urcu/annotate: Add CMM annotation
[urcu.git] / src / rculfhash.c
CommitLineData
acdb82a2
MJ
1// SPDX-FileCopyrightText: 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
2// SPDX-FileCopyrightText: 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
3//
4// SPDX-License-Identifier: LGPL-2.1-or-later
5
5e28c532 6/*
1475579c 7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5e28c532
MD
8 */
9
e753ff5a
MD
10/*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
1475579c 19 * Some specificities of this Lock-Free Resizable RCU Hash Table
e753ff5a
MD
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
1f67ba50
MD
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
e753ff5a
MD
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
1f67ba50
MD
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
e753ff5a
MD
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
1ee8f000 38 * - An index of bucket nodes is kept. These bucket nodes are the hash
1f67ba50
MD
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
1475579c
MD
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
4c42f1b8 50 * - Split-counters are used to keep track of the number of
1475579c 51 * nodes within the hash table for automatic resize triggering.
e753ff5a 52 * - Resize operation initiated by long chain detection is executed by a
d0ec0ed2 53 * worker thread, which keeps lock-freedom of add and remove.
e753ff5a
MD
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
5c4ca589
MD
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
1f67ba50 75 * linked-list (the start node is never removed) and that it does not
5c4ca589
MD
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
1f67ba50
MD
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
29e669f6
MD
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
1f67ba50
MD
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
5f177b1c 99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
93d46c39 100 *
7f949215 101 * Ordering Guarantees:
0f5543cb 102 *
7f949215
MD
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
105 * cds_lfht_first, cds_lfht_next operation, as well as
67ecffc0 106 * cds_lfht_add_unique (failure).
7f949215
MD
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
0f5543cb 110 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
7f949215
MD
111 * (and/or cds_lfht_next, although less common).
112 * - cds_lfht_add_unique (failure) followed by iteration with
113 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
114 * common).
115 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
116 * cds_lfht_next_duplicate, although less common).
0f5543cb 117 *
bf09adc7 118 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
7f949215
MD
119 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
120 *
121 * When cds_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A cds_lfht_add_unique failure is a
125 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
0f5543cb 192 *
1ee8f000 193 * Bucket node tables:
93d46c39 194 *
1ee8f000
LJ
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
93d46c39
LJ
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
1ee8f000 206 * When growing/shrinking, we only focus on the last bucket node table
93d46c39
LJ
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
1ee8f000
LJ
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
93d46c39 212 *
1475579c 213 * A bit of ascii art explanation:
67ecffc0 214 *
1f67ba50
MD
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
67ecffc0 217 *
1475579c 218 * This shows the nodes for a small table ordered by reversed bits:
67ecffc0 219 *
1475579c
MD
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
67ecffc0
MD
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
1475579c 231 * reversed-bit order.
67ecffc0 232 *
1475579c
MD
233 * order bits reverse
234 * 0 0 000 000
0adc36a8
LJ
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
f6fdd688 237 * | | | 3 011 110 | <- |
1475579c
MD
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
e753ff5a
MD
242 */
243
2ed95849
MD
244#define _LGPL_SOURCE
245#include <stdlib.h>
e0ba718a 246#include <errno.h>
e0ba718a 247#include <stdio.h>
abc490a1 248#include <stdint.h>
f000907d 249#include <string.h>
125f41db 250#include <sched.h>
95747f9e 251#include <unistd.h>
e0ba718a 252
a47dd11c 253#include "compat-getcpu.h"
01477510 254#include <urcu/assert.h>
6cd23d47
MD
255#include <urcu/pointer.h>
256#include <urcu/call-rcu.h>
257#include <urcu/flavor.h>
a42cc659
MD
258#include <urcu/arch.h>
259#include <urcu/uatomic.h>
a42cc659 260#include <urcu/compiler.h>
abc490a1 261#include <urcu/rculfhash.h>
1a990de3 262#include <urcu/static/urcu-signal-nr.h>
5e28c532 263#include <stdio.h>
464a1ec9 264#include <pthread.h>
d0ec0ed2 265#include <signal.h>
0d0409b1 266#include "rculfhash-internal.h"
d0ec0ed2
MD
267#include "workqueue.h"
268#include "urcu-die.h"
83e334d0 269#include "urcu-utils.h"
5cfe81b7 270#include "compat-smp.h"
44395fb7 271
f8994aee 272/*
4c42f1b8 273 * Split-counters lazily update the global counter each 1024
f8994aee
MD
274 * addition/removal. It automatically keeps track of resize required.
275 * We use the bucket length as indicator for need to expand for small
ffa11a18 276 * tables and machines lacking per-cpu data support.
f8994aee
MD
277 */
278#define COUNT_COMMIT_ORDER 10
4ddbb355 279#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
6ea6bc67
MD
280#define CHAIN_LEN_TARGET 1
281#define CHAIN_LEN_RESIZE_THRESHOLD 3
2ed95849 282
cd95516d 283/*
76a73da8 284 * Define the minimum table size.
cd95516d 285 */
d0d8f9aa
LJ
286#define MIN_TABLE_ORDER 0
287#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
cd95516d 288
b7d619b0 289/*
1ee8f000 290 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
b7d619b0 291 */
6083a889
MD
292#define MIN_PARTITION_PER_THREAD_ORDER 12
293#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
b7d619b0 294
d95bd160
MD
295/*
296 * The removed flag needs to be updated atomically with the pointer.
48ed1c18 297 * It indicates that no node must attach to the node scheduled for
b198f0fd 298 * removal, and that node garbage collection must be performed.
1ee8f000 299 * The bucket flag does not require to be updated atomically with the
d95bd160 300 * pointer, but it is added as a pointer low bit flag to save space.
1f67ba50
MD
301 * The "removal owner" flag is used to detect which of the "del"
302 * operation that has set the "removed flag" gets to return the removed
303 * node to its caller. Note that the replace operation does not need to
304 * iteract with the "removal owner" flag, because it validates that
305 * the "removed" flag is not set before performing its cmpxchg.
d95bd160 306 */
d37166c6 307#define REMOVED_FLAG (1UL << 0)
1ee8f000 308#define BUCKET_FLAG (1UL << 1)
db00ccc3
MD
309#define REMOVAL_OWNER_FLAG (1UL << 2)
310#define FLAGS_MASK ((1UL << 3) - 1)
d37166c6 311
bb7b2f26 312/* Value of the end pointer. Should not interact with flags. */
f9c80341 313#define END_VALUE NULL
bb7b2f26 314
7f52427b
MD
315/*
316 * ht_items_count: Split-counters counting the number of node addition
317 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
318 * is set at hash table creation.
319 *
320 * These are free-running counters, never reset to zero. They count the
321 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
322 * operations to update the global counter. We choose a power-of-2 value
323 * for the trigger to deal with 32 or 64-bit overflow of the counter.
324 */
df44348d 325struct ht_items_count {
860d07e8 326 unsigned long add, del;
df44348d
MD
327} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
328
7f52427b 329/*
d0ec0ed2 330 * resize_work: Contains arguments passed to worker thread
7f52427b
MD
331 * responsible for performing lazy resize.
332 */
d0ec0ed2
MD
333struct resize_work {
334 struct urcu_work work;
14044b37 335 struct cds_lfht *ht;
abc490a1 336};
2ed95849 337
7f52427b
MD
338/*
339 * partition_resize_work: Contains arguments passed to worker threads
340 * executing the hash table resize on partitions of the hash table
341 * assigned to each processor's worker thread.
342 */
b7d619b0 343struct partition_resize_work {
1af6e26e 344 pthread_t thread_id;
b7d619b0
MD
345 struct cds_lfht *ht;
346 unsigned long i, start, len;
347 void (*fct)(struct cds_lfht *ht, unsigned long i,
348 unsigned long start, unsigned long len);
349};
350
d0ec0ed2 351static struct urcu_workqueue *cds_lfht_workqueue;
d0ec0ed2
MD
352
353/*
354 * Mutex ensuring mutual exclusion between workqueue initialization and
355 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
356 */
357static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
358
359static struct urcu_atfork cds_lfht_atfork;
360
361/*
362 * atfork handler nesting counters. Handle being registered to many urcu
363 * flavors, thus being possibly invoked more than once in the
364 * pthread_atfork list of callbacks.
365 */
366static int cds_lfht_workqueue_atfork_nesting;
367
b047e7a7 368static void __attribute__((destructor)) cds_lfht_exit(void);
d0ec0ed2 369static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
d0ec0ed2 370
d7c76f85
MD
371#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
372
373static
374void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
375{
376 iter->lfht = ht;
377}
378
01477510 379#define cds_lfht_iter_debug_assert(...) urcu_posix_assert(__VA_ARGS__)
d7c76f85
MD
380
381#else
382
383static
70469b43
MJ
384void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht __attribute__((unused)),
385 struct cds_lfht_iter *iter __attribute__((unused)))
d7c76f85
MD
386{
387}
388
389#define cds_lfht_iter_debug_assert(...)
390
391#endif
392
abc490a1
MD
393/*
394 * Algorithm to reverse bits in a word by lookup table, extended to
395 * 64-bit words.
f9830efd 396 * Source:
abc490a1 397 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
f9830efd 398 * Originally from Public Domain.
abc490a1
MD
399 */
400
67ecffc0 401static const uint8_t BitReverseTable256[256] =
2ed95849 402{
abc490a1
MD
403#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
404#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
405#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
406 R6(0), R6(2), R6(1), R6(3)
407};
408#undef R2
409#undef R4
410#undef R6
2ed95849 411
abc490a1
MD
412static
413uint8_t bit_reverse_u8(uint8_t v)
414{
415 return BitReverseTable256[v];
416}
ab7d5fc6 417
95bc7fb9
MD
418#if (CAA_BITS_PER_LONG == 32)
419static
abc490a1
MD
420uint32_t bit_reverse_u32(uint32_t v)
421{
67ecffc0
MD
422 return ((uint32_t) bit_reverse_u8(v) << 24) |
423 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
424 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
abc490a1 425 ((uint32_t) bit_reverse_u8(v >> 24));
2ed95849 426}
95bc7fb9
MD
427#else
428static
abc490a1 429uint64_t bit_reverse_u64(uint64_t v)
2ed95849 430{
67ecffc0
MD
431 return ((uint64_t) bit_reverse_u8(v) << 56) |
432 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
abc490a1
MD
433 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
434 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
67ecffc0
MD
435 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
436 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
abc490a1
MD
437 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
438 ((uint64_t) bit_reverse_u8(v >> 56));
439}
95bc7fb9 440#endif
abc490a1
MD
441
442static
443unsigned long bit_reverse_ulong(unsigned long v)
444{
445#if (CAA_BITS_PER_LONG == 32)
446 return bit_reverse_u32(v);
447#else
448 return bit_reverse_u64(v);
449#endif
450}
451
f9830efd 452/*
24365af7
MD
453 * fls: returns the position of the most significant bit.
454 * Returns 0 if no bit is set, else returns the position of the most
455 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
f9830efd 456 */
0b1e236d 457#if defined(URCU_ARCH_X86)
24365af7
MD
458static inline
459unsigned int fls_u32(uint32_t x)
f9830efd 460{
24365af7
MD
461 int r;
462
e1789ce2 463 __asm__ ("bsrl %1,%0\n\t"
24365af7
MD
464 "jnz 1f\n\t"
465 "movl $-1,%0\n\t"
466 "1:\n\t"
467 : "=r" (r) : "rm" (x));
468 return r + 1;
469}
470#define HAS_FLS_U32
471#endif
472
0b1e236d 473#if defined(URCU_ARCH_AMD64)
24365af7
MD
474static inline
475unsigned int fls_u64(uint64_t x)
476{
477 long r;
478
e1789ce2 479 __asm__ ("bsrq %1,%0\n\t"
24365af7
MD
480 "jnz 1f\n\t"
481 "movq $-1,%0\n\t"
482 "1:\n\t"
483 : "=r" (r) : "rm" (x));
484 return r + 1;
485}
486#define HAS_FLS_U64
487#endif
488
489#ifndef HAS_FLS_U64
490static __attribute__((unused))
491unsigned int fls_u64(uint64_t x)
492{
493 unsigned int r = 64;
494
495 if (!x)
496 return 0;
497
498 if (!(x & 0xFFFFFFFF00000000ULL)) {
499 x <<= 32;
500 r -= 32;
501 }
502 if (!(x & 0xFFFF000000000000ULL)) {
503 x <<= 16;
504 r -= 16;
505 }
506 if (!(x & 0xFF00000000000000ULL)) {
507 x <<= 8;
508 r -= 8;
509 }
510 if (!(x & 0xF000000000000000ULL)) {
511 x <<= 4;
512 r -= 4;
513 }
514 if (!(x & 0xC000000000000000ULL)) {
515 x <<= 2;
516 r -= 2;
517 }
518 if (!(x & 0x8000000000000000ULL)) {
519 x <<= 1;
520 r -= 1;
521 }
522 return r;
523}
524#endif
525
526#ifndef HAS_FLS_U32
527static __attribute__((unused))
528unsigned int fls_u32(uint32_t x)
529{
530 unsigned int r = 32;
f9830efd 531
24365af7
MD
532 if (!x)
533 return 0;
534 if (!(x & 0xFFFF0000U)) {
535 x <<= 16;
536 r -= 16;
537 }
538 if (!(x & 0xFF000000U)) {
539 x <<= 8;
540 r -= 8;
541 }
542 if (!(x & 0xF0000000U)) {
543 x <<= 4;
544 r -= 4;
545 }
546 if (!(x & 0xC0000000U)) {
547 x <<= 2;
548 r -= 2;
549 }
550 if (!(x & 0x80000000U)) {
551 x <<= 1;
552 r -= 1;
553 }
554 return r;
555}
556#endif
557
5bc6b66f 558unsigned int cds_lfht_fls_ulong(unsigned long x)
f9830efd 559{
6887cc5e 560#if (CAA_BITS_PER_LONG == 32)
24365af7
MD
561 return fls_u32(x);
562#else
563 return fls_u64(x);
564#endif
565}
f9830efd 566
920f8ef6
LJ
567/*
568 * Return the minimum order for which x <= (1UL << order).
569 * Return -1 if x is 0.
570 */
61c3fb60 571static
5bc6b66f 572int cds_lfht_get_count_order_u32(uint32_t x)
24365af7 573{
920f8ef6
LJ
574 if (!x)
575 return -1;
24365af7 576
920f8ef6 577 return fls_u32(x - 1);
24365af7
MD
578}
579
920f8ef6
LJ
580/*
581 * Return the minimum order for which x <= (1UL << order).
582 * Return -1 if x is 0.
583 */
5bc6b66f 584int cds_lfht_get_count_order_ulong(unsigned long x)
24365af7 585{
920f8ef6
LJ
586 if (!x)
587 return -1;
24365af7 588
5bc6b66f 589 return cds_lfht_fls_ulong(x - 1);
f9830efd
MD
590}
591
592static
ab65b890 593void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
f9830efd 594
f8994aee 595static
4105056a 596void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
f8994aee
MD
597 unsigned long count);
598
5ffcaeef
MD
599static void mutex_lock(pthread_mutex_t *mutex)
600{
601 int ret;
602
603#ifndef DISTRUST_SIGNALS_EXTREME
604 ret = pthread_mutex_lock(mutex);
605 if (ret)
606 urcu_die(ret);
607#else /* #ifndef DISTRUST_SIGNALS_EXTREME */
608 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
609 if (ret != EBUSY && ret != EINTR)
610 urcu_die(ret);
611 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
601922a8 612 uatomic_store(&URCU_TLS(rcu_reader).need_mb, 0, CMM_SEQ_CST);
5ffcaeef
MD
613 }
614 (void) poll(NULL, 0, 10);
615 }
616#endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
617}
618
619static void mutex_unlock(pthread_mutex_t *mutex)
620{
621 int ret;
622
623 ret = pthread_mutex_unlock(mutex);
624 if (ret)
625 urcu_die(ret);
626}
627
df44348d 628static long nr_cpus_mask = -1;
4c42f1b8 629static long split_count_mask = -1;
e53ab1eb 630static int split_count_order = -1;
4c42f1b8
LJ
631
632static void ht_init_nr_cpus_mask(void)
633{
634 long maxcpus;
635
5cfe81b7 636 maxcpus = get_possible_cpus_array_len();
4c42f1b8
LJ
637 if (maxcpus <= 0) {
638 nr_cpus_mask = -2;
639 return;
640 }
641 /*
642 * round up number of CPUs to next power of two, so we
643 * can use & for modulo.
644 */
5bc6b66f 645 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
4c42f1b8
LJ
646 nr_cpus_mask = maxcpus - 1;
647}
df44348d
MD
648
649static
5afadd12 650void alloc_split_items_count(struct cds_lfht *ht)
df44348d 651{
4c42f1b8
LJ
652 if (nr_cpus_mask == -1) {
653 ht_init_nr_cpus_mask();
4ddbb355
LJ
654 if (nr_cpus_mask < 0)
655 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
656 else
657 split_count_mask = nr_cpus_mask;
e53ab1eb
MD
658 split_count_order =
659 cds_lfht_get_count_order_ulong(split_count_mask + 1);
df44348d 660 }
4c42f1b8 661
01477510 662 urcu_posix_assert(split_count_mask >= 0);
5afadd12
LJ
663
664 if (ht->flags & CDS_LFHT_ACCOUNTING) {
95bc7fb9
MD
665 ht->split_count = calloc(split_count_mask + 1,
666 sizeof(struct ht_items_count));
01477510 667 urcu_posix_assert(ht->split_count);
5afadd12
LJ
668 } else {
669 ht->split_count = NULL;
670 }
df44348d
MD
671}
672
673static
5afadd12 674void free_split_items_count(struct cds_lfht *ht)
df44348d 675{
5afadd12 676 poison_free(ht->split_count);
df44348d
MD
677}
678
679static
14360f1c 680int ht_get_split_count_index(unsigned long hash)
df44348d
MD
681{
682 int cpu;
683
01477510 684 urcu_posix_assert(split_count_mask >= 0);
a47dd11c 685 cpu = urcu_sched_getcpu();
8ed51e04 686 if (caa_unlikely(cpu < 0))
14360f1c 687 return hash & split_count_mask;
df44348d 688 else
4c42f1b8 689 return cpu & split_count_mask;
df44348d
MD
690}
691
692static
14360f1c 693void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 694{
83e334d0 695 unsigned long split_count, count;
4c42f1b8 696 int index;
df44348d 697
8ed51e04 698 if (caa_unlikely(!ht->split_count))
3171717f 699 return;
14360f1c 700 index = ht_get_split_count_index(hash);
4c42f1b8 701 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
314558bf
MD
702 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
703 return;
704 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
705
706 dbg_printf("add split count %lu\n", split_count);
707 count = uatomic_add_return(&ht->count,
708 1UL << COUNT_COMMIT_ORDER);
4c299dcb 709 if (caa_likely(count & (count - 1)))
314558bf
MD
710 return;
711 /* Only if global count is power of 2 */
712
713 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
714 return;
83e334d0 715 dbg_printf("add set global %lu\n", count);
314558bf
MD
716 cds_lfht_resize_lazy_count(ht, size,
717 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
718}
719
720static
14360f1c 721void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 722{
83e334d0 723 unsigned long split_count, count;
4c42f1b8 724 int index;
df44348d 725
8ed51e04 726 if (caa_unlikely(!ht->split_count))
3171717f 727 return;
14360f1c 728 index = ht_get_split_count_index(hash);
4c42f1b8 729 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
314558bf
MD
730 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
731 return;
732 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
733
734 dbg_printf("del split count %lu\n", split_count);
735 count = uatomic_add_return(&ht->count,
736 -(1UL << COUNT_COMMIT_ORDER));
4c299dcb 737 if (caa_likely(count & (count - 1)))
314558bf
MD
738 return;
739 /* Only if global count is power of 2 */
740
741 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
742 return;
59b6b14f 743 dbg_printf("del set global %lu\n", count);
314558bf
MD
744 /*
745 * Don't shrink table if the number of nodes is below a
746 * certain threshold.
747 */
748 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
749 return;
750 cds_lfht_resize_lazy_count(ht, size,
751 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
752}
753
f9830efd 754static
4105056a 755void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
f9830efd 756{
f8994aee
MD
757 unsigned long count;
758
b8af5011
MD
759 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
760 return;
f8994aee
MD
761 count = uatomic_read(&ht->count);
762 /*
763 * Use bucket-local length for small table expand and for
764 * environments lacking per-cpu data support.
765 */
e53ab1eb 766 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
f8994aee 767 return;
24365af7 768 if (chain_len > 100)
f0c29ed7 769 dbg_printf("WARNING: large chain length: %u.\n",
24365af7 770 chain_len);
e53ab1eb
MD
771 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
772 int growth;
773
774 /*
775 * Ideal growth calculated based on chain length.
776 */
777 growth = cds_lfht_get_count_order_u32(chain_len
778 - (CHAIN_LEN_TARGET - 1));
779 if ((ht->flags & CDS_LFHT_ACCOUNTING)
780 && (size << growth)
781 >= (1UL << (COUNT_COMMIT_ORDER
782 + split_count_order))) {
783 /*
784 * If ideal growth expands the hash table size
785 * beyond the "small hash table" sizes, use the
786 * maximum small hash table size to attempt
787 * expanding the hash table. This only applies
788 * when node accounting is available, otherwise
789 * the chain length is used to expand the hash
790 * table in every case.
791 */
792 growth = COUNT_COMMIT_ORDER + split_count_order
793 - cds_lfht_get_count_order_ulong(size);
794 if (growth <= 0)
795 return;
796 }
797 cds_lfht_resize_lazy_grow(ht, size, growth);
798 }
f9830efd
MD
799}
800
abc490a1 801static
14044b37 802struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
abc490a1 803{
14044b37 804 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
abc490a1
MD
805}
806
807static
afa5940d 808int is_removed(const struct cds_lfht_node *node)
abc490a1 809{
d37166c6 810 return ((unsigned long) node) & REMOVED_FLAG;
abc490a1
MD
811}
812
f5596c94 813static
1ee8f000 814int is_bucket(struct cds_lfht_node *node)
f5596c94 815{
1ee8f000 816 return ((unsigned long) node) & BUCKET_FLAG;
f5596c94
MD
817}
818
819static
1ee8f000 820struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
f5596c94 821{
1ee8f000 822 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
f5596c94 823}
bb7b2f26 824
db00ccc3
MD
825static
826int is_removal_owner(struct cds_lfht_node *node)
827{
828 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
829}
830
4c10e9af
MD
831static
832struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
833{
834 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
835}
836
db00ccc3
MD
837static
838struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
839{
840 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
841}
842
71bb3aca
MD
843static
844struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
845{
846 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
847}
848
bb7b2f26
MD
849static
850struct cds_lfht_node *get_end(void)
851{
852 return (struct cds_lfht_node *) END_VALUE;
853}
854
855static
856int is_end(struct cds_lfht_node *node)
857{
858 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
859}
860
abc490a1 861static
ab65b890
LJ
862unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
863 unsigned long v)
abc490a1
MD
864{
865 unsigned long old1, old2;
866
867 old1 = uatomic_read(ptr);
868 do {
869 old2 = old1;
601922a8
OD
870 if (old2 >= v) {
871 cmm_smp_mb();
f9830efd 872 return old2;
601922a8 873 }
abc490a1 874 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
ab65b890 875 return old2;
abc490a1
MD
876}
877
48f1b16d
LJ
878static
879void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
880{
0b6aa001 881 return ht->mm->alloc_bucket_table(ht, order);
48f1b16d
LJ
882}
883
884/*
885 * cds_lfht_free_bucket_table() should be called with decreasing order.
886 * When cds_lfht_free_bucket_table(0) is called, it means the whole
887 * lfht is destroyed.
888 */
889static
890void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
891{
0b6aa001 892 return ht->mm->free_bucket_table(ht, order);
48f1b16d
LJ
893}
894
9d72a73f
LJ
895static inline
896struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
f4a9cc0b 897{
0b6aa001 898 return ht->bucket_at(ht, index);
f4a9cc0b
LJ
899}
900
9d72a73f
LJ
901static inline
902struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
903 unsigned long hash)
904{
01477510 905 urcu_posix_assert(size > 0);
9d72a73f
LJ
906 return bucket_at(ht, hash & (size - 1));
907}
908
273399de
MD
909/*
910 * Remove all logically deleted nodes from a bucket up to a certain node key.
911 */
912static
1ee8f000 913void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
273399de 914{
14044b37 915 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
273399de 916
01477510
FD
917 urcu_posix_assert(!is_bucket(bucket));
918 urcu_posix_assert(!is_removed(bucket));
919 urcu_posix_assert(!is_removal_owner(bucket));
920 urcu_posix_assert(!is_bucket(node));
921 urcu_posix_assert(!is_removed(node));
922 urcu_posix_assert(!is_removal_owner(node));
273399de 923 for (;;) {
1ee8f000
LJ
924 iter_prev = bucket;
925 /* We can always skip the bucket node initially */
04db56f8 926 iter = rcu_dereference(iter_prev->next);
01477510
FD
927 urcu_posix_assert(!is_removed(iter));
928 urcu_posix_assert(!is_removal_owner(iter));
929 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
bd4db153 930 /*
1ee8f000 931 * We should never be called with bucket (start of chain)
bd4db153
MD
932 * and logically removed node (end of path compression
933 * marker) being the actual same node. This would be a
934 * bug in the algorithm implementation.
935 */
01477510 936 urcu_posix_assert(bucket != node);
273399de 937 for (;;) {
8ed51e04 938 if (caa_unlikely(is_end(iter)))
f9c80341 939 return;
04db56f8 940 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
f9c80341 941 return;
04db56f8 942 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 943 if (caa_likely(is_removed(next)))
273399de 944 break;
b453eae1 945 iter_prev = clear_flag(iter);
273399de
MD
946 iter = next;
947 }
01477510
FD
948 urcu_posix_assert(!is_removed(iter));
949 urcu_posix_assert(!is_removal_owner(iter));
1ee8f000
LJ
950 if (is_bucket(iter))
951 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
952 else
953 new_next = clear_flag(next);
04db56f8 954 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de
MD
955 }
956}
957
9357c415
MD
958static
959int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
960 struct cds_lfht_node *old_node,
3fb86f26 961 struct cds_lfht_node *old_next,
9357c415
MD
962 struct cds_lfht_node *new_node)
963{
04db56f8 964 struct cds_lfht_node *bucket, *ret_next;
9357c415
MD
965
966 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
7801dadd 967 return -ENOENT;
9357c415 968
01477510
FD
969 urcu_posix_assert(!is_removed(old_node));
970 urcu_posix_assert(!is_removal_owner(old_node));
971 urcu_posix_assert(!is_bucket(old_node));
972 urcu_posix_assert(!is_removed(new_node));
973 urcu_posix_assert(!is_removal_owner(new_node));
974 urcu_posix_assert(!is_bucket(new_node));
975 urcu_posix_assert(new_node != old_node);
3fb86f26 976 for (;;) {
9357c415 977 /* Insert after node to be replaced */
9357c415
MD
978 if (is_removed(old_next)) {
979 /*
980 * Too late, the old node has been removed under us
981 * between lookup and replace. Fail.
982 */
7801dadd 983 return -ENOENT;
9357c415 984 }
01477510
FD
985 urcu_posix_assert(old_next == clear_flag(old_next));
986 urcu_posix_assert(new_node != old_next);
71bb3aca
MD
987 /*
988 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
989 * flag. It is either set atomically at the same time
990 * (replace) or after (del).
991 */
01477510 992 urcu_posix_assert(!is_removal_owner(old_next));
feda2722 993 new_node->next = old_next;
9357c415
MD
994 /*
995 * Here is the whole trick for lock-free replace: we add
996 * the replacement node _after_ the node we want to
997 * replace by atomically setting its next pointer at the
998 * same time we set its removal flag. Given that
999 * the lookups/get next use an iterator aware of the
1000 * next pointer, they will either skip the old node due
1001 * to the removal flag and see the new node, or use
1002 * the old node, but will not see the new one.
db00ccc3
MD
1003 * This is a replacement of a node with another node
1004 * that has the same value: we are therefore not
71bb3aca
MD
1005 * removing a value from the hash table. We set both the
1006 * REMOVED and REMOVAL_OWNER flags atomically so we own
1007 * the node after successful cmpxchg.
9357c415 1008 */
04db56f8 1009 ret_next = uatomic_cmpxchg(&old_node->next,
71bb3aca 1010 old_next, flag_removed_or_removal_owner(new_node));
3fb86f26 1011 if (ret_next == old_next)
7801dadd 1012 break; /* We performed the replacement. */
3fb86f26
LJ
1013 old_next = ret_next;
1014 }
9357c415 1015
9357c415
MD
1016 /*
1017 * Ensure that the old node is not visible to readers anymore:
1018 * lookup for the node, and remove it (along with any other
1019 * logically removed node) if found.
1020 */
04db56f8
LJ
1021 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1022 _cds_lfht_gc_bucket(bucket, new_node);
7801dadd 1023
01477510 1024 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
7801dadd 1025 return 0;
9357c415
MD
1026}
1027
83beee94
MD
1028/*
1029 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1030 * mode. A NULL unique_ret allows creation of duplicate keys.
1031 */
abc490a1 1032static
83beee94 1033void _cds_lfht_add(struct cds_lfht *ht,
91a75cc5 1034 unsigned long hash,
0422d92c 1035 cds_lfht_match_fct match,
996ff57c 1036 const void *key,
83beee94
MD
1037 unsigned long size,
1038 struct cds_lfht_node *node,
1039 struct cds_lfht_iter *unique_ret,
1ee8f000 1040 int bucket_flag)
abc490a1 1041{
14044b37 1042 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
960c9e4f 1043 *return_node;
04db56f8 1044 struct cds_lfht_node *bucket;
abc490a1 1045
01477510
FD
1046 urcu_posix_assert(!is_bucket(node));
1047 urcu_posix_assert(!is_removed(node));
1048 urcu_posix_assert(!is_removal_owner(node));
91a75cc5 1049 bucket = lookup_bucket(ht, size, hash);
abc490a1 1050 for (;;) {
adc0de68 1051 uint32_t chain_len = 0;
abc490a1 1052
11519af6
MD
1053 /*
1054 * iter_prev points to the non-removed node prior to the
1055 * insert location.
11519af6 1056 */
04db56f8 1057 iter_prev = bucket;
1ee8f000 1058 /* We can always skip the bucket node initially */
04db56f8 1059 iter = rcu_dereference(iter_prev->next);
01477510 1060 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
abc490a1 1061 for (;;) {
8ed51e04 1062 if (caa_unlikely(is_end(iter)))
273399de 1063 goto insert;
04db56f8 1064 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
273399de 1065 goto insert;
238cc06e 1066
1ee8f000
LJ
1067 /* bucket node is the first node of the identical-hash-value chain */
1068 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
194fdbd1 1069 goto insert;
238cc06e 1070
04db56f8 1071 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 1072 if (caa_unlikely(is_removed(next)))
9dba85be 1073 goto gc_node;
238cc06e
LJ
1074
1075 /* uniquely add */
83beee94 1076 if (unique_ret
1ee8f000 1077 && !is_bucket(next)
04db56f8 1078 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
d7c76f85
MD
1079 struct cds_lfht_iter d_iter = {
1080 .node = node,
1081 .next = iter,
1082#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1083 .lfht = ht,
1084#endif
1085 };
238cc06e
LJ
1086
1087 /*
1088 * uniquely adding inserts the node as the first
1089 * node of the identical-hash-value node chain.
1090 *
1091 * This semantic ensures no duplicated keys
1092 * should ever be observable in the table
1f67ba50
MD
1093 * (including traversing the table node by
1094 * node by forward iterations)
238cc06e 1095 */
04db56f8 1096 cds_lfht_next_duplicate(ht, match, key, &d_iter);
238cc06e
LJ
1097 if (!d_iter.node)
1098 goto insert;
1099
1100 *unique_ret = d_iter;
83beee94 1101 return;
48ed1c18 1102 }
238cc06e 1103
11519af6 1104 /* Only account for identical reverse hash once */
04db56f8 1105 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1ee8f000 1106 && !is_bucket(next))
4105056a 1107 check_resize(ht, size, ++chain_len);
11519af6 1108 iter_prev = clear_flag(iter);
273399de 1109 iter = next;
abc490a1 1110 }
48ed1c18 1111
273399de 1112 insert:
01477510
FD
1113 urcu_posix_assert(node != clear_flag(iter));
1114 urcu_posix_assert(!is_removed(iter_prev));
1115 urcu_posix_assert(!is_removal_owner(iter_prev));
1116 urcu_posix_assert(!is_removed(iter));
1117 urcu_posix_assert(!is_removal_owner(iter));
1118 urcu_posix_assert(iter_prev != node);
1ee8f000 1119 if (!bucket_flag)
04db56f8 1120 node->next = clear_flag(iter);
f9c80341 1121 else
1ee8f000
LJ
1122 node->next = flag_bucket(clear_flag(iter));
1123 if (is_bucket(iter))
1124 new_node = flag_bucket(node);
f5596c94
MD
1125 else
1126 new_node = node;
04db56f8 1127 if (uatomic_cmpxchg(&iter_prev->next, iter,
48ed1c18 1128 new_node) != iter) {
273399de 1129 continue; /* retry */
48ed1c18 1130 } else {
83beee94 1131 return_node = node;
960c9e4f 1132 goto end;
48ed1c18
MD
1133 }
1134
9dba85be 1135 gc_node:
01477510
FD
1136 urcu_posix_assert(!is_removed(iter));
1137 urcu_posix_assert(!is_removal_owner(iter));
1ee8f000
LJ
1138 if (is_bucket(iter))
1139 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1140 else
1141 new_next = clear_flag(next);
04db56f8 1142 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de 1143 /* retry */
464a1ec9 1144 }
9357c415 1145end:
83beee94
MD
1146 if (unique_ret) {
1147 unique_ret->node = return_node;
1148 /* unique_ret->next left unset, never used. */
1149 }
abc490a1 1150}
464a1ec9 1151
abc490a1 1152static
860d07e8 1153int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
b65ec430 1154 struct cds_lfht_node *node)
abc490a1 1155{
db00ccc3 1156 struct cds_lfht_node *bucket, *next;
601922a8 1157 struct cds_lfht_node **node_next;
5e28c532 1158
9357c415 1159 if (!node) /* Return -ENOENT if asked to delete NULL node */
743f9143 1160 return -ENOENT;
9357c415 1161
7ec59d3b 1162 /* logically delete the node */
01477510
FD
1163 urcu_posix_assert(!is_bucket(node));
1164 urcu_posix_assert(!is_removed(node));
1165 urcu_posix_assert(!is_removal_owner(node));
48ed1c18 1166
db00ccc3
MD
1167 /*
1168 * We are first checking if the node had previously been
1169 * logically removed (this check is not atomic with setting the
1170 * logical removal flag). Return -ENOENT if the node had
1171 * previously been removed.
1172 */
a85eff52 1173 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
db00ccc3
MD
1174 if (caa_unlikely(is_removed(next)))
1175 return -ENOENT;
01477510 1176 urcu_posix_assert(!is_bucket(next));
196f4fab
MD
1177 /*
1178 * The del operation semantic guarantees a full memory barrier
1179 * before the uatomic_or atomic commit of the deletion flag.
601922a8 1180 *
db00ccc3
MD
1181 * We set the REMOVED_FLAG unconditionally. Note that there may
1182 * be more than one concurrent thread setting this flag.
1183 * Knowing which wins the race will be known after the garbage
1184 * collection phase, stay tuned!
601922a8
OD
1185 *
1186 * NOTE: The node_next variable is present to avoid breaking
1187 * strict-aliasing rules.
db00ccc3 1188 */
601922a8
OD
1189 node_next = &node->next;
1190 uatomic_or_mo(node_next, REMOVED_FLAG, CMM_RELEASE);
1191
7ec59d3b 1192 /* We performed the (logical) deletion. */
7ec59d3b
MD
1193
1194 /*
1195 * Ensure that the node is not visible to readers anymore: lookup for
273399de
MD
1196 * the node, and remove it (along with any other logically removed node)
1197 * if found.
11519af6 1198 */
04db56f8
LJ
1199 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1200 _cds_lfht_gc_bucket(bucket, node);
743f9143 1201
01477510 1202 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(node->next)));
db00ccc3
MD
1203 /*
1204 * Last phase: atomically exchange node->next with a version
1205 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1206 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1207 * the node and win the removal race.
1208 * It is interesting to note that all "add" paths are forbidden
1209 * to change the next pointer starting from the point where the
1210 * REMOVED_FLAG is set, so here using a read, followed by a
1211 * xchg() suffice to guarantee that the xchg() will ever only
1212 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1213 * was already set).
1214 */
1215 if (!is_removal_owner(uatomic_xchg(&node->next,
601922a8 1216 flag_removal_owner(uatomic_load(&node->next, CMM_RELAXED)))))
db00ccc3
MD
1217 return 0;
1218 else
1219 return -ENOENT;
abc490a1 1220}
2ed95849 1221
b7d619b0
MD
1222static
1223void *partition_resize_thread(void *arg)
1224{
1225 struct partition_resize_work *work = arg;
1226
7b17c13e 1227 work->ht->flavor->register_thread();
b7d619b0 1228 work->fct(work->ht, work->i, work->start, work->len);
7b17c13e 1229 work->ht->flavor->unregister_thread();
b7d619b0
MD
1230 return NULL;
1231}
1232
1233static
1234void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1235 unsigned long len,
1236 void (*fct)(struct cds_lfht *ht, unsigned long i,
1237 unsigned long start, unsigned long len))
1238{
e54ec2f5 1239 unsigned long partition_len, start = 0;
b7d619b0 1240 struct partition_resize_work *work;
83e334d0
MJ
1241 int ret;
1242 unsigned long thread, nr_threads;
ea3a28a3 1243 sigset_t newmask, oldmask;
b7d619b0 1244
01477510 1245 urcu_posix_assert(nr_cpus_mask != -1);
d7f3ba4c
EW
1246 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1247 goto fallback;
1248
6083a889
MD
1249 /*
1250 * Note: nr_cpus_mask + 1 is always power of 2.
1251 * We spawn just the number of threads we need to satisfy the minimum
1252 * partition size, up to the number of CPUs in the system.
1253 */
91452a6a 1254 if (nr_cpus_mask > 0) {
83e334d0 1255 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
91452a6a
MD
1256 len >> MIN_PARTITION_PER_THREAD_ORDER);
1257 } else {
1258 nr_threads = 1;
1259 }
5bc6b66f 1260 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
6083a889 1261 work = calloc(nr_threads, sizeof(*work));
7c75d498
EW
1262 if (!work) {
1263 dbg_printf("error allocating for resize, single-threading\n");
1264 goto fallback;
1265 }
ea3a28a3
MD
1266
1267 ret = sigfillset(&newmask);
1268 urcu_posix_assert(!ret);
1269 ret = pthread_sigmask(SIG_BLOCK, &newmask, &oldmask);
1270 urcu_posix_assert(!ret);
1271
6083a889
MD
1272 for (thread = 0; thread < nr_threads; thread++) {
1273 work[thread].ht = ht;
1274 work[thread].i = i;
1275 work[thread].len = partition_len;
1276 work[thread].start = thread * partition_len;
1277 work[thread].fct = fct;
b047e7a7
MD
1278 ret = pthread_create(&(work[thread].thread_id),
1279 ht->caller_resize_attr ? &ht->resize_attr : NULL,
6083a889 1280 partition_resize_thread, &work[thread]);
e54ec2f5
EW
1281 if (ret == EAGAIN) {
1282 /*
1283 * Out of resources: wait and join the threads
1284 * we've created, then handle leftovers.
1285 */
1286 dbg_printf("error spawning for resize, single-threading\n");
1287 start = work[thread].start;
1288 len -= start;
1289 nr_threads = thread;
1290 break;
1291 }
01477510 1292 urcu_posix_assert(!ret);
b7d619b0 1293 }
ea3a28a3
MD
1294
1295 ret = pthread_sigmask(SIG_SETMASK, &oldmask, NULL);
1296 urcu_posix_assert(!ret);
1297
6083a889 1298 for (thread = 0; thread < nr_threads; thread++) {
1af6e26e 1299 ret = pthread_join(work[thread].thread_id, NULL);
01477510 1300 urcu_posix_assert(!ret);
b7d619b0
MD
1301 }
1302 free(work);
e54ec2f5
EW
1303
1304 /*
1305 * A pthread_create failure above will either lead in us having
1306 * no threads to join or starting at a non-zero offset,
1307 * fallback to single thread processing of leftovers.
1308 */
1309 if (start == 0 && nr_threads > 0)
1310 return;
7c75d498 1311fallback:
e54ec2f5 1312 fct(ht, i, start, len);
b7d619b0
MD
1313}
1314
e8de508e
MD
1315/*
1316 * Holding RCU read lock to protect _cds_lfht_add against memory
d0ec0ed2 1317 * reclaim that could be performed by other worker threads (ABA
e8de508e 1318 * problem).
9ee0fc9a 1319 *
b7d619b0 1320 * When we reach a certain length, we can split this population phase over
9ee0fc9a
MD
1321 * many worker threads, based on the number of CPUs available in the system.
1322 * This should therefore take care of not having the expand lagging behind too
1323 * many concurrent insertion threads by using the scheduler's ability to
1ee8f000 1324 * schedule bucket node population fairly with insertions.
e8de508e 1325 */
4105056a 1326static
b7d619b0
MD
1327void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1328 unsigned long start, unsigned long len)
4105056a 1329{
9d72a73f 1330 unsigned long j, size = 1UL << (i - 1);
4105056a 1331
01477510 1332 urcu_posix_assert(i > MIN_TABLE_ORDER);
7b17c13e 1333 ht->flavor->read_lock();
9d72a73f
LJ
1334 for (j = size + start; j < size + start + len; j++) {
1335 struct cds_lfht_node *new_node = bucket_at(ht, j);
1336
01477510 1337 urcu_posix_assert(j >= size && j < (size << 1));
9d72a73f
LJ
1338 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1339 i, j, j);
1340 new_node->reverse_hash = bit_reverse_ulong(j);
91a75cc5 1341 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
4105056a 1342 }
7b17c13e 1343 ht->flavor->read_unlock();
b7d619b0
MD
1344}
1345
1346static
1347void init_table_populate(struct cds_lfht *ht, unsigned long i,
1348 unsigned long len)
1349{
b7d619b0 1350 partition_resize_helper(ht, i, len, init_table_populate_partition);
4105056a
MD
1351}
1352
abc490a1 1353static
4105056a 1354void init_table(struct cds_lfht *ht,
93d46c39 1355 unsigned long first_order, unsigned long last_order)
24365af7 1356{
93d46c39 1357 unsigned long i;
24365af7 1358
93d46c39
LJ
1359 dbg_printf("init table: first_order %lu last_order %lu\n",
1360 first_order, last_order);
01477510 1361 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
93d46c39 1362 for (i = first_order; i <= last_order; i++) {
4105056a 1363 unsigned long len;
24365af7 1364
4f6e90b7 1365 len = 1UL << (i - 1);
f0c29ed7 1366 dbg_printf("init order %lu len: %lu\n", i, len);
4d676753
MD
1367
1368 /* Stop expand if the resize target changes under us */
7b3893e4 1369 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
4d676753
MD
1370 break;
1371
48f1b16d 1372 cds_lfht_alloc_bucket_table(ht, i);
4105056a 1373
4105056a 1374 /*
1ee8f000
LJ
1375 * Set all bucket nodes reverse hash values for a level and
1376 * link all bucket nodes into the table.
4105056a 1377 */
dc1da8f6 1378 init_table_populate(ht, i, len);
4105056a 1379
f9c80341
MD
1380 /*
1381 * Update table size.
601922a8
OD
1382 *
1383 * Populate data before RCU size.
f9c80341 1384 */
601922a8 1385 uatomic_store(&ht->size, 1UL << i, CMM_RELEASE);
f9c80341 1386
4f6e90b7 1387 dbg_printf("init new size: %lu\n", 1UL << i);
4105056a
MD
1388 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1389 break;
1390 }
1391}
1392
e8de508e
MD
1393/*
1394 * Holding RCU read lock to protect _cds_lfht_remove against memory
d0ec0ed2 1395 * reclaim that could be performed by other worker threads (ABA
e8de508e
MD
1396 * problem).
1397 * For a single level, we logically remove and garbage collect each node.
1398 *
1399 * As a design choice, we perform logical removal and garbage collection on a
1400 * node-per-node basis to simplify this algorithm. We also assume keeping good
1401 * cache locality of the operation would overweight possible performance gain
1402 * that could be achieved by batching garbage collection for multiple levels.
1403 * However, this would have to be justified by benchmarks.
1404 *
1405 * Concurrent removal and add operations are helping us perform garbage
1406 * collection of logically removed nodes. We guarantee that all logically
d0ec0ed2
MD
1407 * removed nodes have been garbage-collected (unlinked) before work
1408 * enqueue is invoked to free a hole level of bucket nodes (after a
1409 * grace period).
e8de508e 1410 *
1f67ba50
MD
1411 * Logical removal and garbage collection can therefore be done in batch
1412 * or on a node-per-node basis, as long as the guarantee above holds.
9ee0fc9a 1413 *
b7d619b0
MD
1414 * When we reach a certain length, we can split this removal over many worker
1415 * threads, based on the number of CPUs available in the system. This should
1416 * take care of not letting resize process lag behind too many concurrent
9ee0fc9a 1417 * updater threads actively inserting into the hash table.
e8de508e 1418 */
4105056a 1419static
b7d619b0
MD
1420void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1421 unsigned long start, unsigned long len)
4105056a 1422{
9d72a73f 1423 unsigned long j, size = 1UL << (i - 1);
4105056a 1424
01477510 1425 urcu_posix_assert(i > MIN_TABLE_ORDER);
7b17c13e 1426 ht->flavor->read_lock();
9d72a73f 1427 for (j = size + start; j < size + start + len; j++) {
2e2ce1e9
LJ
1428 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1429 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
601922a8 1430 struct cds_lfht_node **fini_bucket_next;
9d72a73f 1431
01477510 1432 urcu_posix_assert(j >= size && j < (size << 1));
9d72a73f
LJ
1433 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1434 i, j, j);
601922a8
OD
1435 /* Set the REMOVED_FLAG to freeze the ->next for gc.
1436 *
1437 * NOTE: The fini_bucket_next variable is present to
1438 * avoid breaking strict-aliasing rules.
1439 */
1440 fini_bucket_next = &fini_bucket->next;
1441 uatomic_or(fini_bucket_next, REMOVED_FLAG);
2e2ce1e9 1442 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
abc490a1 1443 }
7b17c13e 1444 ht->flavor->read_unlock();
b7d619b0
MD
1445}
1446
1447static
1448void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1449{
b7d619b0 1450 partition_resize_helper(ht, i, len, remove_table_partition);
2ed95849
MD
1451}
1452
61adb337
MD
1453/*
1454 * fini_table() is never called for first_order == 0, which is why
1455 * free_by_rcu_order == 0 can be used as criterion to know if free must
1456 * be called.
1457 */
1475579c 1458static
4105056a 1459void fini_table(struct cds_lfht *ht,
93d46c39 1460 unsigned long first_order, unsigned long last_order)
1475579c 1461{
83e334d0 1462 unsigned long free_by_rcu_order = 0, i;
1475579c 1463
93d46c39
LJ
1464 dbg_printf("fini table: first_order %lu last_order %lu\n",
1465 first_order, last_order);
01477510 1466 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
93d46c39 1467 for (i = last_order; i >= first_order; i--) {
4105056a 1468 unsigned long len;
1475579c 1469
4f6e90b7 1470 len = 1UL << (i - 1);
e15df1cc 1471 dbg_printf("fini order %ld len: %lu\n", i, len);
4105056a 1472
4d676753 1473 /* Stop shrink if the resize target changes under us */
7b3893e4 1474 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
4d676753
MD
1475 break;
1476
1477 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1478 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
4d676753
MD
1479
1480 /*
1481 * We need to wait for all add operations to reach Q.S. (and
1482 * thus use the new table for lookups) before we can start
1ee8f000 1483 * releasing the old bucket nodes. Otherwise their lookup will
4d676753
MD
1484 * return a logically removed node as insert position.
1485 */
7b17c13e 1486 ht->flavor->update_synchronize_rcu();
48f1b16d
LJ
1487 if (free_by_rcu_order)
1488 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
4d676753 1489
21263e21 1490 /*
1ee8f000
LJ
1491 * Set "removed" flag in bucket nodes about to be removed.
1492 * Unlink all now-logically-removed bucket node pointers.
4105056a
MD
1493 * Concurrent add/remove operation are helping us doing
1494 * the gc.
21263e21 1495 */
4105056a
MD
1496 remove_table(ht, i, len);
1497
48f1b16d 1498 free_by_rcu_order = i;
4105056a
MD
1499
1500 dbg_printf("fini new size: %lu\n", 1UL << i);
1475579c
MD
1501 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1502 break;
1503 }
0d14ceb2 1504
48f1b16d 1505 if (free_by_rcu_order) {
7b17c13e 1506 ht->flavor->update_synchronize_rcu();
48f1b16d 1507 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
0d14ceb2 1508 }
1475579c
MD
1509}
1510
83e334d0
MJ
1511/*
1512 * Never called with size < 1.
1513 */
ff0d69de 1514static
1ee8f000 1515void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
ff0d69de 1516{
04db56f8 1517 struct cds_lfht_node *prev, *node;
9d72a73f 1518 unsigned long order, len, i;
83e334d0 1519 int bucket_order;
ff0d69de 1520
48f1b16d 1521 cds_lfht_alloc_bucket_table(ht, 0);
ff0d69de 1522
9d72a73f
LJ
1523 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1524 node = bucket_at(ht, 0);
1525 node->next = flag_bucket(get_end());
1526 node->reverse_hash = 0;
ff0d69de 1527
83e334d0 1528 bucket_order = cds_lfht_get_count_order_ulong(size);
01477510 1529 urcu_posix_assert(bucket_order >= 0);
83e334d0
MJ
1530
1531 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
ff0d69de 1532 len = 1UL << (order - 1);
48f1b16d 1533 cds_lfht_alloc_bucket_table(ht, order);
ff0d69de 1534
9d72a73f
LJ
1535 for (i = 0; i < len; i++) {
1536 /*
1537 * Now, we are trying to init the node with the
1538 * hash=(len+i) (which is also a bucket with the
1539 * index=(len+i)) and insert it into the hash table,
1540 * so this node has to be inserted after the bucket
1541 * with the index=(len+i)&(len-1)=i. And because there
1542 * is no other non-bucket node nor bucket node with
1543 * larger index/hash inserted, so the bucket node
1544 * being inserted should be inserted directly linked
1545 * after the bucket node with index=i.
1546 */
1547 prev = bucket_at(ht, i);
1548 node = bucket_at(ht, len + i);
ff0d69de 1549
1ee8f000 1550 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
9d72a73f
LJ
1551 order, len + i, len + i);
1552 node->reverse_hash = bit_reverse_ulong(len + i);
1553
1554 /* insert after prev */
01477510 1555 urcu_posix_assert(is_bucket(prev->next));
ff0d69de 1556 node->next = prev->next;
1ee8f000 1557 prev->next = flag_bucket(node);
ff0d69de
LJ
1558 }
1559 }
1560}
1561
99ab1528
MJ
1562#if (CAA_BITS_PER_LONG > 32)
1563/*
1564 * For 64-bit architectures, with max number of buckets small enough not to
1565 * use the entire 64-bit memory mapping space (and allowing a fair number of
1566 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1567 * fallback to the order allocator.
1568 */
1569static
1570const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1571{
1572 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1573 return &cds_lfht_mm_mmap;
1574 else
1575 return &cds_lfht_mm_order;
1576}
1577#else
1578/*
1579 * For 32-bit architectures, use the order allocator.
1580 */
1581static
70469b43
MJ
1582const struct cds_lfht_mm_type *get_mm_type(
1583 unsigned long max_nr_buckets __attribute__((unused)))
99ab1528
MJ
1584{
1585 return &cds_lfht_mm_order;
1586}
1587#endif
1588
4c10e9af
MD
1589void cds_lfht_node_init_deleted(struct cds_lfht_node *node)
1590{
1591 cds_lfht_node_init(node);
1592 node->next = flag_removed(NULL);
1593}
1594
0422d92c 1595struct cds_lfht *_cds_lfht_new(unsigned long init_size,
0722081a 1596 unsigned long min_nr_alloc_buckets,
747d725c 1597 unsigned long max_nr_buckets,
b8af5011 1598 int flags,
0b6aa001 1599 const struct cds_lfht_mm_type *mm,
7b17c13e 1600 const struct rcu_flavor_struct *flavor,
b7d619b0 1601 pthread_attr_t *attr)
abc490a1 1602{
14044b37 1603 struct cds_lfht *ht;
24365af7 1604 unsigned long order;
abc490a1 1605
0722081a
LJ
1606 /* min_nr_alloc_buckets must be power of two */
1607 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
5488222b 1608 return NULL;
747d725c 1609
8129be4e 1610 /* init_size must be power of two */
5488222b 1611 if (!init_size || (init_size & (init_size - 1)))
8129be4e 1612 return NULL;
747d725c 1613
c1888f3a
MD
1614 /*
1615 * Memory management plugin default.
1616 */
99ab1528
MJ
1617 if (!mm)
1618 mm = get_mm_type(max_nr_buckets);
c1888f3a 1619
0b6aa001
LJ
1620 /* max_nr_buckets == 0 for order based mm means infinite */
1621 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
747d725c
LJ
1622 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1623
1624 /* max_nr_buckets must be power of two */
1625 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1626 return NULL;
1627
d0ec0ed2
MD
1628 if (flags & CDS_LFHT_AUTO_RESIZE)
1629 cds_lfht_init_worker(flavor);
1630
0722081a 1631 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
d0d8f9aa 1632 init_size = max(init_size, MIN_TABLE_SIZE);
747d725c
LJ
1633 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1634 init_size = min(init_size, max_nr_buckets);
0b6aa001
LJ
1635
1636 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
01477510
FD
1637 urcu_posix_assert(ht);
1638 urcu_posix_assert(ht->mm == mm);
1639 urcu_posix_assert(ht->bucket_at == mm->bucket_at);
0b6aa001 1640
b5d6b20f 1641 ht->flags = flags;
7b17c13e 1642 ht->flavor = flavor;
b047e7a7
MD
1643 ht->caller_resize_attr = attr;
1644 if (attr)
1645 ht->resize_attr = *attr;
5afadd12 1646 alloc_split_items_count(ht);
abc490a1
MD
1647 /* this mutex should not nest in read-side C.S. */
1648 pthread_mutex_init(&ht->resize_mutex, NULL);
5bc6b66f 1649 order = cds_lfht_get_count_order_ulong(init_size);
7b3893e4 1650 ht->resize_target = 1UL << order;
1ee8f000 1651 cds_lfht_create_bucket(ht, 1UL << order);
7b3893e4 1652 ht->size = 1UL << order;
abc490a1
MD
1653 return ht;
1654}
1655
6f554439 1656void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
996ff57c 1657 cds_lfht_match_fct match, const void *key,
6f554439 1658 struct cds_lfht_iter *iter)
2ed95849 1659{
04db56f8 1660 struct cds_lfht_node *node, *next, *bucket;
0422d92c 1661 unsigned long reverse_hash, size;
2ed95849 1662
d7c76f85
MD
1663 cds_lfht_iter_debug_set_ht(ht, iter);
1664
abc490a1 1665 reverse_hash = bit_reverse_ulong(hash);
464a1ec9 1666
601922a8
OD
1667 /*
1668 * Use load acquire instead of rcu_dereference because there is no
1669 * dependency between the table size and the dereference of the bucket
1670 * content.
1671 *
1672 * This acquire is paired with the store release in init_table().
1673 */
1674 size = uatomic_load(&ht->size, CMM_ACQUIRE);
04db56f8 1675 bucket = lookup_bucket(ht, size, hash);
1ee8f000 1676 /* We can always skip the bucket node initially */
04db56f8 1677 node = rcu_dereference(bucket->next);
bb7b2f26 1678 node = clear_flag(node);
2ed95849 1679 for (;;) {
8ed51e04 1680 if (caa_unlikely(is_end(node))) {
96ad1112 1681 node = next = NULL;
abc490a1 1682 break;
bb7b2f26 1683 }
04db56f8 1684 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1685 node = next = NULL;
abc490a1 1686 break;
2ed95849 1687 }
04db56f8 1688 next = rcu_dereference(node->next);
01477510 1689 urcu_posix_assert(node == clear_flag(node));
8ed51e04 1690 if (caa_likely(!is_removed(next))
1ee8f000 1691 && !is_bucket(next)
04db56f8 1692 && node->reverse_hash == reverse_hash
0422d92c 1693 && caa_likely(match(node, key))) {
273399de 1694 break;
2ed95849 1695 }
1b81fe1a 1696 node = clear_flag(next);
2ed95849 1697 }
01477510 1698 urcu_posix_assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1699 iter->node = node;
1700 iter->next = next;
abc490a1 1701}
e0ba718a 1702
70469b43
MJ
1703void cds_lfht_next_duplicate(struct cds_lfht *ht __attribute__((unused)),
1704 cds_lfht_match_fct match,
996ff57c 1705 const void *key, struct cds_lfht_iter *iter)
a481e5ff 1706{
adc0de68 1707 struct cds_lfht_node *node, *next;
a481e5ff 1708 unsigned long reverse_hash;
a481e5ff 1709
d7c76f85 1710 cds_lfht_iter_debug_assert(ht == iter->lfht);
adc0de68 1711 node = iter->node;
04db56f8 1712 reverse_hash = node->reverse_hash;
adc0de68 1713 next = iter->next;
a481e5ff
MD
1714 node = clear_flag(next);
1715
1716 for (;;) {
8ed51e04 1717 if (caa_unlikely(is_end(node))) {
96ad1112 1718 node = next = NULL;
a481e5ff 1719 break;
bb7b2f26 1720 }
04db56f8 1721 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1722 node = next = NULL;
a481e5ff
MD
1723 break;
1724 }
04db56f8 1725 next = rcu_dereference(node->next);
8ed51e04 1726 if (caa_likely(!is_removed(next))
1ee8f000 1727 && !is_bucket(next)
04db56f8 1728 && caa_likely(match(node, key))) {
a481e5ff
MD
1729 break;
1730 }
1731 node = clear_flag(next);
1732 }
601922a8 1733 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
adc0de68
MD
1734 iter->node = node;
1735 iter->next = next;
a481e5ff
MD
1736}
1737
70469b43
MJ
1738void cds_lfht_next(struct cds_lfht *ht __attribute__((unused)),
1739 struct cds_lfht_iter *iter)
4e9b9fbf
MD
1740{
1741 struct cds_lfht_node *node, *next;
1742
d7c76f85 1743 cds_lfht_iter_debug_assert(ht == iter->lfht);
853395e1 1744 node = clear_flag(iter->next);
4e9b9fbf 1745 for (;;) {
8ed51e04 1746 if (caa_unlikely(is_end(node))) {
4e9b9fbf
MD
1747 node = next = NULL;
1748 break;
1749 }
04db56f8 1750 next = rcu_dereference(node->next);
8ed51e04 1751 if (caa_likely(!is_removed(next))
1ee8f000 1752 && !is_bucket(next)) {
4e9b9fbf
MD
1753 break;
1754 }
1755 node = clear_flag(next);
1756 }
601922a8 1757 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
4e9b9fbf
MD
1758 iter->node = node;
1759 iter->next = next;
1760}
1761
1762void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1763{
d7c76f85 1764 cds_lfht_iter_debug_set_ht(ht, iter);
4e9b9fbf 1765 /*
1ee8f000 1766 * Get next after first bucket node. The first bucket node is the
4e9b9fbf
MD
1767 * first node of the linked list.
1768 */
601922a8 1769 iter->next = uatomic_load(&bucket_at(ht, 0)->next, CMM_CONSUME);
4e9b9fbf
MD
1770 cds_lfht_next(ht, iter);
1771}
1772
0422d92c
MD
1773void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1774 struct cds_lfht_node *node)
abc490a1 1775{
0422d92c 1776 unsigned long size;
ab7d5fc6 1777
709bacf9 1778 node->reverse_hash = bit_reverse_ulong(hash);
601922a8 1779 size = uatomic_load(&ht->size, CMM_ACQUIRE);
91a75cc5 1780 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
14360f1c 1781 ht_count_add(ht, size, hash);
3eca1b8c
MD
1782}
1783
14044b37 1784struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
6f554439 1785 unsigned long hash,
0422d92c 1786 cds_lfht_match_fct match,
996ff57c 1787 const void *key,
48ed1c18 1788 struct cds_lfht_node *node)
3eca1b8c 1789{
0422d92c 1790 unsigned long size;
83beee94 1791 struct cds_lfht_iter iter;
3eca1b8c 1792
709bacf9 1793 node->reverse_hash = bit_reverse_ulong(hash);
601922a8 1794 size = uatomic_load(&ht->size, CMM_ACQUIRE);
91a75cc5 1795 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1796 if (iter.node == node)
14360f1c 1797 ht_count_add(ht, size, hash);
83beee94 1798 return iter.node;
2ed95849
MD
1799}
1800
9357c415 1801struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
6f554439 1802 unsigned long hash,
0422d92c 1803 cds_lfht_match_fct match,
996ff57c 1804 const void *key,
48ed1c18
MD
1805 struct cds_lfht_node *node)
1806{
0422d92c 1807 unsigned long size;
83beee94 1808 struct cds_lfht_iter iter;
48ed1c18 1809
709bacf9 1810 node->reverse_hash = bit_reverse_ulong(hash);
601922a8 1811 size = uatomic_load(&ht->size, CMM_ACQUIRE);
83beee94 1812 for (;;) {
91a75cc5 1813 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1814 if (iter.node == node) {
14360f1c 1815 ht_count_add(ht, size, hash);
83beee94
MD
1816 return NULL;
1817 }
1818
1819 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1820 return iter.node;
1821 }
48ed1c18
MD
1822}
1823
2e79c445
MD
1824int cds_lfht_replace(struct cds_lfht *ht,
1825 struct cds_lfht_iter *old_iter,
1826 unsigned long hash,
1827 cds_lfht_match_fct match,
1828 const void *key,
9357c415
MD
1829 struct cds_lfht_node *new_node)
1830{
1831 unsigned long size;
1832
709bacf9 1833 new_node->reverse_hash = bit_reverse_ulong(hash);
2e79c445
MD
1834 if (!old_iter->node)
1835 return -ENOENT;
1836 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1837 return -EINVAL;
1838 if (caa_unlikely(!match(old_iter->node, key)))
1839 return -EINVAL;
601922a8 1840 size = uatomic_load(&ht->size, CMM_ACQUIRE);
9357c415
MD
1841 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1842 new_node);
1843}
1844
bc8c3c74 1845int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
2ed95849 1846{
95bc7fb9 1847 unsigned long size;
df44348d 1848 int ret;
abc490a1 1849
601922a8 1850 size = uatomic_load(&ht->size, CMM_ACQUIRE);
bc8c3c74 1851 ret = _cds_lfht_del(ht, size, node);
14360f1c 1852 if (!ret) {
95bc7fb9
MD
1853 unsigned long hash;
1854
bc8c3c74 1855 hash = bit_reverse_ulong(node->reverse_hash);
14360f1c
LJ
1856 ht_count_del(ht, size, hash);
1857 }
df44348d 1858 return ret;
2ed95849 1859}
ab7d5fc6 1860
afa5940d 1861int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
df55172a 1862{
a85eff52 1863 return is_removed(CMM_LOAD_SHARED(node->next));
df55172a
MD
1864}
1865
b047e7a7
MD
1866static
1867bool cds_lfht_is_empty(struct cds_lfht *ht)
1868{
1869 struct cds_lfht_node *node, *next;
1870 bool empty = true;
1871 bool was_online;
1872
1873 was_online = ht->flavor->read_ongoing();
1874 if (!was_online) {
1875 ht->flavor->thread_online();
1876 ht->flavor->read_lock();
1877 }
1878 /* Check that the table is empty */
1879 node = bucket_at(ht, 0);
1880 do {
1881 next = rcu_dereference(node->next);
1882 if (!is_bucket(next)) {
1883 empty = false;
1884 break;
1885 }
1886 node = clear_flag(next);
1887 } while (!is_end(node));
1888 if (!was_online) {
1889 ht->flavor->read_unlock();
1890 ht->flavor->thread_offline();
1891 }
1892 return empty;
1893}
1894
abc490a1 1895static
1ee8f000 1896int cds_lfht_delete_bucket(struct cds_lfht *ht)
674f7a69 1897{
14044b37 1898 struct cds_lfht_node *node;
4105056a 1899 unsigned long order, i, size;
674f7a69 1900
abc490a1 1901 /* Check that the table is empty */
9d72a73f 1902 node = bucket_at(ht, 0);
abc490a1 1903 do {
04db56f8 1904 node = clear_flag(node)->next;
1ee8f000 1905 if (!is_bucket(node))
abc490a1 1906 return -EPERM;
01477510
FD
1907 urcu_posix_assert(!is_removed(node));
1908 urcu_posix_assert(!is_removal_owner(node));
bb7b2f26 1909 } while (!is_end(node));
4105056a
MD
1910 /*
1911 * size accessed without rcu_dereference because hash table is
1912 * being destroyed.
1913 */
7b3893e4 1914 size = ht->size;
1f67ba50 1915 /* Internal sanity check: all nodes left should be buckets */
48f1b16d
LJ
1916 for (i = 0; i < size; i++) {
1917 node = bucket_at(ht, i);
1918 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1919 i, i, bit_reverse_ulong(node->reverse_hash));
01477510 1920 urcu_posix_assert(is_bucket(node->next));
48f1b16d 1921 }
24365af7 1922
5bc6b66f 1923 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
48f1b16d 1924 cds_lfht_free_bucket_table(ht, order);
5488222b 1925
abc490a1 1926 return 0;
674f7a69
MD
1927}
1928
b047e7a7
MD
1929static
1930void do_auto_resize_destroy_cb(struct urcu_work *work)
1931{
1932 struct cds_lfht *ht = caa_container_of(work, struct cds_lfht, destroy_work);
1933 int ret;
1934
1935 ht->flavor->register_thread();
1936 ret = cds_lfht_delete_bucket(ht);
1937 if (ret)
a51018da 1938 urcu_die(-ret);
b047e7a7
MD
1939 free_split_items_count(ht);
1940 ret = pthread_mutex_destroy(&ht->resize_mutex);
1941 if (ret)
1942 urcu_die(ret);
1943 ht->flavor->unregister_thread();
1944 poison_free(ht);
1945}
1946
674f7a69
MD
1947/*
1948 * Should only be called when no more concurrent readers nor writers can
1949 * possibly access the table.
1950 */
b7d619b0 1951int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
674f7a69 1952{
d0ec0ed2
MD
1953 int ret;
1954
1955 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
b047e7a7
MD
1956 /*
1957 * Perform error-checking for emptiness before queuing
1958 * work, so we can return error to the caller. This runs
1959 * concurrently with ongoing resize.
1960 */
1961 if (!cds_lfht_is_empty(ht))
1962 return -EPERM;
d0ec0ed2 1963 /* Cancel ongoing resize operations. */
601922a8 1964 uatomic_store(&ht->in_progress_destroy, 1, CMM_RELAXED);
b047e7a7
MD
1965 if (attr) {
1966 *attr = ht->caller_resize_attr;
1967 ht->caller_resize_attr = NULL;
1968 }
1969 /*
1970 * Queue destroy work after prior queued resize
1971 * operations. Given there are no concurrent writers
1972 * accessing the hash table at this point, no resize
1973 * operations can be queued after this destroy work.
1974 */
1975 urcu_workqueue_queue_work(cds_lfht_workqueue,
1976 &ht->destroy_work, do_auto_resize_destroy_cb);
1977 return 0;
10e68472 1978 }
1ee8f000 1979 ret = cds_lfht_delete_bucket(ht);
abc490a1
MD
1980 if (ret)
1981 return ret;
5afadd12 1982 free_split_items_count(ht);
b7d619b0 1983 if (attr)
b047e7a7 1984 *attr = ht->caller_resize_attr;
59629f09
MD
1985 ret = pthread_mutex_destroy(&ht->resize_mutex);
1986 if (ret)
1987 ret = -EBUSY;
98808fb1 1988 poison_free(ht);
5e28c532 1989 return ret;
674f7a69
MD
1990}
1991
14044b37 1992void cds_lfht_count_nodes(struct cds_lfht *ht,
d933dd0e 1993 long *approx_before,
273399de 1994 unsigned long *count,
d933dd0e 1995 long *approx_after)
273399de 1996{
14044b37 1997 struct cds_lfht_node *node, *next;
caf3653d 1998 unsigned long nr_bucket = 0, nr_removed = 0;
273399de 1999
7ed7682f 2000 *approx_before = 0;
5afadd12 2001 if (ht->split_count) {
973e5e1b
MD
2002 int i;
2003
4c42f1b8
LJ
2004 for (i = 0; i < split_count_mask + 1; i++) {
2005 *approx_before += uatomic_read(&ht->split_count[i].add);
2006 *approx_before -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
2007 }
2008 }
2009
273399de 2010 *count = 0;
273399de 2011
1ee8f000 2012 /* Count non-bucket nodes in the table */
9d72a73f 2013 node = bucket_at(ht, 0);
273399de 2014 do {
04db56f8 2015 next = rcu_dereference(node->next);
b198f0fd 2016 if (is_removed(next)) {
1ee8f000 2017 if (!is_bucket(next))
caf3653d 2018 (nr_removed)++;
973e5e1b 2019 else
1ee8f000
LJ
2020 (nr_bucket)++;
2021 } else if (!is_bucket(next))
273399de 2022 (*count)++;
24365af7 2023 else
1ee8f000 2024 (nr_bucket)++;
273399de 2025 node = clear_flag(next);
bb7b2f26 2026 } while (!is_end(node));
caf3653d 2027 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1ee8f000 2028 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
7ed7682f 2029 *approx_after = 0;
5afadd12 2030 if (ht->split_count) {
973e5e1b
MD
2031 int i;
2032
4c42f1b8
LJ
2033 for (i = 0; i < split_count_mask + 1; i++) {
2034 *approx_after += uatomic_read(&ht->split_count[i].add);
2035 *approx_after -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
2036 }
2037 }
273399de
MD
2038}
2039
1475579c 2040/* called with resize mutex held */
abc490a1 2041static
4105056a 2042void _do_cds_lfht_grow(struct cds_lfht *ht,
1475579c 2043 unsigned long old_size, unsigned long new_size)
abc490a1 2044{
1475579c 2045 unsigned long old_order, new_order;
1475579c 2046
5bc6b66f
MD
2047 old_order = cds_lfht_get_count_order_ulong(old_size);
2048 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
2049 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2050 old_size, old_order, new_size, new_order);
01477510 2051 urcu_posix_assert(new_size > old_size);
93d46c39 2052 init_table(ht, old_order + 1, new_order);
abc490a1
MD
2053}
2054
2055/* called with resize mutex held */
2056static
4105056a 2057void _do_cds_lfht_shrink(struct cds_lfht *ht,
1475579c 2058 unsigned long old_size, unsigned long new_size)
464a1ec9 2059{
1475579c 2060 unsigned long old_order, new_order;
464a1ec9 2061
d0d8f9aa 2062 new_size = max(new_size, MIN_TABLE_SIZE);
5bc6b66f
MD
2063 old_order = cds_lfht_get_count_order_ulong(old_size);
2064 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
2065 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2066 old_size, old_order, new_size, new_order);
01477510 2067 urcu_posix_assert(new_size < old_size);
1475579c 2068
1ee8f000 2069 /* Remove and unlink all bucket nodes to remove. */
93d46c39 2070 fini_table(ht, new_order + 1, old_order);
464a1ec9
MD
2071}
2072
1475579c
MD
2073
2074/* called with resize mutex held */
2075static
2076void _do_cds_lfht_resize(struct cds_lfht *ht)
2077{
2078 unsigned long new_size, old_size;
4105056a
MD
2079
2080 /*
2081 * Resize table, re-do if the target size has changed under us.
2082 */
2083 do {
601922a8 2084 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED))
d2be3620 2085 break;
601922a8
OD
2086
2087 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2088
7b3893e4 2089 old_size = ht->size;
601922a8 2090 new_size = uatomic_load(&ht->resize_target, CMM_RELAXED);
4105056a
MD
2091 if (old_size < new_size)
2092 _do_cds_lfht_grow(ht, old_size, new_size);
2093 else if (old_size > new_size)
2094 _do_cds_lfht_shrink(ht, old_size, new_size);
601922a8
OD
2095
2096 uatomic_store(&ht->resize_initiated, 0, CMM_RELAXED);
4105056a
MD
2097 /* write resize_initiated before read resize_target */
2098 cmm_smp_mb();
601922a8 2099 } while (ht->size != uatomic_load(&ht->resize_target, CMM_RELAXED));
1475579c
MD
2100}
2101
abc490a1 2102static
ab65b890 2103unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2104{
7b3893e4 2105 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
464a1ec9
MD
2106}
2107
1475579c 2108static
4105056a 2109void resize_target_update_count(struct cds_lfht *ht,
b8af5011 2110 unsigned long count)
1475579c 2111{
d0d8f9aa 2112 count = max(count, MIN_TABLE_SIZE);
747d725c 2113 count = min(count, ht->max_nr_buckets);
7b3893e4 2114 uatomic_set(&ht->resize_target, count);
1475579c
MD
2115}
2116
2117void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2118{
10e68472 2119 resize_target_update_count(ht, new_size);
601922a8
OD
2120
2121 /*
2122 * Set flags has early as possible even in contention case.
2123 */
2124 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2125
5ffcaeef 2126 mutex_lock(&ht->resize_mutex);
1475579c 2127 _do_cds_lfht_resize(ht);
5ffcaeef 2128 mutex_unlock(&ht->resize_mutex);
abc490a1 2129}
464a1ec9 2130
abc490a1 2131static
d0ec0ed2 2132void do_resize_cb(struct urcu_work *work)
abc490a1 2133{
d0ec0ed2
MD
2134 struct resize_work *resize_work =
2135 caa_container_of(work, struct resize_work, work);
2136 struct cds_lfht *ht = resize_work->ht;
abc490a1 2137
d0ec0ed2 2138 ht->flavor->register_thread();
5ffcaeef 2139 mutex_lock(&ht->resize_mutex);
14044b37 2140 _do_cds_lfht_resize(ht);
5ffcaeef 2141 mutex_unlock(&ht->resize_mutex);
d0ec0ed2 2142 ht->flavor->unregister_thread();
98808fb1 2143 poison_free(work);
464a1ec9
MD
2144}
2145
abc490a1 2146static
f1f119ee 2147void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
ab7d5fc6 2148{
d0ec0ed2 2149 struct resize_work *work;
abc490a1 2150
601922a8
OD
2151 /*
2152 * Store to resize_target is before read resize_initiated as guaranteed
2153 * by either cmpxchg or _uatomic_xchg_monotonic_increase.
2154 */
2155 if (!uatomic_load(&ht->resize_initiated, CMM_RELAXED)) {
2156 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED)) {
59290e9d 2157 return;
ed35e6d8 2158 }
f9830efd 2159 work = malloc(sizeof(*work));
741f378e
MD
2160 if (work == NULL) {
2161 dbg_printf("error allocating resize work, bailing out\n");
741f378e
MD
2162 return;
2163 }
f9830efd 2164 work->ht = ht;
d0ec0ed2
MD
2165 urcu_workqueue_queue_work(cds_lfht_workqueue,
2166 &work->work, do_resize_cb);
601922a8 2167 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
f9830efd 2168 }
ab7d5fc6 2169}
3171717f 2170
f1f119ee
LJ
2171static
2172void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2173{
2174 unsigned long target_size = size << growth;
2175
747d725c 2176 target_size = min(target_size, ht->max_nr_buckets);
f1f119ee
LJ
2177 if (resize_target_grow(ht, target_size) >= target_size)
2178 return;
2179
2180 __cds_lfht_resize_lazy_launch(ht);
2181}
2182
89bb121d
LJ
2183/*
2184 * We favor grow operations over shrink. A shrink operation never occurs
2185 * if a grow operation is queued for lazy execution. A grow operation
2186 * cancels any pending shrink lazy execution.
2187 */
3171717f 2188static
4105056a 2189void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
3171717f
MD
2190 unsigned long count)
2191{
b8af5011
MD
2192 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2193 return;
d0d8f9aa 2194 count = max(count, MIN_TABLE_SIZE);
747d725c 2195 count = min(count, ht->max_nr_buckets);
89bb121d
LJ
2196 if (count == size)
2197 return; /* Already the right size, no resize needed */
2198 if (count > size) { /* lazy grow */
2199 if (resize_target_grow(ht, count) >= count)
2200 return;
2201 } else { /* lazy shrink */
2202 for (;;) {
2203 unsigned long s;
2204
7b3893e4 2205 s = uatomic_cmpxchg(&ht->resize_target, size, count);
89bb121d
LJ
2206 if (s == size)
2207 break; /* no resize needed */
2208 if (s > size)
2209 return; /* growing is/(was just) in progress */
2210 if (s <= count)
2211 return; /* some other thread do shrink */
2212 size = s;
2213 }
2214 }
f1f119ee 2215 __cds_lfht_resize_lazy_launch(ht);
3171717f 2216}
d0ec0ed2 2217
70469b43 2218static void cds_lfht_before_fork(void *priv __attribute__((unused)))
d0ec0ed2
MD
2219{
2220 if (cds_lfht_workqueue_atfork_nesting++)
2221 return;
2222 mutex_lock(&cds_lfht_fork_mutex);
2223 if (!cds_lfht_workqueue)
2224 return;
2225 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2226}
2227
70469b43 2228static void cds_lfht_after_fork_parent(void *priv __attribute__((unused)))
d0ec0ed2
MD
2229{
2230 if (--cds_lfht_workqueue_atfork_nesting)
2231 return;
2232 if (!cds_lfht_workqueue)
2233 goto end;
2234 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2235end:
2236 mutex_unlock(&cds_lfht_fork_mutex);
2237}
2238
70469b43 2239static void cds_lfht_after_fork_child(void *priv __attribute__((unused)))
d0ec0ed2
MD
2240{
2241 if (--cds_lfht_workqueue_atfork_nesting)
2242 return;
2243 if (!cds_lfht_workqueue)
2244 goto end;
2245 urcu_workqueue_create_worker(cds_lfht_workqueue);
2246end:
2247 mutex_unlock(&cds_lfht_fork_mutex);
2248}
2249
2250static struct urcu_atfork cds_lfht_atfork = {
2251 .before_fork = cds_lfht_before_fork,
2252 .after_fork_parent = cds_lfht_after_fork_parent,
2253 .after_fork_child = cds_lfht_after_fork_child,
2254};
2255
d0ec0ed2
MD
2256static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2257{
2258 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2259
2260 mutex_lock(&cds_lfht_fork_mutex);
b047e7a7
MD
2261 if (!cds_lfht_workqueue)
2262 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2263 NULL, NULL, NULL, NULL, NULL, NULL, NULL);
d0ec0ed2
MD
2264 mutex_unlock(&cds_lfht_fork_mutex);
2265}
2266
b047e7a7 2267static void cds_lfht_exit(void)
d0ec0ed2
MD
2268{
2269 mutex_lock(&cds_lfht_fork_mutex);
b047e7a7
MD
2270 if (cds_lfht_workqueue) {
2271 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
2272 urcu_workqueue_destroy(cds_lfht_workqueue);
2273 cds_lfht_workqueue = NULL;
2274 }
d0ec0ed2 2275 mutex_unlock(&cds_lfht_fork_mutex);
d0ec0ed2 2276}
This page took 0.187681 seconds and 4 git commands to generate.