Add vendor/fmt
[lttng-tools.git] / src / vendor / fmt / format.h
diff --git a/src/vendor/fmt/format.h b/src/vendor/fmt/format.h
new file mode 100644 (file)
index 0000000..ee69651
--- /dev/null
@@ -0,0 +1,3104 @@
+/*
+ Formatting library for C++
+
+ Copyright (c) 2012 - present, Victor Zverovich
+
+ Permission is hereby granted, free of charge, to any person obtaining
+ a copy of this software and associated documentation files (the
+ "Software"), to deal in the Software without restriction, including
+ without limitation the rights to use, copy, modify, merge, publish,
+ distribute, sublicense, and/or sell copies of the Software, and to
+ permit persons to whom the Software is furnished to do so, subject to
+ the following conditions:
+
+ The above copyright notice and this permission notice shall be
+ included in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+ LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+ --- Optional exception to the license ---
+
+ As an exception, if, as a result of your compiling your source code, portions
+ of this Software are embedded into a machine-executable object form of such
+ source code, you may redistribute such embedded portions in such object form
+ without including the above copyright and permission notices.
+ */
+
+#ifndef FMT_FORMAT_H_
+#define FMT_FORMAT_H_
+
+#include <cmath>         // std::signbit
+#include <cstdint>       // uint32_t
+#include <limits>        // std::numeric_limits
+#include <memory>        // std::uninitialized_copy
+#include <stdexcept>     // std::runtime_error
+#include <system_error>  // std::system_error
+#include <utility>       // std::swap
+
+#ifdef __cpp_lib_bit_cast
+#  include <bit>  // std::bitcast
+#endif
+
+#include "core.h"
+
+#if FMT_GCC_VERSION
+#  define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
+#else
+#  define FMT_GCC_VISIBILITY_HIDDEN
+#endif
+
+#ifdef __NVCC__
+#  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
+#else
+#  define FMT_CUDA_VERSION 0
+#endif
+
+#ifdef __has_builtin
+#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
+#else
+#  define FMT_HAS_BUILTIN(x) 0
+#endif
+
+#if FMT_GCC_VERSION || FMT_CLANG_VERSION
+#  define FMT_NOINLINE __attribute__((noinline))
+#else
+#  define FMT_NOINLINE
+#endif
+
+#if FMT_MSC_VER
+#  define FMT_MSC_DEFAULT = default
+#else
+#  define FMT_MSC_DEFAULT
+#endif
+
+#ifndef FMT_THROW
+#  if FMT_EXCEPTIONS
+#    if FMT_MSC_VER || FMT_NVCC
+FMT_BEGIN_NAMESPACE
+namespace detail {
+template <typename Exception> inline void do_throw(const Exception& x) {
+  // Silence unreachable code warnings in MSVC and NVCC because these
+  // are nearly impossible to fix in a generic code.
+  volatile bool b = true;
+  if (b) throw x;
+}
+}  // namespace detail
+FMT_END_NAMESPACE
+#      define FMT_THROW(x) detail::do_throw(x)
+#    else
+#      define FMT_THROW(x) throw x
+#    endif
+#  else
+#    define FMT_THROW(x)               \
+      do {                             \
+        FMT_ASSERT(false, (x).what()); \
+      } while (false)
+#  endif
+#endif
+
+#if FMT_EXCEPTIONS
+#  define FMT_TRY try
+#  define FMT_CATCH(x) catch (x)
+#else
+#  define FMT_TRY if (true)
+#  define FMT_CATCH(x) if (false)
+#endif
+
+#ifndef FMT_MAYBE_UNUSED
+#  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
+#    define FMT_MAYBE_UNUSED [[maybe_unused]]
+#  else
+#    define FMT_MAYBE_UNUSED
+#  endif
+#endif
+
+// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
+#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
+#  define FMT_DEPRECATED_ALIAS
+#else
+#  define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
+#endif
+
+#ifndef FMT_USE_USER_DEFINED_LITERALS
+// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
+#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
+       FMT_MSC_VER >= 1900) &&                                         \
+      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
+#    define FMT_USE_USER_DEFINED_LITERALS 1
+#  else
+#    define FMT_USE_USER_DEFINED_LITERALS 0
+#  endif
+#endif
+
+// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
+// integer formatter template instantiations to just one by only using the
+// largest integer type. This results in a reduction in binary size but will
+// cause a decrease in integer formatting performance.
+#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
+#  define FMT_REDUCE_INT_INSTANTIATIONS 0
+#endif
+
+// __builtin_clz is broken in clang with Microsoft CodeGen:
+// https://github.com/fmtlib/fmt/issues/519.
+#if !FMT_MSC_VER
+#  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
+#    define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
+#  endif
+#  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
+#    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
+#  endif
+#endif
+
+// __builtin_ctz is broken in Intel Compiler Classic on Windows:
+// https://github.com/fmtlib/fmt/issues/2510.
+#ifndef __ICL
+#  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION
+#    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
+#  endif
+#  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
+#    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
+#  endif
+#endif
+
+#if FMT_MSC_VER
+#  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
+#endif
+
+// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
+// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
+// MSVC intrinsics if the clz and clzll builtins are not available.
+#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(FMT_BUILTIN_CTZLL)
+FMT_BEGIN_NAMESPACE
+namespace detail {
+// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
+#  if !defined(__clang__)
+#    pragma intrinsic(_BitScanForward)
+#    pragma intrinsic(_BitScanReverse)
+#    if defined(_WIN64)
+#      pragma intrinsic(_BitScanForward64)
+#      pragma intrinsic(_BitScanReverse64)
+#    endif
+#  endif
+
+inline auto clz(uint32_t x) -> int {
+  unsigned long r = 0;
+  _BitScanReverse(&r, x);
+  FMT_ASSERT(x != 0, "");
+  // Static analysis complains about using uninitialized data
+  // "r", but the only way that can happen is if "x" is 0,
+  // which the callers guarantee to not happen.
+  FMT_MSC_WARNING(suppress : 6102)
+  return 31 ^ static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CLZ(n) detail::clz(n)
+
+inline auto clzll(uint64_t x) -> int {
+  unsigned long r = 0;
+#  ifdef _WIN64
+  _BitScanReverse64(&r, x);
+#  else
+  // Scan the high 32 bits.
+  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32);
+  // Scan the low 32 bits.
+  _BitScanReverse(&r, static_cast<uint32_t>(x));
+#  endif
+  FMT_ASSERT(x != 0, "");
+  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
+  return 63 ^ static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
+
+inline auto ctz(uint32_t x) -> int {
+  unsigned long r = 0;
+  _BitScanForward(&r, x);
+  FMT_ASSERT(x != 0, "");
+  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
+  return static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CTZ(n) detail::ctz(n)
+
+inline auto ctzll(uint64_t x) -> int {
+  unsigned long r = 0;
+  FMT_ASSERT(x != 0, "");
+  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
+#  ifdef _WIN64
+  _BitScanForward64(&r, x);
+#  else
+  // Scan the low 32 bits.
+  if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
+  // Scan the high 32 bits.
+  _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
+  r += 32;
+#  endif
+  return static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
+}  // namespace detail
+FMT_END_NAMESPACE
+#endif
+
+#ifdef FMT_HEADER_ONLY
+#  define FMT_HEADER_ONLY_CONSTEXPR20 FMT_CONSTEXPR20
+#else
+#  define FMT_HEADER_ONLY_CONSTEXPR20
+#endif
+
+FMT_BEGIN_NAMESPACE
+namespace detail {
+
+template <typename Streambuf> class formatbuf : public Streambuf {
+ private:
+  using char_type = typename Streambuf::char_type;
+  using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0));
+  using int_type = typename Streambuf::int_type;
+  using traits_type = typename Streambuf::traits_type;
+
+  buffer<char_type>& buffer_;
+
+ public:
+  explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}
+
+ protected:
+  // The put area is always empty. This makes the implementation simpler and has
+  // the advantage that the streambuf and the buffer are always in sync and
+  // sputc never writes into uninitialized memory. A disadvantage is that each
+  // call to sputc always results in a (virtual) call to overflow. There is no
+  // disadvantage here for sputn since this always results in a call to xsputn.
+
+  auto overflow(int_type ch) -> int_type override {
+    if (!traits_type::eq_int_type(ch, traits_type::eof()))
+      buffer_.push_back(static_cast<char_type>(ch));
+    return ch;
+  }
+
+  auto xsputn(const char_type* s, streamsize count) -> streamsize override {
+    buffer_.append(s, s + count);
+    return count;
+  }
+};
+
+// Implementation of std::bit_cast for pre-C++20.
+template <typename To, typename From>
+FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
+  static_assert(sizeof(To) == sizeof(From), "size mismatch");
+#ifdef __cpp_lib_bit_cast
+  if (is_constant_evaluated()) return std::bit_cast<To>(from);
+#endif
+  auto to = To();
+  std::memcpy(&to, &from, sizeof(to));
+  return to;
+}
+
+inline auto is_big_endian() -> bool {
+#ifdef _WIN32
+  return false;
+#elif defined(__BIG_ENDIAN__)
+  return true;
+#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
+  return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
+#else
+  struct bytes {
+    char data[sizeof(int)];
+  };
+  return bit_cast<bytes>(1).data[0] == 0;
+#endif
+}
+
+// A fallback implementation of uintptr_t for systems that lack it.
+struct fallback_uintptr {
+  unsigned char value[sizeof(void*)];
+
+  fallback_uintptr() = default;
+  explicit fallback_uintptr(const void* p) {
+    *this = bit_cast<fallback_uintptr>(p);
+    if (const_check(is_big_endian())) {
+      for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j)
+        std::swap(value[i], value[j]);
+    }
+  }
+};
+#ifdef UINTPTR_MAX
+using uintptr_t = ::uintptr_t;
+inline auto to_uintptr(const void* p) -> uintptr_t {
+  return bit_cast<uintptr_t>(p);
+}
+#else
+using uintptr_t = fallback_uintptr;
+inline auto to_uintptr(const void* p) -> fallback_uintptr {
+  return fallback_uintptr(p);
+}
+#endif
+
+// Returns the largest possible value for type T. Same as
+// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
+template <typename T> constexpr auto max_value() -> T {
+  return (std::numeric_limits<T>::max)();
+}
+template <typename T> constexpr auto num_bits() -> int {
+  return std::numeric_limits<T>::digits;
+}
+// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
+template <> constexpr auto num_bits<int128_t>() -> int { return 128; }
+template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
+template <> constexpr auto num_bits<fallback_uintptr>() -> int {
+  return static_cast<int>(sizeof(void*) *
+                          std::numeric_limits<unsigned char>::digits);
+}
+
+FMT_INLINE void assume(bool condition) {
+  (void)condition;
+#if FMT_HAS_BUILTIN(__builtin_assume)
+  __builtin_assume(condition);
+#endif
+}
+
+// An approximation of iterator_t for pre-C++20 systems.
+template <typename T>
+using iterator_t = decltype(std::begin(std::declval<T&>()));
+template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
+
+// A workaround for std::string not having mutable data() until C++17.
+template <typename Char>
+inline auto get_data(std::basic_string<Char>& s) -> Char* {
+  return &s[0];
+}
+template <typename Container>
+inline auto get_data(Container& c) -> typename Container::value_type* {
+  return c.data();
+}
+
+#if defined(_SECURE_SCL) && _SECURE_SCL
+// Make a checked iterator to avoid MSVC warnings.
+template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
+template <typename T>
+constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> {
+  return {p, size};
+}
+#else
+template <typename T> using checked_ptr = T*;
+template <typename T> constexpr auto make_checked(T* p, size_t) -> T* {
+  return p;
+}
+#endif
+
+// Attempts to reserve space for n extra characters in the output range.
+// Returns a pointer to the reserved range or a reference to it.
+template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
+#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
+__attribute__((no_sanitize("undefined")))
+#endif
+inline auto
+reserve(std::back_insert_iterator<Container> it, size_t n)
+    -> checked_ptr<typename Container::value_type> {
+  Container& c = get_container(it);
+  size_t size = c.size();
+  c.resize(size + n);
+  return make_checked(get_data(c) + size, n);
+}
+
+template <typename T>
+inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
+  buffer<T>& buf = get_container(it);
+  buf.try_reserve(buf.size() + n);
+  return it;
+}
+
+template <typename Iterator>
+constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
+  return it;
+}
+
+template <typename OutputIt>
+using reserve_iterator =
+    remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
+
+template <typename T, typename OutputIt>
+constexpr auto to_pointer(OutputIt, size_t) -> T* {
+  return nullptr;
+}
+template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
+  buffer<T>& buf = get_container(it);
+  auto size = buf.size();
+  if (buf.capacity() < size + n) return nullptr;
+  buf.try_resize(size + n);
+  return buf.data() + size;
+}
+
+template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
+inline auto base_iterator(std::back_insert_iterator<Container>& it,
+                          checked_ptr<typename Container::value_type>)
+    -> std::back_insert_iterator<Container> {
+  return it;
+}
+
+template <typename Iterator>
+constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
+  return it;
+}
+
+// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
+// instead (#1998).
+template <typename OutputIt, typename Size, typename T>
+FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
+    -> OutputIt {
+  for (Size i = 0; i < count; ++i) *out++ = value;
+  return out;
+}
+template <typename T, typename Size>
+FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
+  if (is_constant_evaluated()) {
+    return fill_n<T*, Size, T>(out, count, value);
+  }
+  std::memset(out, value, to_unsigned(count));
+  return out + count;
+}
+
+#ifdef __cpp_char8_t
+using char8_type = char8_t;
+#else
+enum char8_type : unsigned char {};
+#endif
+
+template <typename OutChar, typename InputIt, typename OutputIt>
+FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
+                                                  OutputIt out) -> OutputIt {
+  return copy_str<OutChar>(begin, end, out);
+}
+
+// A public domain branchless UTF-8 decoder by Christopher Wellons:
+// https://github.com/skeeto/branchless-utf8
+/* Decode the next character, c, from s, reporting errors in e.
+ *
+ * Since this is a branchless decoder, four bytes will be read from the
+ * buffer regardless of the actual length of the next character. This
+ * means the buffer _must_ have at least three bytes of zero padding
+ * following the end of the data stream.
+ *
+ * Errors are reported in e, which will be non-zero if the parsed
+ * character was somehow invalid: invalid byte sequence, non-canonical
+ * encoding, or a surrogate half.
+ *
+ * The function returns a pointer to the next character. When an error
+ * occurs, this pointer will be a guess that depends on the particular
+ * error, but it will always advance at least one byte.
+ */
+FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
+    -> const char* {
+  constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
+  constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
+  constexpr const int shiftc[] = {0, 18, 12, 6, 0};
+  constexpr const int shifte[] = {0, 6, 4, 2, 0};
+
+  int len = code_point_length(s);
+  const char* next = s + len;
+
+  // Assume a four-byte character and load four bytes. Unused bits are
+  // shifted out.
+  *c = uint32_t(s[0] & masks[len]) << 18;
+  *c |= uint32_t(s[1] & 0x3f) << 12;
+  *c |= uint32_t(s[2] & 0x3f) << 6;
+  *c |= uint32_t(s[3] & 0x3f) << 0;
+  *c >>= shiftc[len];
+
+  // Accumulate the various error conditions.
+  using uchar = unsigned char;
+  *e = (*c < mins[len]) << 6;       // non-canonical encoding
+  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
+  *e |= (*c > 0x10FFFF) << 8;       // out of range?
+  *e |= (uchar(s[1]) & 0xc0) >> 2;
+  *e |= (uchar(s[2]) & 0xc0) >> 4;
+  *e |= uchar(s[3]) >> 6;
+  *e ^= 0x2a;  // top two bits of each tail byte correct?
+  *e >>= shifte[len];
+
+  return next;
+}
+
+constexpr uint32_t invalid_code_point = ~uint32_t();
+
+// Invokes f(cp, sv) for every code point cp in s with sv being the string view
+// corresponding to the code point. cp is invalid_code_point on error.
+template <typename F>
+FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
+  auto decode = [f](const char* buf_ptr, const char* ptr) {
+    auto cp = uint32_t();
+    auto error = 0;
+    auto end = utf8_decode(buf_ptr, &cp, &error);
+    bool result = f(error ? invalid_code_point : cp,
+                    string_view(ptr, to_unsigned(end - buf_ptr)));
+    return result ? end : nullptr;
+  };
+  auto p = s.data();
+  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
+  if (s.size() >= block_size) {
+    for (auto end = p + s.size() - block_size + 1; p < end;) {
+      p = decode(p, p);
+      if (!p) return;
+    }
+  }
+  if (auto num_chars_left = s.data() + s.size() - p) {
+    char buf[2 * block_size - 1] = {};
+    copy_str<char>(p, p + num_chars_left, buf);
+    const char* buf_ptr = buf;
+    do {
+      auto end = decode(buf_ptr, p);
+      if (!end) return;
+      p += end - buf_ptr;
+      buf_ptr = end;
+    } while (buf_ptr - buf < num_chars_left);
+  }
+}
+
+template <typename Char>
+inline auto compute_width(basic_string_view<Char> s) -> size_t {
+  return s.size();
+}
+
+// Computes approximate display width of a UTF-8 string.
+FMT_CONSTEXPR inline size_t compute_width(string_view s) {
+  size_t num_code_points = 0;
+  // It is not a lambda for compatibility with C++14.
+  struct count_code_points {
+    size_t* count;
+    FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
+      *count += detail::to_unsigned(
+          1 +
+          (cp >= 0x1100 &&
+           (cp <= 0x115f ||  // Hangul Jamo init. consonants
+            cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
+            cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
+            // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
+            (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
+            (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
+            (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
+            (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
+            (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
+            (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
+            (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
+            (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
+            (cp >= 0x30000 && cp <= 0x3fffd) ||
+            // Miscellaneous Symbols and Pictographs + Emoticons:
+            (cp >= 0x1f300 && cp <= 0x1f64f) ||
+            // Supplemental Symbols and Pictographs:
+            (cp >= 0x1f900 && cp <= 0x1f9ff))));
+      return true;
+    }
+  };
+  for_each_codepoint(s, count_code_points{&num_code_points});
+  return num_code_points;
+}
+
+inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
+  return compute_width(basic_string_view<char>(
+      reinterpret_cast<const char*>(s.data()), s.size()));
+}
+
+template <typename Char>
+inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
+  size_t size = s.size();
+  return n < size ? n : size;
+}
+
+// Calculates the index of the nth code point in a UTF-8 string.
+inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
+    -> size_t {
+  const char8_type* data = s.data();
+  size_t num_code_points = 0;
+  for (size_t i = 0, size = s.size(); i != size; ++i) {
+    if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
+  }
+  return s.size();
+}
+
+template <typename T, bool = std::is_floating_point<T>::value>
+struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
+                                     sizeof(T) <= sizeof(double)> {};
+template <typename T> struct is_fast_float<T, false> : std::false_type {};
+
+#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
+#  define FMT_USE_FULL_CACHE_DRAGONBOX 0
+#endif
+
+template <typename T>
+template <typename U>
+void buffer<T>::append(const U* begin, const U* end) {
+  while (begin != end) {
+    auto count = to_unsigned(end - begin);
+    try_reserve(size_ + count);
+    auto free_cap = capacity_ - size_;
+    if (free_cap < count) count = free_cap;
+    std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
+    size_ += count;
+    begin += count;
+  }
+}
+
+template <typename T, typename Enable = void>
+struct is_locale : std::false_type {};
+template <typename T>
+struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
+}  // namespace detail
+
+FMT_MODULE_EXPORT_BEGIN
+
+// The number of characters to store in the basic_memory_buffer object itself
+// to avoid dynamic memory allocation.
+enum { inline_buffer_size = 500 };
+
+/**
+  \rst
+  A dynamically growing memory buffer for trivially copyable/constructible types
+  with the first ``SIZE`` elements stored in the object itself.
+
+  You can use the ``memory_buffer`` type alias for ``char`` instead.
+
+  **Example**::
+
+     auto out = fmt::memory_buffer();
+     format_to(std::back_inserter(out), "The answer is {}.", 42);
+
+  This will append the following output to the ``out`` object:
+
+  .. code-block:: none
+
+     The answer is 42.
+
+  The output can be converted to an ``std::string`` with ``to_string(out)``.
+  \endrst
+ */
+template <typename T, size_t SIZE = inline_buffer_size,
+          typename Allocator = std::allocator<T>>
+class basic_memory_buffer final : public detail::buffer<T> {
+ private:
+  T store_[SIZE];
+
+  // Don't inherit from Allocator avoid generating type_info for it.
+  Allocator alloc_;
+
+  // Deallocate memory allocated by the buffer.
+  FMT_CONSTEXPR20 void deallocate() {
+    T* data = this->data();
+    if (data != store_) alloc_.deallocate(data, this->capacity());
+  }
+
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t size) override;
+
+ public:
+  using value_type = T;
+  using const_reference = const T&;
+
+  FMT_CONSTEXPR20 explicit basic_memory_buffer(
+      const Allocator& alloc = Allocator())
+      : alloc_(alloc) {
+    this->set(store_, SIZE);
+    if (detail::is_constant_evaluated()) {
+      detail::fill_n(store_, SIZE, T{});
+    }
+  }
+  FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
+
+ private:
+  // Move data from other to this buffer.
+  FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
+    alloc_ = std::move(other.alloc_);
+    T* data = other.data();
+    size_t size = other.size(), capacity = other.capacity();
+    if (data == other.store_) {
+      this->set(store_, capacity);
+      if (detail::is_constant_evaluated()) {
+        detail::copy_str<T>(other.store_, other.store_ + size,
+                            detail::make_checked(store_, capacity));
+      } else {
+        std::uninitialized_copy(other.store_, other.store_ + size,
+                                detail::make_checked(store_, capacity));
+      }
+    } else {
+      this->set(data, capacity);
+      // Set pointer to the inline array so that delete is not called
+      // when deallocating.
+      other.set(other.store_, 0);
+    }
+    this->resize(size);
+  }
+
+ public:
+  /**
+    \rst
+    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
+    of the other object to it.
+    \endrst
+   */
+  FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other)
+      FMT_NOEXCEPT {
+    move(other);
+  }
+
+  /**
+    \rst
+    Moves the content of the other ``basic_memory_buffer`` object to this one.
+    \endrst
+   */
+  auto operator=(basic_memory_buffer&& other) FMT_NOEXCEPT
+      -> basic_memory_buffer& {
+    FMT_ASSERT(this != &other, "");
+    deallocate();
+    move(other);
+    return *this;
+  }
+
+  // Returns a copy of the allocator associated with this buffer.
+  auto get_allocator() const -> Allocator { return alloc_; }
+
+  /**
+    Resizes the buffer to contain *count* elements. If T is a POD type new
+    elements may not be initialized.
+   */
+  FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }
+
+  /** Increases the buffer capacity to *new_capacity*. */
+  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
+
+  // Directly append data into the buffer
+  using detail::buffer<T>::append;
+  template <typename ContiguousRange>
+  void append(const ContiguousRange& range) {
+    append(range.data(), range.data() + range.size());
+  }
+};
+
+template <typename T, size_t SIZE, typename Allocator>
+FMT_CONSTEXPR20 void basic_memory_buffer<T, SIZE, Allocator>::grow(
+    size_t size) {
+#ifdef FMT_FUZZ
+  if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much");
+#endif
+  const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
+  size_t old_capacity = this->capacity();
+  size_t new_capacity = old_capacity + old_capacity / 2;
+  if (size > new_capacity)
+    new_capacity = size;
+  else if (new_capacity > max_size)
+    new_capacity = size > max_size ? size : max_size;
+  T* old_data = this->data();
+  T* new_data =
+      std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
+  // The following code doesn't throw, so the raw pointer above doesn't leak.
+  std::uninitialized_copy(old_data, old_data + this->size(),
+                          detail::make_checked(new_data, new_capacity));
+  this->set(new_data, new_capacity);
+  // deallocate must not throw according to the standard, but even if it does,
+  // the buffer already uses the new storage and will deallocate it in
+  // destructor.
+  if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
+}
+
+using memory_buffer = basic_memory_buffer<char>;
+
+template <typename T, size_t SIZE, typename Allocator>
+struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
+};
+
+namespace detail {
+FMT_API void print(std::FILE*, string_view);
+}
+
+/** A formatting error such as invalid format string. */
+FMT_CLASS_API
+class FMT_API format_error : public std::runtime_error {
+ public:
+  explicit format_error(const char* message) : std::runtime_error(message) {}
+  explicit format_error(const std::string& message)
+      : std::runtime_error(message) {}
+  format_error(const format_error&) = default;
+  format_error& operator=(const format_error&) = default;
+  format_error(format_error&&) = default;
+  format_error& operator=(format_error&&) = default;
+  ~format_error() FMT_NOEXCEPT override FMT_MSC_DEFAULT;
+};
+
+/**
+  \rst
+  Constructs a `~fmt::format_arg_store` object that contains references
+  to arguments and can be implicitly converted to `~fmt::format_args`.
+  If ``fmt`` is a compile-time string then `make_args_checked` checks
+  its validity at compile time.
+  \endrst
+ */
+template <typename... Args, typename S, typename Char = char_t<S>>
+FMT_INLINE auto make_args_checked(const S& fmt,
+                                  const remove_reference_t<Args>&... args)
+    -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
+  static_assert(
+      detail::count<(
+              std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
+              std::is_reference<Args>::value)...>() == 0,
+      "passing views as lvalues is disallowed");
+  detail::check_format_string<Args...>(fmt);
+  return {args...};
+}
+
+// compile-time support
+namespace detail_exported {
+#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
+template <typename Char, size_t N> struct fixed_string {
+  constexpr fixed_string(const Char (&str)[N]) {
+    detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
+                                               str + N, data);
+  }
+  Char data[N]{};
+};
+#endif
+
+// Converts a compile-time string to basic_string_view.
+template <typename Char, size_t N>
+constexpr auto compile_string_to_view(const Char (&s)[N])
+    -> basic_string_view<Char> {
+  // Remove trailing NUL character if needed. Won't be present if this is used
+  // with a raw character array (i.e. not defined as a string).
+  return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
+}
+template <typename Char>
+constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
+    -> basic_string_view<Char> {
+  return {s.data(), s.size()};
+}
+}  // namespace detail_exported
+
+FMT_BEGIN_DETAIL_NAMESPACE
+
+template <typename T> struct is_integral : std::is_integral<T> {};
+template <> struct is_integral<int128_t> : std::true_type {};
+template <> struct is_integral<uint128_t> : std::true_type {};
+
+template <typename T>
+using is_signed =
+    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
+                                     std::is_same<T, int128_t>::value>;
+
+// Returns true if value is negative, false otherwise.
+// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
+template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
+FMT_CONSTEXPR auto is_negative(T value) -> bool {
+  return value < 0;
+}
+template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
+FMT_CONSTEXPR auto is_negative(T) -> bool {
+  return false;
+}
+
+template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
+FMT_CONSTEXPR auto is_supported_floating_point(T) -> uint16_t {
+  return (std::is_same<T, float>::value && FMT_USE_FLOAT) ||
+         (std::is_same<T, double>::value && FMT_USE_DOUBLE) ||
+         (std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE);
+}
+
+// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
+// represent all values of an integral type T.
+template <typename T>
+using uint32_or_64_or_128_t =
+    conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
+                  uint32_t,
+                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
+template <typename T>
+using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
+
+#define FMT_POWERS_OF_10(factor)                                             \
+  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
+      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
+      (factor)*1000000000
+
+// Converts value in the range [0, 100) to a string.
+constexpr const char* digits2(size_t value) {
+  // GCC generates slightly better code when value is pointer-size.
+  return &"0001020304050607080910111213141516171819"
+         "2021222324252627282930313233343536373839"
+         "4041424344454647484950515253545556575859"
+         "6061626364656667686970717273747576777879"
+         "8081828384858687888990919293949596979899"[value * 2];
+}
+
+// Sign is a template parameter to workaround a bug in gcc 4.8.
+template <typename Char, typename Sign> constexpr Char sign(Sign s) {
+#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
+  static_assert(std::is_same<Sign, sign_t>::value, "");
+#endif
+  return static_cast<Char>("\0-+ "[s]);
+}
+
+template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
+  int count = 1;
+  for (;;) {
+    // Integer division is slow so do it for a group of four digits instead
+    // of for every digit. The idea comes from the talk by Alexandrescu
+    // "Three Optimization Tips for C++". See speed-test for a comparison.
+    if (n < 10) return count;
+    if (n < 100) return count + 1;
+    if (n < 1000) return count + 2;
+    if (n < 10000) return count + 3;
+    n /= 10000u;
+    count += 4;
+  }
+}
+#if FMT_USE_INT128
+FMT_CONSTEXPR inline auto count_digits(uint128_t n) -> int {
+  return count_digits_fallback(n);
+}
+#endif
+
+#ifdef FMT_BUILTIN_CLZLL
+// It is a separate function rather than a part of count_digits to workaround
+// the lack of static constexpr in constexpr functions.
+inline auto do_count_digits(uint64_t n) -> int {
+  // This has comparable performance to the version by Kendall Willets
+  // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
+  // but uses smaller tables.
+  // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
+  static constexpr uint8_t bsr2log10[] = {
+      1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
+      6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
+      10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
+      15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
+  auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
+  static constexpr const uint64_t zero_or_powers_of_10[] = {
+      0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
+      10000000000000000000ULL};
+  return t - (n < zero_or_powers_of_10[t]);
+}
+#endif
+
+// Returns the number of decimal digits in n. Leading zeros are not counted
+// except for n == 0 in which case count_digits returns 1.
+FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
+#ifdef FMT_BUILTIN_CLZLL
+  if (!is_constant_evaluated()) {
+    return do_count_digits(n);
+  }
+#endif
+  return count_digits_fallback(n);
+}
+
+// Counts the number of digits in n. BITS = log2(radix).
+template <int BITS, typename UInt>
+FMT_CONSTEXPR auto count_digits(UInt n) -> int {
+#ifdef FMT_BUILTIN_CLZ
+  if (num_bits<UInt>() == 32)
+    return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
+#endif
+  // Lambda avoids unreachable code warnings from NVHPC.
+  return [](UInt m) {
+    int num_digits = 0;
+    do {
+      ++num_digits;
+    } while ((m >>= BITS) != 0);
+    return num_digits;
+  }(n);
+}
+
+template <> auto count_digits<4>(detail::fallback_uintptr n) -> int;
+
+#ifdef FMT_BUILTIN_CLZ
+// It is a separate function rather than a part of count_digits to workaround
+// the lack of static constexpr in constexpr functions.
+FMT_INLINE auto do_count_digits(uint32_t n) -> int {
+// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
+// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
+#  define FMT_INC(T) (((sizeof(#  T) - 1ull) << 32) - T)
+  static constexpr uint64_t table[] = {
+      FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
+      FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
+      FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
+      FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
+      FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
+      FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
+      FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
+      FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
+      FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
+      FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
+      FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
+  };
+  auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
+  return static_cast<int>((n + inc) >> 32);
+}
+#endif
+
+// Optional version of count_digits for better performance on 32-bit platforms.
+FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
+#ifdef FMT_BUILTIN_CLZ
+  if (!is_constant_evaluated()) {
+    return do_count_digits(n);
+  }
+#endif
+  return count_digits_fallback(n);
+}
+
+template <typename Int> constexpr auto digits10() FMT_NOEXCEPT -> int {
+  return std::numeric_limits<Int>::digits10;
+}
+template <> constexpr auto digits10<int128_t>() FMT_NOEXCEPT -> int {
+  return 38;
+}
+template <> constexpr auto digits10<uint128_t>() FMT_NOEXCEPT -> int {
+  return 38;
+}
+
+template <typename Char> struct thousands_sep_result {
+  std::string grouping;
+  Char thousands_sep;
+};
+
+template <typename Char>
+FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
+template <typename Char>
+inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
+  auto result = thousands_sep_impl<char>(loc);
+  return {result.grouping, Char(result.thousands_sep)};
+}
+template <>
+inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
+  return thousands_sep_impl<wchar_t>(loc);
+}
+
+template <typename Char>
+FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
+template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
+  return Char(decimal_point_impl<char>(loc));
+}
+template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
+  return decimal_point_impl<wchar_t>(loc);
+}
+
+// Compares two characters for equality.
+template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
+  return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
+}
+inline auto equal2(const char* lhs, const char* rhs) -> bool {
+  return memcmp(lhs, rhs, 2) == 0;
+}
+
+// Copies two characters from src to dst.
+template <typename Char>
+FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
+  if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
+    memcpy(dst, src, 2);
+    return;
+  }
+  *dst++ = static_cast<Char>(*src++);
+  *dst = static_cast<Char>(*src);
+}
+
+template <typename Iterator> struct format_decimal_result {
+  Iterator begin;
+  Iterator end;
+};
+
+// Formats a decimal unsigned integer value writing into out pointing to a
+// buffer of specified size. The caller must ensure that the buffer is large
+// enough.
+template <typename Char, typename UInt>
+FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
+    -> format_decimal_result<Char*> {
+  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
+  out += size;
+  Char* end = out;
+  while (value >= 100) {
+    // Integer division is slow so do it for a group of two digits instead
+    // of for every digit. The idea comes from the talk by Alexandrescu
+    // "Three Optimization Tips for C++". See speed-test for a comparison.
+    out -= 2;
+    copy2(out, digits2(static_cast<size_t>(value % 100)));
+    value /= 100;
+  }
+  if (value < 10) {
+    *--out = static_cast<Char>('0' + value);
+    return {out, end};
+  }
+  out -= 2;
+  copy2(out, digits2(static_cast<size_t>(value)));
+  return {out, end};
+}
+
+template <typename Char, typename UInt, typename Iterator,
+          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
+inline auto format_decimal(Iterator out, UInt value, int size)
+    -> format_decimal_result<Iterator> {
+  // Buffer is large enough to hold all digits (digits10 + 1).
+  Char buffer[digits10<UInt>() + 1];
+  auto end = format_decimal(buffer, value, size).end;
+  return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
+}
+
+template <unsigned BASE_BITS, typename Char, typename UInt>
+FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
+                               bool upper = false) -> Char* {
+  buffer += num_digits;
+  Char* end = buffer;
+  do {
+    const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
+    unsigned digit = (value & ((1 << BASE_BITS) - 1));
+    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
+                                                : digits[digit]);
+  } while ((value >>= BASE_BITS) != 0);
+  return end;
+}
+
+template <unsigned BASE_BITS, typename Char>
+auto format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits,
+                 bool = false) -> Char* {
+  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
+  int start = (num_digits + char_digits - 1) / char_digits - 1;
+  if (int start_digits = num_digits % char_digits) {
+    unsigned value = n.value[start--];
+    buffer = format_uint<BASE_BITS>(buffer, value, start_digits);
+  }
+  for (; start >= 0; --start) {
+    unsigned value = n.value[start];
+    buffer += char_digits;
+    auto p = buffer;
+    for (int i = 0; i < char_digits; ++i) {
+      unsigned digit = (value & ((1 << BASE_BITS) - 1));
+      *--p = static_cast<Char>("0123456789abcdef"[digit]);
+      value >>= BASE_BITS;
+    }
+  }
+  return buffer;
+}
+
+template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
+inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
+    -> It {
+  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
+    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
+    return out;
+  }
+  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
+  char buffer[num_bits<UInt>() / BASE_BITS + 1];
+  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
+  return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
+}
+
+// A converter from UTF-8 to UTF-16.
+class utf8_to_utf16 {
+ private:
+  basic_memory_buffer<wchar_t> buffer_;
+
+ public:
+  FMT_API explicit utf8_to_utf16(string_view s);
+  operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
+  auto size() const -> size_t { return buffer_.size() - 1; }
+  auto c_str() const -> const wchar_t* { return &buffer_[0]; }
+  auto str() const -> std::wstring { return {&buffer_[0], size()}; }
+};
+
+namespace dragonbox {
+
+// Type-specific information that Dragonbox uses.
+template <class T> struct float_info;
+
+template <> struct float_info<float> {
+  using carrier_uint = uint32_t;
+  static const int significand_bits = 23;
+  static const int exponent_bits = 8;
+  static const int min_exponent = -126;
+  static const int max_exponent = 127;
+  static const int exponent_bias = -127;
+  static const int decimal_digits = 9;
+  static const int kappa = 1;
+  static const int big_divisor = 100;
+  static const int small_divisor = 10;
+  static const int min_k = -31;
+  static const int max_k = 46;
+  static const int cache_bits = 64;
+  static const int divisibility_check_by_5_threshold = 39;
+  static const int case_fc_pm_half_lower_threshold = -1;
+  static const int case_fc_pm_half_upper_threshold = 6;
+  static const int case_fc_lower_threshold = -2;
+  static const int case_fc_upper_threshold = 6;
+  static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
+  static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
+  static const int shorter_interval_tie_lower_threshold = -35;
+  static const int shorter_interval_tie_upper_threshold = -35;
+  static const int max_trailing_zeros = 7;
+};
+
+template <> struct float_info<double> {
+  using carrier_uint = uint64_t;
+  static const int significand_bits = 52;
+  static const int exponent_bits = 11;
+  static const int min_exponent = -1022;
+  static const int max_exponent = 1023;
+  static const int exponent_bias = -1023;
+  static const int decimal_digits = 17;
+  static const int kappa = 2;
+  static const int big_divisor = 1000;
+  static const int small_divisor = 100;
+  static const int min_k = -292;
+  static const int max_k = 326;
+  static const int cache_bits = 128;
+  static const int divisibility_check_by_5_threshold = 86;
+  static const int case_fc_pm_half_lower_threshold = -2;
+  static const int case_fc_pm_half_upper_threshold = 9;
+  static const int case_fc_lower_threshold = -4;
+  static const int case_fc_upper_threshold = 9;
+  static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
+  static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
+  static const int shorter_interval_tie_lower_threshold = -77;
+  static const int shorter_interval_tie_upper_threshold = -77;
+  static const int max_trailing_zeros = 16;
+};
+
+template <typename T> struct decimal_fp {
+  using significand_type = typename float_info<T>::carrier_uint;
+  significand_type significand;
+  int exponent;
+};
+
+template <typename T>
+FMT_API auto to_decimal(T x) FMT_NOEXCEPT -> decimal_fp<T>;
+}  // namespace dragonbox
+
+template <typename T>
+constexpr auto exponent_mask() ->
+    typename dragonbox::float_info<T>::carrier_uint {
+  using uint = typename dragonbox::float_info<T>::carrier_uint;
+  return ((uint(1) << dragonbox::float_info<T>::exponent_bits) - 1)
+         << dragonbox::float_info<T>::significand_bits;
+}
+
+// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
+template <typename Char, typename It>
+FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
+  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
+  if (exp < 0) {
+    *it++ = static_cast<Char>('-');
+    exp = -exp;
+  } else {
+    *it++ = static_cast<Char>('+');
+  }
+  if (exp >= 100) {
+    const char* top = digits2(to_unsigned(exp / 100));
+    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
+    *it++ = static_cast<Char>(top[1]);
+    exp %= 100;
+  }
+  const char* d = digits2(to_unsigned(exp));
+  *it++ = static_cast<Char>(d[0]);
+  *it++ = static_cast<Char>(d[1]);
+  return it;
+}
+
+template <typename T>
+FMT_HEADER_ONLY_CONSTEXPR20 auto format_float(T value, int precision,
+                                              float_specs specs,
+                                              buffer<char>& buf) -> int;
+
+// Formats a floating-point number with snprintf.
+template <typename T>
+auto snprintf_float(T value, int precision, float_specs specs,
+                    buffer<char>& buf) -> int;
+
+template <typename T> constexpr auto promote_float(T value) -> T {
+  return value;
+}
+constexpr auto promote_float(float value) -> double {
+  return static_cast<double>(value);
+}
+
+template <typename OutputIt, typename Char>
+FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
+                                     const fill_t<Char>& fill) -> OutputIt {
+  auto fill_size = fill.size();
+  if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
+  auto data = fill.data();
+  for (size_t i = 0; i < n; ++i)
+    it = copy_str<Char>(data, data + fill_size, it);
+  return it;
+}
+
+// Writes the output of f, padded according to format specifications in specs.
+// size: output size in code units.
+// width: output display width in (terminal) column positions.
+template <align::type align = align::left, typename OutputIt, typename Char,
+          typename F>
+FMT_CONSTEXPR auto write_padded(OutputIt out,
+                                const basic_format_specs<Char>& specs,
+                                size_t size, size_t width, F&& f) -> OutputIt {
+  static_assert(align == align::left || align == align::right, "");
+  unsigned spec_width = to_unsigned(specs.width);
+  size_t padding = spec_width > width ? spec_width - width : 0;
+  // Shifts are encoded as string literals because static constexpr is not
+  // supported in constexpr functions.
+  auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
+  size_t left_padding = padding >> shifts[specs.align];
+  size_t right_padding = padding - left_padding;
+  auto it = reserve(out, size + padding * specs.fill.size());
+  if (left_padding != 0) it = fill(it, left_padding, specs.fill);
+  it = f(it);
+  if (right_padding != 0) it = fill(it, right_padding, specs.fill);
+  return base_iterator(out, it);
+}
+
+template <align::type align = align::left, typename OutputIt, typename Char,
+          typename F>
+constexpr auto write_padded(OutputIt out, const basic_format_specs<Char>& specs,
+                            size_t size, F&& f) -> OutputIt {
+  return write_padded<align>(out, specs, size, size, f);
+}
+
+template <align::type align = align::left, typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
+                               const basic_format_specs<Char>& specs)
+    -> OutputIt {
+  return write_padded<align>(
+      out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
+        const char* data = bytes.data();
+        return copy_str<Char>(data, data + bytes.size(), it);
+      });
+}
+
+template <typename Char, typename OutputIt, typename UIntPtr>
+auto write_ptr(OutputIt out, UIntPtr value,
+               const basic_format_specs<Char>* specs) -> OutputIt {
+  int num_digits = count_digits<4>(value);
+  auto size = to_unsigned(num_digits) + size_t(2);
+  auto write = [=](reserve_iterator<OutputIt> it) {
+    *it++ = static_cast<Char>('0');
+    *it++ = static_cast<Char>('x');
+    return format_uint<4, Char>(it, value, num_digits);
+  };
+  return specs ? write_padded<align::right>(out, *specs, size, write)
+               : base_iterator(out, write(reserve(out, size)));
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
+                              const basic_format_specs<Char>& specs)
+    -> OutputIt {
+  return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
+    *it++ = value;
+    return it;
+  });
+}
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, Char value,
+                         const basic_format_specs<Char>& specs,
+                         locale_ref loc = {}) -> OutputIt {
+  return check_char_specs(specs)
+             ? write_char(out, value, specs)
+             : write(out, static_cast<int>(value), specs, loc);
+}
+
+// Data for write_int that doesn't depend on output iterator type. It is used to
+// avoid template code bloat.
+template <typename Char> struct write_int_data {
+  size_t size;
+  size_t padding;
+
+  FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
+                               const basic_format_specs<Char>& specs)
+      : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
+    if (specs.align == align::numeric) {
+      auto width = to_unsigned(specs.width);
+      if (width > size) {
+        padding = width - size;
+        size = width;
+      }
+    } else if (specs.precision > num_digits) {
+      size = (prefix >> 24) + to_unsigned(specs.precision);
+      padding = to_unsigned(specs.precision - num_digits);
+    }
+  }
+};
+
+// Writes an integer in the format
+//   <left-padding><prefix><numeric-padding><digits><right-padding>
+// where <digits> are written by write_digits(it).
+// prefix contains chars in three lower bytes and the size in the fourth byte.
+template <typename OutputIt, typename Char, typename W>
+FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
+                                        unsigned prefix,
+                                        const basic_format_specs<Char>& specs,
+                                        W write_digits) -> OutputIt {
+  // Slightly faster check for specs.width == 0 && specs.precision == -1.
+  if ((specs.width | (specs.precision + 1)) == 0) {
+    auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
+    if (prefix != 0) {
+      for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
+        *it++ = static_cast<Char>(p & 0xff);
+    }
+    return base_iterator(out, write_digits(it));
+  }
+  auto data = write_int_data<Char>(num_digits, prefix, specs);
+  return write_padded<align::right>(
+      out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
+        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
+          *it++ = static_cast<Char>(p & 0xff);
+        it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
+        return write_digits(it);
+      });
+}
+
+template <typename Char> class digit_grouping {
+ private:
+  thousands_sep_result<Char> sep_;
+
+  struct next_state {
+    std::string::const_iterator group;
+    int pos;
+  };
+  next_state initial_state() const { return {sep_.grouping.begin(), 0}; }
+
+  // Returns the next digit group separator position.
+  int next(next_state& state) const {
+    if (!sep_.thousands_sep) return max_value<int>();
+    if (state.group == sep_.grouping.end())
+      return state.pos += sep_.grouping.back();
+    if (*state.group <= 0 || *state.group == max_value<char>())
+      return max_value<int>();
+    state.pos += *state.group++;
+    return state.pos;
+  }
+
+ public:
+  explicit digit_grouping(locale_ref loc, bool localized = true) {
+    if (localized)
+      sep_ = thousands_sep<Char>(loc);
+    else
+      sep_.thousands_sep = Char();
+  }
+  explicit digit_grouping(thousands_sep_result<Char> sep) : sep_(sep) {}
+
+  Char separator() const { return sep_.thousands_sep; }
+
+  int count_separators(int num_digits) const {
+    int count = 0;
+    auto state = initial_state();
+    while (num_digits > next(state)) ++count;
+    return count;
+  }
+
+  // Applies grouping to digits and write the output to out.
+  template <typename Out, typename C>
+  Out apply(Out out, basic_string_view<C> digits) const {
+    auto num_digits = static_cast<int>(digits.size());
+    auto separators = basic_memory_buffer<int>();
+    separators.push_back(0);
+    auto state = initial_state();
+    while (int i = next(state)) {
+      if (i >= num_digits) break;
+      separators.push_back(i);
+    }
+    for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
+         i < num_digits; ++i) {
+      if (num_digits - i == separators[sep_index]) {
+        *out++ = separator();
+        --sep_index;
+      }
+      *out++ = static_cast<Char>(digits[to_unsigned(i)]);
+    }
+    return out;
+  }
+};
+
+template <typename OutputIt, typename UInt, typename Char>
+auto write_int_localized(OutputIt out, UInt value, unsigned prefix,
+                         const basic_format_specs<Char>& specs,
+                         const digit_grouping<Char>& grouping) -> OutputIt {
+  static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
+  int num_digits = count_digits(value);
+  char digits[40];
+  format_decimal(digits, value, num_digits);
+  unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits +
+                              grouping.count_separators(num_digits));
+  return write_padded<align::right>(
+      out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
+        if (prefix != 0) *it++ = static_cast<Char>(prefix);
+        return grouping.apply(it, string_view(digits, to_unsigned(num_digits)));
+      });
+}
+
+template <typename OutputIt, typename UInt, typename Char>
+auto write_int_localized(OutputIt& out, UInt value, unsigned prefix,
+                         const basic_format_specs<Char>& specs, locale_ref loc)
+    -> bool {
+  auto grouping = digit_grouping<Char>(loc);
+  out = write_int_localized(out, value, prefix, specs, grouping);
+  return true;
+}
+
+FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
+  prefix |= prefix != 0 ? value << 8 : value;
+  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
+}
+
+template <typename UInt> struct write_int_arg {
+  UInt abs_value;
+  unsigned prefix;
+};
+
+template <typename T>
+FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
+    -> write_int_arg<uint32_or_64_or_128_t<T>> {
+  auto prefix = 0u;
+  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
+  if (is_negative(value)) {
+    prefix = 0x01000000 | '-';
+    abs_value = 0 - abs_value;
+  } else {
+    constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
+                                            0x1000000u | ' '};
+    prefix = prefixes[sign];
+  }
+  return {abs_value, prefix};
+}
+
+template <typename Char, typename OutputIt, typename T>
+FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
+                                        const basic_format_specs<Char>& specs,
+                                        locale_ref loc) -> OutputIt {
+  static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
+  auto abs_value = arg.abs_value;
+  auto prefix = arg.prefix;
+  switch (specs.type) {
+  case presentation_type::none:
+  case presentation_type::dec: {
+    if (specs.localized &&
+        write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value),
+                            prefix, specs, loc)) {
+      return out;
+    }
+    auto num_digits = count_digits(abs_value);
+    return write_int(
+        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
+          return format_decimal<Char>(it, abs_value, num_digits).end;
+        });
+  }
+  case presentation_type::hex_lower:
+  case presentation_type::hex_upper: {
+    bool upper = specs.type == presentation_type::hex_upper;
+    if (specs.alt)
+      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
+    int num_digits = count_digits<4>(abs_value);
+    return write_int(
+        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
+          return format_uint<4, Char>(it, abs_value, num_digits, upper);
+        });
+  }
+  case presentation_type::bin_lower:
+  case presentation_type::bin_upper: {
+    bool upper = specs.type == presentation_type::bin_upper;
+    if (specs.alt)
+      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
+    int num_digits = count_digits<1>(abs_value);
+    return write_int(out, num_digits, prefix, specs,
+                     [=](reserve_iterator<OutputIt> it) {
+                       return format_uint<1, Char>(it, abs_value, num_digits);
+                     });
+  }
+  case presentation_type::oct: {
+    int num_digits = count_digits<3>(abs_value);
+    // Octal prefix '0' is counted as a digit, so only add it if precision
+    // is not greater than the number of digits.
+    if (specs.alt && specs.precision <= num_digits && abs_value != 0)
+      prefix_append(prefix, '0');
+    return write_int(out, num_digits, prefix, specs,
+                     [=](reserve_iterator<OutputIt> it) {
+                       return format_uint<3, Char>(it, abs_value, num_digits);
+                     });
+  }
+  case presentation_type::chr:
+    return write_char(out, static_cast<Char>(abs_value), specs);
+  default:
+    throw_format_error("invalid type specifier");
+  }
+  return out;
+}
+template <typename Char, typename OutputIt, typename T>
+FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
+    OutputIt out, write_int_arg<T> arg, const basic_format_specs<Char>& specs,
+    locale_ref loc) -> OutputIt {
+  return write_int(out, arg, specs, loc);
+}
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_integral<T>::value &&
+                        !std::is_same<T, bool>::value &&
+                        std::is_same<OutputIt, buffer_appender<Char>>::value)>
+FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
+                                    const basic_format_specs<Char>& specs,
+                                    locale_ref loc) -> OutputIt {
+  return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
+                            loc);
+}
+// An inlined version of write used in format string compilation.
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_integral<T>::value &&
+                        !std::is_same<T, bool>::value &&
+                        !std::is_same<OutputIt, buffer_appender<Char>>::value)>
+FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
+                                    const basic_format_specs<Char>& specs,
+                                    locale_ref loc) -> OutputIt {
+  return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
+                         const basic_format_specs<Char>& specs) -> OutputIt {
+  auto data = s.data();
+  auto size = s.size();
+  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
+    size = code_point_index(s, to_unsigned(specs.precision));
+  auto width =
+      specs.width != 0 ? compute_width(basic_string_view<Char>(data, size)) : 0;
+  return write_padded(out, specs, size, width,
+                      [=](reserve_iterator<OutputIt> it) {
+                        return copy_str<Char>(data, data + size, it);
+                      });
+}
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out,
+                         basic_string_view<type_identity_t<Char>> s,
+                         const basic_format_specs<Char>& specs, locale_ref)
+    -> OutputIt {
+  check_string_type_spec(specs.type);
+  return write(out, s, specs);
+}
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
+                         const basic_format_specs<Char>& specs, locale_ref)
+    -> OutputIt {
+  return check_cstring_type_spec(specs.type)
+             ? write(out, basic_string_view<Char>(s), specs, {})
+             : write_ptr<Char>(out, to_uintptr(s), &specs);
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isinf,
+                                     basic_format_specs<Char> specs,
+                                     const float_specs& fspecs) -> OutputIt {
+  auto str =
+      isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan");
+  constexpr size_t str_size = 3;
+  auto sign = fspecs.sign;
+  auto size = str_size + (sign ? 1 : 0);
+  // Replace '0'-padding with space for non-finite values.
+  const bool is_zero_fill =
+      specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
+  if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
+  return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
+    if (sign) *it++ = detail::sign<Char>(sign);
+    return copy_str<Char>(str, str + str_size, it);
+  });
+}
+
+// A decimal floating-point number significand * pow(10, exp).
+struct big_decimal_fp {
+  const char* significand;
+  int significand_size;
+  int exponent;
+};
+
+constexpr auto get_significand_size(const big_decimal_fp& fp) -> int {
+  return fp.significand_size;
+}
+template <typename T>
+inline auto get_significand_size(const dragonbox::decimal_fp<T>& fp) -> int {
+  return count_digits(fp.significand);
+}
+
+template <typename Char, typename OutputIt>
+constexpr auto write_significand(OutputIt out, const char* significand,
+                                 int significand_size) -> OutputIt {
+  return copy_str<Char>(significand, significand + significand_size, out);
+}
+template <typename Char, typename OutputIt, typename UInt>
+inline auto write_significand(OutputIt out, UInt significand,
+                              int significand_size) -> OutputIt {
+  return format_decimal<Char>(out, significand, significand_size).end;
+}
+template <typename Char, typename OutputIt, typename T, typename Grouping>
+FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
+                                       int significand_size, int exponent,
+                                       const Grouping& grouping) -> OutputIt {
+  if (!grouping.separator()) {
+    out = write_significand<Char>(out, significand, significand_size);
+    return detail::fill_n(out, exponent, static_cast<Char>('0'));
+  }
+  auto buffer = memory_buffer();
+  write_significand<char>(appender(buffer), significand, significand_size);
+  detail::fill_n(appender(buffer), exponent, '0');
+  return grouping.apply(out, string_view(buffer.data(), buffer.size()));
+}
+
+template <typename Char, typename UInt,
+          FMT_ENABLE_IF(std::is_integral<UInt>::value)>
+inline auto write_significand(Char* out, UInt significand, int significand_size,
+                              int integral_size, Char decimal_point) -> Char* {
+  if (!decimal_point)
+    return format_decimal(out, significand, significand_size).end;
+  out += significand_size + 1;
+  Char* end = out;
+  int floating_size = significand_size - integral_size;
+  for (int i = floating_size / 2; i > 0; --i) {
+    out -= 2;
+    copy2(out, digits2(significand % 100));
+    significand /= 100;
+  }
+  if (floating_size % 2 != 0) {
+    *--out = static_cast<Char>('0' + significand % 10);
+    significand /= 10;
+  }
+  *--out = decimal_point;
+  format_decimal(out - integral_size, significand, integral_size);
+  return end;
+}
+
+template <typename OutputIt, typename UInt, typename Char,
+          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
+inline auto write_significand(OutputIt out, UInt significand,
+                              int significand_size, int integral_size,
+                              Char decimal_point) -> OutputIt {
+  // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
+  Char buffer[digits10<UInt>() + 2];
+  auto end = write_significand(buffer, significand, significand_size,
+                               integral_size, decimal_point);
+  return detail::copy_str_noinline<Char>(buffer, end, out);
+}
+
+template <typename OutputIt, typename Char>
+FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
+                                     int significand_size, int integral_size,
+                                     Char decimal_point) -> OutputIt {
+  out = detail::copy_str_noinline<Char>(significand,
+                                        significand + integral_size, out);
+  if (!decimal_point) return out;
+  *out++ = decimal_point;
+  return detail::copy_str_noinline<Char>(significand + integral_size,
+                                         significand + significand_size, out);
+}
+
+template <typename OutputIt, typename Char, typename T, typename Grouping>
+FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
+                                       int significand_size, int integral_size,
+                                       Char decimal_point,
+                                       const Grouping& grouping) -> OutputIt {
+  if (!grouping.separator()) {
+    return write_significand(out, significand, significand_size, integral_size,
+                             decimal_point);
+  }
+  auto buffer = basic_memory_buffer<Char>();
+  write_significand(buffer_appender<Char>(buffer), significand,
+                    significand_size, integral_size, decimal_point);
+  grouping.apply(
+      out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
+  return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
+                                         buffer.end(), out);
+}
+
+template <typename OutputIt, typename DecimalFP, typename Char,
+          typename Grouping = digit_grouping<Char>>
+FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& fp,
+                                    const basic_format_specs<Char>& specs,
+                                    float_specs fspecs, locale_ref loc)
+    -> OutputIt {
+  auto significand = fp.significand;
+  int significand_size = get_significand_size(fp);
+  constexpr Char zero = static_cast<Char>('0');
+  auto sign = fspecs.sign;
+  size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
+  using iterator = reserve_iterator<OutputIt>;
+
+  Char decimal_point =
+      fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');
+
+  int output_exp = fp.exponent + significand_size - 1;
+  auto use_exp_format = [=]() {
+    if (fspecs.format == float_format::exp) return true;
+    if (fspecs.format != float_format::general) return false;
+    // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
+    // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
+    const int exp_lower = -4, exp_upper = 16;
+    return output_exp < exp_lower ||
+           output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
+  };
+  if (use_exp_format()) {
+    int num_zeros = 0;
+    if (fspecs.showpoint) {
+      num_zeros = fspecs.precision - significand_size;
+      if (num_zeros < 0) num_zeros = 0;
+      size += to_unsigned(num_zeros);
+    } else if (significand_size == 1) {
+      decimal_point = Char();
+    }
+    auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
+    int exp_digits = 2;
+    if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
+
+    size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
+    char exp_char = fspecs.upper ? 'E' : 'e';
+    auto write = [=](iterator it) {
+      if (sign) *it++ = detail::sign<Char>(sign);
+      // Insert a decimal point after the first digit and add an exponent.
+      it = write_significand(it, significand, significand_size, 1,
+                             decimal_point);
+      if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
+      *it++ = static_cast<Char>(exp_char);
+      return write_exponent<Char>(output_exp, it);
+    };
+    return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
+                           : base_iterator(out, write(reserve(out, size)));
+  }
+
+  int exp = fp.exponent + significand_size;
+  if (fp.exponent >= 0) {
+    // 1234e5 -> 123400000[.0+]
+    size += to_unsigned(fp.exponent);
+    int num_zeros = fspecs.precision - exp;
+#ifdef FMT_FUZZ
+    if (num_zeros > 5000)
+      throw std::runtime_error("fuzz mode - avoiding excessive cpu use");
+#endif
+    if (fspecs.showpoint) {
+      if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1;
+      if (num_zeros > 0) size += to_unsigned(num_zeros) + 1;
+    }
+    auto grouping = Grouping(loc, fspecs.locale);
+    size += to_unsigned(grouping.count_separators(significand_size));
+    return write_padded<align::right>(out, specs, size, [&](iterator it) {
+      if (sign) *it++ = detail::sign<Char>(sign);
+      it = write_significand<Char>(it, significand, significand_size,
+                                   fp.exponent, grouping);
+      if (!fspecs.showpoint) return it;
+      *it++ = decimal_point;
+      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
+    });
+  } else if (exp > 0) {
+    // 1234e-2 -> 12.34[0+]
+    int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
+    size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
+    auto grouping = Grouping(loc, fspecs.locale);
+    size += to_unsigned(grouping.count_separators(significand_size));
+    return write_padded<align::right>(out, specs, size, [&](iterator it) {
+      if (sign) *it++ = detail::sign<Char>(sign);
+      it = write_significand(it, significand, significand_size, exp,
+                             decimal_point, grouping);
+      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
+    });
+  }
+  // 1234e-6 -> 0.001234
+  int num_zeros = -exp;
+  if (significand_size == 0 && fspecs.precision >= 0 &&
+      fspecs.precision < num_zeros) {
+    num_zeros = fspecs.precision;
+  }
+  bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
+  size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
+  return write_padded<align::right>(out, specs, size, [&](iterator it) {
+    if (sign) *it++ = detail::sign<Char>(sign);
+    *it++ = zero;
+    if (!pointy) return it;
+    *it++ = decimal_point;
+    it = detail::fill_n(it, num_zeros, zero);
+    return write_significand<Char>(it, significand, significand_size);
+  });
+}
+
+template <typename Char> class fallback_digit_grouping {
+ public:
+  constexpr fallback_digit_grouping(locale_ref, bool) {}
+
+  constexpr Char separator() const { return Char(); }
+
+  constexpr int count_separators(int) const { return 0; }
+
+  template <typename Out, typename C>
+  constexpr Out apply(Out out, basic_string_view<C>) const {
+    return out;
+  }
+};
+
+template <typename OutputIt, typename DecimalFP, typename Char>
+FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& fp,
+                                 const basic_format_specs<Char>& specs,
+                                 float_specs fspecs, locale_ref loc)
+    -> OutputIt {
+  if (is_constant_evaluated()) {
+    return do_write_float<OutputIt, DecimalFP, Char,
+                          fallback_digit_grouping<Char>>(out, fp, specs, fspecs,
+                                                         loc);
+  } else {
+    return do_write_float(out, fp, specs, fspecs, loc);
+  }
+}
+
+template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
+FMT_CONSTEXPR20 bool isinf(T value) {
+  if (is_constant_evaluated()) {
+#if defined(__cpp_if_constexpr)
+    if constexpr (std::numeric_limits<double>::is_iec559) {
+      auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
+      constexpr auto significand_bits =
+          dragonbox::float_info<double>::significand_bits;
+      return (bits & exponent_mask<double>()) &&
+             !(bits & ((uint64_t(1) << significand_bits) - 1));
+    }
+#endif
+  }
+  return std::isinf(value);
+}
+
+template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
+FMT_CONSTEXPR20 bool isfinite(T value) {
+  if (is_constant_evaluated()) {
+#if defined(__cpp_if_constexpr)
+    if constexpr (std::numeric_limits<double>::is_iec559) {
+      auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
+      return (bits & exponent_mask<double>()) != exponent_mask<double>();
+    }
+#endif
+  }
+  return std::isfinite(value);
+}
+
+template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
+FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
+  if (is_constant_evaluated()) {
+#ifdef __cpp_if_constexpr
+    if constexpr (std::numeric_limits<double>::is_iec559) {
+      auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
+      return (bits & (uint64_t(1) << (num_bits<uint64_t>() - 1))) != 0;
+    }
+#endif
+  }
+  return std::signbit(value);
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(std::is_floating_point<T>::value)>
+FMT_CONSTEXPR20 auto write(OutputIt out, T value,
+                           basic_format_specs<Char> specs, locale_ref loc = {})
+    -> OutputIt {
+  if (const_check(!is_supported_floating_point(value))) return out;
+  float_specs fspecs = parse_float_type_spec(specs);
+  fspecs.sign = specs.sign;
+  if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit.
+    fspecs.sign = sign::minus;
+    value = -value;
+  } else if (fspecs.sign == sign::minus) {
+    fspecs.sign = sign::none;
+  }
+
+  if (!detail::isfinite(value))
+    return write_nonfinite(out, detail::isinf(value), specs, fspecs);
+
+  if (specs.align == align::numeric && fspecs.sign) {
+    auto it = reserve(out, 1);
+    *it++ = detail::sign<Char>(fspecs.sign);
+    out = base_iterator(out, it);
+    fspecs.sign = sign::none;
+    if (specs.width != 0) --specs.width;
+  }
+
+  memory_buffer buffer;
+  if (fspecs.format == float_format::hex) {
+    if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
+    snprintf_float(promote_float(value), specs.precision, fspecs, buffer);
+    return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
+                                     specs);
+  }
+  int precision = specs.precision >= 0 || specs.type == presentation_type::none
+                      ? specs.precision
+                      : 6;
+  if (fspecs.format == float_format::exp) {
+    if (precision == max_value<int>())
+      throw_format_error("number is too big");
+    else
+      ++precision;
+  }
+  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
+  if (!is_fast_float<T>()) fspecs.fallback = true;
+  int exp = format_float(promote_float(value), precision, fspecs, buffer);
+  fspecs.precision = precision;
+  auto fp = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
+  return write_float(out, fp, specs, fspecs, loc);
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_fast_float<T>::value)>
+FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
+  if (is_constant_evaluated()) {
+    return write(out, value, basic_format_specs<Char>());
+  }
+
+  if (const_check(!is_supported_floating_point(value))) return out;
+
+  using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
+  using uint = typename dragonbox::float_info<floaty>::carrier_uint;
+  auto bits = bit_cast<uint>(value);
+
+  auto fspecs = float_specs();
+  if (detail::signbit(value)) {
+    fspecs.sign = sign::minus;
+    value = -value;
+  }
+
+  constexpr auto specs = basic_format_specs<Char>();
+  uint mask = exponent_mask<floaty>();
+  if ((bits & mask) == mask)
+    return write_nonfinite(out, std::isinf(value), specs, fspecs);
+
+  auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
+  return write_float(out, dec, specs, fspecs, {});
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(std::is_floating_point<T>::value &&
+                        !is_fast_float<T>::value)>
+inline auto write(OutputIt out, T value) -> OutputIt {
+  return write(out, value, basic_format_specs<Char>());
+}
+
+template <typename Char, typename OutputIt>
+auto write(OutputIt out, monostate, basic_format_specs<Char> = {},
+           locale_ref = {}) -> OutputIt {
+  FMT_ASSERT(false, "");
+  return out;
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
+    -> OutputIt {
+  auto it = reserve(out, value.size());
+  it = copy_str_noinline<Char>(value.begin(), value.end(), it);
+  return base_iterator(out, it);
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_string<T>::value)>
+constexpr auto write(OutputIt out, const T& value) -> OutputIt {
+  return write<Char>(out, to_string_view(value));
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_integral<T>::value &&
+                        !std::is_same<T, bool>::value &&
+                        !std::is_same<T, Char>::value)>
+FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
+  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
+  bool negative = is_negative(value);
+  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
+  if (negative) abs_value = ~abs_value + 1;
+  int num_digits = count_digits(abs_value);
+  auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
+  auto it = reserve(out, size);
+  if (auto ptr = to_pointer<Char>(it, size)) {
+    if (negative) *ptr++ = static_cast<Char>('-');
+    format_decimal<Char>(ptr, abs_value, num_digits);
+    return out;
+  }
+  if (negative) *it++ = static_cast<Char>('-');
+  it = format_decimal<Char>(it, abs_value, num_digits).end;
+  return base_iterator(out, it);
+}
+
+// FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
+template <
+    typename Char, typename OutputIt, typename T,
+    bool check =
+        std::is_enum<T>::value && !std::is_same<T, Char>::value &&
+        mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
+            type::custom_type,
+    FMT_ENABLE_IF(check)>
+FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
+  return write<Char>(
+      out, static_cast<typename std::underlying_type<T>::type>(value));
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(std::is_same<T, bool>::value)>
+FMT_CONSTEXPR auto write(OutputIt out, T value,
+                         const basic_format_specs<Char>& specs = {},
+                         locale_ref = {}) -> OutputIt {
+  return specs.type != presentation_type::none &&
+                 specs.type != presentation_type::string
+             ? write(out, value ? 1 : 0, specs, {})
+             : write_bytes(out, value ? "true" : "false", specs);
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
+  auto it = reserve(out, 1);
+  *it++ = value;
+  return base_iterator(out, it);
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
+    -> OutputIt {
+  if (!value) {
+    throw_format_error("string pointer is null");
+  } else {
+    out = write(out, basic_string_view<Char>(value));
+  }
+  return out;
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(std::is_same<T, void>::value)>
+auto write(OutputIt out, const T* value,
+           const basic_format_specs<Char>& specs = {}, locale_ref = {})
+    -> OutputIt {
+  check_pointer_type_spec(specs.type, error_handler());
+  return write_ptr<Char>(out, to_uintptr(value), &specs);
+}
+
+// A write overload that handles implicit conversions.
+template <typename Char, typename OutputIt, typename T,
+          typename Context = basic_format_context<OutputIt, Char>>
+FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
+    std::is_class<T>::value && !is_string<T>::value &&
+        !std::is_same<T, Char>::value &&
+        !std::is_same<const T&,
+                      decltype(arg_mapper<Context>().map(value))>::value,
+    OutputIt> {
+  return write<Char>(out, arg_mapper<Context>().map(value));
+}
+
+template <typename Char, typename OutputIt, typename T,
+          typename Context = basic_format_context<OutputIt, Char>>
+FMT_CONSTEXPR auto write(OutputIt out, const T& value)
+    -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
+                   OutputIt> {
+  using formatter_type =
+      conditional_t<has_formatter<T, Context>::value,
+                    typename Context::template formatter_type<T>,
+                    fallback_formatter<T, Char>>;
+  auto ctx = Context(out, {}, {});
+  return formatter_type().format(value, ctx);
+}
+
+// An argument visitor that formats the argument and writes it via the output
+// iterator. It's a class and not a generic lambda for compatibility with C++11.
+template <typename Char> struct default_arg_formatter {
+  using iterator = buffer_appender<Char>;
+  using context = buffer_context<Char>;
+
+  iterator out;
+  basic_format_args<context> args;
+  locale_ref loc;
+
+  template <typename T> auto operator()(T value) -> iterator {
+    return write<Char>(out, value);
+  }
+  auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
+    basic_format_parse_context<Char> parse_ctx({});
+    context format_ctx(out, args, loc);
+    h.format(parse_ctx, format_ctx);
+    return format_ctx.out();
+  }
+};
+
+template <typename Char> struct arg_formatter {
+  using iterator = buffer_appender<Char>;
+  using context = buffer_context<Char>;
+
+  iterator out;
+  const basic_format_specs<Char>& specs;
+  locale_ref locale;
+
+  template <typename T>
+  FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
+    return detail::write(out, value, specs, locale);
+  }
+  auto operator()(typename basic_format_arg<context>::handle) -> iterator {
+    // User-defined types are handled separately because they require access
+    // to the parse context.
+    return out;
+  }
+};
+
+template <typename Char> struct custom_formatter {
+  basic_format_parse_context<Char>& parse_ctx;
+  buffer_context<Char>& ctx;
+
+  void operator()(
+      typename basic_format_arg<buffer_context<Char>>::handle h) const {
+    h.format(parse_ctx, ctx);
+  }
+  template <typename T> void operator()(T) const {}
+};
+
+template <typename T>
+using is_integer =
+    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
+                  !std::is_same<T, char>::value &&
+                  !std::is_same<T, wchar_t>::value>;
+
+template <typename ErrorHandler> class width_checker {
+ public:
+  explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}
+
+  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
+    if (is_negative(value)) handler_.on_error("negative width");
+    return static_cast<unsigned long long>(value);
+  }
+
+  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
+    handler_.on_error("width is not integer");
+    return 0;
+  }
+
+ private:
+  ErrorHandler& handler_;
+};
+
+template <typename ErrorHandler> class precision_checker {
+ public:
+  explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}
+
+  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
+    if (is_negative(value)) handler_.on_error("negative precision");
+    return static_cast<unsigned long long>(value);
+  }
+
+  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
+    handler_.on_error("precision is not integer");
+    return 0;
+  }
+
+ private:
+  ErrorHandler& handler_;
+};
+
+template <template <typename> class Handler, typename FormatArg,
+          typename ErrorHandler>
+FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
+  unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
+  if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
+  return static_cast<int>(value);
+}
+
+template <typename Context, typename ID>
+FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
+    typename Context::format_arg {
+  auto arg = ctx.arg(id);
+  if (!arg) ctx.on_error("argument not found");
+  return arg;
+}
+
+// The standard format specifier handler with checking.
+template <typename Char> class specs_handler : public specs_setter<Char> {
+ private:
+  basic_format_parse_context<Char>& parse_context_;
+  buffer_context<Char>& context_;
+
+  // This is only needed for compatibility with gcc 4.4.
+  using format_arg = basic_format_arg<buffer_context<Char>>;
+
+  FMT_CONSTEXPR auto get_arg(auto_id) -> format_arg {
+    return detail::get_arg(context_, parse_context_.next_arg_id());
+  }
+
+  FMT_CONSTEXPR auto get_arg(int arg_id) -> format_arg {
+    parse_context_.check_arg_id(arg_id);
+    return detail::get_arg(context_, arg_id);
+  }
+
+  FMT_CONSTEXPR auto get_arg(basic_string_view<Char> arg_id) -> format_arg {
+    parse_context_.check_arg_id(arg_id);
+    return detail::get_arg(context_, arg_id);
+  }
+
+ public:
+  FMT_CONSTEXPR specs_handler(basic_format_specs<Char>& specs,
+                              basic_format_parse_context<Char>& parse_ctx,
+                              buffer_context<Char>& ctx)
+      : specs_setter<Char>(specs), parse_context_(parse_ctx), context_(ctx) {}
+
+  template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
+    this->specs_.width = get_dynamic_spec<width_checker>(
+        get_arg(arg_id), context_.error_handler());
+  }
+
+  template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
+    this->specs_.precision = get_dynamic_spec<precision_checker>(
+        get_arg(arg_id), context_.error_handler());
+  }
+
+  void on_error(const char* message) { context_.on_error(message); }
+};
+
+template <template <typename> class Handler, typename Context>
+FMT_CONSTEXPR void handle_dynamic_spec(int& value,
+                                       arg_ref<typename Context::char_type> ref,
+                                       Context& ctx) {
+  switch (ref.kind) {
+  case arg_id_kind::none:
+    break;
+  case arg_id_kind::index:
+    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index),
+                                              ctx.error_handler());
+    break;
+  case arg_id_kind::name:
+    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name),
+                                              ctx.error_handler());
+    break;
+  }
+}
+
+#define FMT_STRING_IMPL(s, base, explicit)                                 \
+  [] {                                                                     \
+    /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
+    /* Use a macro-like name to avoid shadowing warnings. */               \
+    struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base {           \
+      using char_type = fmt::remove_cvref_t<decltype(s[0])>;               \
+      FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                              \
+      operator fmt::basic_string_view<char_type>() const {                 \
+        return fmt::detail_exported::compile_string_to_view<char_type>(s); \
+      }                                                                    \
+    };                                                                     \
+    return FMT_COMPILE_STRING();                                           \
+  }()
+
+/**
+  \rst
+  Constructs a compile-time format string from a string literal *s*.
+
+  **Example**::
+
+    // A compile-time error because 'd' is an invalid specifier for strings.
+    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
+  \endrst
+ */
+#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string, )
+
+#if FMT_USE_USER_DEFINED_LITERALS
+template <typename Char> struct udl_formatter {
+  basic_string_view<Char> str;
+
+  template <typename... T>
+  auto operator()(T&&... args) const -> std::basic_string<Char> {
+    return vformat(str, fmt::make_args_checked<T...>(str, args...));
+  }
+};
+
+#  if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
+template <typename T, typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct statically_named_arg : view {
+  static constexpr auto name = Str.data;
+
+  const T& value;
+  statically_named_arg(const T& v) : value(v) {}
+};
+
+template <typename T, typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
+
+template <typename T, typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
+    : std::true_type {};
+
+template <typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct udl_arg {
+  template <typename T> auto operator=(T&& value) const {
+    return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
+  }
+};
+#  else
+template <typename Char> struct udl_arg {
+  const Char* str;
+
+  template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
+    return {str, std::forward<T>(value)};
+  }
+};
+#  endif
+#endif  // FMT_USE_USER_DEFINED_LITERALS
+
+template <typename Locale, typename Char>
+auto vformat(const Locale& loc, basic_string_view<Char> format_str,
+             basic_format_args<buffer_context<type_identity_t<Char>>> args)
+    -> std::basic_string<Char> {
+  basic_memory_buffer<Char> buffer;
+  detail::vformat_to(buffer, format_str, args, detail::locale_ref(loc));
+  return {buffer.data(), buffer.size()};
+}
+
+using format_func = void (*)(detail::buffer<char>&, int, const char*);
+
+FMT_API void format_error_code(buffer<char>& out, int error_code,
+                               string_view message) FMT_NOEXCEPT;
+
+FMT_API void report_error(format_func func, int error_code,
+                          const char* message) FMT_NOEXCEPT;
+FMT_END_DETAIL_NAMESPACE
+
+FMT_API auto vsystem_error(int error_code, string_view format_str,
+                           format_args args) -> std::system_error;
+
+/**
+ \rst
+ Constructs :class:`std::system_error` with a message formatted with
+ ``fmt::format(fmt, args...)``.
+  *error_code* is a system error code as given by ``errno``.
+
+ **Example**::
+
+   // This throws std::system_error with the description
+   //   cannot open file 'madeup': No such file or directory
+   // or similar (system message may vary).
+   const char* filename = "madeup";
+   std::FILE* file = std::fopen(filename, "r");
+   if (!file)
+     throw fmt::system_error(errno, "cannot open file '{}'", filename);
+ \endrst
+*/
+template <typename... T>
+auto system_error(int error_code, format_string<T...> fmt, T&&... args)
+    -> std::system_error {
+  return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
+}
+
+/**
+  \rst
+  Formats an error message for an error returned by an operating system or a
+  language runtime, for example a file opening error, and writes it to *out*.
+  The format is the same as the one used by ``std::system_error(ec, message)``
+  where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
+  It is implementation-defined but normally looks like:
+
+  .. parsed-literal::
+     *<message>*: *<system-message>*
+
+  where *<message>* is the passed message and *<system-message>* is the system
+  message corresponding to the error code.
+  *error_code* is a system error code as given by ``errno``.
+  \endrst
+ */
+FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
+                                 const char* message) FMT_NOEXCEPT;
+
+// Reports a system error without throwing an exception.
+// Can be used to report errors from destructors.
+FMT_API void report_system_error(int error_code,
+                                 const char* message) FMT_NOEXCEPT;
+
+/** Fast integer formatter. */
+class format_int {
+ private:
+  // Buffer should be large enough to hold all digits (digits10 + 1),
+  // a sign and a null character.
+  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
+  mutable char buffer_[buffer_size];
+  char* str_;
+
+  template <typename UInt> auto format_unsigned(UInt value) -> char* {
+    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
+    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
+  }
+
+  template <typename Int> auto format_signed(Int value) -> char* {
+    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
+    bool negative = value < 0;
+    if (negative) abs_value = 0 - abs_value;
+    auto begin = format_unsigned(abs_value);
+    if (negative) *--begin = '-';
+    return begin;
+  }
+
+ public:
+  explicit format_int(int value) : str_(format_signed(value)) {}
+  explicit format_int(long value) : str_(format_signed(value)) {}
+  explicit format_int(long long value) : str_(format_signed(value)) {}
+  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
+  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
+  explicit format_int(unsigned long long value)
+      : str_(format_unsigned(value)) {}
+
+  /** Returns the number of characters written to the output buffer. */
+  auto size() const -> size_t {
+    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
+  }
+
+  /**
+    Returns a pointer to the output buffer content. No terminating null
+    character is appended.
+   */
+  auto data() const -> const char* { return str_; }
+
+  /**
+    Returns a pointer to the output buffer content with terminating null
+    character appended.
+   */
+  auto c_str() const -> const char* {
+    buffer_[buffer_size - 1] = '\0';
+    return str_;
+  }
+
+  /**
+    \rst
+    Returns the content of the output buffer as an ``std::string``.
+    \endrst
+   */
+  auto str() const -> std::string { return std::string(str_, size()); }
+};
+
+template <typename T, typename Char>
+template <typename FormatContext>
+FMT_CONSTEXPR FMT_INLINE auto
+formatter<T, Char,
+          enable_if_t<detail::type_constant<T, Char>::value !=
+                      detail::type::custom_type>>::format(const T& val,
+                                                          FormatContext& ctx)
+    const -> decltype(ctx.out()) {
+  if (specs_.width_ref.kind != detail::arg_id_kind::none ||
+      specs_.precision_ref.kind != detail::arg_id_kind::none) {
+    auto specs = specs_;
+    detail::handle_dynamic_spec<detail::width_checker>(specs.width,
+                                                       specs.width_ref, ctx);
+    detail::handle_dynamic_spec<detail::precision_checker>(
+        specs.precision, specs.precision_ref, ctx);
+    return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
+  }
+  return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
+}
+
+#define FMT_FORMAT_AS(Type, Base)                                        \
+  template <typename Char>                                               \
+  struct formatter<Type, Char> : formatter<Base, Char> {                 \
+    template <typename FormatContext>                                    \
+    auto format(Type const& val, FormatContext& ctx) const               \
+        -> decltype(ctx.out()) {                                         \
+      return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \
+    }                                                                    \
+  }
+
+FMT_FORMAT_AS(signed char, int);
+FMT_FORMAT_AS(unsigned char, unsigned);
+FMT_FORMAT_AS(short, int);
+FMT_FORMAT_AS(unsigned short, unsigned);
+FMT_FORMAT_AS(long, long long);
+FMT_FORMAT_AS(unsigned long, unsigned long long);
+FMT_FORMAT_AS(Char*, const Char*);
+FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
+FMT_FORMAT_AS(std::nullptr_t, const void*);
+FMT_FORMAT_AS(detail::byte, unsigned char);
+FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
+
+template <typename Char>
+struct formatter<void*, Char> : formatter<const void*, Char> {
+  template <typename FormatContext>
+  auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
+    return formatter<const void*, Char>::format(val, ctx);
+  }
+};
+
+template <typename Char, size_t N>
+struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
+  template <typename FormatContext>
+  FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
+      -> decltype(ctx.out()) {
+    return formatter<basic_string_view<Char>, Char>::format(val, ctx);
+  }
+};
+
+// A formatter for types known only at run time such as variant alternatives.
+//
+// Usage:
+//   using variant = std::variant<int, std::string>;
+//   template <>
+//   struct formatter<variant>: dynamic_formatter<> {
+//     auto format(const variant& v, format_context& ctx) {
+//       return visit([&](const auto& val) {
+//           return dynamic_formatter<>::format(val, ctx);
+//       }, v);
+//     }
+//   };
+template <typename Char = char> class dynamic_formatter {
+ private:
+  detail::dynamic_format_specs<Char> specs_;
+  const Char* format_str_;
+
+  struct null_handler : detail::error_handler {
+    void on_align(align_t) {}
+    void on_sign(sign_t) {}
+    void on_hash() {}
+  };
+
+  template <typename Context> void handle_specs(Context& ctx) {
+    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
+                                                       specs_.width_ref, ctx);
+    detail::handle_dynamic_spec<detail::precision_checker>(
+        specs_.precision, specs_.precision_ref, ctx);
+  }
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
+    format_str_ = ctx.begin();
+    // Checks are deferred to formatting time when the argument type is known.
+    detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx);
+    return detail::parse_format_specs(ctx.begin(), ctx.end(), handler);
+  }
+
+  template <typename T, typename FormatContext>
+  auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
+    handle_specs(ctx);
+    detail::specs_checker<null_handler> checker(
+        null_handler(), detail::mapped_type_constant<T, FormatContext>::value);
+    checker.on_align(specs_.align);
+    if (specs_.sign != sign::none) checker.on_sign(specs_.sign);
+    if (specs_.alt) checker.on_hash();
+    if (specs_.precision >= 0) checker.end_precision();
+    return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
+  }
+};
+
+/**
+  \rst
+  Converts ``p`` to ``const void*`` for pointer formatting.
+
+  **Example**::
+
+    auto s = fmt::format("{}", fmt::ptr(p));
+  \endrst
+ */
+template <typename T> auto ptr(T p) -> const void* {
+  static_assert(std::is_pointer<T>::value, "");
+  return detail::bit_cast<const void*>(p);
+}
+template <typename T> auto ptr(const std::unique_ptr<T>& p) -> const void* {
+  return p.get();
+}
+template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
+  return p.get();
+}
+
+class bytes {
+ private:
+  string_view data_;
+  friend struct formatter<bytes>;
+
+ public:
+  explicit bytes(string_view data) : data_(data) {}
+};
+
+template <> struct formatter<bytes> {
+ private:
+  detail::dynamic_format_specs<char> specs_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
+    using handler_type = detail::dynamic_specs_handler<ParseContext>;
+    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
+                                                detail::type::string_type);
+    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
+    detail::check_string_type_spec(specs_.type, ctx.error_handler());
+    return it;
+  }
+
+  template <typename FormatContext>
+  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
+    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
+                                                       specs_.width_ref, ctx);
+    detail::handle_dynamic_spec<detail::precision_checker>(
+        specs_.precision, specs_.precision_ref, ctx);
+    return detail::write_bytes(ctx.out(), b.data_, specs_);
+  }
+};
+
+// group_digits_view is not derived from view because it copies the argument.
+template <typename T> struct group_digits_view { T value; };
+
+/**
+  \rst
+  Returns a view that formats an integer value using ',' as a locale-independent
+  thousands separator.
+
+  **Example**::
+
+    fmt::print("{}", fmt::group_digits(12345));
+    // Output: "12,345"
+  \endrst
+ */
+template <typename T> auto group_digits(T value) -> group_digits_view<T> {
+  return {value};
+}
+
+template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
+ private:
+  detail::dynamic_format_specs<char> specs_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
+    using handler_type = detail::dynamic_specs_handler<ParseContext>;
+    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
+                                                detail::type::int_type);
+    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
+    detail::check_string_type_spec(specs_.type, ctx.error_handler());
+    return it;
+  }
+
+  template <typename FormatContext>
+  auto format(group_digits_view<T> t, FormatContext& ctx)
+      -> decltype(ctx.out()) {
+    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
+                                                       specs_.width_ref, ctx);
+    detail::handle_dynamic_spec<detail::precision_checker>(
+        specs_.precision, specs_.precision_ref, ctx);
+    return detail::write_int_localized(
+        ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
+        detail::digit_grouping<char>({"\3", ','}));
+  }
+};
+
+template <typename It, typename Sentinel, typename Char = char>
+struct join_view : detail::view {
+  It begin;
+  Sentinel end;
+  basic_string_view<Char> sep;
+
+  join_view(It b, Sentinel e, basic_string_view<Char> s)
+      : begin(b), end(e), sep(s) {}
+};
+
+template <typename It, typename Sentinel, typename Char>
+using arg_join FMT_DEPRECATED_ALIAS = join_view<It, Sentinel, Char>;
+
+template <typename It, typename Sentinel, typename Char>
+struct formatter<join_view<It, Sentinel, Char>, Char> {
+ private:
+  using value_type =
+#ifdef __cpp_lib_ranges
+      std::iter_value_t<It>;
+#else
+      typename std::iterator_traits<It>::value_type;
+#endif
+  using context = buffer_context<Char>;
+  using mapper = detail::arg_mapper<context>;
+
+  template <typename T, FMT_ENABLE_IF(has_formatter<T, context>::value)>
+  static auto map(const T& value) -> const T& {
+    return value;
+  }
+  template <typename T, FMT_ENABLE_IF(!has_formatter<T, context>::value)>
+  static auto map(const T& value) -> decltype(mapper().map(value)) {
+    return mapper().map(value);
+  }
+
+  using formatter_type =
+      conditional_t<is_formattable<value_type, Char>::value,
+                    formatter<remove_cvref_t<decltype(map(
+                                  std::declval<const value_type&>()))>,
+                              Char>,
+                    detail::fallback_formatter<value_type, Char>>;
+
+  formatter_type value_formatter_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
+    return value_formatter_.parse(ctx);
+  }
+
+  template <typename FormatContext>
+  auto format(const join_view<It, Sentinel, Char>& value, FormatContext& ctx)
+      -> decltype(ctx.out()) {
+    auto it = value.begin;
+    auto out = ctx.out();
+    if (it != value.end) {
+      out = value_formatter_.format(map(*it), ctx);
+      ++it;
+      while (it != value.end) {
+        out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
+        ctx.advance_to(out);
+        out = value_formatter_.format(map(*it), ctx);
+        ++it;
+      }
+    }
+    return out;
+  }
+};
+
+/**
+  Returns a view that formats the iterator range `[begin, end)` with elements
+  separated by `sep`.
+ */
+template <typename It, typename Sentinel>
+auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
+  return {begin, end, sep};
+}
+
+/**
+  \rst
+  Returns a view that formats `range` with elements separated by `sep`.
+
+  **Example**::
+
+    std::vector<int> v = {1, 2, 3};
+    fmt::print("{}", fmt::join(v, ", "));
+    // Output: "1, 2, 3"
+
+  ``fmt::join`` applies passed format specifiers to the range elements::
+
+    fmt::print("{:02}", fmt::join(v, ", "));
+    // Output: "01, 02, 03"
+  \endrst
+ */
+template <typename Range>
+auto join(Range&& range, string_view sep)
+    -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
+  return join(std::begin(range), std::end(range), sep);
+}
+
+/**
+  \rst
+  Converts *value* to ``std::string`` using the default format for type *T*.
+
+  **Example**::
+
+    #include <fmt/format.h>
+
+    std::string answer = fmt::to_string(42);
+  \endrst
+ */
+template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
+inline auto to_string(const T& value) -> std::string {
+  auto result = std::string();
+  detail::write<char>(std::back_inserter(result), value);
+  return result;
+}
+
+template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
+FMT_NODISCARD inline auto to_string(T value) -> std::string {
+  // The buffer should be large enough to store the number including the sign
+  // or "false" for bool.
+  constexpr int max_size = detail::digits10<T>() + 2;
+  char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
+  char* begin = buffer;
+  return std::string(begin, detail::write<char>(begin, value));
+}
+
+template <typename Char, size_t SIZE>
+FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
+    -> std::basic_string<Char> {
+  auto size = buf.size();
+  detail::assume(size < std::basic_string<Char>().max_size());
+  return std::basic_string<Char>(buf.data(), size);
+}
+
+FMT_BEGIN_DETAIL_NAMESPACE
+
+template <typename Char>
+void vformat_to(
+    buffer<Char>& buf, basic_string_view<Char> fmt,
+    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
+    locale_ref loc) {
+  // workaround for msvc bug regarding name-lookup in module
+  // link names into function scope
+  using detail::arg_formatter;
+  using detail::buffer_appender;
+  using detail::custom_formatter;
+  using detail::default_arg_formatter;
+  using detail::get_arg;
+  using detail::locale_ref;
+  using detail::parse_format_specs;
+  using detail::specs_checker;
+  using detail::specs_handler;
+  using detail::to_unsigned;
+  using detail::type;
+  using detail::write;
+  auto out = buffer_appender<Char>(buf);
+  if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
+    auto arg = args.get(0);
+    if (!arg) error_handler().on_error("argument not found");
+    visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
+    return;
+  }
+
+  struct format_handler : error_handler {
+    basic_format_parse_context<Char> parse_context;
+    buffer_context<Char> context;
+
+    format_handler(buffer_appender<Char> out, basic_string_view<Char> str,
+                   basic_format_args<buffer_context<Char>> args, locale_ref loc)
+        : parse_context(str), context(out, args, loc) {}
+
+    void on_text(const Char* begin, const Char* end) {
+      auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
+      context.advance_to(write<Char>(context.out(), text));
+    }
+
+    FMT_CONSTEXPR auto on_arg_id() -> int {
+      return parse_context.next_arg_id();
+    }
+    FMT_CONSTEXPR auto on_arg_id(int id) -> int {
+      return parse_context.check_arg_id(id), id;
+    }
+    FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
+      int arg_id = context.arg_id(id);
+      if (arg_id < 0) on_error("argument not found");
+      return arg_id;
+    }
+
+    FMT_INLINE void on_replacement_field(int id, const Char*) {
+      auto arg = get_arg(context, id);
+      context.advance_to(visit_format_arg(
+          default_arg_formatter<Char>{context.out(), context.args(),
+                                      context.locale()},
+          arg));
+    }
+
+    auto on_format_specs(int id, const Char* begin, const Char* end)
+        -> const Char* {
+      auto arg = get_arg(context, id);
+      if (arg.type() == type::custom_type) {
+        parse_context.advance_to(parse_context.begin() +
+                                 (begin - &*parse_context.begin()));
+        visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
+        return parse_context.begin();
+      }
+      auto specs = basic_format_specs<Char>();
+      specs_checker<specs_handler<Char>> handler(
+          specs_handler<Char>(specs, parse_context, context), arg.type());
+      begin = parse_format_specs(begin, end, handler);
+      if (begin == end || *begin != '}')
+        on_error("missing '}' in format string");
+      auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
+      context.advance_to(visit_format_arg(f, arg));
+      return begin;
+    }
+  };
+  detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
+}
+
+#ifndef FMT_HEADER_ONLY
+extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
+    -> thousands_sep_result<char>;
+extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
+    -> thousands_sep_result<wchar_t>;
+extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
+extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
+extern template auto format_float<double>(double value, int precision,
+                                          float_specs specs, buffer<char>& buf)
+    -> int;
+extern template auto format_float<long double>(long double value, int precision,
+                                               float_specs specs,
+                                               buffer<char>& buf) -> int;
+void snprintf_float(float, int, float_specs, buffer<char>&) = delete;
+extern template auto snprintf_float<double>(double value, int precision,
+                                            float_specs specs,
+                                            buffer<char>& buf) -> int;
+extern template auto snprintf_float<long double>(long double value,
+                                                 int precision,
+                                                 float_specs specs,
+                                                 buffer<char>& buf) -> int;
+#endif  // FMT_HEADER_ONLY
+
+FMT_END_DETAIL_NAMESPACE
+
+#if FMT_USE_USER_DEFINED_LITERALS
+inline namespace literals {
+/**
+  \rst
+  User-defined literal equivalent of :func:`fmt::arg`.
+
+  **Example**::
+
+    using namespace fmt::literals;
+    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
+  \endrst
+ */
+#  if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
+template <detail_exported::fixed_string Str>
+constexpr auto operator""_a()
+    -> detail::udl_arg<remove_cvref_t<decltype(Str.data[0])>,
+                       sizeof(Str.data) / sizeof(decltype(Str.data[0])), Str> {
+  return {};
+}
+#  else
+constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
+  return {s};
+}
+#  endif
+
+// DEPRECATED!
+// User-defined literal equivalent of fmt::format.
+FMT_DEPRECATED constexpr auto operator"" _format(const char* s, size_t n)
+    -> detail::udl_formatter<char> {
+  return {{s, n}};
+}
+}  // namespace literals
+#endif  // FMT_USE_USER_DEFINED_LITERALS
+
+template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
+inline auto vformat(const Locale& loc, string_view fmt, format_args args)
+    -> std::string {
+  return detail::vformat(loc, fmt, args);
+}
+
+template <typename Locale, typename... T,
+          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
+inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
+    -> std::string {
+  return vformat(loc, string_view(fmt), fmt::make_format_args(args...));
+}
+
+template <typename... T, size_t SIZE, typename Allocator>
+FMT_DEPRECATED auto format_to(basic_memory_buffer<char, SIZE, Allocator>& buf,
+                              format_string<T...> fmt, T&&... args)
+    -> appender {
+  detail::vformat_to(buf, string_view(fmt), fmt::make_format_args(args...));
+  return appender(buf);
+}
+
+template <typename OutputIt, typename Locale,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
+                            detail::is_locale<Locale>::value)>
+auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
+                format_args args) -> OutputIt {
+  using detail::get_buffer;
+  auto&& buf = get_buffer<char>(out);
+  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
+  return detail::get_iterator(buf);
+}
+
+template <typename OutputIt, typename Locale, typename... T,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
+                            detail::is_locale<Locale>::value)>
+FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
+                          format_string<T...> fmt, T&&... args) -> OutputIt {
+  return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
+}
+
+FMT_MODULE_EXPORT_END
+FMT_END_NAMESPACE
+
+#ifdef FMT_DEPRECATED_INCLUDE_XCHAR
+#  include "xchar.h"
+#endif
+
+#ifdef FMT_HEADER_ONLY
+#  define FMT_FUNC inline
+#  include "format-inl.h"
+#else
+#  define FMT_FUNC
+#endif
+
+#endif  // FMT_FORMAT_H_
This page took 0.048866 seconds and 4 git commands to generate.