Fix: in lttng_read/write deny count bigger than the possible returned value
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
45
46 #include "consumer.h"
47 #include "consumer-stream.h"
48 #include "consumer-testpoint.h"
49
50 struct lttng_consumer_global_data consumer_data = {
51 .stream_count = 0,
52 .need_update = 1,
53 .type = LTTNG_CONSUMER_UNKNOWN,
54 };
55
56 enum consumer_channel_action {
57 CONSUMER_CHANNEL_ADD,
58 CONSUMER_CHANNEL_DEL,
59 CONSUMER_CHANNEL_QUIT,
60 };
61
62 struct consumer_channel_msg {
63 enum consumer_channel_action action;
64 struct lttng_consumer_channel *chan; /* add */
65 uint64_t key; /* del */
66 };
67
68 /*
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
72 * polling threads.
73 */
74 volatile int consumer_quit;
75
76 /*
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
80 */
81 static struct lttng_ht *metadata_ht;
82 static struct lttng_ht *data_ht;
83
84 /*
85 * Notify a thread lttng pipe to poll back again. This usually means that some
86 * global state has changed so we just send back the thread in a poll wait
87 * call.
88 */
89 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
90 {
91 struct lttng_consumer_stream *null_stream = NULL;
92
93 assert(pipe);
94
95 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
96 }
97
98 static void notify_health_quit_pipe(int *pipe)
99 {
100 ssize_t ret;
101
102 ret = lttng_write(pipe[1], "4", 1);
103 if (ret < 1) {
104 PERROR("write consumer health quit");
105 }
106 }
107
108 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
109 struct lttng_consumer_channel *chan,
110 uint64_t key,
111 enum consumer_channel_action action)
112 {
113 struct consumer_channel_msg msg;
114 ssize_t ret;
115
116 memset(&msg, 0, sizeof(msg));
117
118 msg.action = action;
119 msg.chan = chan;
120 msg.key = key;
121 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
122 if (ret < sizeof(msg)) {
123 PERROR("notify_channel_pipe write error");
124 }
125 }
126
127 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
128 uint64_t key)
129 {
130 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
131 }
132
133 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
134 struct lttng_consumer_channel **chan,
135 uint64_t *key,
136 enum consumer_channel_action *action)
137 {
138 struct consumer_channel_msg msg;
139 ssize_t ret;
140
141 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
142 if (ret < sizeof(msg)) {
143 ret = -1;
144 goto error;
145 }
146 *action = msg.action;
147 *chan = msg.chan;
148 *key = msg.key;
149 error:
150 return (int) ret;
151 }
152
153 /*
154 * Find a stream. The consumer_data.lock must be locked during this
155 * call.
156 */
157 static struct lttng_consumer_stream *find_stream(uint64_t key,
158 struct lttng_ht *ht)
159 {
160 struct lttng_ht_iter iter;
161 struct lttng_ht_node_u64 *node;
162 struct lttng_consumer_stream *stream = NULL;
163
164 assert(ht);
165
166 /* -1ULL keys are lookup failures */
167 if (key == (uint64_t) -1ULL) {
168 return NULL;
169 }
170
171 rcu_read_lock();
172
173 lttng_ht_lookup(ht, &key, &iter);
174 node = lttng_ht_iter_get_node_u64(&iter);
175 if (node != NULL) {
176 stream = caa_container_of(node, struct lttng_consumer_stream, node);
177 }
178
179 rcu_read_unlock();
180
181 return stream;
182 }
183
184 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
185 {
186 struct lttng_consumer_stream *stream;
187
188 rcu_read_lock();
189 stream = find_stream(key, ht);
190 if (stream) {
191 stream->key = (uint64_t) -1ULL;
192 /*
193 * We don't want the lookup to match, but we still need
194 * to iterate on this stream when iterating over the hash table. Just
195 * change the node key.
196 */
197 stream->node.key = (uint64_t) -1ULL;
198 }
199 rcu_read_unlock();
200 }
201
202 /*
203 * Return a channel object for the given key.
204 *
205 * RCU read side lock MUST be acquired before calling this function and
206 * protects the channel ptr.
207 */
208 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
209 {
210 struct lttng_ht_iter iter;
211 struct lttng_ht_node_u64 *node;
212 struct lttng_consumer_channel *channel = NULL;
213
214 /* -1ULL keys are lookup failures */
215 if (key == (uint64_t) -1ULL) {
216 return NULL;
217 }
218
219 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
220 node = lttng_ht_iter_get_node_u64(&iter);
221 if (node != NULL) {
222 channel = caa_container_of(node, struct lttng_consumer_channel, node);
223 }
224
225 return channel;
226 }
227
228 static void free_channel_rcu(struct rcu_head *head)
229 {
230 struct lttng_ht_node_u64 *node =
231 caa_container_of(head, struct lttng_ht_node_u64, head);
232 struct lttng_consumer_channel *channel =
233 caa_container_of(node, struct lttng_consumer_channel, node);
234
235 free(channel);
236 }
237
238 /*
239 * RCU protected relayd socket pair free.
240 */
241 static void free_relayd_rcu(struct rcu_head *head)
242 {
243 struct lttng_ht_node_u64 *node =
244 caa_container_of(head, struct lttng_ht_node_u64, head);
245 struct consumer_relayd_sock_pair *relayd =
246 caa_container_of(node, struct consumer_relayd_sock_pair, node);
247
248 /*
249 * Close all sockets. This is done in the call RCU since we don't want the
250 * socket fds to be reassigned thus potentially creating bad state of the
251 * relayd object.
252 *
253 * We do not have to lock the control socket mutex here since at this stage
254 * there is no one referencing to this relayd object.
255 */
256 (void) relayd_close(&relayd->control_sock);
257 (void) relayd_close(&relayd->data_sock);
258
259 free(relayd);
260 }
261
262 /*
263 * Destroy and free relayd socket pair object.
264 */
265 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
266 {
267 int ret;
268 struct lttng_ht_iter iter;
269
270 if (relayd == NULL) {
271 return;
272 }
273
274 DBG("Consumer destroy and close relayd socket pair");
275
276 iter.iter.node = &relayd->node.node;
277 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
278 if (ret != 0) {
279 /* We assume the relayd is being or is destroyed */
280 return;
281 }
282
283 /* RCU free() call */
284 call_rcu(&relayd->node.head, free_relayd_rcu);
285 }
286
287 /*
288 * Remove a channel from the global list protected by a mutex. This function is
289 * also responsible for freeing its data structures.
290 */
291 void consumer_del_channel(struct lttng_consumer_channel *channel)
292 {
293 int ret;
294 struct lttng_ht_iter iter;
295 struct lttng_consumer_stream *stream, *stmp;
296
297 DBG("Consumer delete channel key %" PRIu64, channel->key);
298
299 pthread_mutex_lock(&consumer_data.lock);
300 pthread_mutex_lock(&channel->lock);
301
302 /* Delete streams that might have been left in the stream list. */
303 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
304 send_node) {
305 cds_list_del(&stream->send_node);
306 /*
307 * Once a stream is added to this list, the buffers were created so
308 * we have a guarantee that this call will succeed.
309 */
310 consumer_stream_destroy(stream, NULL);
311 }
312
313 if (channel->live_timer_enabled == 1) {
314 consumer_timer_live_stop(channel);
315 }
316
317 switch (consumer_data.type) {
318 case LTTNG_CONSUMER_KERNEL:
319 break;
320 case LTTNG_CONSUMER32_UST:
321 case LTTNG_CONSUMER64_UST:
322 lttng_ustconsumer_del_channel(channel);
323 break;
324 default:
325 ERR("Unknown consumer_data type");
326 assert(0);
327 goto end;
328 }
329
330 rcu_read_lock();
331 iter.iter.node = &channel->node.node;
332 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
333 assert(!ret);
334 rcu_read_unlock();
335
336 call_rcu(&channel->node.head, free_channel_rcu);
337 end:
338 pthread_mutex_unlock(&channel->lock);
339 pthread_mutex_unlock(&consumer_data.lock);
340 }
341
342 /*
343 * Iterate over the relayd hash table and destroy each element. Finally,
344 * destroy the whole hash table.
345 */
346 static void cleanup_relayd_ht(void)
347 {
348 struct lttng_ht_iter iter;
349 struct consumer_relayd_sock_pair *relayd;
350
351 rcu_read_lock();
352
353 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
354 node.node) {
355 consumer_destroy_relayd(relayd);
356 }
357
358 rcu_read_unlock();
359
360 lttng_ht_destroy(consumer_data.relayd_ht);
361 }
362
363 /*
364 * Update the end point status of all streams having the given network sequence
365 * index (relayd index).
366 *
367 * It's atomically set without having the stream mutex locked which is fine
368 * because we handle the write/read race with a pipe wakeup for each thread.
369 */
370 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
371 enum consumer_endpoint_status status)
372 {
373 struct lttng_ht_iter iter;
374 struct lttng_consumer_stream *stream;
375
376 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
377
378 rcu_read_lock();
379
380 /* Let's begin with metadata */
381 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
382 if (stream->net_seq_idx == net_seq_idx) {
383 uatomic_set(&stream->endpoint_status, status);
384 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
385 }
386 }
387
388 /* Follow up by the data streams */
389 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
390 if (stream->net_seq_idx == net_seq_idx) {
391 uatomic_set(&stream->endpoint_status, status);
392 DBG("Delete flag set to data stream %d", stream->wait_fd);
393 }
394 }
395 rcu_read_unlock();
396 }
397
398 /*
399 * Cleanup a relayd object by flagging every associated streams for deletion,
400 * destroying the object meaning removing it from the relayd hash table,
401 * closing the sockets and freeing the memory in a RCU call.
402 *
403 * If a local data context is available, notify the threads that the streams'
404 * state have changed.
405 */
406 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
407 struct lttng_consumer_local_data *ctx)
408 {
409 uint64_t netidx;
410
411 assert(relayd);
412
413 DBG("Cleaning up relayd sockets");
414
415 /* Save the net sequence index before destroying the object */
416 netidx = relayd->net_seq_idx;
417
418 /*
419 * Delete the relayd from the relayd hash table, close the sockets and free
420 * the object in a RCU call.
421 */
422 consumer_destroy_relayd(relayd);
423
424 /* Set inactive endpoint to all streams */
425 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
426
427 /*
428 * With a local data context, notify the threads that the streams' state
429 * have changed. The write() action on the pipe acts as an "implicit"
430 * memory barrier ordering the updates of the end point status from the
431 * read of this status which happens AFTER receiving this notify.
432 */
433 if (ctx) {
434 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
435 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
436 }
437 }
438
439 /*
440 * Flag a relayd socket pair for destruction. Destroy it if the refcount
441 * reaches zero.
442 *
443 * RCU read side lock MUST be aquired before calling this function.
444 */
445 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
446 {
447 assert(relayd);
448
449 /* Set destroy flag for this object */
450 uatomic_set(&relayd->destroy_flag, 1);
451
452 /* Destroy the relayd if refcount is 0 */
453 if (uatomic_read(&relayd->refcount) == 0) {
454 consumer_destroy_relayd(relayd);
455 }
456 }
457
458 /*
459 * Completly destroy stream from every visiable data structure and the given
460 * hash table if one.
461 *
462 * One this call returns, the stream object is not longer usable nor visible.
463 */
464 void consumer_del_stream(struct lttng_consumer_stream *stream,
465 struct lttng_ht *ht)
466 {
467 consumer_stream_destroy(stream, ht);
468 }
469
470 /*
471 * XXX naming of del vs destroy is all mixed up.
472 */
473 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
474 {
475 consumer_stream_destroy(stream, data_ht);
476 }
477
478 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
479 {
480 consumer_stream_destroy(stream, metadata_ht);
481 }
482
483 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
484 uint64_t stream_key,
485 enum lttng_consumer_stream_state state,
486 const char *channel_name,
487 uid_t uid,
488 gid_t gid,
489 uint64_t relayd_id,
490 uint64_t session_id,
491 int cpu,
492 int *alloc_ret,
493 enum consumer_channel_type type,
494 unsigned int monitor)
495 {
496 int ret;
497 struct lttng_consumer_stream *stream;
498
499 stream = zmalloc(sizeof(*stream));
500 if (stream == NULL) {
501 PERROR("malloc struct lttng_consumer_stream");
502 ret = -ENOMEM;
503 goto end;
504 }
505
506 rcu_read_lock();
507
508 stream->key = stream_key;
509 stream->out_fd = -1;
510 stream->out_fd_offset = 0;
511 stream->output_written = 0;
512 stream->state = state;
513 stream->uid = uid;
514 stream->gid = gid;
515 stream->net_seq_idx = relayd_id;
516 stream->session_id = session_id;
517 stream->monitor = monitor;
518 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
519 stream->index_fd = -1;
520 pthread_mutex_init(&stream->lock, NULL);
521
522 /* If channel is the metadata, flag this stream as metadata. */
523 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
524 stream->metadata_flag = 1;
525 /* Metadata is flat out. */
526 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
527 /* Live rendez-vous point. */
528 pthread_cond_init(&stream->metadata_rdv, NULL);
529 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
530 } else {
531 /* Format stream name to <channel_name>_<cpu_number> */
532 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
533 channel_name, cpu);
534 if (ret < 0) {
535 PERROR("snprintf stream name");
536 goto error;
537 }
538 }
539
540 /* Key is always the wait_fd for streams. */
541 lttng_ht_node_init_u64(&stream->node, stream->key);
542
543 /* Init node per channel id key */
544 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
545
546 /* Init session id node with the stream session id */
547 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
548
549 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
550 " relayd_id %" PRIu64 ", session_id %" PRIu64,
551 stream->name, stream->key, channel_key,
552 stream->net_seq_idx, stream->session_id);
553
554 rcu_read_unlock();
555 return stream;
556
557 error:
558 rcu_read_unlock();
559 free(stream);
560 end:
561 if (alloc_ret) {
562 *alloc_ret = ret;
563 }
564 return NULL;
565 }
566
567 /*
568 * Add a stream to the global list protected by a mutex.
569 */
570 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
571 {
572 struct lttng_ht *ht = data_ht;
573 int ret = 0;
574
575 assert(stream);
576 assert(ht);
577
578 DBG3("Adding consumer stream %" PRIu64, stream->key);
579
580 pthread_mutex_lock(&consumer_data.lock);
581 pthread_mutex_lock(&stream->chan->lock);
582 pthread_mutex_lock(&stream->chan->timer_lock);
583 pthread_mutex_lock(&stream->lock);
584 rcu_read_lock();
585
586 /* Steal stream identifier to avoid having streams with the same key */
587 steal_stream_key(stream->key, ht);
588
589 lttng_ht_add_unique_u64(ht, &stream->node);
590
591 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
592 &stream->node_channel_id);
593
594 /*
595 * Add stream to the stream_list_ht of the consumer data. No need to steal
596 * the key since the HT does not use it and we allow to add redundant keys
597 * into this table.
598 */
599 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
600
601 /*
602 * When nb_init_stream_left reaches 0, we don't need to trigger any action
603 * in terms of destroying the associated channel, because the action that
604 * causes the count to become 0 also causes a stream to be added. The
605 * channel deletion will thus be triggered by the following removal of this
606 * stream.
607 */
608 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
609 /* Increment refcount before decrementing nb_init_stream_left */
610 cmm_smp_wmb();
611 uatomic_dec(&stream->chan->nb_init_stream_left);
612 }
613
614 /* Update consumer data once the node is inserted. */
615 consumer_data.stream_count++;
616 consumer_data.need_update = 1;
617
618 rcu_read_unlock();
619 pthread_mutex_unlock(&stream->lock);
620 pthread_mutex_unlock(&stream->chan->timer_lock);
621 pthread_mutex_unlock(&stream->chan->lock);
622 pthread_mutex_unlock(&consumer_data.lock);
623
624 return ret;
625 }
626
627 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
628 {
629 consumer_del_stream(stream, data_ht);
630 }
631
632 /*
633 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
634 * be acquired before calling this.
635 */
636 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
637 {
638 int ret = 0;
639 struct lttng_ht_node_u64 *node;
640 struct lttng_ht_iter iter;
641
642 assert(relayd);
643
644 lttng_ht_lookup(consumer_data.relayd_ht,
645 &relayd->net_seq_idx, &iter);
646 node = lttng_ht_iter_get_node_u64(&iter);
647 if (node != NULL) {
648 goto end;
649 }
650 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
651
652 end:
653 return ret;
654 }
655
656 /*
657 * Allocate and return a consumer relayd socket.
658 */
659 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
660 uint64_t net_seq_idx)
661 {
662 struct consumer_relayd_sock_pair *obj = NULL;
663
664 /* net sequence index of -1 is a failure */
665 if (net_seq_idx == (uint64_t) -1ULL) {
666 goto error;
667 }
668
669 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
670 if (obj == NULL) {
671 PERROR("zmalloc relayd sock");
672 goto error;
673 }
674
675 obj->net_seq_idx = net_seq_idx;
676 obj->refcount = 0;
677 obj->destroy_flag = 0;
678 obj->control_sock.sock.fd = -1;
679 obj->data_sock.sock.fd = -1;
680 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
681 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
682
683 error:
684 return obj;
685 }
686
687 /*
688 * Find a relayd socket pair in the global consumer data.
689 *
690 * Return the object if found else NULL.
691 * RCU read-side lock must be held across this call and while using the
692 * returned object.
693 */
694 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
695 {
696 struct lttng_ht_iter iter;
697 struct lttng_ht_node_u64 *node;
698 struct consumer_relayd_sock_pair *relayd = NULL;
699
700 /* Negative keys are lookup failures */
701 if (key == (uint64_t) -1ULL) {
702 goto error;
703 }
704
705 lttng_ht_lookup(consumer_data.relayd_ht, &key,
706 &iter);
707 node = lttng_ht_iter_get_node_u64(&iter);
708 if (node != NULL) {
709 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
710 }
711
712 error:
713 return relayd;
714 }
715
716 /*
717 * Find a relayd and send the stream
718 *
719 * Returns 0 on success, < 0 on error
720 */
721 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
722 char *path)
723 {
724 int ret = 0;
725 struct consumer_relayd_sock_pair *relayd;
726
727 assert(stream);
728 assert(stream->net_seq_idx != -1ULL);
729 assert(path);
730
731 /* The stream is not metadata. Get relayd reference if exists. */
732 rcu_read_lock();
733 relayd = consumer_find_relayd(stream->net_seq_idx);
734 if (relayd != NULL) {
735 /* Add stream on the relayd */
736 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
737 ret = relayd_add_stream(&relayd->control_sock, stream->name,
738 path, &stream->relayd_stream_id,
739 stream->chan->tracefile_size, stream->chan->tracefile_count);
740 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
741 if (ret < 0) {
742 goto end;
743 }
744
745 uatomic_inc(&relayd->refcount);
746 stream->sent_to_relayd = 1;
747 } else {
748 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
749 stream->key, stream->net_seq_idx);
750 ret = -1;
751 goto end;
752 }
753
754 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
755 stream->name, stream->key, stream->net_seq_idx);
756
757 end:
758 rcu_read_unlock();
759 return ret;
760 }
761
762 /*
763 * Find a relayd and send the streams sent message
764 *
765 * Returns 0 on success, < 0 on error
766 */
767 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
768 {
769 int ret = 0;
770 struct consumer_relayd_sock_pair *relayd;
771
772 assert(net_seq_idx != -1ULL);
773
774 /* The stream is not metadata. Get relayd reference if exists. */
775 rcu_read_lock();
776 relayd = consumer_find_relayd(net_seq_idx);
777 if (relayd != NULL) {
778 /* Add stream on the relayd */
779 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
780 ret = relayd_streams_sent(&relayd->control_sock);
781 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
782 if (ret < 0) {
783 goto end;
784 }
785 } else {
786 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
787 net_seq_idx);
788 ret = -1;
789 goto end;
790 }
791
792 ret = 0;
793 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
794
795 end:
796 rcu_read_unlock();
797 return ret;
798 }
799
800 /*
801 * Find a relayd and close the stream
802 */
803 void close_relayd_stream(struct lttng_consumer_stream *stream)
804 {
805 struct consumer_relayd_sock_pair *relayd;
806
807 /* The stream is not metadata. Get relayd reference if exists. */
808 rcu_read_lock();
809 relayd = consumer_find_relayd(stream->net_seq_idx);
810 if (relayd) {
811 consumer_stream_relayd_close(stream, relayd);
812 }
813 rcu_read_unlock();
814 }
815
816 /*
817 * Handle stream for relayd transmission if the stream applies for network
818 * streaming where the net sequence index is set.
819 *
820 * Return destination file descriptor or negative value on error.
821 */
822 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
823 size_t data_size, unsigned long padding,
824 struct consumer_relayd_sock_pair *relayd)
825 {
826 int outfd = -1, ret;
827 struct lttcomm_relayd_data_hdr data_hdr;
828
829 /* Safety net */
830 assert(stream);
831 assert(relayd);
832
833 /* Reset data header */
834 memset(&data_hdr, 0, sizeof(data_hdr));
835
836 if (stream->metadata_flag) {
837 /* Caller MUST acquire the relayd control socket lock */
838 ret = relayd_send_metadata(&relayd->control_sock, data_size);
839 if (ret < 0) {
840 goto error;
841 }
842
843 /* Metadata are always sent on the control socket. */
844 outfd = relayd->control_sock.sock.fd;
845 } else {
846 /* Set header with stream information */
847 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
848 data_hdr.data_size = htobe32(data_size);
849 data_hdr.padding_size = htobe32(padding);
850 /*
851 * Note that net_seq_num below is assigned with the *current* value of
852 * next_net_seq_num and only after that the next_net_seq_num will be
853 * increment. This is why when issuing a command on the relayd using
854 * this next value, 1 should always be substracted in order to compare
855 * the last seen sequence number on the relayd side to the last sent.
856 */
857 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
858 /* Other fields are zeroed previously */
859
860 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
861 sizeof(data_hdr));
862 if (ret < 0) {
863 goto error;
864 }
865
866 ++stream->next_net_seq_num;
867
868 /* Set to go on data socket */
869 outfd = relayd->data_sock.sock.fd;
870 }
871
872 error:
873 return outfd;
874 }
875
876 /*
877 * Allocate and return a new lttng_consumer_channel object using the given key
878 * to initialize the hash table node.
879 *
880 * On error, return NULL.
881 */
882 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
883 uint64_t session_id,
884 const char *pathname,
885 const char *name,
886 uid_t uid,
887 gid_t gid,
888 uint64_t relayd_id,
889 enum lttng_event_output output,
890 uint64_t tracefile_size,
891 uint64_t tracefile_count,
892 uint64_t session_id_per_pid,
893 unsigned int monitor,
894 unsigned int live_timer_interval)
895 {
896 struct lttng_consumer_channel *channel;
897
898 channel = zmalloc(sizeof(*channel));
899 if (channel == NULL) {
900 PERROR("malloc struct lttng_consumer_channel");
901 goto end;
902 }
903
904 channel->key = key;
905 channel->refcount = 0;
906 channel->session_id = session_id;
907 channel->session_id_per_pid = session_id_per_pid;
908 channel->uid = uid;
909 channel->gid = gid;
910 channel->relayd_id = relayd_id;
911 channel->tracefile_size = tracefile_size;
912 channel->tracefile_count = tracefile_count;
913 channel->monitor = monitor;
914 channel->live_timer_interval = live_timer_interval;
915 pthread_mutex_init(&channel->lock, NULL);
916 pthread_mutex_init(&channel->timer_lock, NULL);
917
918 switch (output) {
919 case LTTNG_EVENT_SPLICE:
920 channel->output = CONSUMER_CHANNEL_SPLICE;
921 break;
922 case LTTNG_EVENT_MMAP:
923 channel->output = CONSUMER_CHANNEL_MMAP;
924 break;
925 default:
926 assert(0);
927 free(channel);
928 channel = NULL;
929 goto end;
930 }
931
932 /*
933 * In monitor mode, the streams associated with the channel will be put in
934 * a special list ONLY owned by this channel. So, the refcount is set to 1
935 * here meaning that the channel itself has streams that are referenced.
936 *
937 * On a channel deletion, once the channel is no longer visible, the
938 * refcount is decremented and checked for a zero value to delete it. With
939 * streams in no monitor mode, it will now be safe to destroy the channel.
940 */
941 if (!channel->monitor) {
942 channel->refcount = 1;
943 }
944
945 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
946 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
947
948 strncpy(channel->name, name, sizeof(channel->name));
949 channel->name[sizeof(channel->name) - 1] = '\0';
950
951 lttng_ht_node_init_u64(&channel->node, channel->key);
952
953 channel->wait_fd = -1;
954
955 CDS_INIT_LIST_HEAD(&channel->streams.head);
956
957 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
958
959 end:
960 return channel;
961 }
962
963 /*
964 * Add a channel to the global list protected by a mutex.
965 *
966 * On success 0 is returned else a negative value.
967 */
968 int consumer_add_channel(struct lttng_consumer_channel *channel,
969 struct lttng_consumer_local_data *ctx)
970 {
971 int ret = 0;
972 struct lttng_ht_node_u64 *node;
973 struct lttng_ht_iter iter;
974
975 pthread_mutex_lock(&consumer_data.lock);
976 pthread_mutex_lock(&channel->lock);
977 pthread_mutex_lock(&channel->timer_lock);
978 rcu_read_lock();
979
980 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
981 node = lttng_ht_iter_get_node_u64(&iter);
982 if (node != NULL) {
983 /* Channel already exist. Ignore the insertion */
984 ERR("Consumer add channel key %" PRIu64 " already exists!",
985 channel->key);
986 ret = -EEXIST;
987 goto end;
988 }
989
990 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
991
992 end:
993 rcu_read_unlock();
994 pthread_mutex_unlock(&channel->timer_lock);
995 pthread_mutex_unlock(&channel->lock);
996 pthread_mutex_unlock(&consumer_data.lock);
997
998 if (!ret && channel->wait_fd != -1 &&
999 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1000 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1001 }
1002 return ret;
1003 }
1004
1005 /*
1006 * Allocate the pollfd structure and the local view of the out fds to avoid
1007 * doing a lookup in the linked list and concurrency issues when writing is
1008 * needed. Called with consumer_data.lock held.
1009 *
1010 * Returns the number of fds in the structures.
1011 */
1012 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1013 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1014 struct lttng_ht *ht)
1015 {
1016 int i = 0;
1017 struct lttng_ht_iter iter;
1018 struct lttng_consumer_stream *stream;
1019
1020 assert(ctx);
1021 assert(ht);
1022 assert(pollfd);
1023 assert(local_stream);
1024
1025 DBG("Updating poll fd array");
1026 rcu_read_lock();
1027 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1028 /*
1029 * Only active streams with an active end point can be added to the
1030 * poll set and local stream storage of the thread.
1031 *
1032 * There is a potential race here for endpoint_status to be updated
1033 * just after the check. However, this is OK since the stream(s) will
1034 * be deleted once the thread is notified that the end point state has
1035 * changed where this function will be called back again.
1036 */
1037 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1038 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1039 continue;
1040 }
1041 /*
1042 * This clobbers way too much the debug output. Uncomment that if you
1043 * need it for debugging purposes.
1044 *
1045 * DBG("Active FD %d", stream->wait_fd);
1046 */
1047 (*pollfd)[i].fd = stream->wait_fd;
1048 (*pollfd)[i].events = POLLIN | POLLPRI;
1049 local_stream[i] = stream;
1050 i++;
1051 }
1052 rcu_read_unlock();
1053
1054 /*
1055 * Insert the consumer_data_pipe at the end of the array and don't
1056 * increment i so nb_fd is the number of real FD.
1057 */
1058 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1059 (*pollfd)[i].events = POLLIN | POLLPRI;
1060 return i;
1061 }
1062
1063 /*
1064 * Poll on the should_quit pipe and the command socket return -1 on error and
1065 * should exit, 0 if data is available on the command socket
1066 */
1067 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1068 {
1069 int num_rdy;
1070
1071 restart:
1072 num_rdy = poll(consumer_sockpoll, 2, -1);
1073 if (num_rdy == -1) {
1074 /*
1075 * Restart interrupted system call.
1076 */
1077 if (errno == EINTR) {
1078 goto restart;
1079 }
1080 PERROR("Poll error");
1081 goto exit;
1082 }
1083 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1084 DBG("consumer_should_quit wake up");
1085 goto exit;
1086 }
1087 return 0;
1088
1089 exit:
1090 return -1;
1091 }
1092
1093 /*
1094 * Set the error socket.
1095 */
1096 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1097 int sock)
1098 {
1099 ctx->consumer_error_socket = sock;
1100 }
1101
1102 /*
1103 * Set the command socket path.
1104 */
1105 void lttng_consumer_set_command_sock_path(
1106 struct lttng_consumer_local_data *ctx, char *sock)
1107 {
1108 ctx->consumer_command_sock_path = sock;
1109 }
1110
1111 /*
1112 * Send return code to the session daemon.
1113 * If the socket is not defined, we return 0, it is not a fatal error
1114 */
1115 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1116 {
1117 if (ctx->consumer_error_socket > 0) {
1118 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1119 sizeof(enum lttcomm_sessiond_command));
1120 }
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * Close all the tracefiles and stream fds and MUST be called when all
1127 * instances are destroyed i.e. when all threads were joined and are ended.
1128 */
1129 void lttng_consumer_cleanup(void)
1130 {
1131 struct lttng_ht_iter iter;
1132 struct lttng_consumer_channel *channel;
1133
1134 rcu_read_lock();
1135
1136 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1137 node.node) {
1138 consumer_del_channel(channel);
1139 }
1140
1141 rcu_read_unlock();
1142
1143 lttng_ht_destroy(consumer_data.channel_ht);
1144
1145 cleanup_relayd_ht();
1146
1147 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1148
1149 /*
1150 * This HT contains streams that are freed by either the metadata thread or
1151 * the data thread so we do *nothing* on the hash table and simply destroy
1152 * it.
1153 */
1154 lttng_ht_destroy(consumer_data.stream_list_ht);
1155 }
1156
1157 /*
1158 * Called from signal handler.
1159 */
1160 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1161 {
1162 ssize_t ret;
1163
1164 consumer_quit = 1;
1165 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1166 if (ret < 1) {
1167 PERROR("write consumer quit");
1168 }
1169
1170 DBG("Consumer flag that it should quit");
1171 }
1172
1173 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1174 off_t orig_offset)
1175 {
1176 int outfd = stream->out_fd;
1177
1178 /*
1179 * This does a blocking write-and-wait on any page that belongs to the
1180 * subbuffer prior to the one we just wrote.
1181 * Don't care about error values, as these are just hints and ways to
1182 * limit the amount of page cache used.
1183 */
1184 if (orig_offset < stream->max_sb_size) {
1185 return;
1186 }
1187 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1188 stream->max_sb_size,
1189 SYNC_FILE_RANGE_WAIT_BEFORE
1190 | SYNC_FILE_RANGE_WRITE
1191 | SYNC_FILE_RANGE_WAIT_AFTER);
1192 /*
1193 * Give hints to the kernel about how we access the file:
1194 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1195 * we write it.
1196 *
1197 * We need to call fadvise again after the file grows because the
1198 * kernel does not seem to apply fadvise to non-existing parts of the
1199 * file.
1200 *
1201 * Call fadvise _after_ having waited for the page writeback to
1202 * complete because the dirty page writeback semantic is not well
1203 * defined. So it can be expected to lead to lower throughput in
1204 * streaming.
1205 */
1206 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1207 stream->max_sb_size, POSIX_FADV_DONTNEED);
1208 }
1209
1210 /*
1211 * Initialise the necessary environnement :
1212 * - create a new context
1213 * - create the poll_pipe
1214 * - create the should_quit pipe (for signal handler)
1215 * - create the thread pipe (for splice)
1216 *
1217 * Takes a function pointer as argument, this function is called when data is
1218 * available on a buffer. This function is responsible to do the
1219 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1220 * buffer configuration and then kernctl_put_next_subbuf at the end.
1221 *
1222 * Returns a pointer to the new context or NULL on error.
1223 */
1224 struct lttng_consumer_local_data *lttng_consumer_create(
1225 enum lttng_consumer_type type,
1226 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1227 struct lttng_consumer_local_data *ctx),
1228 int (*recv_channel)(struct lttng_consumer_channel *channel),
1229 int (*recv_stream)(struct lttng_consumer_stream *stream),
1230 int (*update_stream)(uint64_t stream_key, uint32_t state))
1231 {
1232 int ret;
1233 struct lttng_consumer_local_data *ctx;
1234
1235 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1236 consumer_data.type == type);
1237 consumer_data.type = type;
1238
1239 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1240 if (ctx == NULL) {
1241 PERROR("allocating context");
1242 goto error;
1243 }
1244
1245 ctx->consumer_error_socket = -1;
1246 ctx->consumer_metadata_socket = -1;
1247 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1248 /* assign the callbacks */
1249 ctx->on_buffer_ready = buffer_ready;
1250 ctx->on_recv_channel = recv_channel;
1251 ctx->on_recv_stream = recv_stream;
1252 ctx->on_update_stream = update_stream;
1253
1254 ctx->consumer_data_pipe = lttng_pipe_open(0);
1255 if (!ctx->consumer_data_pipe) {
1256 goto error_poll_pipe;
1257 }
1258
1259 ret = pipe(ctx->consumer_should_quit);
1260 if (ret < 0) {
1261 PERROR("Error creating recv pipe");
1262 goto error_quit_pipe;
1263 }
1264
1265 ret = pipe(ctx->consumer_thread_pipe);
1266 if (ret < 0) {
1267 PERROR("Error creating thread pipe");
1268 goto error_thread_pipe;
1269 }
1270
1271 ret = pipe(ctx->consumer_channel_pipe);
1272 if (ret < 0) {
1273 PERROR("Error creating channel pipe");
1274 goto error_channel_pipe;
1275 }
1276
1277 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1278 if (!ctx->consumer_metadata_pipe) {
1279 goto error_metadata_pipe;
1280 }
1281
1282 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1283 if (ret < 0) {
1284 goto error_splice_pipe;
1285 }
1286
1287 return ctx;
1288
1289 error_splice_pipe:
1290 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1291 error_metadata_pipe:
1292 utils_close_pipe(ctx->consumer_channel_pipe);
1293 error_channel_pipe:
1294 utils_close_pipe(ctx->consumer_thread_pipe);
1295 error_thread_pipe:
1296 utils_close_pipe(ctx->consumer_should_quit);
1297 error_quit_pipe:
1298 lttng_pipe_destroy(ctx->consumer_data_pipe);
1299 error_poll_pipe:
1300 free(ctx);
1301 error:
1302 return NULL;
1303 }
1304
1305 /*
1306 * Iterate over all streams of the hashtable and free them properly.
1307 */
1308 static void destroy_data_stream_ht(struct lttng_ht *ht)
1309 {
1310 struct lttng_ht_iter iter;
1311 struct lttng_consumer_stream *stream;
1312
1313 if (ht == NULL) {
1314 return;
1315 }
1316
1317 rcu_read_lock();
1318 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1319 /*
1320 * Ignore return value since we are currently cleaning up so any error
1321 * can't be handled.
1322 */
1323 (void) consumer_del_stream(stream, ht);
1324 }
1325 rcu_read_unlock();
1326
1327 lttng_ht_destroy(ht);
1328 }
1329
1330 /*
1331 * Iterate over all streams of the metadata hashtable and free them
1332 * properly.
1333 */
1334 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1335 {
1336 struct lttng_ht_iter iter;
1337 struct lttng_consumer_stream *stream;
1338
1339 if (ht == NULL) {
1340 return;
1341 }
1342
1343 rcu_read_lock();
1344 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1345 /*
1346 * Ignore return value since we are currently cleaning up so any error
1347 * can't be handled.
1348 */
1349 (void) consumer_del_metadata_stream(stream, ht);
1350 }
1351 rcu_read_unlock();
1352
1353 lttng_ht_destroy(ht);
1354 }
1355
1356 /*
1357 * Close all fds associated with the instance and free the context.
1358 */
1359 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1360 {
1361 int ret;
1362
1363 DBG("Consumer destroying it. Closing everything.");
1364
1365 destroy_data_stream_ht(data_ht);
1366 destroy_metadata_stream_ht(metadata_ht);
1367
1368 ret = close(ctx->consumer_error_socket);
1369 if (ret) {
1370 PERROR("close");
1371 }
1372 ret = close(ctx->consumer_metadata_socket);
1373 if (ret) {
1374 PERROR("close");
1375 }
1376 utils_close_pipe(ctx->consumer_thread_pipe);
1377 utils_close_pipe(ctx->consumer_channel_pipe);
1378 lttng_pipe_destroy(ctx->consumer_data_pipe);
1379 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1380 utils_close_pipe(ctx->consumer_should_quit);
1381 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1382
1383 unlink(ctx->consumer_command_sock_path);
1384 free(ctx);
1385 }
1386
1387 /*
1388 * Write the metadata stream id on the specified file descriptor.
1389 */
1390 static int write_relayd_metadata_id(int fd,
1391 struct lttng_consumer_stream *stream,
1392 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1393 {
1394 ssize_t ret;
1395 struct lttcomm_relayd_metadata_payload hdr;
1396
1397 hdr.stream_id = htobe64(stream->relayd_stream_id);
1398 hdr.padding_size = htobe32(padding);
1399 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1400 if (ret < sizeof(hdr)) {
1401 /*
1402 * This error means that the fd's end is closed so ignore the perror
1403 * not to clubber the error output since this can happen in a normal
1404 * code path.
1405 */
1406 if (errno != EPIPE) {
1407 PERROR("write metadata stream id");
1408 }
1409 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1410 /*
1411 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1412 * handle writting the missing part so report that as an error and
1413 * don't lie to the caller.
1414 */
1415 ret = -1;
1416 goto end;
1417 }
1418 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1419 stream->relayd_stream_id, padding);
1420
1421 end:
1422 return (int) ret;
1423 }
1424
1425 /*
1426 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1427 * core function for writing trace buffers to either the local filesystem or
1428 * the network.
1429 *
1430 * It must be called with the stream lock held.
1431 *
1432 * Careful review MUST be put if any changes occur!
1433 *
1434 * Returns the number of bytes written
1435 */
1436 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1437 struct lttng_consumer_local_data *ctx,
1438 struct lttng_consumer_stream *stream, unsigned long len,
1439 unsigned long padding,
1440 struct ctf_packet_index *index)
1441 {
1442 unsigned long mmap_offset;
1443 void *mmap_base;
1444 ssize_t ret = 0, written = 0;
1445 off_t orig_offset = stream->out_fd_offset;
1446 /* Default is on the disk */
1447 int outfd = stream->out_fd;
1448 struct consumer_relayd_sock_pair *relayd = NULL;
1449 unsigned int relayd_hang_up = 0;
1450
1451 /* RCU lock for the relayd pointer */
1452 rcu_read_lock();
1453
1454 /* Flag that the current stream if set for network streaming. */
1455 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1456 relayd = consumer_find_relayd(stream->net_seq_idx);
1457 if (relayd == NULL) {
1458 ret = -EPIPE;
1459 goto end;
1460 }
1461 }
1462
1463 /* get the offset inside the fd to mmap */
1464 switch (consumer_data.type) {
1465 case LTTNG_CONSUMER_KERNEL:
1466 mmap_base = stream->mmap_base;
1467 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1468 if (ret != 0) {
1469 PERROR("tracer ctl get_mmap_read_offset");
1470 written = -errno;
1471 goto end;
1472 }
1473 break;
1474 case LTTNG_CONSUMER32_UST:
1475 case LTTNG_CONSUMER64_UST:
1476 mmap_base = lttng_ustctl_get_mmap_base(stream);
1477 if (!mmap_base) {
1478 ERR("read mmap get mmap base for stream %s", stream->name);
1479 written = -EPERM;
1480 goto end;
1481 }
1482 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1483 if (ret != 0) {
1484 PERROR("tracer ctl get_mmap_read_offset");
1485 written = ret;
1486 goto end;
1487 }
1488 break;
1489 default:
1490 ERR("Unknown consumer_data type");
1491 assert(0);
1492 }
1493
1494 /* Handle stream on the relayd if the output is on the network */
1495 if (relayd) {
1496 unsigned long netlen = len;
1497
1498 /*
1499 * Lock the control socket for the complete duration of the function
1500 * since from this point on we will use the socket.
1501 */
1502 if (stream->metadata_flag) {
1503 /* Metadata requires the control socket. */
1504 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1505 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1506 }
1507
1508 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1509 if (ret >= 0) {
1510 /* Use the returned socket. */
1511 outfd = ret;
1512
1513 /* Write metadata stream id before payload */
1514 if (stream->metadata_flag) {
1515 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1516 if (ret < 0) {
1517 written = ret;
1518 /* Socket operation failed. We consider the relayd dead */
1519 if (ret == -EPIPE || ret == -EINVAL) {
1520 relayd_hang_up = 1;
1521 goto write_error;
1522 }
1523 goto end;
1524 }
1525 }
1526 } else {
1527 /* Socket operation failed. We consider the relayd dead */
1528 if (ret == -EPIPE || ret == -EINVAL) {
1529 relayd_hang_up = 1;
1530 goto write_error;
1531 }
1532 /* Else, use the default set before which is the filesystem. */
1533 }
1534 } else {
1535 /* No streaming, we have to set the len with the full padding */
1536 len += padding;
1537
1538 /*
1539 * Check if we need to change the tracefile before writing the packet.
1540 */
1541 if (stream->chan->tracefile_size > 0 &&
1542 (stream->tracefile_size_current + len) >
1543 stream->chan->tracefile_size) {
1544 ret = utils_rotate_stream_file(stream->chan->pathname,
1545 stream->name, stream->chan->tracefile_size,
1546 stream->chan->tracefile_count, stream->uid, stream->gid,
1547 stream->out_fd, &(stream->tracefile_count_current),
1548 &stream->out_fd);
1549 if (ret < 0) {
1550 ERR("Rotating output file");
1551 goto end;
1552 }
1553 outfd = stream->out_fd;
1554
1555 if (stream->index_fd >= 0) {
1556 ret = index_create_file(stream->chan->pathname,
1557 stream->name, stream->uid, stream->gid,
1558 stream->chan->tracefile_size,
1559 stream->tracefile_count_current);
1560 if (ret < 0) {
1561 goto end;
1562 }
1563 stream->index_fd = ret;
1564 }
1565
1566 /* Reset current size because we just perform a rotation. */
1567 stream->tracefile_size_current = 0;
1568 stream->out_fd_offset = 0;
1569 orig_offset = 0;
1570 }
1571 stream->tracefile_size_current += len;
1572 if (index) {
1573 index->offset = htobe64(stream->out_fd_offset);
1574 }
1575 }
1576
1577 /*
1578 * This call guarantee that len or less is returned. It's impossible to
1579 * receive a ret value that is bigger than len.
1580 */
1581 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1582 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1583 if (ret < 0 || ((size_t) ret != len)) {
1584 /*
1585 * Report error to caller if nothing was written else at least send the
1586 * amount written.
1587 */
1588 if (ret < 0) {
1589 written = -errno;
1590 } else {
1591 written = ret;
1592 }
1593
1594 /* Socket operation failed. We consider the relayd dead */
1595 if (errno == EPIPE || errno == EINVAL) {
1596 /*
1597 * This is possible if the fd is closed on the other side
1598 * (outfd) or any write problem. It can be verbose a bit for a
1599 * normal execution if for instance the relayd is stopped
1600 * abruptly. This can happen so set this to a DBG statement.
1601 */
1602 DBG("Consumer mmap write detected relayd hang up");
1603 relayd_hang_up = 1;
1604 goto write_error;
1605 }
1606
1607 /* Unhandled error, print it and stop function right now. */
1608 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1609 goto end;
1610 }
1611 stream->output_written += ret;
1612 written = ret;
1613
1614 /* This call is useless on a socket so better save a syscall. */
1615 if (!relayd) {
1616 /* This won't block, but will start writeout asynchronously */
1617 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1618 SYNC_FILE_RANGE_WRITE);
1619 stream->out_fd_offset += len;
1620 }
1621 lttng_consumer_sync_trace_file(stream, orig_offset);
1622
1623 write_error:
1624 /*
1625 * This is a special case that the relayd has closed its socket. Let's
1626 * cleanup the relayd object and all associated streams.
1627 */
1628 if (relayd && relayd_hang_up) {
1629 cleanup_relayd(relayd, ctx);
1630 }
1631
1632 end:
1633 /* Unlock only if ctrl socket used */
1634 if (relayd && stream->metadata_flag) {
1635 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1636 }
1637
1638 rcu_read_unlock();
1639 return written;
1640 }
1641
1642 /*
1643 * Splice the data from the ring buffer to the tracefile.
1644 *
1645 * It must be called with the stream lock held.
1646 *
1647 * Returns the number of bytes spliced.
1648 */
1649 ssize_t lttng_consumer_on_read_subbuffer_splice(
1650 struct lttng_consumer_local_data *ctx,
1651 struct lttng_consumer_stream *stream, unsigned long len,
1652 unsigned long padding,
1653 struct ctf_packet_index *index)
1654 {
1655 ssize_t ret = 0, written = 0, ret_splice = 0;
1656 loff_t offset = 0;
1657 off_t orig_offset = stream->out_fd_offset;
1658 int fd = stream->wait_fd;
1659 /* Default is on the disk */
1660 int outfd = stream->out_fd;
1661 struct consumer_relayd_sock_pair *relayd = NULL;
1662 int *splice_pipe;
1663 unsigned int relayd_hang_up = 0;
1664
1665 switch (consumer_data.type) {
1666 case LTTNG_CONSUMER_KERNEL:
1667 break;
1668 case LTTNG_CONSUMER32_UST:
1669 case LTTNG_CONSUMER64_UST:
1670 /* Not supported for user space tracing */
1671 return -ENOSYS;
1672 default:
1673 ERR("Unknown consumer_data type");
1674 assert(0);
1675 }
1676
1677 /* RCU lock for the relayd pointer */
1678 rcu_read_lock();
1679
1680 /* Flag that the current stream if set for network streaming. */
1681 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1682 relayd = consumer_find_relayd(stream->net_seq_idx);
1683 if (relayd == NULL) {
1684 ret = -EPIPE;
1685 goto end;
1686 }
1687 }
1688
1689 /*
1690 * Choose right pipe for splice. Metadata and trace data are handled by
1691 * different threads hence the use of two pipes in order not to race or
1692 * corrupt the written data.
1693 */
1694 if (stream->metadata_flag) {
1695 splice_pipe = ctx->consumer_splice_metadata_pipe;
1696 } else {
1697 splice_pipe = ctx->consumer_thread_pipe;
1698 }
1699
1700 /* Write metadata stream id before payload */
1701 if (relayd) {
1702 int total_len = len;
1703
1704 if (stream->metadata_flag) {
1705 /*
1706 * Lock the control socket for the complete duration of the function
1707 * since from this point on we will use the socket.
1708 */
1709 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1710
1711 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1712 padding);
1713 if (ret < 0) {
1714 written = ret;
1715 /* Socket operation failed. We consider the relayd dead */
1716 if (ret == -EBADF) {
1717 WARN("Remote relayd disconnected. Stopping");
1718 relayd_hang_up = 1;
1719 goto write_error;
1720 }
1721 goto end;
1722 }
1723
1724 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1725 }
1726
1727 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1728 if (ret >= 0) {
1729 /* Use the returned socket. */
1730 outfd = ret;
1731 } else {
1732 /* Socket operation failed. We consider the relayd dead */
1733 if (ret == -EBADF) {
1734 WARN("Remote relayd disconnected. Stopping");
1735 relayd_hang_up = 1;
1736 goto write_error;
1737 }
1738 goto end;
1739 }
1740 } else {
1741 /* No streaming, we have to set the len with the full padding */
1742 len += padding;
1743
1744 /*
1745 * Check if we need to change the tracefile before writing the packet.
1746 */
1747 if (stream->chan->tracefile_size > 0 &&
1748 (stream->tracefile_size_current + len) >
1749 stream->chan->tracefile_size) {
1750 ret = utils_rotate_stream_file(stream->chan->pathname,
1751 stream->name, stream->chan->tracefile_size,
1752 stream->chan->tracefile_count, stream->uid, stream->gid,
1753 stream->out_fd, &(stream->tracefile_count_current),
1754 &stream->out_fd);
1755 if (ret < 0) {
1756 ERR("Rotating output file");
1757 goto end;
1758 }
1759 outfd = stream->out_fd;
1760
1761 if (stream->index_fd >= 0) {
1762 ret = index_create_file(stream->chan->pathname,
1763 stream->name, stream->uid, stream->gid,
1764 stream->chan->tracefile_size,
1765 stream->tracefile_count_current);
1766 if (ret < 0) {
1767 goto end;
1768 }
1769 stream->index_fd = ret;
1770 }
1771
1772 /* Reset current size because we just perform a rotation. */
1773 stream->tracefile_size_current = 0;
1774 stream->out_fd_offset = 0;
1775 orig_offset = 0;
1776 }
1777 stream->tracefile_size_current += len;
1778 index->offset = htobe64(stream->out_fd_offset);
1779 }
1780
1781 while (len > 0) {
1782 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1783 (unsigned long)offset, len, fd, splice_pipe[1]);
1784 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1785 SPLICE_F_MOVE | SPLICE_F_MORE);
1786 DBG("splice chan to pipe, ret %zd", ret_splice);
1787 if (ret_splice < 0) {
1788 ret = errno;
1789 if (written == 0) {
1790 written = ret_splice;
1791 }
1792 PERROR("Error in relay splice");
1793 goto splice_error;
1794 }
1795
1796 /* Handle stream on the relayd if the output is on the network */
1797 if (relayd) {
1798 if (stream->metadata_flag) {
1799 size_t metadata_payload_size =
1800 sizeof(struct lttcomm_relayd_metadata_payload);
1801
1802 /* Update counter to fit the spliced data */
1803 ret_splice += metadata_payload_size;
1804 len += metadata_payload_size;
1805 /*
1806 * We do this so the return value can match the len passed as
1807 * argument to this function.
1808 */
1809 written -= metadata_payload_size;
1810 }
1811 }
1812
1813 /* Splice data out */
1814 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1815 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1816 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1817 if (ret_splice < 0) {
1818 ret = errno;
1819 if (written == 0) {
1820 written = ret_splice;
1821 }
1822 /* Socket operation failed. We consider the relayd dead */
1823 if (errno == EBADF || errno == EPIPE || errno == ESPIPE) {
1824 WARN("Remote relayd disconnected. Stopping");
1825 relayd_hang_up = 1;
1826 goto write_error;
1827 }
1828 PERROR("Error in file splice");
1829 goto splice_error;
1830 } else if (ret_splice > len) {
1831 /*
1832 * We don't expect this code path to be executed but you never know
1833 * so this is an extra protection agains a buggy splice().
1834 */
1835 written += ret_splice;
1836 ret = errno;
1837 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1838 len);
1839 goto splice_error;
1840 } else {
1841 /* All good, update current len and continue. */
1842 len -= ret_splice;
1843 }
1844
1845 /* This call is useless on a socket so better save a syscall. */
1846 if (!relayd) {
1847 /* This won't block, but will start writeout asynchronously */
1848 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1849 SYNC_FILE_RANGE_WRITE);
1850 stream->out_fd_offset += ret_splice;
1851 }
1852 stream->output_written += ret_splice;
1853 written += ret_splice;
1854 }
1855 lttng_consumer_sync_trace_file(stream, orig_offset);
1856 goto end;
1857
1858 write_error:
1859 /*
1860 * This is a special case that the relayd has closed its socket. Let's
1861 * cleanup the relayd object and all associated streams.
1862 */
1863 if (relayd && relayd_hang_up) {
1864 cleanup_relayd(relayd, ctx);
1865 /* Skip splice error so the consumer does not fail */
1866 goto end;
1867 }
1868
1869 splice_error:
1870 /* send the appropriate error description to sessiond */
1871 switch (ret) {
1872 case EINVAL:
1873 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1874 break;
1875 case ENOMEM:
1876 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1877 break;
1878 case ESPIPE:
1879 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1880 break;
1881 }
1882
1883 end:
1884 if (relayd && stream->metadata_flag) {
1885 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1886 }
1887
1888 rcu_read_unlock();
1889 return written;
1890 }
1891
1892 /*
1893 * Take a snapshot for a specific fd
1894 *
1895 * Returns 0 on success, < 0 on error
1896 */
1897 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1898 {
1899 switch (consumer_data.type) {
1900 case LTTNG_CONSUMER_KERNEL:
1901 return lttng_kconsumer_take_snapshot(stream);
1902 case LTTNG_CONSUMER32_UST:
1903 case LTTNG_CONSUMER64_UST:
1904 return lttng_ustconsumer_take_snapshot(stream);
1905 default:
1906 ERR("Unknown consumer_data type");
1907 assert(0);
1908 return -ENOSYS;
1909 }
1910 }
1911
1912 /*
1913 * Get the produced position
1914 *
1915 * Returns 0 on success, < 0 on error
1916 */
1917 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1918 unsigned long *pos)
1919 {
1920 switch (consumer_data.type) {
1921 case LTTNG_CONSUMER_KERNEL:
1922 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1923 case LTTNG_CONSUMER32_UST:
1924 case LTTNG_CONSUMER64_UST:
1925 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1926 default:
1927 ERR("Unknown consumer_data type");
1928 assert(0);
1929 return -ENOSYS;
1930 }
1931 }
1932
1933 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1934 int sock, struct pollfd *consumer_sockpoll)
1935 {
1936 switch (consumer_data.type) {
1937 case LTTNG_CONSUMER_KERNEL:
1938 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1939 case LTTNG_CONSUMER32_UST:
1940 case LTTNG_CONSUMER64_UST:
1941 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1942 default:
1943 ERR("Unknown consumer_data type");
1944 assert(0);
1945 return -ENOSYS;
1946 }
1947 }
1948
1949 void lttng_consumer_close_all_metadata(void)
1950 {
1951 switch (consumer_data.type) {
1952 case LTTNG_CONSUMER_KERNEL:
1953 /*
1954 * The Kernel consumer has a different metadata scheme so we don't
1955 * close anything because the stream will be closed by the session
1956 * daemon.
1957 */
1958 break;
1959 case LTTNG_CONSUMER32_UST:
1960 case LTTNG_CONSUMER64_UST:
1961 /*
1962 * Close all metadata streams. The metadata hash table is passed and
1963 * this call iterates over it by closing all wakeup fd. This is safe
1964 * because at this point we are sure that the metadata producer is
1965 * either dead or blocked.
1966 */
1967 lttng_ustconsumer_close_all_metadata(metadata_ht);
1968 break;
1969 default:
1970 ERR("Unknown consumer_data type");
1971 assert(0);
1972 }
1973 }
1974
1975 /*
1976 * Clean up a metadata stream and free its memory.
1977 */
1978 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1979 struct lttng_ht *ht)
1980 {
1981 struct lttng_consumer_channel *free_chan = NULL;
1982
1983 assert(stream);
1984 /*
1985 * This call should NEVER receive regular stream. It must always be
1986 * metadata stream and this is crucial for data structure synchronization.
1987 */
1988 assert(stream->metadata_flag);
1989
1990 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1991
1992 pthread_mutex_lock(&consumer_data.lock);
1993 pthread_mutex_lock(&stream->chan->lock);
1994 pthread_mutex_lock(&stream->lock);
1995
1996 /* Remove any reference to that stream. */
1997 consumer_stream_delete(stream, ht);
1998
1999 /* Close down everything including the relayd if one. */
2000 consumer_stream_close(stream);
2001 /* Destroy tracer buffers of the stream. */
2002 consumer_stream_destroy_buffers(stream);
2003
2004 /* Atomically decrement channel refcount since other threads can use it. */
2005 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2006 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2007 /* Go for channel deletion! */
2008 free_chan = stream->chan;
2009 }
2010
2011 /*
2012 * Nullify the stream reference so it is not used after deletion. The
2013 * channel lock MUST be acquired before being able to check for a NULL
2014 * pointer value.
2015 */
2016 stream->chan->metadata_stream = NULL;
2017
2018 pthread_mutex_unlock(&stream->lock);
2019 pthread_mutex_unlock(&stream->chan->lock);
2020 pthread_mutex_unlock(&consumer_data.lock);
2021
2022 if (free_chan) {
2023 consumer_del_channel(free_chan);
2024 }
2025
2026 consumer_stream_free(stream);
2027 }
2028
2029 /*
2030 * Action done with the metadata stream when adding it to the consumer internal
2031 * data structures to handle it.
2032 */
2033 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2034 {
2035 struct lttng_ht *ht = metadata_ht;
2036 int ret = 0;
2037 struct lttng_ht_iter iter;
2038 struct lttng_ht_node_u64 *node;
2039
2040 assert(stream);
2041 assert(ht);
2042
2043 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2044
2045 pthread_mutex_lock(&consumer_data.lock);
2046 pthread_mutex_lock(&stream->chan->lock);
2047 pthread_mutex_lock(&stream->chan->timer_lock);
2048 pthread_mutex_lock(&stream->lock);
2049
2050 /*
2051 * From here, refcounts are updated so be _careful_ when returning an error
2052 * after this point.
2053 */
2054
2055 rcu_read_lock();
2056
2057 /*
2058 * Lookup the stream just to make sure it does not exist in our internal
2059 * state. This should NEVER happen.
2060 */
2061 lttng_ht_lookup(ht, &stream->key, &iter);
2062 node = lttng_ht_iter_get_node_u64(&iter);
2063 assert(!node);
2064
2065 /*
2066 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2067 * in terms of destroying the associated channel, because the action that
2068 * causes the count to become 0 also causes a stream to be added. The
2069 * channel deletion will thus be triggered by the following removal of this
2070 * stream.
2071 */
2072 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2073 /* Increment refcount before decrementing nb_init_stream_left */
2074 cmm_smp_wmb();
2075 uatomic_dec(&stream->chan->nb_init_stream_left);
2076 }
2077
2078 lttng_ht_add_unique_u64(ht, &stream->node);
2079
2080 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2081 &stream->node_channel_id);
2082
2083 /*
2084 * Add stream to the stream_list_ht of the consumer data. No need to steal
2085 * the key since the HT does not use it and we allow to add redundant keys
2086 * into this table.
2087 */
2088 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2089
2090 rcu_read_unlock();
2091
2092 pthread_mutex_unlock(&stream->lock);
2093 pthread_mutex_unlock(&stream->chan->lock);
2094 pthread_mutex_unlock(&stream->chan->timer_lock);
2095 pthread_mutex_unlock(&consumer_data.lock);
2096 return ret;
2097 }
2098
2099 /*
2100 * Delete data stream that are flagged for deletion (endpoint_status).
2101 */
2102 static void validate_endpoint_status_data_stream(void)
2103 {
2104 struct lttng_ht_iter iter;
2105 struct lttng_consumer_stream *stream;
2106
2107 DBG("Consumer delete flagged data stream");
2108
2109 rcu_read_lock();
2110 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2111 /* Validate delete flag of the stream */
2112 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2113 continue;
2114 }
2115 /* Delete it right now */
2116 consumer_del_stream(stream, data_ht);
2117 }
2118 rcu_read_unlock();
2119 }
2120
2121 /*
2122 * Delete metadata stream that are flagged for deletion (endpoint_status).
2123 */
2124 static void validate_endpoint_status_metadata_stream(
2125 struct lttng_poll_event *pollset)
2126 {
2127 struct lttng_ht_iter iter;
2128 struct lttng_consumer_stream *stream;
2129
2130 DBG("Consumer delete flagged metadata stream");
2131
2132 assert(pollset);
2133
2134 rcu_read_lock();
2135 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2136 /* Validate delete flag of the stream */
2137 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2138 continue;
2139 }
2140 /*
2141 * Remove from pollset so the metadata thread can continue without
2142 * blocking on a deleted stream.
2143 */
2144 lttng_poll_del(pollset, stream->wait_fd);
2145
2146 /* Delete it right now */
2147 consumer_del_metadata_stream(stream, metadata_ht);
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /*
2153 * Thread polls on metadata file descriptor and write them on disk or on the
2154 * network.
2155 */
2156 void *consumer_thread_metadata_poll(void *data)
2157 {
2158 int ret, i, pollfd, err = -1;
2159 uint32_t revents, nb_fd;
2160 struct lttng_consumer_stream *stream = NULL;
2161 struct lttng_ht_iter iter;
2162 struct lttng_ht_node_u64 *node;
2163 struct lttng_poll_event events;
2164 struct lttng_consumer_local_data *ctx = data;
2165 ssize_t len;
2166
2167 rcu_register_thread();
2168
2169 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2170
2171 if (testpoint(consumerd_thread_metadata)) {
2172 goto error_testpoint;
2173 }
2174
2175 health_code_update();
2176
2177 DBG("Thread metadata poll started");
2178
2179 /* Size is set to 1 for the consumer_metadata pipe */
2180 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2181 if (ret < 0) {
2182 ERR("Poll set creation failed");
2183 goto end_poll;
2184 }
2185
2186 ret = lttng_poll_add(&events,
2187 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2188 if (ret < 0) {
2189 goto end;
2190 }
2191
2192 /* Main loop */
2193 DBG("Metadata main loop started");
2194
2195 while (1) {
2196 health_code_update();
2197
2198 /* Only the metadata pipe is set */
2199 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2200 err = 0; /* All is OK */
2201 goto end;
2202 }
2203
2204 restart:
2205 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2206 health_poll_entry();
2207 ret = lttng_poll_wait(&events, -1);
2208 health_poll_exit();
2209 DBG("Metadata event catched in thread");
2210 if (ret < 0) {
2211 if (errno == EINTR) {
2212 ERR("Poll EINTR catched");
2213 goto restart;
2214 }
2215 goto error;
2216 }
2217
2218 nb_fd = ret;
2219
2220 /* From here, the event is a metadata wait fd */
2221 for (i = 0; i < nb_fd; i++) {
2222 health_code_update();
2223
2224 revents = LTTNG_POLL_GETEV(&events, i);
2225 pollfd = LTTNG_POLL_GETFD(&events, i);
2226
2227 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2228 if (revents & (LPOLLERR | LPOLLHUP )) {
2229 DBG("Metadata thread pipe hung up");
2230 /*
2231 * Remove the pipe from the poll set and continue the loop
2232 * since their might be data to consume.
2233 */
2234 lttng_poll_del(&events,
2235 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2236 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2237 continue;
2238 } else if (revents & LPOLLIN) {
2239 ssize_t pipe_len;
2240
2241 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2242 &stream, sizeof(stream));
2243 if (pipe_len < sizeof(stream)) {
2244 PERROR("read metadata stream");
2245 /*
2246 * Continue here to handle the rest of the streams.
2247 */
2248 continue;
2249 }
2250
2251 /* A NULL stream means that the state has changed. */
2252 if (stream == NULL) {
2253 /* Check for deleted streams. */
2254 validate_endpoint_status_metadata_stream(&events);
2255 goto restart;
2256 }
2257
2258 DBG("Adding metadata stream %d to poll set",
2259 stream->wait_fd);
2260
2261 /* Add metadata stream to the global poll events list */
2262 lttng_poll_add(&events, stream->wait_fd,
2263 LPOLLIN | LPOLLPRI | LPOLLHUP);
2264 }
2265
2266 /* Handle other stream */
2267 continue;
2268 }
2269
2270 rcu_read_lock();
2271 {
2272 uint64_t tmp_id = (uint64_t) pollfd;
2273
2274 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2275 }
2276 node = lttng_ht_iter_get_node_u64(&iter);
2277 assert(node);
2278
2279 stream = caa_container_of(node, struct lttng_consumer_stream,
2280 node);
2281
2282 /* Check for error event */
2283 if (revents & (LPOLLERR | LPOLLHUP)) {
2284 DBG("Metadata fd %d is hup|err.", pollfd);
2285 if (!stream->hangup_flush_done
2286 && (consumer_data.type == LTTNG_CONSUMER32_UST
2287 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2288 DBG("Attempting to flush and consume the UST buffers");
2289 lttng_ustconsumer_on_stream_hangup(stream);
2290
2291 /* We just flushed the stream now read it. */
2292 do {
2293 health_code_update();
2294
2295 len = ctx->on_buffer_ready(stream, ctx);
2296 /*
2297 * We don't check the return value here since if we get
2298 * a negative len, it means an error occured thus we
2299 * simply remove it from the poll set and free the
2300 * stream.
2301 */
2302 } while (len > 0);
2303 }
2304
2305 lttng_poll_del(&events, stream->wait_fd);
2306 /*
2307 * This call update the channel states, closes file descriptors
2308 * and securely free the stream.
2309 */
2310 consumer_del_metadata_stream(stream, metadata_ht);
2311 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2312 /* Get the data out of the metadata file descriptor */
2313 DBG("Metadata available on fd %d", pollfd);
2314 assert(stream->wait_fd == pollfd);
2315
2316 do {
2317 health_code_update();
2318
2319 len = ctx->on_buffer_ready(stream, ctx);
2320 /*
2321 * We don't check the return value here since if we get
2322 * a negative len, it means an error occured thus we
2323 * simply remove it from the poll set and free the
2324 * stream.
2325 */
2326 } while (len > 0);
2327
2328 /* It's ok to have an unavailable sub-buffer */
2329 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2330 /* Clean up stream from consumer and free it. */
2331 lttng_poll_del(&events, stream->wait_fd);
2332 consumer_del_metadata_stream(stream, metadata_ht);
2333 }
2334 }
2335
2336 /* Release RCU lock for the stream looked up */
2337 rcu_read_unlock();
2338 }
2339 }
2340
2341 /* All is OK */
2342 err = 0;
2343 error:
2344 end:
2345 DBG("Metadata poll thread exiting");
2346
2347 lttng_poll_clean(&events);
2348 end_poll:
2349 error_testpoint:
2350 if (err) {
2351 health_error();
2352 ERR("Health error occurred in %s", __func__);
2353 }
2354 health_unregister(health_consumerd);
2355 rcu_unregister_thread();
2356 return NULL;
2357 }
2358
2359 /*
2360 * This thread polls the fds in the set to consume the data and write
2361 * it to tracefile if necessary.
2362 */
2363 void *consumer_thread_data_poll(void *data)
2364 {
2365 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2366 struct pollfd *pollfd = NULL;
2367 /* local view of the streams */
2368 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2369 /* local view of consumer_data.fds_count */
2370 int nb_fd = 0;
2371 struct lttng_consumer_local_data *ctx = data;
2372 ssize_t len;
2373
2374 rcu_register_thread();
2375
2376 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2377
2378 if (testpoint(consumerd_thread_data)) {
2379 goto error_testpoint;
2380 }
2381
2382 health_code_update();
2383
2384 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2385 if (local_stream == NULL) {
2386 PERROR("local_stream malloc");
2387 goto end;
2388 }
2389
2390 while (1) {
2391 health_code_update();
2392
2393 high_prio = 0;
2394 num_hup = 0;
2395
2396 /*
2397 * the fds set has been updated, we need to update our
2398 * local array as well
2399 */
2400 pthread_mutex_lock(&consumer_data.lock);
2401 if (consumer_data.need_update) {
2402 free(pollfd);
2403 pollfd = NULL;
2404
2405 free(local_stream);
2406 local_stream = NULL;
2407
2408 /* allocate for all fds + 1 for the consumer_data_pipe */
2409 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2410 if (pollfd == NULL) {
2411 PERROR("pollfd malloc");
2412 pthread_mutex_unlock(&consumer_data.lock);
2413 goto end;
2414 }
2415
2416 /* allocate for all fds + 1 for the consumer_data_pipe */
2417 local_stream = zmalloc((consumer_data.stream_count + 1) *
2418 sizeof(struct lttng_consumer_stream *));
2419 if (local_stream == NULL) {
2420 PERROR("local_stream malloc");
2421 pthread_mutex_unlock(&consumer_data.lock);
2422 goto end;
2423 }
2424 ret = update_poll_array(ctx, &pollfd, local_stream,
2425 data_ht);
2426 if (ret < 0) {
2427 ERR("Error in allocating pollfd or local_outfds");
2428 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2429 pthread_mutex_unlock(&consumer_data.lock);
2430 goto end;
2431 }
2432 nb_fd = ret;
2433 consumer_data.need_update = 0;
2434 }
2435 pthread_mutex_unlock(&consumer_data.lock);
2436
2437 /* No FDs and consumer_quit, consumer_cleanup the thread */
2438 if (nb_fd == 0 && consumer_quit == 1) {
2439 err = 0; /* All is OK */
2440 goto end;
2441 }
2442 /* poll on the array of fds */
2443 restart:
2444 DBG("polling on %d fd", nb_fd + 1);
2445 health_poll_entry();
2446 num_rdy = poll(pollfd, nb_fd + 1, -1);
2447 health_poll_exit();
2448 DBG("poll num_rdy : %d", num_rdy);
2449 if (num_rdy == -1) {
2450 /*
2451 * Restart interrupted system call.
2452 */
2453 if (errno == EINTR) {
2454 goto restart;
2455 }
2456 PERROR("Poll error");
2457 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2458 goto end;
2459 } else if (num_rdy == 0) {
2460 DBG("Polling thread timed out");
2461 goto end;
2462 }
2463
2464 /*
2465 * If the consumer_data_pipe triggered poll go directly to the
2466 * beginning of the loop to update the array. We want to prioritize
2467 * array update over low-priority reads.
2468 */
2469 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2470 ssize_t pipe_readlen;
2471
2472 DBG("consumer_data_pipe wake up");
2473 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2474 &new_stream, sizeof(new_stream));
2475 if (pipe_readlen < sizeof(new_stream)) {
2476 PERROR("Consumer data pipe");
2477 /* Continue so we can at least handle the current stream(s). */
2478 continue;
2479 }
2480
2481 /*
2482 * If the stream is NULL, just ignore it. It's also possible that
2483 * the sessiond poll thread changed the consumer_quit state and is
2484 * waking us up to test it.
2485 */
2486 if (new_stream == NULL) {
2487 validate_endpoint_status_data_stream();
2488 continue;
2489 }
2490
2491 /* Continue to update the local streams and handle prio ones */
2492 continue;
2493 }
2494
2495 /* Take care of high priority channels first. */
2496 for (i = 0; i < nb_fd; i++) {
2497 health_code_update();
2498
2499 if (local_stream[i] == NULL) {
2500 continue;
2501 }
2502 if (pollfd[i].revents & POLLPRI) {
2503 DBG("Urgent read on fd %d", pollfd[i].fd);
2504 high_prio = 1;
2505 len = ctx->on_buffer_ready(local_stream[i], ctx);
2506 /* it's ok to have an unavailable sub-buffer */
2507 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2508 /* Clean the stream and free it. */
2509 consumer_del_stream(local_stream[i], data_ht);
2510 local_stream[i] = NULL;
2511 } else if (len > 0) {
2512 local_stream[i]->data_read = 1;
2513 }
2514 }
2515 }
2516
2517 /*
2518 * If we read high prio channel in this loop, try again
2519 * for more high prio data.
2520 */
2521 if (high_prio) {
2522 continue;
2523 }
2524
2525 /* Take care of low priority channels. */
2526 for (i = 0; i < nb_fd; i++) {
2527 health_code_update();
2528
2529 if (local_stream[i] == NULL) {
2530 continue;
2531 }
2532 if ((pollfd[i].revents & POLLIN) ||
2533 local_stream[i]->hangup_flush_done) {
2534 DBG("Normal read on fd %d", pollfd[i].fd);
2535 len = ctx->on_buffer_ready(local_stream[i], ctx);
2536 /* it's ok to have an unavailable sub-buffer */
2537 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2538 /* Clean the stream and free it. */
2539 consumer_del_stream(local_stream[i], data_ht);
2540 local_stream[i] = NULL;
2541 } else if (len > 0) {
2542 local_stream[i]->data_read = 1;
2543 }
2544 }
2545 }
2546
2547 /* Handle hangup and errors */
2548 for (i = 0; i < nb_fd; i++) {
2549 health_code_update();
2550
2551 if (local_stream[i] == NULL) {
2552 continue;
2553 }
2554 if (!local_stream[i]->hangup_flush_done
2555 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2556 && (consumer_data.type == LTTNG_CONSUMER32_UST
2557 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2558 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2559 pollfd[i].fd);
2560 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2561 /* Attempt read again, for the data we just flushed. */
2562 local_stream[i]->data_read = 1;
2563 }
2564 /*
2565 * If the poll flag is HUP/ERR/NVAL and we have
2566 * read no data in this pass, we can remove the
2567 * stream from its hash table.
2568 */
2569 if ((pollfd[i].revents & POLLHUP)) {
2570 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2571 if (!local_stream[i]->data_read) {
2572 consumer_del_stream(local_stream[i], data_ht);
2573 local_stream[i] = NULL;
2574 num_hup++;
2575 }
2576 } else if (pollfd[i].revents & POLLERR) {
2577 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2578 if (!local_stream[i]->data_read) {
2579 consumer_del_stream(local_stream[i], data_ht);
2580 local_stream[i] = NULL;
2581 num_hup++;
2582 }
2583 } else if (pollfd[i].revents & POLLNVAL) {
2584 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2585 if (!local_stream[i]->data_read) {
2586 consumer_del_stream(local_stream[i], data_ht);
2587 local_stream[i] = NULL;
2588 num_hup++;
2589 }
2590 }
2591 if (local_stream[i] != NULL) {
2592 local_stream[i]->data_read = 0;
2593 }
2594 }
2595 }
2596 /* All is OK */
2597 err = 0;
2598 end:
2599 DBG("polling thread exiting");
2600 free(pollfd);
2601 free(local_stream);
2602
2603 /*
2604 * Close the write side of the pipe so epoll_wait() in
2605 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2606 * read side of the pipe. If we close them both, epoll_wait strangely does
2607 * not return and could create a endless wait period if the pipe is the
2608 * only tracked fd in the poll set. The thread will take care of closing
2609 * the read side.
2610 */
2611 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2612
2613 error_testpoint:
2614 if (err) {
2615 health_error();
2616 ERR("Health error occurred in %s", __func__);
2617 }
2618 health_unregister(health_consumerd);
2619
2620 rcu_unregister_thread();
2621 return NULL;
2622 }
2623
2624 /*
2625 * Close wake-up end of each stream belonging to the channel. This will
2626 * allow the poll() on the stream read-side to detect when the
2627 * write-side (application) finally closes them.
2628 */
2629 static
2630 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2631 {
2632 struct lttng_ht *ht;
2633 struct lttng_consumer_stream *stream;
2634 struct lttng_ht_iter iter;
2635
2636 ht = consumer_data.stream_per_chan_id_ht;
2637
2638 rcu_read_lock();
2639 cds_lfht_for_each_entry_duplicate(ht->ht,
2640 ht->hash_fct(&channel->key, lttng_ht_seed),
2641 ht->match_fct, &channel->key,
2642 &iter.iter, stream, node_channel_id.node) {
2643 /*
2644 * Protect against teardown with mutex.
2645 */
2646 pthread_mutex_lock(&stream->lock);
2647 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2648 goto next;
2649 }
2650 switch (consumer_data.type) {
2651 case LTTNG_CONSUMER_KERNEL:
2652 break;
2653 case LTTNG_CONSUMER32_UST:
2654 case LTTNG_CONSUMER64_UST:
2655 /*
2656 * Note: a mutex is taken internally within
2657 * liblttng-ust-ctl to protect timer wakeup_fd
2658 * use from concurrent close.
2659 */
2660 lttng_ustconsumer_close_stream_wakeup(stream);
2661 break;
2662 default:
2663 ERR("Unknown consumer_data type");
2664 assert(0);
2665 }
2666 next:
2667 pthread_mutex_unlock(&stream->lock);
2668 }
2669 rcu_read_unlock();
2670 }
2671
2672 static void destroy_channel_ht(struct lttng_ht *ht)
2673 {
2674 struct lttng_ht_iter iter;
2675 struct lttng_consumer_channel *channel;
2676 int ret;
2677
2678 if (ht == NULL) {
2679 return;
2680 }
2681
2682 rcu_read_lock();
2683 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2684 ret = lttng_ht_del(ht, &iter);
2685 assert(ret != 0);
2686 }
2687 rcu_read_unlock();
2688
2689 lttng_ht_destroy(ht);
2690 }
2691
2692 /*
2693 * This thread polls the channel fds to detect when they are being
2694 * closed. It closes all related streams if the channel is detected as
2695 * closed. It is currently only used as a shim layer for UST because the
2696 * consumerd needs to keep the per-stream wakeup end of pipes open for
2697 * periodical flush.
2698 */
2699 void *consumer_thread_channel_poll(void *data)
2700 {
2701 int ret, i, pollfd, err = -1;
2702 uint32_t revents, nb_fd;
2703 struct lttng_consumer_channel *chan = NULL;
2704 struct lttng_ht_iter iter;
2705 struct lttng_ht_node_u64 *node;
2706 struct lttng_poll_event events;
2707 struct lttng_consumer_local_data *ctx = data;
2708 struct lttng_ht *channel_ht;
2709
2710 rcu_register_thread();
2711
2712 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2713
2714 if (testpoint(consumerd_thread_channel)) {
2715 goto error_testpoint;
2716 }
2717
2718 health_code_update();
2719
2720 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2721 if (!channel_ht) {
2722 /* ENOMEM at this point. Better to bail out. */
2723 goto end_ht;
2724 }
2725
2726 DBG("Thread channel poll started");
2727
2728 /* Size is set to 1 for the consumer_channel pipe */
2729 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2730 if (ret < 0) {
2731 ERR("Poll set creation failed");
2732 goto end_poll;
2733 }
2734
2735 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2736 if (ret < 0) {
2737 goto end;
2738 }
2739
2740 /* Main loop */
2741 DBG("Channel main loop started");
2742
2743 while (1) {
2744 health_code_update();
2745
2746 /* Only the channel pipe is set */
2747 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2748 err = 0; /* All is OK */
2749 goto end;
2750 }
2751
2752 restart:
2753 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2754 health_poll_entry();
2755 ret = lttng_poll_wait(&events, -1);
2756 health_poll_exit();
2757 DBG("Channel event catched in thread");
2758 if (ret < 0) {
2759 if (errno == EINTR) {
2760 ERR("Poll EINTR catched");
2761 goto restart;
2762 }
2763 goto end;
2764 }
2765
2766 nb_fd = ret;
2767
2768 /* From here, the event is a channel wait fd */
2769 for (i = 0; i < nb_fd; i++) {
2770 health_code_update();
2771
2772 revents = LTTNG_POLL_GETEV(&events, i);
2773 pollfd = LTTNG_POLL_GETFD(&events, i);
2774
2775 /* Just don't waste time if no returned events for the fd */
2776 if (!revents) {
2777 continue;
2778 }
2779 if (pollfd == ctx->consumer_channel_pipe[0]) {
2780 if (revents & (LPOLLERR | LPOLLHUP)) {
2781 DBG("Channel thread pipe hung up");
2782 /*
2783 * Remove the pipe from the poll set and continue the loop
2784 * since their might be data to consume.
2785 */
2786 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2787 continue;
2788 } else if (revents & LPOLLIN) {
2789 enum consumer_channel_action action;
2790 uint64_t key;
2791
2792 ret = read_channel_pipe(ctx, &chan, &key, &action);
2793 if (ret <= 0) {
2794 ERR("Error reading channel pipe");
2795 continue;
2796 }
2797
2798 switch (action) {
2799 case CONSUMER_CHANNEL_ADD:
2800 DBG("Adding channel %d to poll set",
2801 chan->wait_fd);
2802
2803 lttng_ht_node_init_u64(&chan->wait_fd_node,
2804 chan->wait_fd);
2805 rcu_read_lock();
2806 lttng_ht_add_unique_u64(channel_ht,
2807 &chan->wait_fd_node);
2808 rcu_read_unlock();
2809 /* Add channel to the global poll events list */
2810 lttng_poll_add(&events, chan->wait_fd,
2811 LPOLLIN | LPOLLPRI);
2812 break;
2813 case CONSUMER_CHANNEL_DEL:
2814 {
2815 struct lttng_consumer_stream *stream, *stmp;
2816
2817 rcu_read_lock();
2818 chan = consumer_find_channel(key);
2819 if (!chan) {
2820 rcu_read_unlock();
2821 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2822 break;
2823 }
2824 lttng_poll_del(&events, chan->wait_fd);
2825 iter.iter.node = &chan->wait_fd_node.node;
2826 ret = lttng_ht_del(channel_ht, &iter);
2827 assert(ret == 0);
2828 consumer_close_channel_streams(chan);
2829
2830 switch (consumer_data.type) {
2831 case LTTNG_CONSUMER_KERNEL:
2832 break;
2833 case LTTNG_CONSUMER32_UST:
2834 case LTTNG_CONSUMER64_UST:
2835 /* Delete streams that might have been left in the stream list. */
2836 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2837 send_node) {
2838 health_code_update();
2839
2840 cds_list_del(&stream->send_node);
2841 lttng_ustconsumer_del_stream(stream);
2842 uatomic_sub(&stream->chan->refcount, 1);
2843 assert(&chan->refcount);
2844 free(stream);
2845 }
2846 break;
2847 default:
2848 ERR("Unknown consumer_data type");
2849 assert(0);
2850 }
2851
2852 /*
2853 * Release our own refcount. Force channel deletion even if
2854 * streams were not initialized.
2855 */
2856 if (!uatomic_sub_return(&chan->refcount, 1)) {
2857 consumer_del_channel(chan);
2858 }
2859 rcu_read_unlock();
2860 goto restart;
2861 }
2862 case CONSUMER_CHANNEL_QUIT:
2863 /*
2864 * Remove the pipe from the poll set and continue the loop
2865 * since their might be data to consume.
2866 */
2867 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2868 continue;
2869 default:
2870 ERR("Unknown action");
2871 break;
2872 }
2873 }
2874
2875 /* Handle other stream */
2876 continue;
2877 }
2878
2879 rcu_read_lock();
2880 {
2881 uint64_t tmp_id = (uint64_t) pollfd;
2882
2883 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2884 }
2885 node = lttng_ht_iter_get_node_u64(&iter);
2886 assert(node);
2887
2888 chan = caa_container_of(node, struct lttng_consumer_channel,
2889 wait_fd_node);
2890
2891 /* Check for error event */
2892 if (revents & (LPOLLERR | LPOLLHUP)) {
2893 DBG("Channel fd %d is hup|err.", pollfd);
2894
2895 lttng_poll_del(&events, chan->wait_fd);
2896 ret = lttng_ht_del(channel_ht, &iter);
2897 assert(ret == 0);
2898 consumer_close_channel_streams(chan);
2899
2900 /* Release our own refcount */
2901 if (!uatomic_sub_return(&chan->refcount, 1)
2902 && !uatomic_read(&chan->nb_init_stream_left)) {
2903 consumer_del_channel(chan);
2904 }
2905 }
2906
2907 /* Release RCU lock for the channel looked up */
2908 rcu_read_unlock();
2909 }
2910 }
2911
2912 /* All is OK */
2913 err = 0;
2914 end:
2915 lttng_poll_clean(&events);
2916 end_poll:
2917 destroy_channel_ht(channel_ht);
2918 end_ht:
2919 error_testpoint:
2920 DBG("Channel poll thread exiting");
2921 if (err) {
2922 health_error();
2923 ERR("Health error occurred in %s", __func__);
2924 }
2925 health_unregister(health_consumerd);
2926 rcu_unregister_thread();
2927 return NULL;
2928 }
2929
2930 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2931 struct pollfd *sockpoll, int client_socket)
2932 {
2933 int ret;
2934
2935 assert(ctx);
2936 assert(sockpoll);
2937
2938 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2939 ret = -1;
2940 goto error;
2941 }
2942 DBG("Metadata connection on client_socket");
2943
2944 /* Blocking call, waiting for transmission */
2945 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2946 if (ctx->consumer_metadata_socket < 0) {
2947 WARN("On accept metadata");
2948 ret = -1;
2949 goto error;
2950 }
2951 ret = 0;
2952
2953 error:
2954 return ret;
2955 }
2956
2957 /*
2958 * This thread listens on the consumerd socket and receives the file
2959 * descriptors from the session daemon.
2960 */
2961 void *consumer_thread_sessiond_poll(void *data)
2962 {
2963 int sock = -1, client_socket, ret, err = -1;
2964 /*
2965 * structure to poll for incoming data on communication socket avoids
2966 * making blocking sockets.
2967 */
2968 struct pollfd consumer_sockpoll[2];
2969 struct lttng_consumer_local_data *ctx = data;
2970
2971 rcu_register_thread();
2972
2973 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
2974
2975 if (testpoint(consumerd_thread_sessiond)) {
2976 goto error_testpoint;
2977 }
2978
2979 health_code_update();
2980
2981 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2982 unlink(ctx->consumer_command_sock_path);
2983 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2984 if (client_socket < 0) {
2985 ERR("Cannot create command socket");
2986 goto end;
2987 }
2988
2989 ret = lttcomm_listen_unix_sock(client_socket);
2990 if (ret < 0) {
2991 goto end;
2992 }
2993
2994 DBG("Sending ready command to lttng-sessiond");
2995 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2996 /* return < 0 on error, but == 0 is not fatal */
2997 if (ret < 0) {
2998 ERR("Error sending ready command to lttng-sessiond");
2999 goto end;
3000 }
3001
3002 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3003 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3004 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3005 consumer_sockpoll[1].fd = client_socket;
3006 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3007
3008 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3009 goto end;
3010 }
3011 DBG("Connection on client_socket");
3012
3013 /* Blocking call, waiting for transmission */
3014 sock = lttcomm_accept_unix_sock(client_socket);
3015 if (sock < 0) {
3016 WARN("On accept");
3017 goto end;
3018 }
3019
3020 /*
3021 * Setup metadata socket which is the second socket connection on the
3022 * command unix socket.
3023 */
3024 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3025 if (ret < 0) {
3026 goto end;
3027 }
3028
3029 /* This socket is not useful anymore. */
3030 ret = close(client_socket);
3031 if (ret < 0) {
3032 PERROR("close client_socket");
3033 }
3034 client_socket = -1;
3035
3036 /* update the polling structure to poll on the established socket */
3037 consumer_sockpoll[1].fd = sock;
3038 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3039
3040 while (1) {
3041 health_code_update();
3042
3043 health_poll_entry();
3044 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3045 health_poll_exit();
3046 if (ret < 0) {
3047 goto end;
3048 }
3049 DBG("Incoming command on sock");
3050 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3051 if (ret == -ENOENT) {
3052 DBG("Received STOP command");
3053 goto end;
3054 }
3055 if (ret <= 0) {
3056 /*
3057 * This could simply be a session daemon quitting. Don't output
3058 * ERR() here.
3059 */
3060 DBG("Communication interrupted on command socket");
3061 err = 0;
3062 goto end;
3063 }
3064 if (consumer_quit) {
3065 DBG("consumer_thread_receive_fds received quit from signal");
3066 err = 0; /* All is OK */
3067 goto end;
3068 }
3069 DBG("received command on sock");
3070 }
3071 /* All is OK */
3072 err = 0;
3073
3074 end:
3075 DBG("Consumer thread sessiond poll exiting");
3076
3077 /*
3078 * Close metadata streams since the producer is the session daemon which
3079 * just died.
3080 *
3081 * NOTE: for now, this only applies to the UST tracer.
3082 */
3083 lttng_consumer_close_all_metadata();
3084
3085 /*
3086 * when all fds have hung up, the polling thread
3087 * can exit cleanly
3088 */
3089 consumer_quit = 1;
3090
3091 /*
3092 * Notify the data poll thread to poll back again and test the
3093 * consumer_quit state that we just set so to quit gracefully.
3094 */
3095 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3096
3097 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3098
3099 notify_health_quit_pipe(health_quit_pipe);
3100
3101 /* Cleaning up possibly open sockets. */
3102 if (sock >= 0) {
3103 ret = close(sock);
3104 if (ret < 0) {
3105 PERROR("close sock sessiond poll");
3106 }
3107 }
3108 if (client_socket >= 0) {
3109 ret = close(client_socket);
3110 if (ret < 0) {
3111 PERROR("close client_socket sessiond poll");
3112 }
3113 }
3114
3115 error_testpoint:
3116 if (err) {
3117 health_error();
3118 ERR("Health error occurred in %s", __func__);
3119 }
3120 health_unregister(health_consumerd);
3121
3122 rcu_unregister_thread();
3123 return NULL;
3124 }
3125
3126 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3127 struct lttng_consumer_local_data *ctx)
3128 {
3129 ssize_t ret;
3130
3131 pthread_mutex_lock(&stream->lock);
3132 if (stream->metadata_flag) {
3133 pthread_mutex_lock(&stream->metadata_rdv_lock);
3134 }
3135
3136 switch (consumer_data.type) {
3137 case LTTNG_CONSUMER_KERNEL:
3138 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3139 break;
3140 case LTTNG_CONSUMER32_UST:
3141 case LTTNG_CONSUMER64_UST:
3142 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3143 break;
3144 default:
3145 ERR("Unknown consumer_data type");
3146 assert(0);
3147 ret = -ENOSYS;
3148 break;
3149 }
3150
3151 if (stream->metadata_flag) {
3152 pthread_cond_broadcast(&stream->metadata_rdv);
3153 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3154 }
3155 pthread_mutex_unlock(&stream->lock);
3156 return ret;
3157 }
3158
3159 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3160 {
3161 switch (consumer_data.type) {
3162 case LTTNG_CONSUMER_KERNEL:
3163 return lttng_kconsumer_on_recv_stream(stream);
3164 case LTTNG_CONSUMER32_UST:
3165 case LTTNG_CONSUMER64_UST:
3166 return lttng_ustconsumer_on_recv_stream(stream);
3167 default:
3168 ERR("Unknown consumer_data type");
3169 assert(0);
3170 return -ENOSYS;
3171 }
3172 }
3173
3174 /*
3175 * Allocate and set consumer data hash tables.
3176 */
3177 int lttng_consumer_init(void)
3178 {
3179 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3180 if (!consumer_data.channel_ht) {
3181 goto error;
3182 }
3183
3184 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3185 if (!consumer_data.relayd_ht) {
3186 goto error;
3187 }
3188
3189 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3190 if (!consumer_data.stream_list_ht) {
3191 goto error;
3192 }
3193
3194 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3195 if (!consumer_data.stream_per_chan_id_ht) {
3196 goto error;
3197 }
3198
3199 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3200 if (!data_ht) {
3201 goto error;
3202 }
3203
3204 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3205 if (!metadata_ht) {
3206 goto error;
3207 }
3208
3209 return 0;
3210
3211 error:
3212 return -1;
3213 }
3214
3215 /*
3216 * Process the ADD_RELAYD command receive by a consumer.
3217 *
3218 * This will create a relayd socket pair and add it to the relayd hash table.
3219 * The caller MUST acquire a RCU read side lock before calling it.
3220 */
3221 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3222 struct lttng_consumer_local_data *ctx, int sock,
3223 struct pollfd *consumer_sockpoll,
3224 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3225 uint64_t relayd_session_id)
3226 {
3227 int fd = -1, ret = -1, relayd_created = 0;
3228 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3229 struct consumer_relayd_sock_pair *relayd = NULL;
3230
3231 assert(ctx);
3232 assert(relayd_sock);
3233
3234 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3235
3236 /* Get relayd reference if exists. */
3237 relayd = consumer_find_relayd(net_seq_idx);
3238 if (relayd == NULL) {
3239 assert(sock_type == LTTNG_STREAM_CONTROL);
3240 /* Not found. Allocate one. */
3241 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3242 if (relayd == NULL) {
3243 ret = -ENOMEM;
3244 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3245 goto error;
3246 } else {
3247 relayd->sessiond_session_id = sessiond_id;
3248 relayd_created = 1;
3249 }
3250
3251 /*
3252 * This code path MUST continue to the consumer send status message to
3253 * we can notify the session daemon and continue our work without
3254 * killing everything.
3255 */
3256 } else {
3257 /*
3258 * relayd key should never be found for control socket.
3259 */
3260 assert(sock_type != LTTNG_STREAM_CONTROL);
3261 }
3262
3263 /* First send a status message before receiving the fds. */
3264 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3265 if (ret < 0) {
3266 /* Somehow, the session daemon is not responding anymore. */
3267 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3268 goto error_nosignal;
3269 }
3270
3271 /* Poll on consumer socket. */
3272 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3273 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3274 ret = -EINTR;
3275 goto error_nosignal;
3276 }
3277
3278 /* Get relayd socket from session daemon */
3279 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3280 if (ret != sizeof(fd)) {
3281 ret = -1;
3282 fd = -1; /* Just in case it gets set with an invalid value. */
3283
3284 /*
3285 * Failing to receive FDs might indicate a major problem such as
3286 * reaching a fd limit during the receive where the kernel returns a
3287 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3288 * don't take any chances and stop everything.
3289 *
3290 * XXX: Feature request #558 will fix that and avoid this possible
3291 * issue when reaching the fd limit.
3292 */
3293 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3294 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3295 goto error;
3296 }
3297
3298 /* Copy socket information and received FD */
3299 switch (sock_type) {
3300 case LTTNG_STREAM_CONTROL:
3301 /* Copy received lttcomm socket */
3302 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3303 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3304 /* Handle create_sock error. */
3305 if (ret < 0) {
3306 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3307 goto error;
3308 }
3309 /*
3310 * Close the socket created internally by
3311 * lttcomm_create_sock, so we can replace it by the one
3312 * received from sessiond.
3313 */
3314 if (close(relayd->control_sock.sock.fd)) {
3315 PERROR("close");
3316 }
3317
3318 /* Assign new file descriptor */
3319 relayd->control_sock.sock.fd = fd;
3320 fd = -1; /* For error path */
3321 /* Assign version values. */
3322 relayd->control_sock.major = relayd_sock->major;
3323 relayd->control_sock.minor = relayd_sock->minor;
3324
3325 relayd->relayd_session_id = relayd_session_id;
3326
3327 break;
3328 case LTTNG_STREAM_DATA:
3329 /* Copy received lttcomm socket */
3330 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3331 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3332 /* Handle create_sock error. */
3333 if (ret < 0) {
3334 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3335 goto error;
3336 }
3337 /*
3338 * Close the socket created internally by
3339 * lttcomm_create_sock, so we can replace it by the one
3340 * received from sessiond.
3341 */
3342 if (close(relayd->data_sock.sock.fd)) {
3343 PERROR("close");
3344 }
3345
3346 /* Assign new file descriptor */
3347 relayd->data_sock.sock.fd = fd;
3348 fd = -1; /* for eventual error paths */
3349 /* Assign version values. */
3350 relayd->data_sock.major = relayd_sock->major;
3351 relayd->data_sock.minor = relayd_sock->minor;
3352 break;
3353 default:
3354 ERR("Unknown relayd socket type (%d)", sock_type);
3355 ret = -1;
3356 ret_code = LTTCOMM_CONSUMERD_FATAL;
3357 goto error;
3358 }
3359
3360 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3361 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3362 relayd->net_seq_idx, fd);
3363
3364 /* We successfully added the socket. Send status back. */
3365 ret = consumer_send_status_msg(sock, ret_code);
3366 if (ret < 0) {
3367 /* Somehow, the session daemon is not responding anymore. */
3368 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3369 goto error_nosignal;
3370 }
3371
3372 /*
3373 * Add relayd socket pair to consumer data hashtable. If object already
3374 * exists or on error, the function gracefully returns.
3375 */
3376 add_relayd(relayd);
3377
3378 /* All good! */
3379 return 0;
3380
3381 error:
3382 if (consumer_send_status_msg(sock, ret_code) < 0) {
3383 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3384 }
3385
3386 error_nosignal:
3387 /* Close received socket if valid. */
3388 if (fd >= 0) {
3389 if (close(fd)) {
3390 PERROR("close received socket");
3391 }
3392 }
3393
3394 if (relayd_created) {
3395 free(relayd);
3396 }
3397
3398 return ret;
3399 }
3400
3401 /*
3402 * Try to lock the stream mutex.
3403 *
3404 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3405 */
3406 static int stream_try_lock(struct lttng_consumer_stream *stream)
3407 {
3408 int ret;
3409
3410 assert(stream);
3411
3412 /*
3413 * Try to lock the stream mutex. On failure, we know that the stream is
3414 * being used else where hence there is data still being extracted.
3415 */
3416 ret = pthread_mutex_trylock(&stream->lock);
3417 if (ret) {
3418 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3419 ret = 0;
3420 goto end;
3421 }
3422
3423 ret = 1;
3424
3425 end:
3426 return ret;
3427 }
3428
3429 /*
3430 * Search for a relayd associated to the session id and return the reference.
3431 *
3432 * A rcu read side lock MUST be acquire before calling this function and locked
3433 * until the relayd object is no longer necessary.
3434 */
3435 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3436 {
3437 struct lttng_ht_iter iter;
3438 struct consumer_relayd_sock_pair *relayd = NULL;
3439
3440 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3441 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3442 node.node) {
3443 /*
3444 * Check by sessiond id which is unique here where the relayd session
3445 * id might not be when having multiple relayd.
3446 */
3447 if (relayd->sessiond_session_id == id) {
3448 /* Found the relayd. There can be only one per id. */
3449 goto found;
3450 }
3451 }
3452
3453 return NULL;
3454
3455 found:
3456 return relayd;
3457 }
3458
3459 /*
3460 * Check if for a given session id there is still data needed to be extract
3461 * from the buffers.
3462 *
3463 * Return 1 if data is pending or else 0 meaning ready to be read.
3464 */
3465 int consumer_data_pending(uint64_t id)
3466 {
3467 int ret;
3468 struct lttng_ht_iter iter;
3469 struct lttng_ht *ht;
3470 struct lttng_consumer_stream *stream;
3471 struct consumer_relayd_sock_pair *relayd = NULL;
3472 int (*data_pending)(struct lttng_consumer_stream *);
3473
3474 DBG("Consumer data pending command on session id %" PRIu64, id);
3475
3476 rcu_read_lock();
3477 pthread_mutex_lock(&consumer_data.lock);
3478
3479 switch (consumer_data.type) {
3480 case LTTNG_CONSUMER_KERNEL:
3481 data_pending = lttng_kconsumer_data_pending;
3482 break;
3483 case LTTNG_CONSUMER32_UST:
3484 case LTTNG_CONSUMER64_UST:
3485 data_pending = lttng_ustconsumer_data_pending;
3486 break;
3487 default:
3488 ERR("Unknown consumer data type");
3489 assert(0);
3490 }
3491
3492 /* Ease our life a bit */
3493 ht = consumer_data.stream_list_ht;
3494
3495 relayd = find_relayd_by_session_id(id);
3496 if (relayd) {
3497 /* Send init command for data pending. */
3498 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3499 ret = relayd_begin_data_pending(&relayd->control_sock,
3500 relayd->relayd_session_id);
3501 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3502 if (ret < 0) {
3503 /* Communication error thus the relayd so no data pending. */
3504 goto data_not_pending;
3505 }
3506 }
3507
3508 cds_lfht_for_each_entry_duplicate(ht->ht,
3509 ht->hash_fct(&id, lttng_ht_seed),
3510 ht->match_fct, &id,
3511 &iter.iter, stream, node_session_id.node) {
3512 /* If this call fails, the stream is being used hence data pending. */
3513 ret = stream_try_lock(stream);
3514 if (!ret) {
3515 goto data_pending;
3516 }
3517
3518 /*
3519 * A removed node from the hash table indicates that the stream has
3520 * been deleted thus having a guarantee that the buffers are closed
3521 * on the consumer side. However, data can still be transmitted
3522 * over the network so don't skip the relayd check.
3523 */
3524 ret = cds_lfht_is_node_deleted(&stream->node.node);
3525 if (!ret) {
3526 /*
3527 * An empty output file is not valid. We need at least one packet
3528 * generated per stream, even if it contains no event, so it
3529 * contains at least one packet header.
3530 */
3531 if (stream->output_written == 0) {
3532 pthread_mutex_unlock(&stream->lock);
3533 goto data_pending;
3534 }
3535 /* Check the stream if there is data in the buffers. */
3536 ret = data_pending(stream);
3537 if (ret == 1) {
3538 pthread_mutex_unlock(&stream->lock);
3539 goto data_pending;
3540 }
3541 }
3542
3543 /* Relayd check */
3544 if (relayd) {
3545 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3546 if (stream->metadata_flag) {
3547 ret = relayd_quiescent_control(&relayd->control_sock,
3548 stream->relayd_stream_id);
3549 } else {
3550 ret = relayd_data_pending(&relayd->control_sock,
3551 stream->relayd_stream_id,
3552 stream->next_net_seq_num - 1);
3553 }
3554 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3555 if (ret == 1) {
3556 pthread_mutex_unlock(&stream->lock);
3557 goto data_pending;
3558 }
3559 }
3560 pthread_mutex_unlock(&stream->lock);
3561 }
3562
3563 if (relayd) {
3564 unsigned int is_data_inflight = 0;
3565
3566 /* Send init command for data pending. */
3567 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3568 ret = relayd_end_data_pending(&relayd->control_sock,
3569 relayd->relayd_session_id, &is_data_inflight);
3570 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3571 if (ret < 0) {
3572 goto data_not_pending;
3573 }
3574 if (is_data_inflight) {
3575 goto data_pending;
3576 }
3577 }
3578
3579 /*
3580 * Finding _no_ node in the hash table and no inflight data means that the
3581 * stream(s) have been removed thus data is guaranteed to be available for
3582 * analysis from the trace files.
3583 */
3584
3585 data_not_pending:
3586 /* Data is available to be read by a viewer. */
3587 pthread_mutex_unlock(&consumer_data.lock);
3588 rcu_read_unlock();
3589 return 0;
3590
3591 data_pending:
3592 /* Data is still being extracted from buffers. */
3593 pthread_mutex_unlock(&consumer_data.lock);
3594 rcu_read_unlock();
3595 return 1;
3596 }
3597
3598 /*
3599 * Send a ret code status message to the sessiond daemon.
3600 *
3601 * Return the sendmsg() return value.
3602 */
3603 int consumer_send_status_msg(int sock, int ret_code)
3604 {
3605 struct lttcomm_consumer_status_msg msg;
3606
3607 msg.ret_code = ret_code;
3608
3609 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3610 }
3611
3612 /*
3613 * Send a channel status message to the sessiond daemon.
3614 *
3615 * Return the sendmsg() return value.
3616 */
3617 int consumer_send_status_channel(int sock,
3618 struct lttng_consumer_channel *channel)
3619 {
3620 struct lttcomm_consumer_status_channel msg;
3621
3622 assert(sock >= 0);
3623
3624 if (!channel) {
3625 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3626 } else {
3627 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3628 msg.key = channel->key;
3629 msg.stream_count = channel->streams.count;
3630 }
3631
3632 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3633 }
3634
3635 /*
3636 * Using a maximum stream size with the produced and consumed position of a
3637 * stream, computes the new consumed position to be as close as possible to the
3638 * maximum possible stream size.
3639 *
3640 * If maximum stream size is lower than the possible buffer size (produced -
3641 * consumed), the consumed_pos given is returned untouched else the new value
3642 * is returned.
3643 */
3644 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3645 unsigned long produced_pos, uint64_t max_stream_size)
3646 {
3647 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3648 /* Offset from the produced position to get the latest buffers. */
3649 return produced_pos - max_stream_size;
3650 }
3651
3652 return consumed_pos;
3653 }
This page took 0.217858 seconds and 4 git commands to generate.