9003005a0c86ea8546afb94af727f068b878a54e
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 switch (consumer_data.type) {
290 case LTTNG_CONSUMER_KERNEL:
291 break;
292 case LTTNG_CONSUMER32_UST:
293 case LTTNG_CONSUMER64_UST:
294 lttng_ustconsumer_free_channel(channel);
295 break;
296 default:
297 ERR("Unknown consumer_data type");
298 abort();
299 }
300 free(channel);
301 }
302
303 /*
304 * RCU protected relayd socket pair free.
305 */
306 static void free_relayd_rcu(struct rcu_head *head)
307 {
308 struct lttng_ht_node_u64 *node =
309 caa_container_of(head, struct lttng_ht_node_u64, head);
310 struct consumer_relayd_sock_pair *relayd =
311 caa_container_of(node, struct consumer_relayd_sock_pair, node);
312
313 /*
314 * Close all sockets. This is done in the call RCU since we don't want the
315 * socket fds to be reassigned thus potentially creating bad state of the
316 * relayd object.
317 *
318 * We do not have to lock the control socket mutex here since at this stage
319 * there is no one referencing to this relayd object.
320 */
321 (void) relayd_close(&relayd->control_sock);
322 (void) relayd_close(&relayd->data_sock);
323
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_fd = -1;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1234 off_t orig_offset)
1235 {
1236 int outfd = stream->out_fd;
1237
1238 /*
1239 * This does a blocking write-and-wait on any page that belongs to the
1240 * subbuffer prior to the one we just wrote.
1241 * Don't care about error values, as these are just hints and ways to
1242 * limit the amount of page cache used.
1243 */
1244 if (orig_offset < stream->max_sb_size) {
1245 return;
1246 }
1247 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1248 stream->max_sb_size,
1249 SYNC_FILE_RANGE_WAIT_BEFORE
1250 | SYNC_FILE_RANGE_WRITE
1251 | SYNC_FILE_RANGE_WAIT_AFTER);
1252 /*
1253 * Give hints to the kernel about how we access the file:
1254 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1255 * we write it.
1256 *
1257 * We need to call fadvise again after the file grows because the
1258 * kernel does not seem to apply fadvise to non-existing parts of the
1259 * file.
1260 *
1261 * Call fadvise _after_ having waited for the page writeback to
1262 * complete because the dirty page writeback semantic is not well
1263 * defined. So it can be expected to lead to lower throughput in
1264 * streaming.
1265 */
1266 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1267 stream->max_sb_size, POSIX_FADV_DONTNEED);
1268 }
1269
1270 /*
1271 * Initialise the necessary environnement :
1272 * - create a new context
1273 * - create the poll_pipe
1274 * - create the should_quit pipe (for signal handler)
1275 * - create the thread pipe (for splice)
1276 *
1277 * Takes a function pointer as argument, this function is called when data is
1278 * available on a buffer. This function is responsible to do the
1279 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1280 * buffer configuration and then kernctl_put_next_subbuf at the end.
1281 *
1282 * Returns a pointer to the new context or NULL on error.
1283 */
1284 struct lttng_consumer_local_data *lttng_consumer_create(
1285 enum lttng_consumer_type type,
1286 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1287 struct lttng_consumer_local_data *ctx),
1288 int (*recv_channel)(struct lttng_consumer_channel *channel),
1289 int (*recv_stream)(struct lttng_consumer_stream *stream),
1290 int (*update_stream)(uint64_t stream_key, uint32_t state))
1291 {
1292 int ret;
1293 struct lttng_consumer_local_data *ctx;
1294
1295 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1296 consumer_data.type == type);
1297 consumer_data.type = type;
1298
1299 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1300 if (ctx == NULL) {
1301 PERROR("allocating context");
1302 goto error;
1303 }
1304
1305 ctx->consumer_error_socket = -1;
1306 ctx->consumer_metadata_socket = -1;
1307 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1308 /* assign the callbacks */
1309 ctx->on_buffer_ready = buffer_ready;
1310 ctx->on_recv_channel = recv_channel;
1311 ctx->on_recv_stream = recv_stream;
1312 ctx->on_update_stream = update_stream;
1313
1314 ctx->consumer_data_pipe = lttng_pipe_open(0);
1315 if (!ctx->consumer_data_pipe) {
1316 goto error_poll_pipe;
1317 }
1318
1319 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1320 if (!ctx->consumer_wakeup_pipe) {
1321 goto error_wakeup_pipe;
1322 }
1323
1324 ret = pipe(ctx->consumer_should_quit);
1325 if (ret < 0) {
1326 PERROR("Error creating recv pipe");
1327 goto error_quit_pipe;
1328 }
1329
1330 ret = pipe(ctx->consumer_channel_pipe);
1331 if (ret < 0) {
1332 PERROR("Error creating channel pipe");
1333 goto error_channel_pipe;
1334 }
1335
1336 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1337 if (!ctx->consumer_metadata_pipe) {
1338 goto error_metadata_pipe;
1339 }
1340
1341 return ctx;
1342
1343 error_metadata_pipe:
1344 utils_close_pipe(ctx->consumer_channel_pipe);
1345 error_channel_pipe:
1346 utils_close_pipe(ctx->consumer_should_quit);
1347 error_quit_pipe:
1348 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1349 error_wakeup_pipe:
1350 lttng_pipe_destroy(ctx->consumer_data_pipe);
1351 error_poll_pipe:
1352 free(ctx);
1353 error:
1354 return NULL;
1355 }
1356
1357 /*
1358 * Iterate over all streams of the hashtable and free them properly.
1359 */
1360 static void destroy_data_stream_ht(struct lttng_ht *ht)
1361 {
1362 struct lttng_ht_iter iter;
1363 struct lttng_consumer_stream *stream;
1364
1365 if (ht == NULL) {
1366 return;
1367 }
1368
1369 rcu_read_lock();
1370 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1371 /*
1372 * Ignore return value since we are currently cleaning up so any error
1373 * can't be handled.
1374 */
1375 (void) consumer_del_stream(stream, ht);
1376 }
1377 rcu_read_unlock();
1378
1379 lttng_ht_destroy(ht);
1380 }
1381
1382 /*
1383 * Iterate over all streams of the metadata hashtable and free them
1384 * properly.
1385 */
1386 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1387 {
1388 struct lttng_ht_iter iter;
1389 struct lttng_consumer_stream *stream;
1390
1391 if (ht == NULL) {
1392 return;
1393 }
1394
1395 rcu_read_lock();
1396 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1397 /*
1398 * Ignore return value since we are currently cleaning up so any error
1399 * can't be handled.
1400 */
1401 (void) consumer_del_metadata_stream(stream, ht);
1402 }
1403 rcu_read_unlock();
1404
1405 lttng_ht_destroy(ht);
1406 }
1407
1408 /*
1409 * Close all fds associated with the instance and free the context.
1410 */
1411 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1412 {
1413 int ret;
1414
1415 DBG("Consumer destroying it. Closing everything.");
1416
1417 if (!ctx) {
1418 return;
1419 }
1420
1421 destroy_data_stream_ht(data_ht);
1422 destroy_metadata_stream_ht(metadata_ht);
1423
1424 ret = close(ctx->consumer_error_socket);
1425 if (ret) {
1426 PERROR("close");
1427 }
1428 ret = close(ctx->consumer_metadata_socket);
1429 if (ret) {
1430 PERROR("close");
1431 }
1432 utils_close_pipe(ctx->consumer_channel_pipe);
1433 lttng_pipe_destroy(ctx->consumer_data_pipe);
1434 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1435 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1436 utils_close_pipe(ctx->consumer_should_quit);
1437
1438 unlink(ctx->consumer_command_sock_path);
1439 free(ctx);
1440 }
1441
1442 /*
1443 * Write the metadata stream id on the specified file descriptor.
1444 */
1445 static int write_relayd_metadata_id(int fd,
1446 struct lttng_consumer_stream *stream,
1447 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1448 {
1449 ssize_t ret;
1450 struct lttcomm_relayd_metadata_payload hdr;
1451
1452 hdr.stream_id = htobe64(stream->relayd_stream_id);
1453 hdr.padding_size = htobe32(padding);
1454 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1455 if (ret < sizeof(hdr)) {
1456 /*
1457 * This error means that the fd's end is closed so ignore the PERROR
1458 * not to clubber the error output since this can happen in a normal
1459 * code path.
1460 */
1461 if (errno != EPIPE) {
1462 PERROR("write metadata stream id");
1463 }
1464 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1465 /*
1466 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1467 * handle writting the missing part so report that as an error and
1468 * don't lie to the caller.
1469 */
1470 ret = -1;
1471 goto end;
1472 }
1473 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1474 stream->relayd_stream_id, padding);
1475
1476 end:
1477 return (int) ret;
1478 }
1479
1480 /*
1481 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1482 * core function for writing trace buffers to either the local filesystem or
1483 * the network.
1484 *
1485 * It must be called with the stream lock held.
1486 *
1487 * Careful review MUST be put if any changes occur!
1488 *
1489 * Returns the number of bytes written
1490 */
1491 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1492 struct lttng_consumer_local_data *ctx,
1493 struct lttng_consumer_stream *stream, unsigned long len,
1494 unsigned long padding,
1495 struct ctf_packet_index *index)
1496 {
1497 unsigned long mmap_offset;
1498 void *mmap_base;
1499 ssize_t ret = 0;
1500 off_t orig_offset = stream->out_fd_offset;
1501 /* Default is on the disk */
1502 int outfd = stream->out_fd;
1503 struct consumer_relayd_sock_pair *relayd = NULL;
1504 unsigned int relayd_hang_up = 0;
1505
1506 /* RCU lock for the relayd pointer */
1507 rcu_read_lock();
1508
1509 /* Flag that the current stream if set for network streaming. */
1510 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1511 relayd = consumer_find_relayd(stream->net_seq_idx);
1512 if (relayd == NULL) {
1513 ret = -EPIPE;
1514 goto end;
1515 }
1516 }
1517
1518 /* get the offset inside the fd to mmap */
1519 switch (consumer_data.type) {
1520 case LTTNG_CONSUMER_KERNEL:
1521 mmap_base = stream->mmap_base;
1522 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1523 if (ret < 0) {
1524 ret = -errno;
1525 PERROR("tracer ctl get_mmap_read_offset");
1526 goto end;
1527 }
1528 break;
1529 case LTTNG_CONSUMER32_UST:
1530 case LTTNG_CONSUMER64_UST:
1531 mmap_base = lttng_ustctl_get_mmap_base(stream);
1532 if (!mmap_base) {
1533 ERR("read mmap get mmap base for stream %s", stream->name);
1534 ret = -EPERM;
1535 goto end;
1536 }
1537 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1538 if (ret != 0) {
1539 PERROR("tracer ctl get_mmap_read_offset");
1540 ret = -EINVAL;
1541 goto end;
1542 }
1543 break;
1544 default:
1545 ERR("Unknown consumer_data type");
1546 assert(0);
1547 }
1548
1549 /* Handle stream on the relayd if the output is on the network */
1550 if (relayd) {
1551 unsigned long netlen = len;
1552
1553 /*
1554 * Lock the control socket for the complete duration of the function
1555 * since from this point on we will use the socket.
1556 */
1557 if (stream->metadata_flag) {
1558 /* Metadata requires the control socket. */
1559 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1560 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1561 }
1562
1563 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1564 if (ret < 0) {
1565 relayd_hang_up = 1;
1566 goto write_error;
1567 }
1568 /* Use the returned socket. */
1569 outfd = ret;
1570
1571 /* Write metadata stream id before payload */
1572 if (stream->metadata_flag) {
1573 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1574 if (ret < 0) {
1575 relayd_hang_up = 1;
1576 goto write_error;
1577 }
1578 }
1579 } else {
1580 /* No streaming, we have to set the len with the full padding */
1581 len += padding;
1582
1583 /*
1584 * Check if we need to change the tracefile before writing the packet.
1585 */
1586 if (stream->chan->tracefile_size > 0 &&
1587 (stream->tracefile_size_current + len) >
1588 stream->chan->tracefile_size) {
1589 ret = utils_rotate_stream_file(stream->chan->pathname,
1590 stream->name, stream->chan->tracefile_size,
1591 stream->chan->tracefile_count, stream->uid, stream->gid,
1592 stream->out_fd, &(stream->tracefile_count_current),
1593 &stream->out_fd);
1594 if (ret < 0) {
1595 ERR("Rotating output file");
1596 goto end;
1597 }
1598 outfd = stream->out_fd;
1599
1600 if (stream->index_fd >= 0) {
1601 ret = close(stream->index_fd);
1602 if (ret < 0) {
1603 PERROR("Closing index");
1604 goto end;
1605 }
1606 stream->index_fd = -1;
1607 ret = index_create_file(stream->chan->pathname,
1608 stream->name, stream->uid, stream->gid,
1609 stream->chan->tracefile_size,
1610 stream->tracefile_count_current);
1611 if (ret < 0) {
1612 goto end;
1613 }
1614 stream->index_fd = ret;
1615 }
1616
1617 /* Reset current size because we just perform a rotation. */
1618 stream->tracefile_size_current = 0;
1619 stream->out_fd_offset = 0;
1620 orig_offset = 0;
1621 }
1622 stream->tracefile_size_current += len;
1623 if (index) {
1624 index->offset = htobe64(stream->out_fd_offset);
1625 }
1626 }
1627
1628 /*
1629 * This call guarantee that len or less is returned. It's impossible to
1630 * receive a ret value that is bigger than len.
1631 */
1632 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1633 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1634 if (ret < 0 || ((size_t) ret != len)) {
1635 /*
1636 * Report error to caller if nothing was written else at least send the
1637 * amount written.
1638 */
1639 if (ret < 0) {
1640 ret = -errno;
1641 }
1642 relayd_hang_up = 1;
1643
1644 /* Socket operation failed. We consider the relayd dead */
1645 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1646 /*
1647 * This is possible if the fd is closed on the other side
1648 * (outfd) or any write problem. It can be verbose a bit for a
1649 * normal execution if for instance the relayd is stopped
1650 * abruptly. This can happen so set this to a DBG statement.
1651 */
1652 DBG("Consumer mmap write detected relayd hang up");
1653 } else {
1654 /* Unhandled error, print it and stop function right now. */
1655 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1656 }
1657 goto write_error;
1658 }
1659 stream->output_written += ret;
1660
1661 /* This call is useless on a socket so better save a syscall. */
1662 if (!relayd) {
1663 /* This won't block, but will start writeout asynchronously */
1664 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1665 SYNC_FILE_RANGE_WRITE);
1666 stream->out_fd_offset += len;
1667 }
1668 lttng_consumer_sync_trace_file(stream, orig_offset);
1669
1670 write_error:
1671 /*
1672 * This is a special case that the relayd has closed its socket. Let's
1673 * cleanup the relayd object and all associated streams.
1674 */
1675 if (relayd && relayd_hang_up) {
1676 cleanup_relayd(relayd, ctx);
1677 }
1678
1679 end:
1680 /* Unlock only if ctrl socket used */
1681 if (relayd && stream->metadata_flag) {
1682 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1683 }
1684
1685 rcu_read_unlock();
1686 return ret;
1687 }
1688
1689 /*
1690 * Splice the data from the ring buffer to the tracefile.
1691 *
1692 * It must be called with the stream lock held.
1693 *
1694 * Returns the number of bytes spliced.
1695 */
1696 ssize_t lttng_consumer_on_read_subbuffer_splice(
1697 struct lttng_consumer_local_data *ctx,
1698 struct lttng_consumer_stream *stream, unsigned long len,
1699 unsigned long padding,
1700 struct ctf_packet_index *index)
1701 {
1702 ssize_t ret = 0, written = 0, ret_splice = 0;
1703 loff_t offset = 0;
1704 off_t orig_offset = stream->out_fd_offset;
1705 int fd = stream->wait_fd;
1706 /* Default is on the disk */
1707 int outfd = stream->out_fd;
1708 struct consumer_relayd_sock_pair *relayd = NULL;
1709 int *splice_pipe;
1710 unsigned int relayd_hang_up = 0;
1711
1712 switch (consumer_data.type) {
1713 case LTTNG_CONSUMER_KERNEL:
1714 break;
1715 case LTTNG_CONSUMER32_UST:
1716 case LTTNG_CONSUMER64_UST:
1717 /* Not supported for user space tracing */
1718 return -ENOSYS;
1719 default:
1720 ERR("Unknown consumer_data type");
1721 assert(0);
1722 }
1723
1724 /* RCU lock for the relayd pointer */
1725 rcu_read_lock();
1726
1727 /* Flag that the current stream if set for network streaming. */
1728 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1729 relayd = consumer_find_relayd(stream->net_seq_idx);
1730 if (relayd == NULL) {
1731 written = -ret;
1732 goto end;
1733 }
1734 }
1735 splice_pipe = stream->splice_pipe;
1736
1737 /* Write metadata stream id before payload */
1738 if (relayd) {
1739 unsigned long total_len = len;
1740
1741 if (stream->metadata_flag) {
1742 /*
1743 * Lock the control socket for the complete duration of the function
1744 * since from this point on we will use the socket.
1745 */
1746 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1747
1748 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1749 padding);
1750 if (ret < 0) {
1751 written = ret;
1752 relayd_hang_up = 1;
1753 goto write_error;
1754 }
1755
1756 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1757 }
1758
1759 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1760 if (ret < 0) {
1761 written = ret;
1762 relayd_hang_up = 1;
1763 goto write_error;
1764 }
1765 /* Use the returned socket. */
1766 outfd = ret;
1767 } else {
1768 /* No streaming, we have to set the len with the full padding */
1769 len += padding;
1770
1771 /*
1772 * Check if we need to change the tracefile before writing the packet.
1773 */
1774 if (stream->chan->tracefile_size > 0 &&
1775 (stream->tracefile_size_current + len) >
1776 stream->chan->tracefile_size) {
1777 ret = utils_rotate_stream_file(stream->chan->pathname,
1778 stream->name, stream->chan->tracefile_size,
1779 stream->chan->tracefile_count, stream->uid, stream->gid,
1780 stream->out_fd, &(stream->tracefile_count_current),
1781 &stream->out_fd);
1782 if (ret < 0) {
1783 written = ret;
1784 ERR("Rotating output file");
1785 goto end;
1786 }
1787 outfd = stream->out_fd;
1788
1789 if (stream->index_fd >= 0) {
1790 ret = close(stream->index_fd);
1791 if (ret < 0) {
1792 PERROR("Closing index");
1793 goto end;
1794 }
1795 stream->index_fd = -1;
1796 ret = index_create_file(stream->chan->pathname,
1797 stream->name, stream->uid, stream->gid,
1798 stream->chan->tracefile_size,
1799 stream->tracefile_count_current);
1800 if (ret < 0) {
1801 written = ret;
1802 goto end;
1803 }
1804 stream->index_fd = ret;
1805 }
1806
1807 /* Reset current size because we just perform a rotation. */
1808 stream->tracefile_size_current = 0;
1809 stream->out_fd_offset = 0;
1810 orig_offset = 0;
1811 }
1812 stream->tracefile_size_current += len;
1813 index->offset = htobe64(stream->out_fd_offset);
1814 }
1815
1816 while (len > 0) {
1817 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1818 (unsigned long)offset, len, fd, splice_pipe[1]);
1819 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1820 SPLICE_F_MOVE | SPLICE_F_MORE);
1821 DBG("splice chan to pipe, ret %zd", ret_splice);
1822 if (ret_splice < 0) {
1823 ret = errno;
1824 written = -ret;
1825 PERROR("Error in relay splice");
1826 goto splice_error;
1827 }
1828
1829 /* Handle stream on the relayd if the output is on the network */
1830 if (relayd && stream->metadata_flag) {
1831 size_t metadata_payload_size =
1832 sizeof(struct lttcomm_relayd_metadata_payload);
1833
1834 /* Update counter to fit the spliced data */
1835 ret_splice += metadata_payload_size;
1836 len += metadata_payload_size;
1837 /*
1838 * We do this so the return value can match the len passed as
1839 * argument to this function.
1840 */
1841 written -= metadata_payload_size;
1842 }
1843
1844 /* Splice data out */
1845 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1846 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1847 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1848 outfd, ret_splice);
1849 if (ret_splice < 0) {
1850 ret = errno;
1851 written = -ret;
1852 relayd_hang_up = 1;
1853 goto write_error;
1854 } else if (ret_splice > len) {
1855 /*
1856 * We don't expect this code path to be executed but you never know
1857 * so this is an extra protection agains a buggy splice().
1858 */
1859 ret = errno;
1860 written += ret_splice;
1861 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1862 len);
1863 goto splice_error;
1864 } else {
1865 /* All good, update current len and continue. */
1866 len -= ret_splice;
1867 }
1868
1869 /* This call is useless on a socket so better save a syscall. */
1870 if (!relayd) {
1871 /* This won't block, but will start writeout asynchronously */
1872 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1873 SYNC_FILE_RANGE_WRITE);
1874 stream->out_fd_offset += ret_splice;
1875 }
1876 stream->output_written += ret_splice;
1877 written += ret_splice;
1878 }
1879 lttng_consumer_sync_trace_file(stream, orig_offset);
1880 goto end;
1881
1882 write_error:
1883 /*
1884 * This is a special case that the relayd has closed its socket. Let's
1885 * cleanup the relayd object and all associated streams.
1886 */
1887 if (relayd && relayd_hang_up) {
1888 cleanup_relayd(relayd, ctx);
1889 /* Skip splice error so the consumer does not fail */
1890 goto end;
1891 }
1892
1893 splice_error:
1894 /* send the appropriate error description to sessiond */
1895 switch (ret) {
1896 case EINVAL:
1897 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1898 break;
1899 case ENOMEM:
1900 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1901 break;
1902 case ESPIPE:
1903 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1904 break;
1905 }
1906
1907 end:
1908 if (relayd && stream->metadata_flag) {
1909 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1910 }
1911
1912 rcu_read_unlock();
1913 return written;
1914 }
1915
1916 /*
1917 * Take a snapshot for a specific fd
1918 *
1919 * Returns 0 on success, < 0 on error
1920 */
1921 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1922 {
1923 switch (consumer_data.type) {
1924 case LTTNG_CONSUMER_KERNEL:
1925 return lttng_kconsumer_take_snapshot(stream);
1926 case LTTNG_CONSUMER32_UST:
1927 case LTTNG_CONSUMER64_UST:
1928 return lttng_ustconsumer_take_snapshot(stream);
1929 default:
1930 ERR("Unknown consumer_data type");
1931 assert(0);
1932 return -ENOSYS;
1933 }
1934 }
1935
1936 /*
1937 * Get the produced position
1938 *
1939 * Returns 0 on success, < 0 on error
1940 */
1941 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1942 unsigned long *pos)
1943 {
1944 switch (consumer_data.type) {
1945 case LTTNG_CONSUMER_KERNEL:
1946 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1947 case LTTNG_CONSUMER32_UST:
1948 case LTTNG_CONSUMER64_UST:
1949 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1950 default:
1951 ERR("Unknown consumer_data type");
1952 assert(0);
1953 return -ENOSYS;
1954 }
1955 }
1956
1957 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1958 int sock, struct pollfd *consumer_sockpoll)
1959 {
1960 switch (consumer_data.type) {
1961 case LTTNG_CONSUMER_KERNEL:
1962 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1963 case LTTNG_CONSUMER32_UST:
1964 case LTTNG_CONSUMER64_UST:
1965 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1966 default:
1967 ERR("Unknown consumer_data type");
1968 assert(0);
1969 return -ENOSYS;
1970 }
1971 }
1972
1973 void lttng_consumer_close_all_metadata(void)
1974 {
1975 switch (consumer_data.type) {
1976 case LTTNG_CONSUMER_KERNEL:
1977 /*
1978 * The Kernel consumer has a different metadata scheme so we don't
1979 * close anything because the stream will be closed by the session
1980 * daemon.
1981 */
1982 break;
1983 case LTTNG_CONSUMER32_UST:
1984 case LTTNG_CONSUMER64_UST:
1985 /*
1986 * Close all metadata streams. The metadata hash table is passed and
1987 * this call iterates over it by closing all wakeup fd. This is safe
1988 * because at this point we are sure that the metadata producer is
1989 * either dead or blocked.
1990 */
1991 lttng_ustconsumer_close_all_metadata(metadata_ht);
1992 break;
1993 default:
1994 ERR("Unknown consumer_data type");
1995 assert(0);
1996 }
1997 }
1998
1999 /*
2000 * Clean up a metadata stream and free its memory.
2001 */
2002 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2003 struct lttng_ht *ht)
2004 {
2005 struct lttng_consumer_channel *free_chan = NULL;
2006
2007 assert(stream);
2008 /*
2009 * This call should NEVER receive regular stream. It must always be
2010 * metadata stream and this is crucial for data structure synchronization.
2011 */
2012 assert(stream->metadata_flag);
2013
2014 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2015
2016 pthread_mutex_lock(&consumer_data.lock);
2017 pthread_mutex_lock(&stream->chan->lock);
2018 pthread_mutex_lock(&stream->lock);
2019
2020 /* Remove any reference to that stream. */
2021 consumer_stream_delete(stream, ht);
2022
2023 /* Close down everything including the relayd if one. */
2024 consumer_stream_close(stream);
2025 /* Destroy tracer buffers of the stream. */
2026 consumer_stream_destroy_buffers(stream);
2027
2028 /* Atomically decrement channel refcount since other threads can use it. */
2029 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2030 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2031 /* Go for channel deletion! */
2032 free_chan = stream->chan;
2033 }
2034
2035 /*
2036 * Nullify the stream reference so it is not used after deletion. The
2037 * channel lock MUST be acquired before being able to check for a NULL
2038 * pointer value.
2039 */
2040 stream->chan->metadata_stream = NULL;
2041
2042 pthread_mutex_unlock(&stream->lock);
2043 pthread_mutex_unlock(&stream->chan->lock);
2044 pthread_mutex_unlock(&consumer_data.lock);
2045
2046 if (free_chan) {
2047 consumer_del_channel(free_chan);
2048 }
2049
2050 consumer_stream_free(stream);
2051 }
2052
2053 /*
2054 * Action done with the metadata stream when adding it to the consumer internal
2055 * data structures to handle it.
2056 */
2057 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2058 {
2059 struct lttng_ht *ht = metadata_ht;
2060 int ret = 0;
2061 struct lttng_ht_iter iter;
2062 struct lttng_ht_node_u64 *node;
2063
2064 assert(stream);
2065 assert(ht);
2066
2067 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2068
2069 pthread_mutex_lock(&consumer_data.lock);
2070 pthread_mutex_lock(&stream->chan->lock);
2071 pthread_mutex_lock(&stream->chan->timer_lock);
2072 pthread_mutex_lock(&stream->lock);
2073
2074 /*
2075 * From here, refcounts are updated so be _careful_ when returning an error
2076 * after this point.
2077 */
2078
2079 rcu_read_lock();
2080
2081 /*
2082 * Lookup the stream just to make sure it does not exist in our internal
2083 * state. This should NEVER happen.
2084 */
2085 lttng_ht_lookup(ht, &stream->key, &iter);
2086 node = lttng_ht_iter_get_node_u64(&iter);
2087 assert(!node);
2088
2089 /*
2090 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2091 * in terms of destroying the associated channel, because the action that
2092 * causes the count to become 0 also causes a stream to be added. The
2093 * channel deletion will thus be triggered by the following removal of this
2094 * stream.
2095 */
2096 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2097 /* Increment refcount before decrementing nb_init_stream_left */
2098 cmm_smp_wmb();
2099 uatomic_dec(&stream->chan->nb_init_stream_left);
2100 }
2101
2102 lttng_ht_add_unique_u64(ht, &stream->node);
2103
2104 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2105 &stream->node_channel_id);
2106
2107 /*
2108 * Add stream to the stream_list_ht of the consumer data. No need to steal
2109 * the key since the HT does not use it and we allow to add redundant keys
2110 * into this table.
2111 */
2112 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2113
2114 rcu_read_unlock();
2115
2116 pthread_mutex_unlock(&stream->lock);
2117 pthread_mutex_unlock(&stream->chan->lock);
2118 pthread_mutex_unlock(&stream->chan->timer_lock);
2119 pthread_mutex_unlock(&consumer_data.lock);
2120 return ret;
2121 }
2122
2123 /*
2124 * Delete data stream that are flagged for deletion (endpoint_status).
2125 */
2126 static void validate_endpoint_status_data_stream(void)
2127 {
2128 struct lttng_ht_iter iter;
2129 struct lttng_consumer_stream *stream;
2130
2131 DBG("Consumer delete flagged data stream");
2132
2133 rcu_read_lock();
2134 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2135 /* Validate delete flag of the stream */
2136 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2137 continue;
2138 }
2139 /* Delete it right now */
2140 consumer_del_stream(stream, data_ht);
2141 }
2142 rcu_read_unlock();
2143 }
2144
2145 /*
2146 * Delete metadata stream that are flagged for deletion (endpoint_status).
2147 */
2148 static void validate_endpoint_status_metadata_stream(
2149 struct lttng_poll_event *pollset)
2150 {
2151 struct lttng_ht_iter iter;
2152 struct lttng_consumer_stream *stream;
2153
2154 DBG("Consumer delete flagged metadata stream");
2155
2156 assert(pollset);
2157
2158 rcu_read_lock();
2159 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2160 /* Validate delete flag of the stream */
2161 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2162 continue;
2163 }
2164 /*
2165 * Remove from pollset so the metadata thread can continue without
2166 * blocking on a deleted stream.
2167 */
2168 lttng_poll_del(pollset, stream->wait_fd);
2169
2170 /* Delete it right now */
2171 consumer_del_metadata_stream(stream, metadata_ht);
2172 }
2173 rcu_read_unlock();
2174 }
2175
2176 /*
2177 * Thread polls on metadata file descriptor and write them on disk or on the
2178 * network.
2179 */
2180 void *consumer_thread_metadata_poll(void *data)
2181 {
2182 int ret, i, pollfd, err = -1;
2183 uint32_t revents, nb_fd;
2184 struct lttng_consumer_stream *stream = NULL;
2185 struct lttng_ht_iter iter;
2186 struct lttng_ht_node_u64 *node;
2187 struct lttng_poll_event events;
2188 struct lttng_consumer_local_data *ctx = data;
2189 ssize_t len;
2190
2191 rcu_register_thread();
2192
2193 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2194
2195 if (testpoint(consumerd_thread_metadata)) {
2196 goto error_testpoint;
2197 }
2198
2199 health_code_update();
2200
2201 DBG("Thread metadata poll started");
2202
2203 /* Size is set to 1 for the consumer_metadata pipe */
2204 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2205 if (ret < 0) {
2206 ERR("Poll set creation failed");
2207 goto end_poll;
2208 }
2209
2210 ret = lttng_poll_add(&events,
2211 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2212 if (ret < 0) {
2213 goto end;
2214 }
2215
2216 /* Main loop */
2217 DBG("Metadata main loop started");
2218
2219 while (1) {
2220 restart:
2221 health_code_update();
2222 health_poll_entry();
2223 DBG("Metadata poll wait");
2224 ret = lttng_poll_wait(&events, -1);
2225 DBG("Metadata poll return from wait with %d fd(s)",
2226 LTTNG_POLL_GETNB(&events));
2227 health_poll_exit();
2228 DBG("Metadata event caught in thread");
2229 if (ret < 0) {
2230 if (errno == EINTR) {
2231 ERR("Poll EINTR caught");
2232 goto restart;
2233 }
2234 if (LTTNG_POLL_GETNB(&events) == 0) {
2235 err = 0; /* All is OK */
2236 }
2237 goto end;
2238 }
2239
2240 nb_fd = ret;
2241
2242 /* From here, the event is a metadata wait fd */
2243 for (i = 0; i < nb_fd; i++) {
2244 health_code_update();
2245
2246 revents = LTTNG_POLL_GETEV(&events, i);
2247 pollfd = LTTNG_POLL_GETFD(&events, i);
2248
2249 if (!revents) {
2250 /* No activity for this FD (poll implementation). */
2251 continue;
2252 }
2253
2254 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2255 if (revents & LPOLLIN) {
2256 ssize_t pipe_len;
2257
2258 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2259 &stream, sizeof(stream));
2260 if (pipe_len < sizeof(stream)) {
2261 if (pipe_len < 0) {
2262 PERROR("read metadata stream");
2263 }
2264 /*
2265 * Remove the pipe from the poll set and continue the loop
2266 * since their might be data to consume.
2267 */
2268 lttng_poll_del(&events,
2269 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2270 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2271 continue;
2272 }
2273
2274 /* A NULL stream means that the state has changed. */
2275 if (stream == NULL) {
2276 /* Check for deleted streams. */
2277 validate_endpoint_status_metadata_stream(&events);
2278 goto restart;
2279 }
2280
2281 DBG("Adding metadata stream %d to poll set",
2282 stream->wait_fd);
2283
2284 /* Add metadata stream to the global poll events list */
2285 lttng_poll_add(&events, stream->wait_fd,
2286 LPOLLIN | LPOLLPRI | LPOLLHUP);
2287 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2288 DBG("Metadata thread pipe hung up");
2289 /*
2290 * Remove the pipe from the poll set and continue the loop
2291 * since their might be data to consume.
2292 */
2293 lttng_poll_del(&events,
2294 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2295 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2296 continue;
2297 } else {
2298 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2299 goto end;
2300 }
2301
2302 /* Handle other stream */
2303 continue;
2304 }
2305
2306 rcu_read_lock();
2307 {
2308 uint64_t tmp_id = (uint64_t) pollfd;
2309
2310 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2311 }
2312 node = lttng_ht_iter_get_node_u64(&iter);
2313 assert(node);
2314
2315 stream = caa_container_of(node, struct lttng_consumer_stream,
2316 node);
2317
2318 if (revents & (LPOLLIN | LPOLLPRI)) {
2319 /* Get the data out of the metadata file descriptor */
2320 DBG("Metadata available on fd %d", pollfd);
2321 assert(stream->wait_fd == pollfd);
2322
2323 do {
2324 health_code_update();
2325
2326 len = ctx->on_buffer_ready(stream, ctx);
2327 /*
2328 * We don't check the return value here since if we get
2329 * a negative len, it means an error occured thus we
2330 * simply remove it from the poll set and free the
2331 * stream.
2332 */
2333 } while (len > 0);
2334
2335 /* It's ok to have an unavailable sub-buffer */
2336 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2337 /* Clean up stream from consumer and free it. */
2338 lttng_poll_del(&events, stream->wait_fd);
2339 consumer_del_metadata_stream(stream, metadata_ht);
2340 }
2341 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2342 DBG("Metadata fd %d is hup|err.", pollfd);
2343 if (!stream->hangup_flush_done
2344 && (consumer_data.type == LTTNG_CONSUMER32_UST
2345 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2346 DBG("Attempting to flush and consume the UST buffers");
2347 lttng_ustconsumer_on_stream_hangup(stream);
2348
2349 /* We just flushed the stream now read it. */
2350 do {
2351 health_code_update();
2352
2353 len = ctx->on_buffer_ready(stream, ctx);
2354 /*
2355 * We don't check the return value here since if we get
2356 * a negative len, it means an error occured thus we
2357 * simply remove it from the poll set and free the
2358 * stream.
2359 */
2360 } while (len > 0);
2361 }
2362
2363 lttng_poll_del(&events, stream->wait_fd);
2364 /*
2365 * This call update the channel states, closes file descriptors
2366 * and securely free the stream.
2367 */
2368 consumer_del_metadata_stream(stream, metadata_ht);
2369 } else {
2370 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2371 rcu_read_unlock();
2372 goto end;
2373 }
2374 /* Release RCU lock for the stream looked up */
2375 rcu_read_unlock();
2376 }
2377 }
2378
2379 /* All is OK */
2380 err = 0;
2381 end:
2382 DBG("Metadata poll thread exiting");
2383
2384 lttng_poll_clean(&events);
2385 end_poll:
2386 error_testpoint:
2387 if (err) {
2388 health_error();
2389 ERR("Health error occurred in %s", __func__);
2390 }
2391 health_unregister(health_consumerd);
2392 rcu_unregister_thread();
2393 return NULL;
2394 }
2395
2396 /*
2397 * This thread polls the fds in the set to consume the data and write
2398 * it to tracefile if necessary.
2399 */
2400 void *consumer_thread_data_poll(void *data)
2401 {
2402 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2403 struct pollfd *pollfd = NULL;
2404 /* local view of the streams */
2405 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2406 /* local view of consumer_data.fds_count */
2407 int nb_fd = 0;
2408 struct lttng_consumer_local_data *ctx = data;
2409 ssize_t len;
2410
2411 rcu_register_thread();
2412
2413 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2414
2415 if (testpoint(consumerd_thread_data)) {
2416 goto error_testpoint;
2417 }
2418
2419 health_code_update();
2420
2421 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2422 if (local_stream == NULL) {
2423 PERROR("local_stream malloc");
2424 goto end;
2425 }
2426
2427 while (1) {
2428 health_code_update();
2429
2430 high_prio = 0;
2431 num_hup = 0;
2432
2433 /*
2434 * the fds set has been updated, we need to update our
2435 * local array as well
2436 */
2437 pthread_mutex_lock(&consumer_data.lock);
2438 if (consumer_data.need_update) {
2439 free(pollfd);
2440 pollfd = NULL;
2441
2442 free(local_stream);
2443 local_stream = NULL;
2444
2445 /*
2446 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2447 * wake up pipe.
2448 */
2449 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2450 if (pollfd == NULL) {
2451 PERROR("pollfd malloc");
2452 pthread_mutex_unlock(&consumer_data.lock);
2453 goto end;
2454 }
2455
2456 local_stream = zmalloc((consumer_data.stream_count + 2) *
2457 sizeof(struct lttng_consumer_stream *));
2458 if (local_stream == NULL) {
2459 PERROR("local_stream malloc");
2460 pthread_mutex_unlock(&consumer_data.lock);
2461 goto end;
2462 }
2463 ret = update_poll_array(ctx, &pollfd, local_stream,
2464 data_ht);
2465 if (ret < 0) {
2466 ERR("Error in allocating pollfd or local_outfds");
2467 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2468 pthread_mutex_unlock(&consumer_data.lock);
2469 goto end;
2470 }
2471 nb_fd = ret;
2472 consumer_data.need_update = 0;
2473 }
2474 pthread_mutex_unlock(&consumer_data.lock);
2475
2476 /* No FDs and consumer_quit, consumer_cleanup the thread */
2477 if (nb_fd == 0 && consumer_quit == 1) {
2478 err = 0; /* All is OK */
2479 goto end;
2480 }
2481 /* poll on the array of fds */
2482 restart:
2483 DBG("polling on %d fd", nb_fd + 2);
2484 health_poll_entry();
2485 num_rdy = poll(pollfd, nb_fd + 2, -1);
2486 health_poll_exit();
2487 DBG("poll num_rdy : %d", num_rdy);
2488 if (num_rdy == -1) {
2489 /*
2490 * Restart interrupted system call.
2491 */
2492 if (errno == EINTR) {
2493 goto restart;
2494 }
2495 PERROR("Poll error");
2496 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2497 goto end;
2498 } else if (num_rdy == 0) {
2499 DBG("Polling thread timed out");
2500 goto end;
2501 }
2502
2503 /*
2504 * If the consumer_data_pipe triggered poll go directly to the
2505 * beginning of the loop to update the array. We want to prioritize
2506 * array update over low-priority reads.
2507 */
2508 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2509 ssize_t pipe_readlen;
2510
2511 DBG("consumer_data_pipe wake up");
2512 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2513 &new_stream, sizeof(new_stream));
2514 if (pipe_readlen < sizeof(new_stream)) {
2515 PERROR("Consumer data pipe");
2516 /* Continue so we can at least handle the current stream(s). */
2517 continue;
2518 }
2519
2520 /*
2521 * If the stream is NULL, just ignore it. It's also possible that
2522 * the sessiond poll thread changed the consumer_quit state and is
2523 * waking us up to test it.
2524 */
2525 if (new_stream == NULL) {
2526 validate_endpoint_status_data_stream();
2527 continue;
2528 }
2529
2530 /* Continue to update the local streams and handle prio ones */
2531 continue;
2532 }
2533
2534 /* Handle wakeup pipe. */
2535 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2536 char dummy;
2537 ssize_t pipe_readlen;
2538
2539 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2540 sizeof(dummy));
2541 if (pipe_readlen < 0) {
2542 PERROR("Consumer data wakeup pipe");
2543 }
2544 /* We've been awakened to handle stream(s). */
2545 ctx->has_wakeup = 0;
2546 }
2547
2548 /* Take care of high priority channels first. */
2549 for (i = 0; i < nb_fd; i++) {
2550 health_code_update();
2551
2552 if (local_stream[i] == NULL) {
2553 continue;
2554 }
2555 if (pollfd[i].revents & POLLPRI) {
2556 DBG("Urgent read on fd %d", pollfd[i].fd);
2557 high_prio = 1;
2558 len = ctx->on_buffer_ready(local_stream[i], ctx);
2559 /* it's ok to have an unavailable sub-buffer */
2560 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2561 /* Clean the stream and free it. */
2562 consumer_del_stream(local_stream[i], data_ht);
2563 local_stream[i] = NULL;
2564 } else if (len > 0) {
2565 local_stream[i]->data_read = 1;
2566 }
2567 }
2568 }
2569
2570 /*
2571 * If we read high prio channel in this loop, try again
2572 * for more high prio data.
2573 */
2574 if (high_prio) {
2575 continue;
2576 }
2577
2578 /* Take care of low priority channels. */
2579 for (i = 0; i < nb_fd; i++) {
2580 health_code_update();
2581
2582 if (local_stream[i] == NULL) {
2583 continue;
2584 }
2585 if ((pollfd[i].revents & POLLIN) ||
2586 local_stream[i]->hangup_flush_done ||
2587 local_stream[i]->has_data) {
2588 DBG("Normal read on fd %d", pollfd[i].fd);
2589 len = ctx->on_buffer_ready(local_stream[i], ctx);
2590 /* it's ok to have an unavailable sub-buffer */
2591 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2592 /* Clean the stream and free it. */
2593 consumer_del_stream(local_stream[i], data_ht);
2594 local_stream[i] = NULL;
2595 } else if (len > 0) {
2596 local_stream[i]->data_read = 1;
2597 }
2598 }
2599 }
2600
2601 /* Handle hangup and errors */
2602 for (i = 0; i < nb_fd; i++) {
2603 health_code_update();
2604
2605 if (local_stream[i] == NULL) {
2606 continue;
2607 }
2608 if (!local_stream[i]->hangup_flush_done
2609 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2610 && (consumer_data.type == LTTNG_CONSUMER32_UST
2611 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2612 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2613 pollfd[i].fd);
2614 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2615 /* Attempt read again, for the data we just flushed. */
2616 local_stream[i]->data_read = 1;
2617 }
2618 /*
2619 * If the poll flag is HUP/ERR/NVAL and we have
2620 * read no data in this pass, we can remove the
2621 * stream from its hash table.
2622 */
2623 if ((pollfd[i].revents & POLLHUP)) {
2624 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2625 if (!local_stream[i]->data_read) {
2626 consumer_del_stream(local_stream[i], data_ht);
2627 local_stream[i] = NULL;
2628 num_hup++;
2629 }
2630 } else if (pollfd[i].revents & POLLERR) {
2631 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2632 if (!local_stream[i]->data_read) {
2633 consumer_del_stream(local_stream[i], data_ht);
2634 local_stream[i] = NULL;
2635 num_hup++;
2636 }
2637 } else if (pollfd[i].revents & POLLNVAL) {
2638 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2639 if (!local_stream[i]->data_read) {
2640 consumer_del_stream(local_stream[i], data_ht);
2641 local_stream[i] = NULL;
2642 num_hup++;
2643 }
2644 }
2645 if (local_stream[i] != NULL) {
2646 local_stream[i]->data_read = 0;
2647 }
2648 }
2649 }
2650 /* All is OK */
2651 err = 0;
2652 end:
2653 DBG("polling thread exiting");
2654 free(pollfd);
2655 free(local_stream);
2656
2657 /*
2658 * Close the write side of the pipe so epoll_wait() in
2659 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2660 * read side of the pipe. If we close them both, epoll_wait strangely does
2661 * not return and could create a endless wait period if the pipe is the
2662 * only tracked fd in the poll set. The thread will take care of closing
2663 * the read side.
2664 */
2665 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2666
2667 error_testpoint:
2668 if (err) {
2669 health_error();
2670 ERR("Health error occurred in %s", __func__);
2671 }
2672 health_unregister(health_consumerd);
2673
2674 rcu_unregister_thread();
2675 return NULL;
2676 }
2677
2678 /*
2679 * Close wake-up end of each stream belonging to the channel. This will
2680 * allow the poll() on the stream read-side to detect when the
2681 * write-side (application) finally closes them.
2682 */
2683 static
2684 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2685 {
2686 struct lttng_ht *ht;
2687 struct lttng_consumer_stream *stream;
2688 struct lttng_ht_iter iter;
2689
2690 ht = consumer_data.stream_per_chan_id_ht;
2691
2692 rcu_read_lock();
2693 cds_lfht_for_each_entry_duplicate(ht->ht,
2694 ht->hash_fct(&channel->key, lttng_ht_seed),
2695 ht->match_fct, &channel->key,
2696 &iter.iter, stream, node_channel_id.node) {
2697 /*
2698 * Protect against teardown with mutex.
2699 */
2700 pthread_mutex_lock(&stream->lock);
2701 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2702 goto next;
2703 }
2704 switch (consumer_data.type) {
2705 case LTTNG_CONSUMER_KERNEL:
2706 break;
2707 case LTTNG_CONSUMER32_UST:
2708 case LTTNG_CONSUMER64_UST:
2709 if (stream->metadata_flag) {
2710 /* Safe and protected by the stream lock. */
2711 lttng_ustconsumer_close_metadata(stream->chan);
2712 } else {
2713 /*
2714 * Note: a mutex is taken internally within
2715 * liblttng-ust-ctl to protect timer wakeup_fd
2716 * use from concurrent close.
2717 */
2718 lttng_ustconsumer_close_stream_wakeup(stream);
2719 }
2720 break;
2721 default:
2722 ERR("Unknown consumer_data type");
2723 assert(0);
2724 }
2725 next:
2726 pthread_mutex_unlock(&stream->lock);
2727 }
2728 rcu_read_unlock();
2729 }
2730
2731 static void destroy_channel_ht(struct lttng_ht *ht)
2732 {
2733 struct lttng_ht_iter iter;
2734 struct lttng_consumer_channel *channel;
2735 int ret;
2736
2737 if (ht == NULL) {
2738 return;
2739 }
2740
2741 rcu_read_lock();
2742 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2743 ret = lttng_ht_del(ht, &iter);
2744 assert(ret != 0);
2745 }
2746 rcu_read_unlock();
2747
2748 lttng_ht_destroy(ht);
2749 }
2750
2751 /*
2752 * This thread polls the channel fds to detect when they are being
2753 * closed. It closes all related streams if the channel is detected as
2754 * closed. It is currently only used as a shim layer for UST because the
2755 * consumerd needs to keep the per-stream wakeup end of pipes open for
2756 * periodical flush.
2757 */
2758 void *consumer_thread_channel_poll(void *data)
2759 {
2760 int ret, i, pollfd, err = -1;
2761 uint32_t revents, nb_fd;
2762 struct lttng_consumer_channel *chan = NULL;
2763 struct lttng_ht_iter iter;
2764 struct lttng_ht_node_u64 *node;
2765 struct lttng_poll_event events;
2766 struct lttng_consumer_local_data *ctx = data;
2767 struct lttng_ht *channel_ht;
2768
2769 rcu_register_thread();
2770
2771 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2772
2773 if (testpoint(consumerd_thread_channel)) {
2774 goto error_testpoint;
2775 }
2776
2777 health_code_update();
2778
2779 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2780 if (!channel_ht) {
2781 /* ENOMEM at this point. Better to bail out. */
2782 goto end_ht;
2783 }
2784
2785 DBG("Thread channel poll started");
2786
2787 /* Size is set to 1 for the consumer_channel pipe */
2788 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2789 if (ret < 0) {
2790 ERR("Poll set creation failed");
2791 goto end_poll;
2792 }
2793
2794 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2795 if (ret < 0) {
2796 goto end;
2797 }
2798
2799 /* Main loop */
2800 DBG("Channel main loop started");
2801
2802 while (1) {
2803 restart:
2804 health_code_update();
2805 DBG("Channel poll wait");
2806 health_poll_entry();
2807 ret = lttng_poll_wait(&events, -1);
2808 DBG("Channel poll return from wait with %d fd(s)",
2809 LTTNG_POLL_GETNB(&events));
2810 health_poll_exit();
2811 DBG("Channel event caught in thread");
2812 if (ret < 0) {
2813 if (errno == EINTR) {
2814 ERR("Poll EINTR caught");
2815 goto restart;
2816 }
2817 if (LTTNG_POLL_GETNB(&events) == 0) {
2818 err = 0; /* All is OK */
2819 }
2820 goto end;
2821 }
2822
2823 nb_fd = ret;
2824
2825 /* From here, the event is a channel wait fd */
2826 for (i = 0; i < nb_fd; i++) {
2827 health_code_update();
2828
2829 revents = LTTNG_POLL_GETEV(&events, i);
2830 pollfd = LTTNG_POLL_GETFD(&events, i);
2831
2832 if (!revents) {
2833 /* No activity for this FD (poll implementation). */
2834 continue;
2835 }
2836
2837 if (pollfd == ctx->consumer_channel_pipe[0]) {
2838 if (revents & LPOLLIN) {
2839 enum consumer_channel_action action;
2840 uint64_t key;
2841
2842 ret = read_channel_pipe(ctx, &chan, &key, &action);
2843 if (ret <= 0) {
2844 if (ret < 0) {
2845 ERR("Error reading channel pipe");
2846 }
2847 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2848 continue;
2849 }
2850
2851 switch (action) {
2852 case CONSUMER_CHANNEL_ADD:
2853 DBG("Adding channel %d to poll set",
2854 chan->wait_fd);
2855
2856 lttng_ht_node_init_u64(&chan->wait_fd_node,
2857 chan->wait_fd);
2858 rcu_read_lock();
2859 lttng_ht_add_unique_u64(channel_ht,
2860 &chan->wait_fd_node);
2861 rcu_read_unlock();
2862 /* Add channel to the global poll events list */
2863 lttng_poll_add(&events, chan->wait_fd,
2864 LPOLLERR | LPOLLHUP);
2865 break;
2866 case CONSUMER_CHANNEL_DEL:
2867 {
2868 /*
2869 * This command should never be called if the channel
2870 * has streams monitored by either the data or metadata
2871 * thread. The consumer only notify this thread with a
2872 * channel del. command if it receives a destroy
2873 * channel command from the session daemon that send it
2874 * if a command prior to the GET_CHANNEL failed.
2875 */
2876
2877 rcu_read_lock();
2878 chan = consumer_find_channel(key);
2879 if (!chan) {
2880 rcu_read_unlock();
2881 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2882 break;
2883 }
2884 lttng_poll_del(&events, chan->wait_fd);
2885 iter.iter.node = &chan->wait_fd_node.node;
2886 ret = lttng_ht_del(channel_ht, &iter);
2887 assert(ret == 0);
2888
2889 switch (consumer_data.type) {
2890 case LTTNG_CONSUMER_KERNEL:
2891 break;
2892 case LTTNG_CONSUMER32_UST:
2893 case LTTNG_CONSUMER64_UST:
2894 health_code_update();
2895 /* Destroy streams that might have been left in the stream list. */
2896 clean_channel_stream_list(chan);
2897 break;
2898 default:
2899 ERR("Unknown consumer_data type");
2900 assert(0);
2901 }
2902
2903 /*
2904 * Release our own refcount. Force channel deletion even if
2905 * streams were not initialized.
2906 */
2907 if (!uatomic_sub_return(&chan->refcount, 1)) {
2908 consumer_del_channel(chan);
2909 }
2910 rcu_read_unlock();
2911 goto restart;
2912 }
2913 case CONSUMER_CHANNEL_QUIT:
2914 /*
2915 * Remove the pipe from the poll set and continue the loop
2916 * since their might be data to consume.
2917 */
2918 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2919 continue;
2920 default:
2921 ERR("Unknown action");
2922 break;
2923 }
2924 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2925 DBG("Channel thread pipe hung up");
2926 /*
2927 * Remove the pipe from the poll set and continue the loop
2928 * since their might be data to consume.
2929 */
2930 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2931 continue;
2932 } else {
2933 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2934 goto end;
2935 }
2936
2937 /* Handle other stream */
2938 continue;
2939 }
2940
2941 rcu_read_lock();
2942 {
2943 uint64_t tmp_id = (uint64_t) pollfd;
2944
2945 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2946 }
2947 node = lttng_ht_iter_get_node_u64(&iter);
2948 assert(node);
2949
2950 chan = caa_container_of(node, struct lttng_consumer_channel,
2951 wait_fd_node);
2952
2953 /* Check for error event */
2954 if (revents & (LPOLLERR | LPOLLHUP)) {
2955 DBG("Channel fd %d is hup|err.", pollfd);
2956
2957 lttng_poll_del(&events, chan->wait_fd);
2958 ret = lttng_ht_del(channel_ht, &iter);
2959 assert(ret == 0);
2960
2961 /*
2962 * This will close the wait fd for each stream associated to
2963 * this channel AND monitored by the data/metadata thread thus
2964 * will be clean by the right thread.
2965 */
2966 consumer_close_channel_streams(chan);
2967
2968 /* Release our own refcount */
2969 if (!uatomic_sub_return(&chan->refcount, 1)
2970 && !uatomic_read(&chan->nb_init_stream_left)) {
2971 consumer_del_channel(chan);
2972 }
2973 } else {
2974 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2975 rcu_read_unlock();
2976 goto end;
2977 }
2978
2979 /* Release RCU lock for the channel looked up */
2980 rcu_read_unlock();
2981 }
2982 }
2983
2984 /* All is OK */
2985 err = 0;
2986 end:
2987 lttng_poll_clean(&events);
2988 end_poll:
2989 destroy_channel_ht(channel_ht);
2990 end_ht:
2991 error_testpoint:
2992 DBG("Channel poll thread exiting");
2993 if (err) {
2994 health_error();
2995 ERR("Health error occurred in %s", __func__);
2996 }
2997 health_unregister(health_consumerd);
2998 rcu_unregister_thread();
2999 return NULL;
3000 }
3001
3002 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3003 struct pollfd *sockpoll, int client_socket)
3004 {
3005 int ret;
3006
3007 assert(ctx);
3008 assert(sockpoll);
3009
3010 ret = lttng_consumer_poll_socket(sockpoll);
3011 if (ret) {
3012 goto error;
3013 }
3014 DBG("Metadata connection on client_socket");
3015
3016 /* Blocking call, waiting for transmission */
3017 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3018 if (ctx->consumer_metadata_socket < 0) {
3019 WARN("On accept metadata");
3020 ret = -1;
3021 goto error;
3022 }
3023 ret = 0;
3024
3025 error:
3026 return ret;
3027 }
3028
3029 /*
3030 * This thread listens on the consumerd socket and receives the file
3031 * descriptors from the session daemon.
3032 */
3033 void *consumer_thread_sessiond_poll(void *data)
3034 {
3035 int sock = -1, client_socket, ret, err = -1;
3036 /*
3037 * structure to poll for incoming data on communication socket avoids
3038 * making blocking sockets.
3039 */
3040 struct pollfd consumer_sockpoll[2];
3041 struct lttng_consumer_local_data *ctx = data;
3042
3043 rcu_register_thread();
3044
3045 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3046
3047 if (testpoint(consumerd_thread_sessiond)) {
3048 goto error_testpoint;
3049 }
3050
3051 health_code_update();
3052
3053 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3054 unlink(ctx->consumer_command_sock_path);
3055 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3056 if (client_socket < 0) {
3057 ERR("Cannot create command socket");
3058 goto end;
3059 }
3060
3061 ret = lttcomm_listen_unix_sock(client_socket);
3062 if (ret < 0) {
3063 goto end;
3064 }
3065
3066 DBG("Sending ready command to lttng-sessiond");
3067 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3068 /* return < 0 on error, but == 0 is not fatal */
3069 if (ret < 0) {
3070 ERR("Error sending ready command to lttng-sessiond");
3071 goto end;
3072 }
3073
3074 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3075 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3076 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3077 consumer_sockpoll[1].fd = client_socket;
3078 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3079
3080 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3081 if (ret) {
3082 if (ret > 0) {
3083 /* should exit */
3084 err = 0;
3085 }
3086 goto end;
3087 }
3088 DBG("Connection on client_socket");
3089
3090 /* Blocking call, waiting for transmission */
3091 sock = lttcomm_accept_unix_sock(client_socket);
3092 if (sock < 0) {
3093 WARN("On accept");
3094 goto end;
3095 }
3096
3097 /*
3098 * Setup metadata socket which is the second socket connection on the
3099 * command unix socket.
3100 */
3101 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3102 if (ret) {
3103 if (ret > 0) {
3104 /* should exit */
3105 err = 0;
3106 }
3107 goto end;
3108 }
3109
3110 /* This socket is not useful anymore. */
3111 ret = close(client_socket);
3112 if (ret < 0) {
3113 PERROR("close client_socket");
3114 }
3115 client_socket = -1;
3116
3117 /* update the polling structure to poll on the established socket */
3118 consumer_sockpoll[1].fd = sock;
3119 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3120
3121 while (1) {
3122 health_code_update();
3123
3124 health_poll_entry();
3125 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3126 health_poll_exit();
3127 if (ret) {
3128 if (ret > 0) {
3129 /* should exit */
3130 err = 0;
3131 }
3132 goto end;
3133 }
3134 DBG("Incoming command on sock");
3135 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3136 if (ret <= 0) {
3137 /*
3138 * This could simply be a session daemon quitting. Don't output
3139 * ERR() here.
3140 */
3141 DBG("Communication interrupted on command socket");
3142 err = 0;
3143 goto end;
3144 }
3145 if (consumer_quit) {
3146 DBG("consumer_thread_receive_fds received quit from signal");
3147 err = 0; /* All is OK */
3148 goto end;
3149 }
3150 DBG("received command on sock");
3151 }
3152 /* All is OK */
3153 err = 0;
3154
3155 end:
3156 DBG("Consumer thread sessiond poll exiting");
3157
3158 /*
3159 * Close metadata streams since the producer is the session daemon which
3160 * just died.
3161 *
3162 * NOTE: for now, this only applies to the UST tracer.
3163 */
3164 lttng_consumer_close_all_metadata();
3165
3166 /*
3167 * when all fds have hung up, the polling thread
3168 * can exit cleanly
3169 */
3170 consumer_quit = 1;
3171
3172 /*
3173 * Notify the data poll thread to poll back again and test the
3174 * consumer_quit state that we just set so to quit gracefully.
3175 */
3176 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3177
3178 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3179
3180 notify_health_quit_pipe(health_quit_pipe);
3181
3182 /* Cleaning up possibly open sockets. */
3183 if (sock >= 0) {
3184 ret = close(sock);
3185 if (ret < 0) {
3186 PERROR("close sock sessiond poll");
3187 }
3188 }
3189 if (client_socket >= 0) {
3190 ret = close(client_socket);
3191 if (ret < 0) {
3192 PERROR("close client_socket sessiond poll");
3193 }
3194 }
3195
3196 error_testpoint:
3197 if (err) {
3198 health_error();
3199 ERR("Health error occurred in %s", __func__);
3200 }
3201 health_unregister(health_consumerd);
3202
3203 rcu_unregister_thread();
3204 return NULL;
3205 }
3206
3207 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3208 struct lttng_consumer_local_data *ctx)
3209 {
3210 ssize_t ret;
3211
3212 pthread_mutex_lock(&stream->lock);
3213 if (stream->metadata_flag) {
3214 pthread_mutex_lock(&stream->metadata_rdv_lock);
3215 }
3216
3217 switch (consumer_data.type) {
3218 case LTTNG_CONSUMER_KERNEL:
3219 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3220 break;
3221 case LTTNG_CONSUMER32_UST:
3222 case LTTNG_CONSUMER64_UST:
3223 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3224 break;
3225 default:
3226 ERR("Unknown consumer_data type");
3227 assert(0);
3228 ret = -ENOSYS;
3229 break;
3230 }
3231
3232 if (stream->metadata_flag) {
3233 pthread_cond_broadcast(&stream->metadata_rdv);
3234 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3235 }
3236 pthread_mutex_unlock(&stream->lock);
3237 return ret;
3238 }
3239
3240 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3241 {
3242 switch (consumer_data.type) {
3243 case LTTNG_CONSUMER_KERNEL:
3244 return lttng_kconsumer_on_recv_stream(stream);
3245 case LTTNG_CONSUMER32_UST:
3246 case LTTNG_CONSUMER64_UST:
3247 return lttng_ustconsumer_on_recv_stream(stream);
3248 default:
3249 ERR("Unknown consumer_data type");
3250 assert(0);
3251 return -ENOSYS;
3252 }
3253 }
3254
3255 /*
3256 * Allocate and set consumer data hash tables.
3257 */
3258 int lttng_consumer_init(void)
3259 {
3260 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3261 if (!consumer_data.channel_ht) {
3262 goto error;
3263 }
3264
3265 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3266 if (!consumer_data.relayd_ht) {
3267 goto error;
3268 }
3269
3270 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3271 if (!consumer_data.stream_list_ht) {
3272 goto error;
3273 }
3274
3275 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3276 if (!consumer_data.stream_per_chan_id_ht) {
3277 goto error;
3278 }
3279
3280 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3281 if (!data_ht) {
3282 goto error;
3283 }
3284
3285 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3286 if (!metadata_ht) {
3287 goto error;
3288 }
3289
3290 return 0;
3291
3292 error:
3293 return -1;
3294 }
3295
3296 /*
3297 * Process the ADD_RELAYD command receive by a consumer.
3298 *
3299 * This will create a relayd socket pair and add it to the relayd hash table.
3300 * The caller MUST acquire a RCU read side lock before calling it.
3301 */
3302 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3303 struct lttng_consumer_local_data *ctx, int sock,
3304 struct pollfd *consumer_sockpoll,
3305 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3306 uint64_t relayd_session_id)
3307 {
3308 int fd = -1, ret = -1, relayd_created = 0;
3309 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3310 struct consumer_relayd_sock_pair *relayd = NULL;
3311
3312 assert(ctx);
3313 assert(relayd_sock);
3314
3315 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3316
3317 /* Get relayd reference if exists. */
3318 relayd = consumer_find_relayd(net_seq_idx);
3319 if (relayd == NULL) {
3320 assert(sock_type == LTTNG_STREAM_CONTROL);
3321 /* Not found. Allocate one. */
3322 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3323 if (relayd == NULL) {
3324 ret = -ENOMEM;
3325 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3326 goto error;
3327 } else {
3328 relayd->sessiond_session_id = sessiond_id;
3329 relayd_created = 1;
3330 }
3331
3332 /*
3333 * This code path MUST continue to the consumer send status message to
3334 * we can notify the session daemon and continue our work without
3335 * killing everything.
3336 */
3337 } else {
3338 /*
3339 * relayd key should never be found for control socket.
3340 */
3341 assert(sock_type != LTTNG_STREAM_CONTROL);
3342 }
3343
3344 /* First send a status message before receiving the fds. */
3345 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3346 if (ret < 0) {
3347 /* Somehow, the session daemon is not responding anymore. */
3348 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3349 goto error_nosignal;
3350 }
3351
3352 /* Poll on consumer socket. */
3353 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3354 if (ret) {
3355 /* Needing to exit in the middle of a command: error. */
3356 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3357 ret = -EINTR;
3358 goto error_nosignal;
3359 }
3360
3361 /* Get relayd socket from session daemon */
3362 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3363 if (ret != sizeof(fd)) {
3364 ret = -1;
3365 fd = -1; /* Just in case it gets set with an invalid value. */
3366
3367 /*
3368 * Failing to receive FDs might indicate a major problem such as
3369 * reaching a fd limit during the receive where the kernel returns a
3370 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3371 * don't take any chances and stop everything.
3372 *
3373 * XXX: Feature request #558 will fix that and avoid this possible
3374 * issue when reaching the fd limit.
3375 */
3376 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3377 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3378 goto error;
3379 }
3380
3381 /* Copy socket information and received FD */
3382 switch (sock_type) {
3383 case LTTNG_STREAM_CONTROL:
3384 /* Copy received lttcomm socket */
3385 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3386 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3387 /* Handle create_sock error. */
3388 if (ret < 0) {
3389 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3390 goto error;
3391 }
3392 /*
3393 * Close the socket created internally by
3394 * lttcomm_create_sock, so we can replace it by the one
3395 * received from sessiond.
3396 */
3397 if (close(relayd->control_sock.sock.fd)) {
3398 PERROR("close");
3399 }
3400
3401 /* Assign new file descriptor */
3402 relayd->control_sock.sock.fd = fd;
3403 fd = -1; /* For error path */
3404 /* Assign version values. */
3405 relayd->control_sock.major = relayd_sock->major;
3406 relayd->control_sock.minor = relayd_sock->minor;
3407
3408 relayd->relayd_session_id = relayd_session_id;
3409
3410 break;
3411 case LTTNG_STREAM_DATA:
3412 /* Copy received lttcomm socket */
3413 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3414 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3415 /* Handle create_sock error. */
3416 if (ret < 0) {
3417 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3418 goto error;
3419 }
3420 /*
3421 * Close the socket created internally by
3422 * lttcomm_create_sock, so we can replace it by the one
3423 * received from sessiond.
3424 */
3425 if (close(relayd->data_sock.sock.fd)) {
3426 PERROR("close");
3427 }
3428
3429 /* Assign new file descriptor */
3430 relayd->data_sock.sock.fd = fd;
3431 fd = -1; /* for eventual error paths */
3432 /* Assign version values. */
3433 relayd->data_sock.major = relayd_sock->major;
3434 relayd->data_sock.minor = relayd_sock->minor;
3435 break;
3436 default:
3437 ERR("Unknown relayd socket type (%d)", sock_type);
3438 ret = -1;
3439 ret_code = LTTCOMM_CONSUMERD_FATAL;
3440 goto error;
3441 }
3442
3443 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3444 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3445 relayd->net_seq_idx, fd);
3446
3447 /* We successfully added the socket. Send status back. */
3448 ret = consumer_send_status_msg(sock, ret_code);
3449 if (ret < 0) {
3450 /* Somehow, the session daemon is not responding anymore. */
3451 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3452 goto error_nosignal;
3453 }
3454
3455 /*
3456 * Add relayd socket pair to consumer data hashtable. If object already
3457 * exists or on error, the function gracefully returns.
3458 */
3459 add_relayd(relayd);
3460
3461 /* All good! */
3462 return 0;
3463
3464 error:
3465 if (consumer_send_status_msg(sock, ret_code) < 0) {
3466 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3467 }
3468
3469 error_nosignal:
3470 /* Close received socket if valid. */
3471 if (fd >= 0) {
3472 if (close(fd)) {
3473 PERROR("close received socket");
3474 }
3475 }
3476
3477 if (relayd_created) {
3478 free(relayd);
3479 }
3480
3481 return ret;
3482 }
3483
3484 /*
3485 * Try to lock the stream mutex.
3486 *
3487 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3488 */
3489 static int stream_try_lock(struct lttng_consumer_stream *stream)
3490 {
3491 int ret;
3492
3493 assert(stream);
3494
3495 /*
3496 * Try to lock the stream mutex. On failure, we know that the stream is
3497 * being used else where hence there is data still being extracted.
3498 */
3499 ret = pthread_mutex_trylock(&stream->lock);
3500 if (ret) {
3501 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3502 ret = 0;
3503 goto end;
3504 }
3505
3506 ret = 1;
3507
3508 end:
3509 return ret;
3510 }
3511
3512 /*
3513 * Search for a relayd associated to the session id and return the reference.
3514 *
3515 * A rcu read side lock MUST be acquire before calling this function and locked
3516 * until the relayd object is no longer necessary.
3517 */
3518 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3519 {
3520 struct lttng_ht_iter iter;
3521 struct consumer_relayd_sock_pair *relayd = NULL;
3522
3523 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3524 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3525 node.node) {
3526 /*
3527 * Check by sessiond id which is unique here where the relayd session
3528 * id might not be when having multiple relayd.
3529 */
3530 if (relayd->sessiond_session_id == id) {
3531 /* Found the relayd. There can be only one per id. */
3532 goto found;
3533 }
3534 }
3535
3536 return NULL;
3537
3538 found:
3539 return relayd;
3540 }
3541
3542 /*
3543 * Check if for a given session id there is still data needed to be extract
3544 * from the buffers.
3545 *
3546 * Return 1 if data is pending or else 0 meaning ready to be read.
3547 */
3548 int consumer_data_pending(uint64_t id)
3549 {
3550 int ret;
3551 struct lttng_ht_iter iter;
3552 struct lttng_ht *ht;
3553 struct lttng_consumer_stream *stream;
3554 struct consumer_relayd_sock_pair *relayd = NULL;
3555 int (*data_pending)(struct lttng_consumer_stream *);
3556
3557 DBG("Consumer data pending command on session id %" PRIu64, id);
3558
3559 rcu_read_lock();
3560 pthread_mutex_lock(&consumer_data.lock);
3561
3562 switch (consumer_data.type) {
3563 case LTTNG_CONSUMER_KERNEL:
3564 data_pending = lttng_kconsumer_data_pending;
3565 break;
3566 case LTTNG_CONSUMER32_UST:
3567 case LTTNG_CONSUMER64_UST:
3568 data_pending = lttng_ustconsumer_data_pending;
3569 break;
3570 default:
3571 ERR("Unknown consumer data type");
3572 assert(0);
3573 }
3574
3575 /* Ease our life a bit */
3576 ht = consumer_data.stream_list_ht;
3577
3578 relayd = find_relayd_by_session_id(id);
3579 if (relayd) {
3580 /* Send init command for data pending. */
3581 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3582 ret = relayd_begin_data_pending(&relayd->control_sock,
3583 relayd->relayd_session_id);
3584 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3585 if (ret < 0) {
3586 /* Communication error thus the relayd so no data pending. */
3587 goto data_not_pending;
3588 }
3589 }
3590
3591 cds_lfht_for_each_entry_duplicate(ht->ht,
3592 ht->hash_fct(&id, lttng_ht_seed),
3593 ht->match_fct, &id,
3594 &iter.iter, stream, node_session_id.node) {
3595 /* If this call fails, the stream is being used hence data pending. */
3596 ret = stream_try_lock(stream);
3597 if (!ret) {
3598 goto data_pending;
3599 }
3600
3601 /*
3602 * A removed node from the hash table indicates that the stream has
3603 * been deleted thus having a guarantee that the buffers are closed
3604 * on the consumer side. However, data can still be transmitted
3605 * over the network so don't skip the relayd check.
3606 */
3607 ret = cds_lfht_is_node_deleted(&stream->node.node);
3608 if (!ret) {
3609 /* Check the stream if there is data in the buffers. */
3610 ret = data_pending(stream);
3611 if (ret == 1) {
3612 pthread_mutex_unlock(&stream->lock);
3613 goto data_pending;
3614 }
3615 }
3616
3617 /* Relayd check */
3618 if (relayd) {
3619 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3620 if (stream->metadata_flag) {
3621 ret = relayd_quiescent_control(&relayd->control_sock,
3622 stream->relayd_stream_id);
3623 } else {
3624 ret = relayd_data_pending(&relayd->control_sock,
3625 stream->relayd_stream_id,
3626 stream->next_net_seq_num - 1);
3627 }
3628 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3629 if (ret == 1) {
3630 pthread_mutex_unlock(&stream->lock);
3631 goto data_pending;
3632 }
3633 }
3634 pthread_mutex_unlock(&stream->lock);
3635 }
3636
3637 if (relayd) {
3638 unsigned int is_data_inflight = 0;
3639
3640 /* Send init command for data pending. */
3641 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3642 ret = relayd_end_data_pending(&relayd->control_sock,
3643 relayd->relayd_session_id, &is_data_inflight);
3644 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3645 if (ret < 0) {
3646 goto data_not_pending;
3647 }
3648 if (is_data_inflight) {
3649 goto data_pending;
3650 }
3651 }
3652
3653 /*
3654 * Finding _no_ node in the hash table and no inflight data means that the
3655 * stream(s) have been removed thus data is guaranteed to be available for
3656 * analysis from the trace files.
3657 */
3658
3659 data_not_pending:
3660 /* Data is available to be read by a viewer. */
3661 pthread_mutex_unlock(&consumer_data.lock);
3662 rcu_read_unlock();
3663 return 0;
3664
3665 data_pending:
3666 /* Data is still being extracted from buffers. */
3667 pthread_mutex_unlock(&consumer_data.lock);
3668 rcu_read_unlock();
3669 return 1;
3670 }
3671
3672 /*
3673 * Send a ret code status message to the sessiond daemon.
3674 *
3675 * Return the sendmsg() return value.
3676 */
3677 int consumer_send_status_msg(int sock, int ret_code)
3678 {
3679 struct lttcomm_consumer_status_msg msg;
3680
3681 memset(&msg, 0, sizeof(msg));
3682 msg.ret_code = ret_code;
3683
3684 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3685 }
3686
3687 /*
3688 * Send a channel status message to the sessiond daemon.
3689 *
3690 * Return the sendmsg() return value.
3691 */
3692 int consumer_send_status_channel(int sock,
3693 struct lttng_consumer_channel *channel)
3694 {
3695 struct lttcomm_consumer_status_channel msg;
3696
3697 assert(sock >= 0);
3698
3699 memset(&msg, 0, sizeof(msg));
3700 if (!channel) {
3701 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3702 } else {
3703 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3704 msg.key = channel->key;
3705 msg.stream_count = channel->streams.count;
3706 }
3707
3708 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3709 }
3710
3711 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3712 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3713 uint64_t max_sb_size)
3714 {
3715 unsigned long start_pos;
3716
3717 if (!nb_packets_per_stream) {
3718 return consumed_pos; /* Grab everything */
3719 }
3720 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3721 start_pos -= max_sb_size * nb_packets_per_stream;
3722 if ((long) (start_pos - consumed_pos) < 0) {
3723 return consumed_pos; /* Grab everything */
3724 }
3725 return start_pos;
3726 }
This page took 0.111459 seconds and 3 git commands to generate.