1830 struct lttng_ht_iter iter;
1831 struct lttng_consumer_stream *stream;
1832
1833 if (ht == NULL) {
1834 return;
1835 }
1836
1837 rcu_read_lock();
1838 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1839 /*
1840 * Ignore return value since we are currently cleaning up so any error
1841 * can't be handled.
1842 */
1843 (void) consumer_del_metadata_stream(stream, ht);
1844 }
1845 rcu_read_unlock();
1846
1847 lttng_ht_destroy(ht);
1848 }
1849
1850 void lttng_consumer_close_metadata(void)
1851 {
1852 switch (consumer_data.type) {
1853 case LTTNG_CONSUMER_KERNEL:
1854 /*
1855 * The Kernel consumer has a different metadata scheme so we don't
1856 * close anything because the stream will be closed by the session
1857 * daemon.
1858 */
1859 break;
1860 case LTTNG_CONSUMER32_UST:
1861 case LTTNG_CONSUMER64_UST:
1862 /*
1863 * Close all metadata streams. The metadata hash table is passed and
1864 * this call iterates over it by closing all wakeup fd. This is safe
1865 * because at this point we are sure that the metadata producer is
1866 * either dead or blocked.
1867 */
1868 lttng_ustconsumer_close_metadata(metadata_ht);
1869 break;
1870 default:
1871 ERR("Unknown consumer_data type");
1872 assert(0);
1873 }
1874 }
1875
1876 /*
1877 * Clean up a metadata stream and free its memory.
1878 */
1879 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1880 struct lttng_ht *ht)
1881 {
1882 int ret;
1883 struct lttng_ht_iter iter;
1884 struct lttng_consumer_channel *free_chan = NULL;
1885 struct consumer_relayd_sock_pair *relayd;
1886
1887 assert(stream);
1888 /*
1889 * This call should NEVER receive regular stream. It must always be
1890 * metadata stream and this is crucial for data structure synchronization.
1891 */
1892 assert(stream->metadata_flag);
1893
1894 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1895
1896 if (ht == NULL) {
1897 /* Means the stream was allocated but not successfully added */
1898 goto free_stream_rcu;
1899 }
1900
1901 pthread_mutex_lock(&consumer_data.lock);
1902 pthread_mutex_lock(&stream->chan->lock);
1903 pthread_mutex_lock(&stream->lock);
1904
1905 switch (consumer_data.type) {
1906 case LTTNG_CONSUMER_KERNEL:
1907 if (stream->mmap_base != NULL) {
1908 ret = munmap(stream->mmap_base, stream->mmap_len);
1909 if (ret != 0) {
1910 PERROR("munmap metadata stream");
1911 }
1912 }
1913
1914 if (stream->wait_fd >= 0) {
1915 ret = close(stream->wait_fd);
1916 if (ret < 0) {
1917 PERROR("close kernel metadata wait_fd");
1918 }
1919 }
1920 break;
1921 case LTTNG_CONSUMER32_UST:
1922 case LTTNG_CONSUMER64_UST:
1923 lttng_ustconsumer_del_stream(stream);
1924 break;
1925 default:
1926 ERR("Unknown consumer_data type");
1927 assert(0);
1928 goto end;
1929 }
1930
1931 rcu_read_lock();
1932 iter.iter.node = &stream->node.node;
1933 ret = lttng_ht_del(ht, &iter);
1934 assert(!ret);
1935
1936 iter.iter.node = &stream->node_channel_id.node;
1937 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1938 assert(!ret);
1939
1940 iter.iter.node = &stream->node_session_id.node;
1941 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1942 assert(!ret);
1943 rcu_read_unlock();
1944
1945 if (stream->out_fd >= 0) {
1946 ret = close(stream->out_fd);
1947 if (ret) {
1948 PERROR("close");
1949 }
1950 }
1951
1952 /* Check and cleanup relayd */
1953 rcu_read_lock();
1954 relayd = consumer_find_relayd(stream->net_seq_idx);
1955 if (relayd != NULL) {
1956 uatomic_dec(&relayd->refcount);
1957 assert(uatomic_read(&relayd->refcount) >= 0);
1958
1959 /* Closing streams requires to lock the control socket. */
1960 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1961 ret = relayd_send_close_stream(&relayd->control_sock,
1962 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1963 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1964 if (ret < 0) {
1965 DBG("Unable to close stream on the relayd. Continuing");
1966 /*
1967 * Continue here. There is nothing we can do for the relayd.
1968 * Chances are that the relayd has closed the socket so we just
1969 * continue cleaning up.
1970 */
1971 }
1972
1973 /* Both conditions are met, we destroy the relayd. */
1974 if (uatomic_read(&relayd->refcount) == 0 &&
1975 uatomic_read(&relayd->destroy_flag)) {
1976 destroy_relayd(relayd);
1977 }
1978 }
1979 rcu_read_unlock();
1980
1981 /* Atomically decrement channel refcount since other threads can use it. */
1982 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1983 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1984 /* Go for channel deletion! */
1985 free_chan = stream->chan;
1986 }
1987
1988 end:
1989 /*
1990 * Nullify the stream reference so it is not used after deletion. The
1991 * channel lock MUST be acquired before being able to check for
1992 * a NULL pointer value.
1993 */
1994 stream->chan->metadata_stream = NULL;
1995
1996 pthread_mutex_unlock(&stream->lock);
1997 pthread_mutex_unlock(&stream->chan->lock);
1998 pthread_mutex_unlock(&consumer_data.lock);
1999
2000 if (free_chan) {
2001 consumer_del_channel(free_chan);
2002 }
2003
2004 free_stream_rcu:
2005 call_rcu(&stream->node.head, free_stream_rcu);
2006 }
2007
2008 /*
2009 * Action done with the metadata stream when adding it to the consumer internal
2010 * data structures to handle it.
2011 */
2012 static int add_metadata_stream(struct lttng_consumer_stream *stream,
2013 struct lttng_ht *ht)
2014 {
2015 int ret = 0;
2016 struct consumer_relayd_sock_pair *relayd;
2017 struct lttng_ht_iter iter;
2018 struct lttng_ht_node_u64 *node;
2019
2020 assert(stream);
2021 assert(ht);
2022
2023 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2024
2025 pthread_mutex_lock(&consumer_data.lock);
2026 pthread_mutex_lock(&stream->chan->lock);
2027 pthread_mutex_lock(&stream->chan->timer_lock);
2028 pthread_mutex_lock(&stream->lock);
2029
2030 /*
2031 * From here, refcounts are updated so be _careful_ when returning an error
2032 * after this point.
2033 */
2034
2035 rcu_read_lock();
2036
2037 /*
2038 * Lookup the stream just to make sure it does not exist in our internal
2039 * state. This should NEVER happen.
2040 */
2041 lttng_ht_lookup(ht, &stream->key, &iter);
2042 node = lttng_ht_iter_get_node_u64(&iter);
2043 assert(!node);
2044
2045 /* Find relayd and, if one is found, increment refcount. */
2046 relayd = consumer_find_relayd(stream->net_seq_idx);
2047 if (relayd != NULL) {
2048 uatomic_inc(&relayd->refcount);
2049 }
2050
2051 /*
2052 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2053 * in terms of destroying the associated channel, because the action that
2054 * causes the count to become 0 also causes a stream to be added. The
2055 * channel deletion will thus be triggered by the following removal of this
2056 * stream.
2057 */
2058 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2059 /* Increment refcount before decrementing nb_init_stream_left */
2060 cmm_smp_wmb();
2061 uatomic_dec(&stream->chan->nb_init_stream_left);
2062 }
2063
2064 lttng_ht_add_unique_u64(ht, &stream->node);
2065
2066 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2067 &stream->node_channel_id);
2068
2069 /*
2070 * Add stream to the stream_list_ht of the consumer data. No need to steal
2071 * the key since the HT does not use it and we allow to add redundant keys
2072 * into this table.
2073 */
2074 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2075
2076 rcu_read_unlock();
2077
2078 pthread_mutex_unlock(&stream->lock);
2079 pthread_mutex_unlock(&stream->chan->lock);
2080 pthread_mutex_unlock(&stream->chan->timer_lock);
2081 pthread_mutex_unlock(&consumer_data.lock);
2082 return ret;
2083 }
2084
2085 /*
2086 * Delete data stream that are flagged for deletion (endpoint_status).
2087 */
2088 static void validate_endpoint_status_data_stream(void)
2089 {
2090 struct lttng_ht_iter iter;
2091 struct lttng_consumer_stream *stream;
2092
2093 DBG("Consumer delete flagged data stream");
2094
2095 rcu_read_lock();
2096 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2097 /* Validate delete flag of the stream */
2098 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2099 continue;
2100 }
2101 /* Delete it right now */
2102 consumer_del_stream(stream, data_ht);
2103 }
2104 rcu_read_unlock();
2105 }
2106
2107 /*
2108 * Delete metadata stream that are flagged for deletion (endpoint_status).
2109 */
2110 static void validate_endpoint_status_metadata_stream(
2111 struct lttng_poll_event *pollset)
2112 {
2113 struct lttng_ht_iter iter;
2114 struct lttng_consumer_stream *stream;
2115
2116 DBG("Consumer delete flagged metadata stream");
2117
2118 assert(pollset);
2119
2120 rcu_read_lock();
2121 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2122 /* Validate delete flag of the stream */
2123 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2124 continue;
2125 }
2126 /*
2127 * Remove from pollset so the metadata thread can continue without
2128 * blocking on a deleted stream.
2129 */
2130 lttng_poll_del(pollset, stream->wait_fd);
2131
2132 /* Delete it right now */
2133 consumer_del_metadata_stream(stream, metadata_ht);
2134 }
2135 rcu_read_unlock();
2136 }
2137
2138 /*
2139 * Thread polls on metadata file descriptor and write them on disk or on the
2140 * network.
2141 */
2142 void *consumer_thread_metadata_poll(void *data)
2143 {
2144 int ret, i, pollfd;
2145 uint32_t revents, nb_fd;
2146 struct lttng_consumer_stream *stream = NULL;
2147 struct lttng_ht_iter iter;
2148 struct lttng_ht_node_u64 *node;
2149 struct lttng_poll_event events;
2150 struct lttng_consumer_local_data *ctx = data;
2151 ssize_t len;
2152
2153 rcu_register_thread();
2154
2155 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2156 if (!metadata_ht) {
2157 /* ENOMEM at this point. Better to bail out. */
2158 goto end_ht;
2159 }
2160
2161 DBG("Thread metadata poll started");
2162
2163 /* Size is set to 1 for the consumer_metadata pipe */
2164 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2165 if (ret < 0) {
2166 ERR("Poll set creation failed");
2167 goto end_poll;
2168 }
2169
2170 ret = lttng_poll_add(&events,
2171 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2172 if (ret < 0) {
2173 goto end;
2174 }
2175
2176 /* Main loop */
2177 DBG("Metadata main loop started");
2178
2179 while (1) {
2180 /* Only the metadata pipe is set */
2181 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2182 goto end;
2183 }
2184
2185 restart:
2186 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2187 ret = lttng_poll_wait(&events, -1);
2188 DBG("Metadata event catched in thread");
2189 if (ret < 0) {
2190 if (errno == EINTR) {
2191 ERR("Poll EINTR catched");
2192 goto restart;
2193 }
2194 goto error;
2195 }
2196
2197 nb_fd = ret;
2198
2199 /* From here, the event is a metadata wait fd */
2200 for (i = 0; i < nb_fd; i++) {
2201 revents = LTTNG_POLL_GETEV(&events, i);
2202 pollfd = LTTNG_POLL_GETFD(&events, i);
2203
2204 /* Just don't waste time if no returned events for the fd */
2205 if (!revents) {
2206 continue;
2207 }
2208
2209 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2210 if (revents & (LPOLLERR | LPOLLHUP )) {
2211 DBG("Metadata thread pipe hung up");
2212 /*
2213 * Remove the pipe from the poll set and continue the loop
2214 * since their might be data to consume.
2215 */
2216 lttng_poll_del(&events,
2217 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2218 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2219 continue;
2220 } else if (revents & LPOLLIN) {
2221 ssize_t pipe_len;
2222
2223 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2224 &stream, sizeof(stream));
2225 if (pipe_len < 0) {
2226 ERR("read metadata stream, ret: %ld", pipe_len);
2227 /*
2228 * Continue here to handle the rest of the streams.
2229 */
2230 continue;
2231 }
2232
2233 /* A NULL stream means that the state has changed. */
2234 if (stream == NULL) {
2235 /* Check for deleted streams. */
2236 validate_endpoint_status_metadata_stream(&events);
2237 goto restart;
2238 }
2239
2240 DBG("Adding metadata stream %d to poll set",
2241 stream->wait_fd);
2242
2243 ret = add_metadata_stream(stream, metadata_ht);
2244 if (ret) {
2245 ERR("Unable to add metadata stream");
2246 /* Stream was not setup properly. Continuing. */
2247 consumer_del_metadata_stream(stream, NULL);
2248 continue;
2249 }
2250
2251 /* Add metadata stream to the global poll events list */
2252 lttng_poll_add(&events, stream->wait_fd,
2253 LPOLLIN | LPOLLPRI);
2254 }
2255
2256 /* Handle other stream */
2257 continue;
2258 }
2259
2260 rcu_read_lock();
2261 {
2262 uint64_t tmp_id = (uint64_t) pollfd;
2263
2264 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2265 }
2266 node = lttng_ht_iter_get_node_u64(&iter);
2267 assert(node);
2268
2269 stream = caa_container_of(node, struct lttng_consumer_stream,
2270 node);
2271
2272 /* Check for error event */
2273 if (revents & (LPOLLERR | LPOLLHUP)) {
2274 DBG("Metadata fd %d is hup|err.", pollfd);
2275 if (!stream->hangup_flush_done
2276 && (consumer_data.type == LTTNG_CONSUMER32_UST
2277 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2278 DBG("Attempting to flush and consume the UST buffers");
2279 lttng_ustconsumer_on_stream_hangup(stream);
2280
2281 /* We just flushed the stream now read it. */
2282 do {
2283 len = ctx->on_buffer_ready(stream, ctx);
2284 /*
2285 * We don't check the return value here since if we get
2286 * a negative len, it means an error occured thus we
2287 * simply remove it from the poll set and free the
2288 * stream.
2289 */
2290 } while (len > 0);
2291 }
2292
2293 lttng_poll_del(&events, stream->wait_fd);
2294 /*
2295 * This call update the channel states, closes file descriptors
2296 * and securely free the stream.
2297 */
2298 consumer_del_metadata_stream(stream, metadata_ht);
2299 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2300 /* Get the data out of the metadata file descriptor */
2301 DBG("Metadata available on fd %d", pollfd);
2302 assert(stream->wait_fd == pollfd);
2303
2304 len = ctx->on_buffer_ready(stream, ctx);
2305 /* It's ok to have an unavailable sub-buffer */
2306 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2307 /* Clean up stream from consumer and free it. */
2308 lttng_poll_del(&events, stream->wait_fd);
2309 consumer_del_metadata_stream(stream, metadata_ht);
2310 } else if (len > 0) {
2311 stream->data_read = 1;
2312 }
2313 }
2314
2315 /* Release RCU lock for the stream looked up */
2316 rcu_read_unlock();
2317 }
2318 }
2319
2320 error:
2321 end:
2322 DBG("Metadata poll thread exiting");
2323
2324 lttng_poll_clean(&events);
2325 end_poll:
2326 destroy_stream_ht(metadata_ht);
2327 end_ht:
2328 rcu_unregister_thread();
2329 return NULL;
2330 }
2331
2332 /*
2333 * This thread polls the fds in the set to consume the data and write
2334 * it to tracefile if necessary.
2335 */
2336 void *consumer_thread_data_poll(void *data)
2337 {
2338 int num_rdy, num_hup, high_prio, ret, i;
2339 struct pollfd *pollfd = NULL;
2340 /* local view of the streams */
2341 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2342 /* local view of consumer_data.fds_count */
2343 int nb_fd = 0;
2344 struct lttng_consumer_local_data *ctx = data;
2345 ssize_t len;
2346
2347 rcu_register_thread();
2348
2349 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2350 if (data_ht == NULL) {
2351 /* ENOMEM at this point. Better to bail out. */
2352 goto end;
2353 }
2354
2355 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2356 if (local_stream == NULL) {
2357 PERROR("local_stream malloc");
2358 goto end;
2359 }
2360
2361 while (1) {
2362 high_prio = 0;
2363 num_hup = 0;
2364
2365 /*
2366 * the fds set has been updated, we need to update our
2367 * local array as well
2368 */
2369 pthread_mutex_lock(&consumer_data.lock);
2370 if (consumer_data.need_update) {
2371 free(pollfd);
2372 pollfd = NULL;
2373
2374 free(local_stream);
2375 local_stream = NULL;
2376
2377 /* allocate for all fds + 1 for the consumer_data_pipe */
2378 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2379 if (pollfd == NULL) {
2380 PERROR("pollfd malloc");
2381 pthread_mutex_unlock(&consumer_data.lock);
2382 goto end;
2383 }
2384
2385 /* allocate for all fds + 1 for the consumer_data_pipe */
2386 local_stream = zmalloc((consumer_data.stream_count + 1) *
2387 sizeof(struct lttng_consumer_stream *));
2388 if (local_stream == NULL) {
2389 PERROR("local_stream malloc");
2390 pthread_mutex_unlock(&consumer_data.lock);
2391 goto end;
2392 }
2393 ret = update_poll_array(ctx, &pollfd, local_stream,
2394 data_ht);
2395 if (ret < 0) {
2396 ERR("Error in allocating pollfd or local_outfds");
2397 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2398 pthread_mutex_unlock(&consumer_data.lock);
2399 goto end;
2400 }
2401 nb_fd = ret;
2402 consumer_data.need_update = 0;
2403 }
2404 pthread_mutex_unlock(&consumer_data.lock);
2405
2406 /* No FDs and consumer_quit, consumer_cleanup the thread */
2407 if (nb_fd == 0 && consumer_quit == 1) {
2408 goto end;
2409 }
2410 /* poll on the array of fds */
2411 restart:
2412 DBG("polling on %d fd", nb_fd + 1);
2413 num_rdy = poll(pollfd, nb_fd + 1, -1);
2414 DBG("poll num_rdy : %d", num_rdy);
2415 if (num_rdy == -1) {
2416 /*
2417 * Restart interrupted system call.
2418 */
2419 if (errno == EINTR) {
2420 goto restart;
2421 }
2422 PERROR("Poll error");
2423 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2424 goto end;
2425 } else if (num_rdy == 0) {
2426 DBG("Polling thread timed out");
2427 goto end;
2428 }
2429
2430 /*
2431 * If the consumer_data_pipe triggered poll go directly to the
2432 * beginning of the loop to update the array. We want to prioritize
2433 * array update over low-priority reads.
2434 */
2435 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2436 ssize_t pipe_readlen;
2437
2438 DBG("consumer_data_pipe wake up");
2439 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2440 &new_stream, sizeof(new_stream));
2441 if (pipe_readlen < 0) {
2442 ERR("Consumer data pipe ret %ld", pipe_readlen);
2443 /* Continue so we can at least handle the current stream(s). */
2444 continue;
2445 }
2446
2447 /*
2448 * If the stream is NULL, just ignore it. It's also possible that
2449 * the sessiond poll thread changed the consumer_quit state and is
2450 * waking us up to test it.
2451 */
2452 if (new_stream == NULL) {
2453 validate_endpoint_status_data_stream();
2454 continue;
2455 }
2456
2457 ret = add_stream(new_stream, data_ht);
2458 if (ret) {
2459 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2460 new_stream->key);
2461 /*
2462 * At this point, if the add_stream fails, it is not in the
2463 * hash table thus passing the NULL value here.
2464 */
2465 consumer_del_stream(new_stream, NULL);
2466 }
2467
2468 /* Continue to update the local streams and handle prio ones */
2469 continue;
2470 }
2471
2472 /* Take care of high priority channels first. */
2473 for (i = 0; i < nb_fd; i++) {
2474 if (local_stream[i] == NULL) {
2475 continue;
2476 }
2477 if (pollfd[i].revents & POLLPRI) {
2478 DBG("Urgent read on fd %d", pollfd[i].fd);
2479 high_prio = 1;
2480 len = ctx->on_buffer_ready(local_stream[i], ctx);
2481 /* it's ok to have an unavailable sub-buffer */
2482 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2483 /* Clean the stream and free it. */
2484 consumer_del_stream(local_stream[i], data_ht);
2485 local_stream[i] = NULL;
2486 } else if (len > 0) {
2487 local_stream[i]->data_read = 1;
2488 }
2489 }
2490 }
2491
2492 /*
2493 * If we read high prio channel in this loop, try again
2494 * for more high prio data.
2495 */
2496 if (high_prio) {
2497 continue;
2498 }
2499
2500 /* Take care of low priority channels. */
2501 for (i = 0; i < nb_fd; i++) {
2502 if (local_stream[i] == NULL) {
2503 continue;
2504 }
2505 if ((pollfd[i].revents & POLLIN) ||
2506 local_stream[i]->hangup_flush_done) {
2507 DBG("Normal read on fd %d", pollfd[i].fd);
2508 len = ctx->on_buffer_ready(local_stream[i], ctx);
2509 /* it's ok to have an unavailable sub-buffer */
2510 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2511 /* Clean the stream and free it. */
2512 consumer_del_stream(local_stream[i], data_ht);
2513 local_stream[i] = NULL;
2514 } else if (len > 0) {
2515 local_stream[i]->data_read = 1;
2516 }
2517 }
2518 }
2519
2520 /* Handle hangup and errors */
2521 for (i = 0; i < nb_fd; i++) {
2522 if (local_stream[i] == NULL) {
2523 continue;
2524 }
2525 if (!local_stream[i]->hangup_flush_done
2526 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2527 && (consumer_data.type == LTTNG_CONSUMER32_UST
2528 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2529 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2530 pollfd[i].fd);
2531 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2532 /* Attempt read again, for the data we just flushed. */
2533 local_stream[i]->data_read = 1;
2534 }
2535 /*
2536 * If the poll flag is HUP/ERR/NVAL and we have
2537 * read no data in this pass, we can remove the
2538 * stream from its hash table.
2539 */
2540 if ((pollfd[i].revents & POLLHUP)) {
2541 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2542 if (!local_stream[i]->data_read) {
2543 consumer_del_stream(local_stream[i], data_ht);
2544 local_stream[i] = NULL;
2545 num_hup++;
2546 }
2547 } else if (pollfd[i].revents & POLLERR) {
2548 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2549 if (!local_stream[i]->data_read) {
2550 consumer_del_stream(local_stream[i], data_ht);
2551 local_stream[i] = NULL;
2552 num_hup++;
2553 }
2554 } else if (pollfd[i].revents & POLLNVAL) {
2555 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2556 if (!local_stream[i]->data_read) {
2557 consumer_del_stream(local_stream[i], data_ht);
2558 local_stream[i] = NULL;
2559 num_hup++;
2560 }
2561 }
2562 if (local_stream[i] != NULL) {
2563 local_stream[i]->data_read = 0;
2564 }
2565 }
2566 }
2567 end:
2568 DBG("polling thread exiting");
2569 free(pollfd);
2570 free(local_stream);
2571
2572 /*
2573 * Close the write side of the pipe so epoll_wait() in
2574 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2575 * read side of the pipe. If we close them both, epoll_wait strangely does
2576 * not return and could create a endless wait period if the pipe is the
2577 * only tracked fd in the poll set. The thread will take care of closing
2578 * the read side.
2579 */
2580 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2581
2582 destroy_data_stream_ht(data_ht);
2583
2584 rcu_unregister_thread();
2585 return NULL;
2586 }
2587
2588 /*
2589 * Close wake-up end of each stream belonging to the channel. This will
2590 * allow the poll() on the stream read-side to detect when the
2591 * write-side (application) finally closes them.
2592 */
2593 static
2594 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2595 {
2596 struct lttng_ht *ht;
2597 struct lttng_consumer_stream *stream;
2598 struct lttng_ht_iter iter;
2599
2600 ht = consumer_data.stream_per_chan_id_ht;
2601
2602 rcu_read_lock();
2603 cds_lfht_for_each_entry_duplicate(ht->ht,
2604 ht->hash_fct(&channel->key, lttng_ht_seed),
2605 ht->match_fct, &channel->key,
2606 &iter.iter, stream, node_channel_id.node) {
2607 /*
2608 * Protect against teardown with mutex.
2609 */
2610 pthread_mutex_lock(&stream->lock);
2611 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2612 goto next;
2613 }
2614 switch (consumer_data.type) {
2615 case LTTNG_CONSUMER_KERNEL:
2616 break;
2617 case LTTNG_CONSUMER32_UST:
2618 case LTTNG_CONSUMER64_UST:
2619 /*
2620 * Note: a mutex is taken internally within
2621 * liblttng-ust-ctl to protect timer wakeup_fd
2622 * use from concurrent close.
2623 */
2624 lttng_ustconsumer_close_stream_wakeup(stream);
2625 break;
2626 default:
2627 ERR("Unknown consumer_data type");
2628 assert(0);
2629 }
2630 next:
2631 pthread_mutex_unlock(&stream->lock);
2632 }
2633 rcu_read_unlock();
2634 }
2635
2636 static void destroy_channel_ht(struct lttng_ht *ht)
2637 {
2638 struct lttng_ht_iter iter;
2639 struct lttng_consumer_channel *channel;
2640 int ret;
2641
2642 if (ht == NULL) {
2643 return;
2644 }
2645
2646 rcu_read_lock();
2647 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2648 ret = lttng_ht_del(ht, &iter);
2649 assert(ret != 0);
2650 }
2651 rcu_read_unlock();
2652
2653 lttng_ht_destroy(ht);
2654 }
2655
2656 /*
2657 * This thread polls the channel fds to detect when they are being
2658 * closed. It closes all related streams if the channel is detected as
2659 * closed. It is currently only used as a shim layer for UST because the
2660 * consumerd needs to keep the per-stream wakeup end of pipes open for
2661 * periodical flush.
2662 */
2663 void *consumer_thread_channel_poll(void *data)
2664 {
2665 int ret, i, pollfd;
2666 uint32_t revents, nb_fd;
2667 struct lttng_consumer_channel *chan = NULL;
2668 struct lttng_ht_iter iter;
2669 struct lttng_ht_node_u64 *node;
2670 struct lttng_poll_event events;
2671 struct lttng_consumer_local_data *ctx = data;
2672 struct lttng_ht *channel_ht;
2673
2674 rcu_register_thread();
2675
2676 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2677 if (!channel_ht) {
2678 /* ENOMEM at this point. Better to bail out. */
2679 goto end_ht;
2680 }
2681
2682 DBG("Thread channel poll started");
2683
2684 /* Size is set to 1 for the consumer_channel pipe */
2685 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2686 if (ret < 0) {
2687 ERR("Poll set creation failed");
2688 goto end_poll;
2689 }
2690
2691 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2692 if (ret < 0) {
2693 goto end;
2694 }
2695
2696 /* Main loop */
2697 DBG("Channel main loop started");
2698
2699 while (1) {
2700 /* Only the channel pipe is set */
2701 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2702 goto end;
2703 }
2704
2705 restart:
2706 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2707 ret = lttng_poll_wait(&events, -1);
2708 DBG("Channel event catched in thread");
2709 if (ret < 0) {
2710 if (errno == EINTR) {
2711 ERR("Poll EINTR catched");
2712 goto restart;
2713 }
2714 goto end;
2715 }
2716
2717 nb_fd = ret;
2718
2719 /* From here, the event is a channel wait fd */
2720 for (i = 0; i < nb_fd; i++) {
2721 revents = LTTNG_POLL_GETEV(&events, i);
2722 pollfd = LTTNG_POLL_GETFD(&events, i);
2723
2724 /* Just don't waste time if no returned events for the fd */
2725 if (!revents) {
2726 continue;
2727 }
2728 if (pollfd == ctx->consumer_channel_pipe[0]) {
2729 if (revents & (LPOLLERR | LPOLLHUP)) {
2730 DBG("Channel thread pipe hung up");
2731 /*
2732 * Remove the pipe from the poll set and continue the loop
2733 * since their might be data to consume.
2734 */
2735 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2736 continue;
2737 } else if (revents & LPOLLIN) {
2738 enum consumer_channel_action action;
2739 uint64_t key;
2740
2741 ret = read_channel_pipe(ctx, &chan, &key, &action);
2742 if (ret <= 0) {
2743 ERR("Error reading channel pipe");
2744 continue;
2745 }
2746
2747 switch (action) {
2748 case CONSUMER_CHANNEL_ADD:
2749 DBG("Adding channel %d to poll set",
2750 chan->wait_fd);
2751
2752 lttng_ht_node_init_u64(&chan->wait_fd_node,
2753 chan->wait_fd);
2754 rcu_read_lock();
2755 lttng_ht_add_unique_u64(channel_ht,
2756 &chan->wait_fd_node);
2757 rcu_read_unlock();
2758 /* Add channel to the global poll events list */
2759 lttng_poll_add(&events, chan->wait_fd,
2760 LPOLLIN | LPOLLPRI);
2761 break;
2762 case CONSUMER_CHANNEL_DEL:
2763 {
2764 struct lttng_consumer_stream *stream, *stmp;
2765
2766 rcu_read_lock();
2767 chan = consumer_find_channel(key);
2768 if (!chan) {
2769 rcu_read_unlock();
2770 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2771 break;
2772 }
2773 lttng_poll_del(&events, chan->wait_fd);
2774 iter.iter.node = &chan->wait_fd_node.node;
2775 ret = lttng_ht_del(channel_ht, &iter);
2776 assert(ret == 0);
2777 consumer_close_channel_streams(chan);
2778
2779 switch (consumer_data.type) {
2780 case LTTNG_CONSUMER_KERNEL:
2781 break;
2782 case LTTNG_CONSUMER32_UST:
2783 case LTTNG_CONSUMER64_UST:
2784 /* Delete streams that might have been left in the stream list. */
2785 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2786 send_node) {
2787 cds_list_del(&stream->send_node);
2788 lttng_ustconsumer_del_stream(stream);
2789 uatomic_sub(&stream->chan->refcount, 1);
2790 assert(&chan->refcount);
2791 free(stream);
2792 }
2793 break;
2794 default:
2795 ERR("Unknown consumer_data type");
2796 assert(0);
2797 }
2798
2799 /*
2800 * Release our own refcount. Force channel deletion even if
2801 * streams were not initialized.
2802 */
2803 if (!uatomic_sub_return(&chan->refcount, 1)) {
2804 consumer_del_channel(chan);
2805 }
2806 rcu_read_unlock();
2807 goto restart;
2808 }
2809 case CONSUMER_CHANNEL_QUIT:
2810 /*
2811 * Remove the pipe from the poll set and continue the loop
2812 * since their might be data to consume.
2813 */
2814 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2815 continue;
2816 default:
2817 ERR("Unknown action");
2818 break;
2819 }
2820 }
2821
2822 /* Handle other stream */
2823 continue;
2824 }
2825
2826 rcu_read_lock();
2827 {
2828 uint64_t tmp_id = (uint64_t) pollfd;
2829
2830 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2831 }
2832 node = lttng_ht_iter_get_node_u64(&iter);
2833 assert(node);
2834
2835 chan = caa_container_of(node, struct lttng_consumer_channel,
2836 wait_fd_node);
2837
2838 /* Check for error event */
2839 if (revents & (LPOLLERR | LPOLLHUP)) {
2840 DBG("Channel fd %d is hup|err.", pollfd);
2841
2842 lttng_poll_del(&events, chan->wait_fd);
2843 ret = lttng_ht_del(channel_ht, &iter);
2844 assert(ret == 0);
2845 assert(cds_list_empty(&chan->streams.head));
2846 consumer_close_channel_streams(chan);
2847
2848 /* Release our own refcount */
2849 if (!uatomic_sub_return(&chan->refcount, 1)
2850 && !uatomic_read(&chan->nb_init_stream_left)) {
2851 consumer_del_channel(chan);
2852 }
2853 }
2854
2855 /* Release RCU lock for the channel looked up */
2856 rcu_read_unlock();
2857 }
2858 }
2859
2860 end:
2861 lttng_poll_clean(&events);
2862 end_poll:
2863 destroy_channel_ht(channel_ht);
2864 end_ht:
2865 DBG("Channel poll thread exiting");
2866 rcu_unregister_thread();
2867 return NULL;
2868 }
2869
2870 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2871 struct pollfd *sockpoll, int client_socket)
2872 {
2873 int ret;
2874
2875 assert(ctx);
2876 assert(sockpoll);
2877
2878 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2879 ret = -1;
2880 goto error;
2881 }
2882 DBG("Metadata connection on client_socket");
2883
2884 /* Blocking call, waiting for transmission */
2885 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2886 if (ctx->consumer_metadata_socket < 0) {
2887 WARN("On accept metadata");
2888 ret = -1;
2889 goto error;
2890 }
2891 ret = 0;
2892
2893 error:
2894 return ret;
2895 }
2896
2897 /*
2898 * This thread listens on the consumerd socket and receives the file
2899 * descriptors from the session daemon.
2900 */
2901 void *consumer_thread_sessiond_poll(void *data)
2902 {
2903 int sock = -1, client_socket, ret;
2904 /*
2905 * structure to poll for incoming data on communication socket avoids
2906 * making blocking sockets.
2907 */
2908 struct pollfd consumer_sockpoll[2];
2909 struct lttng_consumer_local_data *ctx = data;
2910
2911 rcu_register_thread();
2912
2913 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2914 unlink(ctx->consumer_command_sock_path);
2915 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2916 if (client_socket < 0) {
2917 ERR("Cannot create command socket");
2918 goto end;
2919 }
2920
2921 ret = lttcomm_listen_unix_sock(client_socket);
2922 if (ret < 0) {
2923 goto end;
2924 }
2925
2926 DBG("Sending ready command to lttng-sessiond");
2927 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2928 /* return < 0 on error, but == 0 is not fatal */
2929 if (ret < 0) {
2930 ERR("Error sending ready command to lttng-sessiond");
2931 goto end;
2932 }
2933
2934 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2935 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2936 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2937 consumer_sockpoll[1].fd = client_socket;
2938 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2939
2940 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2941 goto end;
2942 }
2943 DBG("Connection on client_socket");
2944
2945 /* Blocking call, waiting for transmission */
2946 sock = lttcomm_accept_unix_sock(client_socket);
2947 if (sock < 0) {
2948 WARN("On accept");
2949 goto end;
2950 }
2951
2952 /*
2953 * Setup metadata socket which is the second socket connection on the
2954 * command unix socket.
2955 */
2956 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2957 if (ret < 0) {
2958 goto end;
2959 }
2960
2961 /* This socket is not useful anymore. */
2962 ret = close(client_socket);
2963 if (ret < 0) {
2964 PERROR("close client_socket");
2965 }
2966 client_socket = -1;
2967
2968 /* update the polling structure to poll on the established socket */
2969 consumer_sockpoll[1].fd = sock;
2970 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2971
2972 while (1) {
2973 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2974 goto end;
2975 }
2976 DBG("Incoming command on sock");
2977 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2978 if (ret == -ENOENT) {
2979 DBG("Received STOP command");
2980 goto end;
2981 }
2982 if (ret <= 0) {
2983 /*
2984 * This could simply be a session daemon quitting. Don't output
2985 * ERR() here.
2986 */
2987 DBG("Communication interrupted on command socket");
2988 goto end;
2989 }
2990 if (consumer_quit) {
2991 DBG("consumer_thread_receive_fds received quit from signal");
2992 goto end;
2993 }
2994 DBG("received command on sock");
2995 }
2996 end:
2997 DBG("Consumer thread sessiond poll exiting");
2998
2999 /*
3000 * Close metadata streams since the producer is the session daemon which
3001 * just died.
3002 *
3003 * NOTE: for now, this only applies to the UST tracer.
3004 */
3005 lttng_consumer_close_metadata();
3006
3007 /*
3008 * when all fds have hung up, the polling thread
3009 * can exit cleanly
3010 */
3011 consumer_quit = 1;
3012
3013 /*
3014 * Notify the data poll thread to poll back again and test the
3015 * consumer_quit state that we just set so to quit gracefully.
3016 */
3017 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3018
3019 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3020
3021 /* Cleaning up possibly open sockets. */
3022 if (sock >= 0) {
3023 ret = close(sock);
3024 if (ret < 0) {
3025 PERROR("close sock sessiond poll");
3026 }
3027 }
3028 if (client_socket >= 0) {
3029 ret = close(client_socket);
3030 if (ret < 0) {
3031 PERROR("close client_socket sessiond poll");
3032 }
3033 }
3034
3035 rcu_unregister_thread();
3036 return NULL;
3037 }
3038
3039 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3040 struct lttng_consumer_local_data *ctx)
3041 {
3042 ssize_t ret;
3043
3044 pthread_mutex_lock(&stream->lock);
3045
3046 switch (consumer_data.type) {
3047 case LTTNG_CONSUMER_KERNEL:
3048 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3049 break;
3050 case LTTNG_CONSUMER32_UST:
3051 case LTTNG_CONSUMER64_UST:
3052 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3053 break;
3054 default:
3055 ERR("Unknown consumer_data type");
3056 assert(0);
3057 ret = -ENOSYS;
3058 break;
3059 }
3060
3061 pthread_mutex_unlock(&stream->lock);
3062 return ret;
3063 }
3064
3065 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3066 {
3067 switch (consumer_data.type) {
3068 case LTTNG_CONSUMER_KERNEL:
3069 return lttng_kconsumer_on_recv_stream(stream);
3070 case LTTNG_CONSUMER32_UST:
3071 case LTTNG_CONSUMER64_UST:
3072 return lttng_ustconsumer_on_recv_stream(stream);
3073 default:
3074 ERR("Unknown consumer_data type");
3075 assert(0);
3076 return -ENOSYS;
3077 }
3078 }
3079
3080 /*
3081 * Allocate and set consumer data hash tables.
3082 */
3083 void lttng_consumer_init(void)
3084 {
3085 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3086 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3087 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3088 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3089 }
3090
3091 /*
3092 * Process the ADD_RELAYD command receive by a consumer.
3093 *
3094 * This will create a relayd socket pair and add it to the relayd hash table.
3095 * The caller MUST acquire a RCU read side lock before calling it.
3096 */
3097 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3098 struct lttng_consumer_local_data *ctx, int sock,
3099 struct pollfd *consumer_sockpoll,
3100 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3101 {
3102 int fd = -1, ret = -1, relayd_created = 0;
3103 enum lttng_error_code ret_code = LTTNG_OK;
3104 struct consumer_relayd_sock_pair *relayd = NULL;
3105
3106 assert(ctx);
3107 assert(relayd_sock);
3108
3109 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3110
3111 /* Get relayd reference if exists. */
3112 relayd = consumer_find_relayd(net_seq_idx);
3113 if (relayd == NULL) {
3114 assert(sock_type == LTTNG_STREAM_CONTROL);
3115 /* Not found. Allocate one. */
3116 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3117 if (relayd == NULL) {
3118 ret = -ENOMEM;
3119 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3120 goto error;
3121 } else {
3122 relayd->sessiond_session_id = sessiond_id;
3123 relayd_created = 1;
3124 }
3125
3126 /*
3127 * This code path MUST continue to the consumer send status message to
3128 * we can notify the session daemon and continue our work without
3129 * killing everything.
3130 */
3131 } else {
3132 /*
3133 * relayd key should never be found for control socket.
3134 */
3135 assert(sock_type != LTTNG_STREAM_CONTROL);
3136 }
3137
3138 /* First send a status message before receiving the fds. */
3139 ret = consumer_send_status_msg(sock, LTTNG_OK);
3140 if (ret < 0) {
3141 /* Somehow, the session daemon is not responding anymore. */
3142 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3143 goto error_nosignal;
3144 }
3145
3146 /* Poll on consumer socket. */
3147 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3148 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3149 ret = -EINTR;
3150 goto error_nosignal;
3151 }
3152
3153 /* Get relayd socket from session daemon */
3154 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3155 if (ret != sizeof(fd)) {
3156 ret = -1;
3157 fd = -1; /* Just in case it gets set with an invalid value. */
3158
3159 /*
3160 * Failing to receive FDs might indicate a major problem such as
3161 * reaching a fd limit during the receive where the kernel returns a
3162 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3163 * don't take any chances and stop everything.
3164 *
3165 * XXX: Feature request #558 will fix that and avoid this possible
3166 * issue when reaching the fd limit.
3167 */
3168 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3169 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3170 goto error;
3171 }
3172
3173 /* Copy socket information and received FD */
3174 switch (sock_type) {
3175 case LTTNG_STREAM_CONTROL:
3176 /* Copy received lttcomm socket */
3177 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3178 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3179 /* Handle create_sock error. */
3180 if (ret < 0) {
3181 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3182 goto error;
3183 }
3184 /*
3185 * Close the socket created internally by
3186 * lttcomm_create_sock, so we can replace it by the one
3187 * received from sessiond.
3188 */
3189 if (close(relayd->control_sock.sock.fd)) {
3190 PERROR("close");
3191 }
3192
3193 /* Assign new file descriptor */
3194 relayd->control_sock.sock.fd = fd;
3195 fd = -1; /* For error path */
3196 /* Assign version values. */
3197 relayd->control_sock.major = relayd_sock->major;
3198 relayd->control_sock.minor = relayd_sock->minor;
3199
3200 /*
3201 * Create a session on the relayd and store the returned id. Lock the
3202 * control socket mutex if the relayd was NOT created before.
3203 */
3204 if (!relayd_created) {
3205 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3206 }
3207 ret = relayd_create_session(&relayd->control_sock,
3208 &relayd->relayd_session_id);
3209 if (!relayd_created) {
3210 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3211 }
3212 if (ret < 0) {
3213 /*
3214 * Close all sockets of a relayd object. It will be freed if it was
3215 * created at the error code path or else it will be garbage
3216 * collect.
3217 */
3218 (void) relayd_close(&relayd->control_sock);
3219 (void) relayd_close(&relayd->data_sock);
3220 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3221 goto error;
3222 }
3223
3224 break;
3225 case LTTNG_STREAM_DATA:
3226 /* Copy received lttcomm socket */
3227 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3228 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3229 /* Handle create_sock error. */
3230 if (ret < 0) {
3231 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3232 goto error;
3233 }
3234 /*
3235 * Close the socket created internally by
3236 * lttcomm_create_sock, so we can replace it by the one
3237 * received from sessiond.
3238 */
3239 if (close(relayd->data_sock.sock.fd)) {
3240 PERROR("close");
3241 }
3242
3243 /* Assign new file descriptor */
3244 relayd->data_sock.sock.fd = fd;
3245 fd = -1; /* for eventual error paths */
3246 /* Assign version values. */
3247 relayd->data_sock.major = relayd_sock->major;
3248 relayd->data_sock.minor = relayd_sock->minor;
3249 break;
3250 default:
3251 ERR("Unknown relayd socket type (%d)", sock_type);
3252 ret = -1;
3253 ret_code = LTTCOMM_CONSUMERD_FATAL;
3254 goto error;
3255 }
3256
3257 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3258 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3259 relayd->net_seq_idx, fd);
3260
3261 /* We successfully added the socket. Send status back. */
3262 ret = consumer_send_status_msg(sock, ret_code);
3263 if (ret < 0) {
3264 /* Somehow, the session daemon is not responding anymore. */
3265 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3266 goto error_nosignal;
3267 }
3268
3269 /*
3270 * Add relayd socket pair to consumer data hashtable. If object already
3271 * exists or on error, the function gracefully returns.
3272 */
3273 add_relayd(relayd);
3274
3275 /* All good! */
3276 return 0;
3277
3278 error:
3279 if (consumer_send_status_msg(sock, ret_code) < 0) {
3280 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3281 }
3282
3283 error_nosignal:
3284 /* Close received socket if valid. */
3285 if (fd >= 0) {
3286 if (close(fd)) {
3287 PERROR("close received socket");
3288 }
3289 }
3290
3291 if (relayd_created) {
3292 free(relayd);
3293 }
3294
3295 return ret;
3296 }
3297
3298 /*
3299 * Try to lock the stream mutex.
3300 *
3301 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3302 */
3303 static int stream_try_lock(struct lttng_consumer_stream *stream)
3304 {
3305 int ret;
3306
3307 assert(stream);
3308
3309 /*
3310 * Try to lock the stream mutex. On failure, we know that the stream is
3311 * being used else where hence there is data still being extracted.
3312 */
3313 ret = pthread_mutex_trylock(&stream->lock);
3314 if (ret) {
3315 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3316 ret = 0;
3317 goto end;
3318 }
3319
3320 ret = 1;
3321
3322 end:
3323 return ret;
3324 }
3325
3326 /*
3327 * Search for a relayd associated to the session id and return the reference.
3328 *
3329 * A rcu read side lock MUST be acquire before calling this function and locked
3330 * until the relayd object is no longer necessary.
3331 */
3332 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3333 {
3334 struct lttng_ht_iter iter;
3335 struct consumer_relayd_sock_pair *relayd = NULL;
3336
3337 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3338 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3339 node.node) {
3340 /*
3341 * Check by sessiond id which is unique here where the relayd session
3342 * id might not be when having multiple relayd.
3343 */
3344 if (relayd->sessiond_session_id == id) {
3345 /* Found the relayd. There can be only one per id. */
3346 goto found;
3347 }
3348 }
3349
3350 return NULL;
3351
3352 found:
3353 return relayd;
3354 }
3355
3356 /*
3357 * Check if for a given session id there is still data needed to be extract
3358 * from the buffers.
3359 *
3360 * Return 1 if data is pending or else 0 meaning ready to be read.
3361 */
3362 int consumer_data_pending(uint64_t id)
3363 {
3364 int ret;
3365 struct lttng_ht_iter iter;
3366 struct lttng_ht *ht;
3367 struct lttng_consumer_stream *stream;
3368 struct consumer_relayd_sock_pair *relayd = NULL;
3369 int (*data_pending)(struct lttng_consumer_stream *);
3370
3371 DBG("Consumer data pending command on session id %" PRIu64, id);
3372
3373 rcu_read_lock();
3374 pthread_mutex_lock(&consumer_data.lock);
3375
3376 switch (consumer_data.type) {
3377 case LTTNG_CONSUMER_KERNEL:
3378 data_pending = lttng_kconsumer_data_pending;
3379 break;
3380 case LTTNG_CONSUMER32_UST:
3381 case LTTNG_CONSUMER64_UST:
3382 data_pending = lttng_ustconsumer_data_pending;
3383 break;
3384 default:
3385 ERR("Unknown consumer data type");
3386 assert(0);
3387 }
3388
3389 /* Ease our life a bit */
3390 ht = consumer_data.stream_list_ht;
3391
3392 relayd = find_relayd_by_session_id(id);
3393 if (relayd) {
3394 /* Send init command for data pending. */
3395 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3396 ret = relayd_begin_data_pending(&relayd->control_sock,
3397 relayd->relayd_session_id);
3398 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3399 if (ret < 0) {
3400 /* Communication error thus the relayd so no data pending. */
3401 goto data_not_pending;
3402 }
3403 }
3404
3405 cds_lfht_for_each_entry_duplicate(ht->ht,
3406 ht->hash_fct(&id, lttng_ht_seed),
3407 ht->match_fct, &id,
3408 &iter.iter, stream, node_session_id.node) {
3409 /* If this call fails, the stream is being used hence data pending. */
3410 ret = stream_try_lock(stream);
3411 if (!ret) {
3412 goto data_pending;
3413 }
3414
3415 /*
3416 * A removed node from the hash table indicates that the stream has
3417 * been deleted thus having a guarantee that the buffers are closed
3418 * on the consumer side. However, data can still be transmitted
3419 * over the network so don't skip the relayd check.
3420 */
3421 ret = cds_lfht_is_node_deleted(&stream->node.node);
3422 if (!ret) {
3423 /* Check the stream if there is data in the buffers. */
3424 ret = data_pending(stream);
3425 if (ret == 1) {
3426 pthread_mutex_unlock(&stream->lock);
3427 goto data_pending;
3428 }
3429 }
3430
3431 /* Relayd check */
3432 if (relayd) {
3433 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3434 if (stream->metadata_flag) {
3435 ret = relayd_quiescent_control(&relayd->control_sock,
3436 stream->relayd_stream_id);
3437 } else {
3438 ret = relayd_data_pending(&relayd->control_sock,
3439 stream->relayd_stream_id,
3440 stream->next_net_seq_num - 1);
3441 }
3442 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3443 if (ret == 1) {
3444 pthread_mutex_unlock(&stream->lock);
3445 goto data_pending;
3446 }
3447 }
3448 pthread_mutex_unlock(&stream->lock);
3449 }
3450
3451 if (relayd) {
3452 unsigned int is_data_inflight = 0;
3453
3454 /* Send init command for data pending. */
3455 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3456 ret = relayd_end_data_pending(&relayd->control_sock,
3457 relayd->relayd_session_id, &is_data_inflight);
3458 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3459 if (ret < 0) {
3460 goto data_not_pending;
3461 }
3462 if (is_data_inflight) {
3463 goto data_pending;
3464 }
3465 }
3466
3467 /*
3468 * Finding _no_ node in the hash table and no inflight data means that the
3469 * stream(s) have been removed thus data is guaranteed to be available for
3470 * analysis from the trace files.
3471 */
3472
3473 data_not_pending:
3474 /* Data is available to be read by a viewer. */
3475 pthread_mutex_unlock(&consumer_data.lock);
3476 rcu_read_unlock();
3477 return 0;
3478
3479 data_pending:
3480 /* Data is still being extracted from buffers. */
3481 pthread_mutex_unlock(&consumer_data.lock);
3482 rcu_read_unlock();
3483 return 1;
3484 }
3485
3486 /*
3487 * Send a ret code status message to the sessiond daemon.
3488 *
3489 * Return the sendmsg() return value.
3490 */
3491 int consumer_send_status_msg(int sock, int ret_code)
3492 {
3493 struct lttcomm_consumer_status_msg msg;
3494
3495 msg.ret_code = ret_code;
3496
3497 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3498 }
3499
3500 /*
3501 * Send a channel status message to the sessiond daemon.
3502 *
3503 * Return the sendmsg() return value.
3504 */
3505 int consumer_send_status_channel(int sock,
3506 struct lttng_consumer_channel *channel)
3507 {
3508 struct lttcomm_consumer_status_channel msg;
3509
3510 assert(sock >= 0);
3511
3512 if (!channel) {
3513 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3514 } else {
3515 msg.ret_code = LTTNG_OK;
3516 msg.key = channel->key;
3517 msg.stream_count = channel->streams.count;
3518 }
3519
3520 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3521 }
This page took 0.094008 seconds and 3 git commands to generate.