2 * Copyright (C) 2011 EfficiOS Inc.
3 * Copyright (C) 2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
6 * SPDX-License-Identifier: GPL-2.0-only
10 #include "common/index/ctf-index.h"
17 #include <sys/socket.h>
18 #include <sys/types.h>
23 #include <bin/lttng-consumerd/health-consumerd.h>
24 #include <common/common.h>
25 #include <common/utils.h>
26 #include <common/time.h>
27 #include <common/compat/poll.h>
28 #include <common/compat/endian.h>
29 #include <common/index/index.h>
30 #include <common/kernel-ctl/kernel-ctl.h>
31 #include <common/sessiond-comm/relayd.h>
32 #include <common/sessiond-comm/sessiond-comm.h>
33 #include <common/kernel-consumer/kernel-consumer.h>
34 #include <common/relayd/relayd.h>
35 #include <common/ust-consumer/ust-consumer.h>
36 #include <common/consumer/consumer-timer.h>
37 #include <common/consumer/consumer.h>
38 #include <common/consumer/consumer-stream.h>
39 #include <common/consumer/consumer-testpoint.h>
40 #include <common/align.h>
41 #include <common/consumer/consumer-metadata-cache.h>
42 #include <common/trace-chunk.h>
43 #include <common/trace-chunk-registry.h>
44 #include <common/string-utils/format.h>
45 #include <common/dynamic-array.h>
47 lttng_consumer_global_data the_consumer_data
;
49 enum consumer_channel_action
{
52 CONSUMER_CHANNEL_QUIT
,
55 struct consumer_channel_msg
{
56 enum consumer_channel_action action
;
57 struct lttng_consumer_channel
*chan
; /* add */
58 uint64_t key
; /* del */
61 /* Flag used to temporarily pause data consumption from testpoints. */
62 int data_consumption_paused
;
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
77 static struct lttng_ht
*metadata_ht
;
78 static struct lttng_ht
*data_ht
;
80 static const char *get_consumer_domain(void)
82 switch (the_consumer_data
.type
) {
83 case LTTNG_CONSUMER_KERNEL
:
84 return DEFAULT_KERNEL_TRACE_DIR
;
85 case LTTNG_CONSUMER64_UST
:
87 case LTTNG_CONSUMER32_UST
:
88 return DEFAULT_UST_TRACE_DIR
;
95 * Notify a thread lttng pipe to poll back again. This usually means that some
96 * global state has changed so we just send back the thread in a poll wait
99 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
101 struct lttng_consumer_stream
*null_stream
= NULL
;
105 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
108 static void notify_health_quit_pipe(int *pipe
)
112 ret
= lttng_write(pipe
[1], "4", 1);
114 PERROR("write consumer health quit");
118 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
119 struct lttng_consumer_channel
*chan
,
121 enum consumer_channel_action action
)
123 struct consumer_channel_msg msg
;
126 memset(&msg
, 0, sizeof(msg
));
131 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
132 if (ret
< sizeof(msg
)) {
133 PERROR("notify_channel_pipe write error");
137 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
140 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
143 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
144 struct lttng_consumer_channel
**chan
,
146 enum consumer_channel_action
*action
)
148 struct consumer_channel_msg msg
;
151 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
152 if (ret
< sizeof(msg
)) {
156 *action
= msg
.action
;
164 * Cleanup the stream list of a channel. Those streams are not yet globally
167 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
169 struct lttng_consumer_stream
*stream
, *stmp
;
171 LTTNG_ASSERT(channel
);
173 /* Delete streams that might have been left in the stream list. */
174 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
176 cds_list_del(&stream
->send_node
);
178 * Once a stream is added to this list, the buffers were created so we
179 * have a guarantee that this call will succeed. Setting the monitor
180 * mode to 0 so we don't lock nor try to delete the stream from the
184 consumer_stream_destroy(stream
, NULL
);
189 * Find a stream. The consumer_data.lock must be locked during this
192 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
195 struct lttng_ht_iter iter
;
196 struct lttng_ht_node_u64
*node
;
197 struct lttng_consumer_stream
*stream
= NULL
;
201 /* -1ULL keys are lookup failures */
202 if (key
== (uint64_t) -1ULL) {
208 lttng_ht_lookup(ht
, &key
, &iter
);
209 node
= lttng_ht_iter_get_node_u64(&iter
);
211 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
219 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
221 struct lttng_consumer_stream
*stream
;
224 stream
= find_stream(key
, ht
);
226 stream
->key
= (uint64_t) -1ULL;
228 * We don't want the lookup to match, but we still need
229 * to iterate on this stream when iterating over the hash table. Just
230 * change the node key.
232 stream
->node
.key
= (uint64_t) -1ULL;
238 * Return a channel object for the given key.
240 * RCU read side lock MUST be acquired before calling this function and
241 * protects the channel ptr.
243 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
245 struct lttng_ht_iter iter
;
246 struct lttng_ht_node_u64
*node
;
247 struct lttng_consumer_channel
*channel
= NULL
;
249 ASSERT_RCU_READ_LOCKED();
251 /* -1ULL keys are lookup failures */
252 if (key
== (uint64_t) -1ULL) {
256 lttng_ht_lookup(the_consumer_data
.channel_ht
, &key
, &iter
);
257 node
= lttng_ht_iter_get_node_u64(&iter
);
259 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
266 * There is a possibility that the consumer does not have enough time between
267 * the close of the channel on the session daemon and the cleanup in here thus
268 * once we have a channel add with an existing key, we know for sure that this
269 * channel will eventually get cleaned up by all streams being closed.
271 * This function just nullifies the already existing channel key.
273 static void steal_channel_key(uint64_t key
)
275 struct lttng_consumer_channel
*channel
;
278 channel
= consumer_find_channel(key
);
280 channel
->key
= (uint64_t) -1ULL;
282 * We don't want the lookup to match, but we still need to iterate on
283 * this channel when iterating over the hash table. Just change the
286 channel
->node
.key
= (uint64_t) -1ULL;
291 static void free_channel_rcu(struct rcu_head
*head
)
293 struct lttng_ht_node_u64
*node
=
294 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
295 struct lttng_consumer_channel
*channel
=
296 caa_container_of(node
, struct lttng_consumer_channel
, node
);
298 switch (the_consumer_data
.type
) {
299 case LTTNG_CONSUMER_KERNEL
:
301 case LTTNG_CONSUMER32_UST
:
302 case LTTNG_CONSUMER64_UST
:
303 lttng_ustconsumer_free_channel(channel
);
306 ERR("Unknown consumer_data type");
313 * RCU protected relayd socket pair free.
315 static void free_relayd_rcu(struct rcu_head
*head
)
317 struct lttng_ht_node_u64
*node
=
318 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
319 struct consumer_relayd_sock_pair
*relayd
=
320 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
323 * Close all sockets. This is done in the call RCU since we don't want the
324 * socket fds to be reassigned thus potentially creating bad state of the
327 * We do not have to lock the control socket mutex here since at this stage
328 * there is no one referencing to this relayd object.
330 (void) relayd_close(&relayd
->control_sock
);
331 (void) relayd_close(&relayd
->data_sock
);
333 pthread_mutex_destroy(&relayd
->ctrl_sock_mutex
);
338 * Destroy and free relayd socket pair object.
340 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
343 struct lttng_ht_iter iter
;
345 if (relayd
== NULL
) {
349 DBG("Consumer destroy and close relayd socket pair");
351 iter
.iter
.node
= &relayd
->node
.node
;
352 ret
= lttng_ht_del(the_consumer_data
.relayd_ht
, &iter
);
354 /* We assume the relayd is being or is destroyed */
358 /* RCU free() call */
359 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
363 * Remove a channel from the global list protected by a mutex. This function is
364 * also responsible for freeing its data structures.
366 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
368 struct lttng_ht_iter iter
;
370 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
372 pthread_mutex_lock(&the_consumer_data
.lock
);
373 pthread_mutex_lock(&channel
->lock
);
375 /* Destroy streams that might have been left in the stream list. */
376 clean_channel_stream_list(channel
);
378 if (channel
->live_timer_enabled
== 1) {
379 consumer_timer_live_stop(channel
);
381 if (channel
->monitor_timer_enabled
== 1) {
382 consumer_timer_monitor_stop(channel
);
385 switch (the_consumer_data
.type
) {
386 case LTTNG_CONSUMER_KERNEL
:
388 case LTTNG_CONSUMER32_UST
:
389 case LTTNG_CONSUMER64_UST
:
390 lttng_ustconsumer_del_channel(channel
);
393 ERR("Unknown consumer_data type");
398 lttng_trace_chunk_put(channel
->trace_chunk
);
399 channel
->trace_chunk
= NULL
;
401 if (channel
->is_published
) {
405 iter
.iter
.node
= &channel
->node
.node
;
406 ret
= lttng_ht_del(the_consumer_data
.channel_ht
, &iter
);
409 iter
.iter
.node
= &channel
->channels_by_session_id_ht_node
.node
;
410 ret
= lttng_ht_del(the_consumer_data
.channels_by_session_id_ht
,
416 channel
->is_deleted
= true;
417 call_rcu(&channel
->node
.head
, free_channel_rcu
);
419 pthread_mutex_unlock(&channel
->lock
);
420 pthread_mutex_unlock(&the_consumer_data
.lock
);
424 * Iterate over the relayd hash table and destroy each element. Finally,
425 * destroy the whole hash table.
427 static void cleanup_relayd_ht(void)
429 struct lttng_ht_iter iter
;
430 struct consumer_relayd_sock_pair
*relayd
;
434 cds_lfht_for_each_entry(the_consumer_data
.relayd_ht
->ht
, &iter
.iter
,
436 consumer_destroy_relayd(relayd
);
441 lttng_ht_destroy(the_consumer_data
.relayd_ht
);
445 * Update the end point status of all streams having the given network sequence
446 * index (relayd index).
448 * It's atomically set without having the stream mutex locked which is fine
449 * because we handle the write/read race with a pipe wakeup for each thread.
451 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
452 enum consumer_endpoint_status status
)
454 struct lttng_ht_iter iter
;
455 struct lttng_consumer_stream
*stream
;
457 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
461 /* Let's begin with metadata */
462 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
463 if (stream
->net_seq_idx
== net_seq_idx
) {
464 uatomic_set(&stream
->endpoint_status
, status
);
465 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
469 /* Follow up by the data streams */
470 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
471 if (stream
->net_seq_idx
== net_seq_idx
) {
472 uatomic_set(&stream
->endpoint_status
, status
);
473 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
480 * Cleanup a relayd object by flagging every associated streams for deletion,
481 * destroying the object meaning removing it from the relayd hash table,
482 * closing the sockets and freeing the memory in a RCU call.
484 * If a local data context is available, notify the threads that the streams'
485 * state have changed.
487 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
)
491 LTTNG_ASSERT(relayd
);
493 DBG("Cleaning up relayd object ID %" PRIu64
, relayd
->net_seq_idx
);
495 /* Save the net sequence index before destroying the object */
496 netidx
= relayd
->net_seq_idx
;
499 * Delete the relayd from the relayd hash table, close the sockets and free
500 * the object in a RCU call.
502 consumer_destroy_relayd(relayd
);
504 /* Set inactive endpoint to all streams */
505 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
508 * With a local data context, notify the threads that the streams' state
509 * have changed. The write() action on the pipe acts as an "implicit"
510 * memory barrier ordering the updates of the end point status from the
511 * read of this status which happens AFTER receiving this notify.
513 notify_thread_lttng_pipe(relayd
->ctx
->consumer_data_pipe
);
514 notify_thread_lttng_pipe(relayd
->ctx
->consumer_metadata_pipe
);
518 * Flag a relayd socket pair for destruction. Destroy it if the refcount
521 * RCU read side lock MUST be aquired before calling this function.
523 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
525 LTTNG_ASSERT(relayd
);
526 ASSERT_RCU_READ_LOCKED();
528 /* Set destroy flag for this object */
529 uatomic_set(&relayd
->destroy_flag
, 1);
531 /* Destroy the relayd if refcount is 0 */
532 if (uatomic_read(&relayd
->refcount
) == 0) {
533 consumer_destroy_relayd(relayd
);
538 * Completly destroy stream from every visiable data structure and the given
541 * One this call returns, the stream object is not longer usable nor visible.
543 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
546 consumer_stream_destroy(stream
, ht
);
550 * XXX naming of del vs destroy is all mixed up.
552 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
554 consumer_stream_destroy(stream
, data_ht
);
557 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
559 consumer_stream_destroy(stream
, metadata_ht
);
562 void consumer_stream_update_channel_attributes(
563 struct lttng_consumer_stream
*stream
,
564 struct lttng_consumer_channel
*channel
)
566 stream
->channel_read_only_attributes
.tracefile_size
=
567 channel
->tracefile_size
;
571 * Add a stream to the global list protected by a mutex.
573 void consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
575 struct lttng_ht
*ht
= data_ht
;
577 LTTNG_ASSERT(stream
);
580 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
582 pthread_mutex_lock(&the_consumer_data
.lock
);
583 pthread_mutex_lock(&stream
->chan
->lock
);
584 pthread_mutex_lock(&stream
->chan
->timer_lock
);
585 pthread_mutex_lock(&stream
->lock
);
588 /* Steal stream identifier to avoid having streams with the same key */
589 steal_stream_key(stream
->key
, ht
);
591 lttng_ht_add_unique_u64(ht
, &stream
->node
);
593 lttng_ht_add_u64(the_consumer_data
.stream_per_chan_id_ht
,
594 &stream
->node_channel_id
);
597 * Add stream to the stream_list_ht of the consumer data. No need to steal
598 * the key since the HT does not use it and we allow to add redundant keys
601 lttng_ht_add_u64(the_consumer_data
.stream_list_ht
,
602 &stream
->node_session_id
);
605 * When nb_init_stream_left reaches 0, we don't need to trigger any action
606 * in terms of destroying the associated channel, because the action that
607 * causes the count to become 0 also causes a stream to be added. The
608 * channel deletion will thus be triggered by the following removal of this
611 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
612 /* Increment refcount before decrementing nb_init_stream_left */
614 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
617 /* Update consumer data once the node is inserted. */
618 the_consumer_data
.stream_count
++;
619 the_consumer_data
.need_update
= 1;
622 pthread_mutex_unlock(&stream
->lock
);
623 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
624 pthread_mutex_unlock(&stream
->chan
->lock
);
625 pthread_mutex_unlock(&the_consumer_data
.lock
);
629 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
630 * be acquired before calling this.
632 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
635 struct lttng_ht_node_u64
*node
;
636 struct lttng_ht_iter iter
;
638 LTTNG_ASSERT(relayd
);
639 ASSERT_RCU_READ_LOCKED();
641 lttng_ht_lookup(the_consumer_data
.relayd_ht
, &relayd
->net_seq_idx
,
643 node
= lttng_ht_iter_get_node_u64(&iter
);
647 lttng_ht_add_unique_u64(the_consumer_data
.relayd_ht
, &relayd
->node
);
654 * Allocate and return a consumer relayd socket.
656 static struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
657 uint64_t net_seq_idx
)
659 struct consumer_relayd_sock_pair
*obj
= NULL
;
661 /* net sequence index of -1 is a failure */
662 if (net_seq_idx
== (uint64_t) -1ULL) {
666 obj
= (consumer_relayd_sock_pair
*) zmalloc(sizeof(struct consumer_relayd_sock_pair
));
668 PERROR("zmalloc relayd sock");
672 obj
->net_seq_idx
= net_seq_idx
;
674 obj
->destroy_flag
= 0;
675 obj
->control_sock
.sock
.fd
= -1;
676 obj
->data_sock
.sock
.fd
= -1;
677 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
678 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
685 * Find a relayd socket pair in the global consumer data.
687 * Return the object if found else NULL.
688 * RCU read-side lock must be held across this call and while using the
691 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
693 struct lttng_ht_iter iter
;
694 struct lttng_ht_node_u64
*node
;
695 struct consumer_relayd_sock_pair
*relayd
= NULL
;
697 ASSERT_RCU_READ_LOCKED();
699 /* Negative keys are lookup failures */
700 if (key
== (uint64_t) -1ULL) {
704 lttng_ht_lookup(the_consumer_data
.relayd_ht
, &key
, &iter
);
705 node
= lttng_ht_iter_get_node_u64(&iter
);
707 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
715 * Find a relayd and send the stream
717 * Returns 0 on success, < 0 on error
719 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
723 struct consumer_relayd_sock_pair
*relayd
;
725 LTTNG_ASSERT(stream
);
726 LTTNG_ASSERT(stream
->net_seq_idx
!= -1ULL);
729 /* The stream is not metadata. Get relayd reference if exists. */
731 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
732 if (relayd
!= NULL
) {
733 /* Add stream on the relayd */
734 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
735 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
736 get_consumer_domain(), path
, &stream
->relayd_stream_id
,
737 stream
->chan
->tracefile_size
,
738 stream
->chan
->tracefile_count
,
739 stream
->trace_chunk
);
740 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
742 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
743 lttng_consumer_cleanup_relayd(relayd
);
747 uatomic_inc(&relayd
->refcount
);
748 stream
->sent_to_relayd
= 1;
750 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
751 stream
->key
, stream
->net_seq_idx
);
756 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
757 stream
->name
, stream
->key
, stream
->net_seq_idx
);
765 * Find a relayd and send the streams sent message
767 * Returns 0 on success, < 0 on error
769 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
772 struct consumer_relayd_sock_pair
*relayd
;
774 LTTNG_ASSERT(net_seq_idx
!= -1ULL);
776 /* The stream is not metadata. Get relayd reference if exists. */
778 relayd
= consumer_find_relayd(net_seq_idx
);
779 if (relayd
!= NULL
) {
780 /* Add stream on the relayd */
781 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
782 ret
= relayd_streams_sent(&relayd
->control_sock
);
783 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
785 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
786 lttng_consumer_cleanup_relayd(relayd
);
790 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
797 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
805 * Find a relayd and close the stream
807 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
809 struct consumer_relayd_sock_pair
*relayd
;
811 /* The stream is not metadata. Get relayd reference if exists. */
813 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
815 consumer_stream_relayd_close(stream
, relayd
);
821 * Handle stream for relayd transmission if the stream applies for network
822 * streaming where the net sequence index is set.
824 * Return destination file descriptor or negative value on error.
826 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
827 size_t data_size
, unsigned long padding
,
828 struct consumer_relayd_sock_pair
*relayd
)
831 struct lttcomm_relayd_data_hdr data_hdr
;
834 LTTNG_ASSERT(stream
);
835 LTTNG_ASSERT(relayd
);
837 /* Reset data header */
838 memset(&data_hdr
, 0, sizeof(data_hdr
));
840 if (stream
->metadata_flag
) {
841 /* Caller MUST acquire the relayd control socket lock */
842 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
847 /* Metadata are always sent on the control socket. */
848 outfd
= relayd
->control_sock
.sock
.fd
;
850 /* Set header with stream information */
851 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
852 data_hdr
.data_size
= htobe32(data_size
);
853 data_hdr
.padding_size
= htobe32(padding
);
856 * Note that net_seq_num below is assigned with the *current* value of
857 * next_net_seq_num and only after that the next_net_seq_num will be
858 * increment. This is why when issuing a command on the relayd using
859 * this next value, 1 should always be substracted in order to compare
860 * the last seen sequence number on the relayd side to the last sent.
862 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
863 /* Other fields are zeroed previously */
865 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
871 ++stream
->next_net_seq_num
;
873 /* Set to go on data socket */
874 outfd
= relayd
->data_sock
.sock
.fd
;
882 * Write a character on the metadata poll pipe to wake the metadata thread.
883 * Returns 0 on success, -1 on error.
885 int consumer_metadata_wakeup_pipe(const struct lttng_consumer_channel
*channel
)
889 DBG("Waking up metadata poll thread (writing to pipe): channel name = '%s'",
891 if (channel
->monitor
&& channel
->metadata_stream
) {
892 const char dummy
= 'c';
893 const ssize_t write_ret
= lttng_write(
894 channel
->metadata_stream
->ust_metadata_poll_pipe
[1],
898 if (errno
== EWOULDBLOCK
) {
900 * This is fine, the metadata poll thread
901 * is having a hard time keeping-up, but
902 * it will eventually wake-up and consume
903 * the available data.
907 PERROR("Failed to write to UST metadata pipe while attempting to wake-up the metadata poll thread");
919 * Trigger a dump of the metadata content. Following/during the succesful
920 * completion of this call, the metadata poll thread will start receiving
921 * metadata packets to consume.
923 * The caller must hold the channel and stream locks.
926 int consumer_metadata_stream_dump(struct lttng_consumer_stream
*stream
)
930 ASSERT_LOCKED(stream
->chan
->lock
);
931 ASSERT_LOCKED(stream
->lock
);
932 LTTNG_ASSERT(stream
->metadata_flag
);
933 LTTNG_ASSERT(stream
->chan
->trace_chunk
);
935 switch (the_consumer_data
.type
) {
936 case LTTNG_CONSUMER_KERNEL
:
938 * Reset the position of what has been read from the
939 * metadata cache to 0 so we can dump it again.
941 ret
= kernctl_metadata_cache_dump(stream
->wait_fd
);
943 case LTTNG_CONSUMER32_UST
:
944 case LTTNG_CONSUMER64_UST
:
946 * Reset the position pushed from the metadata cache so it
947 * will write from the beginning on the next push.
949 stream
->ust_metadata_pushed
= 0;
950 ret
= consumer_metadata_wakeup_pipe(stream
->chan
);
953 ERR("Unknown consumer_data type");
957 ERR("Failed to dump the metadata cache");
963 int lttng_consumer_channel_set_trace_chunk(
964 struct lttng_consumer_channel
*channel
,
965 struct lttng_trace_chunk
*new_trace_chunk
)
967 pthread_mutex_lock(&channel
->lock
);
968 if (channel
->is_deleted
) {
970 * The channel has been logically deleted and should no longer
971 * be used. It has released its reference to its current trace
972 * chunk and should not acquire a new one.
974 * Return success as there is nothing for the caller to do.
980 * The acquisition of the reference cannot fail (barring
981 * a severe internal error) since a reference to the published
982 * chunk is already held by the caller.
984 if (new_trace_chunk
) {
985 const bool acquired_reference
= lttng_trace_chunk_get(
988 LTTNG_ASSERT(acquired_reference
);
991 lttng_trace_chunk_put(channel
->trace_chunk
);
992 channel
->trace_chunk
= new_trace_chunk
;
994 pthread_mutex_unlock(&channel
->lock
);
999 * Allocate and return a new lttng_consumer_channel object using the given key
1000 * to initialize the hash table node.
1002 * On error, return NULL.
1004 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
1005 uint64_t session_id
,
1006 const uint64_t *chunk_id
,
1007 const char *pathname
,
1010 enum lttng_event_output output
,
1011 uint64_t tracefile_size
,
1012 uint64_t tracefile_count
,
1013 uint64_t session_id_per_pid
,
1014 unsigned int monitor
,
1015 unsigned int live_timer_interval
,
1016 bool is_in_live_session
,
1017 const char *root_shm_path
,
1018 const char *shm_path
)
1020 struct lttng_consumer_channel
*channel
= NULL
;
1021 struct lttng_trace_chunk
*trace_chunk
= NULL
;
1024 trace_chunk
= lttng_trace_chunk_registry_find_chunk(
1025 the_consumer_data
.chunk_registry
, session_id
,
1028 ERR("Failed to find trace chunk reference during creation of channel");
1033 channel
= (lttng_consumer_channel
*) zmalloc(sizeof(*channel
));
1034 if (channel
== NULL
) {
1035 PERROR("malloc struct lttng_consumer_channel");
1040 channel
->refcount
= 0;
1041 channel
->session_id
= session_id
;
1042 channel
->session_id_per_pid
= session_id_per_pid
;
1043 channel
->relayd_id
= relayd_id
;
1044 channel
->tracefile_size
= tracefile_size
;
1045 channel
->tracefile_count
= tracefile_count
;
1046 channel
->monitor
= monitor
;
1047 channel
->live_timer_interval
= live_timer_interval
;
1048 channel
->is_live
= is_in_live_session
;
1049 pthread_mutex_init(&channel
->lock
, NULL
);
1050 pthread_mutex_init(&channel
->timer_lock
, NULL
);
1053 case LTTNG_EVENT_SPLICE
:
1054 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
1056 case LTTNG_EVENT_MMAP
:
1057 channel
->output
= CONSUMER_CHANNEL_MMAP
;
1067 * In monitor mode, the streams associated with the channel will be put in
1068 * a special list ONLY owned by this channel. So, the refcount is set to 1
1069 * here meaning that the channel itself has streams that are referenced.
1071 * On a channel deletion, once the channel is no longer visible, the
1072 * refcount is decremented and checked for a zero value to delete it. With
1073 * streams in no monitor mode, it will now be safe to destroy the channel.
1075 if (!channel
->monitor
) {
1076 channel
->refcount
= 1;
1079 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
1080 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
1082 strncpy(channel
->name
, name
, sizeof(channel
->name
));
1083 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
1085 if (root_shm_path
) {
1086 strncpy(channel
->root_shm_path
, root_shm_path
, sizeof(channel
->root_shm_path
));
1087 channel
->root_shm_path
[sizeof(channel
->root_shm_path
) - 1] = '\0';
1090 strncpy(channel
->shm_path
, shm_path
, sizeof(channel
->shm_path
));
1091 channel
->shm_path
[sizeof(channel
->shm_path
) - 1] = '\0';
1094 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
1095 lttng_ht_node_init_u64(&channel
->channels_by_session_id_ht_node
,
1096 channel
->session_id
);
1098 channel
->wait_fd
= -1;
1099 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
1102 int ret
= lttng_consumer_channel_set_trace_chunk(channel
,
1109 DBG("Allocated channel (key %" PRIu64
")", channel
->key
);
1112 lttng_trace_chunk_put(trace_chunk
);
1115 consumer_del_channel(channel
);
1121 * Add a channel to the global list protected by a mutex.
1123 * Always return 0 indicating success.
1125 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1126 struct lttng_consumer_local_data
*ctx
)
1128 pthread_mutex_lock(&the_consumer_data
.lock
);
1129 pthread_mutex_lock(&channel
->lock
);
1130 pthread_mutex_lock(&channel
->timer_lock
);
1133 * This gives us a guarantee that the channel we are about to add to the
1134 * channel hash table will be unique. See this function comment on the why
1135 * we need to steel the channel key at this stage.
1137 steal_channel_key(channel
->key
);
1140 lttng_ht_add_unique_u64(the_consumer_data
.channel_ht
, &channel
->node
);
1141 lttng_ht_add_u64(the_consumer_data
.channels_by_session_id_ht
,
1142 &channel
->channels_by_session_id_ht_node
);
1144 channel
->is_published
= true;
1146 pthread_mutex_unlock(&channel
->timer_lock
);
1147 pthread_mutex_unlock(&channel
->lock
);
1148 pthread_mutex_unlock(&the_consumer_data
.lock
);
1150 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1151 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1158 * Allocate the pollfd structure and the local view of the out fds to avoid
1159 * doing a lookup in the linked list and concurrency issues when writing is
1160 * needed. Called with consumer_data.lock held.
1162 * Returns the number of fds in the structures.
1164 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1165 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1166 struct lttng_ht
*ht
, int *nb_inactive_fd
)
1169 struct lttng_ht_iter iter
;
1170 struct lttng_consumer_stream
*stream
;
1174 LTTNG_ASSERT(pollfd
);
1175 LTTNG_ASSERT(local_stream
);
1177 DBG("Updating poll fd array");
1178 *nb_inactive_fd
= 0;
1180 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1182 * Only active streams with an active end point can be added to the
1183 * poll set and local stream storage of the thread.
1185 * There is a potential race here for endpoint_status to be updated
1186 * just after the check. However, this is OK since the stream(s) will
1187 * be deleted once the thread is notified that the end point state has
1188 * changed where this function will be called back again.
1190 * We track the number of inactive FDs because they still need to be
1191 * closed by the polling thread after a wakeup on the data_pipe or
1194 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1195 (*nb_inactive_fd
)++;
1199 * This clobbers way too much the debug output. Uncomment that if you
1200 * need it for debugging purposes.
1202 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1203 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1204 local_stream
[i
] = stream
;
1210 * Insert the consumer_data_pipe at the end of the array and don't
1211 * increment i so nb_fd is the number of real FD.
1213 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1214 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1216 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1217 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1222 * Poll on the should_quit pipe and the command socket return -1 on
1223 * error, 1 if should exit, 0 if data is available on the command socket
1225 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1230 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1231 if (num_rdy
== -1) {
1233 * Restart interrupted system call.
1235 if (errno
== EINTR
) {
1238 PERROR("Poll error");
1241 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1242 DBG("consumer_should_quit wake up");
1249 * Set the error socket.
1251 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1254 ctx
->consumer_error_socket
= sock
;
1258 * Set the command socket path.
1260 void lttng_consumer_set_command_sock_path(
1261 struct lttng_consumer_local_data
*ctx
, char *sock
)
1263 ctx
->consumer_command_sock_path
= sock
;
1267 * Send return code to the session daemon.
1268 * If the socket is not defined, we return 0, it is not a fatal error
1270 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1272 if (ctx
->consumer_error_socket
> 0) {
1273 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1274 sizeof(enum lttcomm_sessiond_command
));
1281 * Close all the tracefiles and stream fds and MUST be called when all
1282 * instances are destroyed i.e. when all threads were joined and are ended.
1284 void lttng_consumer_cleanup(void)
1286 struct lttng_ht_iter iter
;
1287 struct lttng_consumer_channel
*channel
;
1288 unsigned int trace_chunks_left
;
1292 cds_lfht_for_each_entry(the_consumer_data
.channel_ht
->ht
, &iter
.iter
,
1293 channel
, node
.node
) {
1294 consumer_del_channel(channel
);
1299 lttng_ht_destroy(the_consumer_data
.channel_ht
);
1300 lttng_ht_destroy(the_consumer_data
.channels_by_session_id_ht
);
1302 cleanup_relayd_ht();
1304 lttng_ht_destroy(the_consumer_data
.stream_per_chan_id_ht
);
1307 * This HT contains streams that are freed by either the metadata thread or
1308 * the data thread so we do *nothing* on the hash table and simply destroy
1311 lttng_ht_destroy(the_consumer_data
.stream_list_ht
);
1314 * Trace chunks in the registry may still exist if the session
1315 * daemon has encountered an internal error and could not
1316 * tear down its sessions and/or trace chunks properly.
1318 * Release the session daemon's implicit reference to any remaining
1319 * trace chunk and print an error if any trace chunk was found. Note
1320 * that there are _no_ legitimate cases for trace chunks to be left,
1321 * it is a leak. However, it can happen following a crash of the
1322 * session daemon and not emptying the registry would cause an assertion
1325 trace_chunks_left
= lttng_trace_chunk_registry_put_each_chunk(
1326 the_consumer_data
.chunk_registry
);
1327 if (trace_chunks_left
) {
1328 ERR("%u trace chunks are leaked by lttng-consumerd. "
1329 "This can be caused by an internal error of the session daemon.",
1332 /* Run all callbacks freeing each chunk. */
1334 lttng_trace_chunk_registry_destroy(the_consumer_data
.chunk_registry
);
1338 * Called from signal handler.
1340 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1344 CMM_STORE_SHARED(consumer_quit
, 1);
1345 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1347 PERROR("write consumer quit");
1350 DBG("Consumer flag that it should quit");
1355 * Flush pending writes to trace output disk file.
1358 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1362 int outfd
= stream
->out_fd
;
1365 * This does a blocking write-and-wait on any page that belongs to the
1366 * subbuffer prior to the one we just wrote.
1367 * Don't care about error values, as these are just hints and ways to
1368 * limit the amount of page cache used.
1370 if (orig_offset
< stream
->max_sb_size
) {
1373 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1374 stream
->max_sb_size
,
1375 SYNC_FILE_RANGE_WAIT_BEFORE
1376 | SYNC_FILE_RANGE_WRITE
1377 | SYNC_FILE_RANGE_WAIT_AFTER
);
1379 * Give hints to the kernel about how we access the file:
1380 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1383 * We need to call fadvise again after the file grows because the
1384 * kernel does not seem to apply fadvise to non-existing parts of the
1387 * Call fadvise _after_ having waited for the page writeback to
1388 * complete because the dirty page writeback semantic is not well
1389 * defined. So it can be expected to lead to lower throughput in
1392 ret
= posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1393 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1394 if (ret
&& ret
!= -ENOSYS
) {
1396 PERROR("posix_fadvise on fd %i", outfd
);
1401 * Initialise the necessary environnement :
1402 * - create a new context
1403 * - create the poll_pipe
1404 * - create the should_quit pipe (for signal handler)
1405 * - create the thread pipe (for splice)
1407 * Takes a function pointer as argument, this function is called when data is
1408 * available on a buffer. This function is responsible to do the
1409 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1410 * buffer configuration and then kernctl_put_next_subbuf at the end.
1412 * Returns a pointer to the new context or NULL on error.
1414 struct lttng_consumer_local_data
*lttng_consumer_create(
1415 enum lttng_consumer_type type
,
1416 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1417 struct lttng_consumer_local_data
*ctx
, bool locked_by_caller
),
1418 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1419 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1420 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1423 struct lttng_consumer_local_data
*ctx
;
1425 LTTNG_ASSERT(the_consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1426 the_consumer_data
.type
== type
);
1427 the_consumer_data
.type
= type
;
1429 ctx
= (lttng_consumer_local_data
*) zmalloc(sizeof(struct lttng_consumer_local_data
));
1431 PERROR("allocating context");
1435 ctx
->consumer_error_socket
= -1;
1436 ctx
->consumer_metadata_socket
= -1;
1437 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1438 /* assign the callbacks */
1439 ctx
->on_buffer_ready
= buffer_ready
;
1440 ctx
->on_recv_channel
= recv_channel
;
1441 ctx
->on_recv_stream
= recv_stream
;
1442 ctx
->on_update_stream
= update_stream
;
1444 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1445 if (!ctx
->consumer_data_pipe
) {
1446 goto error_poll_pipe
;
1449 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1450 if (!ctx
->consumer_wakeup_pipe
) {
1451 goto error_wakeup_pipe
;
1454 ret
= pipe(ctx
->consumer_should_quit
);
1456 PERROR("Error creating recv pipe");
1457 goto error_quit_pipe
;
1460 ret
= pipe(ctx
->consumer_channel_pipe
);
1462 PERROR("Error creating channel pipe");
1463 goto error_channel_pipe
;
1466 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1467 if (!ctx
->consumer_metadata_pipe
) {
1468 goto error_metadata_pipe
;
1471 ctx
->channel_monitor_pipe
= -1;
1475 error_metadata_pipe
:
1476 utils_close_pipe(ctx
->consumer_channel_pipe
);
1478 utils_close_pipe(ctx
->consumer_should_quit
);
1480 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1482 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1490 * Iterate over all streams of the hashtable and free them properly.
1492 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1494 struct lttng_ht_iter iter
;
1495 struct lttng_consumer_stream
*stream
;
1502 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1504 * Ignore return value since we are currently cleaning up so any error
1507 (void) consumer_del_stream(stream
, ht
);
1511 lttng_ht_destroy(ht
);
1515 * Iterate over all streams of the metadata hashtable and free them
1518 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1520 struct lttng_ht_iter iter
;
1521 struct lttng_consumer_stream
*stream
;
1528 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1530 * Ignore return value since we are currently cleaning up so any error
1533 (void) consumer_del_metadata_stream(stream
, ht
);
1537 lttng_ht_destroy(ht
);
1541 * Close all fds associated with the instance and free the context.
1543 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1547 DBG("Consumer destroying it. Closing everything.");
1553 destroy_data_stream_ht(data_ht
);
1554 destroy_metadata_stream_ht(metadata_ht
);
1556 ret
= close(ctx
->consumer_error_socket
);
1560 ret
= close(ctx
->consumer_metadata_socket
);
1564 utils_close_pipe(ctx
->consumer_channel_pipe
);
1565 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1566 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1567 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1568 utils_close_pipe(ctx
->consumer_should_quit
);
1570 unlink(ctx
->consumer_command_sock_path
);
1575 * Write the metadata stream id on the specified file descriptor.
1577 static int write_relayd_metadata_id(int fd
,
1578 struct lttng_consumer_stream
*stream
,
1579 unsigned long padding
)
1582 struct lttcomm_relayd_metadata_payload hdr
;
1584 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1585 hdr
.padding_size
= htobe32(padding
);
1586 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1587 if (ret
< sizeof(hdr
)) {
1589 * This error means that the fd's end is closed so ignore the PERROR
1590 * not to clubber the error output since this can happen in a normal
1593 if (errno
!= EPIPE
) {
1594 PERROR("write metadata stream id");
1596 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1598 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1599 * handle writting the missing part so report that as an error and
1600 * don't lie to the caller.
1605 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1606 stream
->relayd_stream_id
, padding
);
1613 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1614 * core function for writing trace buffers to either the local filesystem or
1617 * It must be called with the stream and the channel lock held.
1619 * Careful review MUST be put if any changes occur!
1621 * Returns the number of bytes written
1623 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1624 struct lttng_consumer_stream
*stream
,
1625 const struct lttng_buffer_view
*buffer
,
1626 unsigned long padding
)
1629 off_t orig_offset
= stream
->out_fd_offset
;
1630 /* Default is on the disk */
1631 int outfd
= stream
->out_fd
;
1632 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1633 unsigned int relayd_hang_up
= 0;
1634 const size_t subbuf_content_size
= buffer
->size
- padding
;
1637 /* RCU lock for the relayd pointer */
1639 LTTNG_ASSERT(stream
->net_seq_idx
!= (uint64_t) -1ULL ||
1640 stream
->trace_chunk
);
1642 /* Flag that the current stream if set for network streaming. */
1643 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1644 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1645 if (relayd
== NULL
) {
1651 /* Handle stream on the relayd if the output is on the network */
1653 unsigned long netlen
= subbuf_content_size
;
1656 * Lock the control socket for the complete duration of the function
1657 * since from this point on we will use the socket.
1659 if (stream
->metadata_flag
) {
1660 /* Metadata requires the control socket. */
1661 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1662 if (stream
->reset_metadata_flag
) {
1663 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1664 stream
->relayd_stream_id
,
1665 stream
->metadata_version
);
1670 stream
->reset_metadata_flag
= 0;
1672 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1675 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1680 /* Use the returned socket. */
1683 /* Write metadata stream id before payload */
1684 if (stream
->metadata_flag
) {
1685 ret
= write_relayd_metadata_id(outfd
, stream
, padding
);
1692 write_len
= subbuf_content_size
;
1694 /* No streaming; we have to write the full padding. */
1695 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1696 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1698 ERR("Reset metadata file");
1701 stream
->reset_metadata_flag
= 0;
1705 * Check if we need to change the tracefile before writing the packet.
1707 if (stream
->chan
->tracefile_size
> 0 &&
1708 (stream
->tracefile_size_current
+ buffer
->size
) >
1709 stream
->chan
->tracefile_size
) {
1710 ret
= consumer_stream_rotate_output_files(stream
);
1714 outfd
= stream
->out_fd
;
1717 stream
->tracefile_size_current
+= buffer
->size
;
1718 write_len
= buffer
->size
;
1722 * This call guarantee that len or less is returned. It's impossible to
1723 * receive a ret value that is bigger than len.
1725 ret
= lttng_write(outfd
, buffer
->data
, write_len
);
1726 DBG("Consumer mmap write() ret %zd (len %zu)", ret
, write_len
);
1727 if (ret
< 0 || ((size_t) ret
!= write_len
)) {
1729 * Report error to caller if nothing was written else at least send the
1737 /* Socket operation failed. We consider the relayd dead */
1738 if (errno
== EPIPE
) {
1740 * This is possible if the fd is closed on the other side
1741 * (outfd) or any write problem. It can be verbose a bit for a
1742 * normal execution if for instance the relayd is stopped
1743 * abruptly. This can happen so set this to a DBG statement.
1745 DBG("Consumer mmap write detected relayd hang up");
1747 /* Unhandled error, print it and stop function right now. */
1748 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret
,
1753 stream
->output_written
+= ret
;
1755 /* This call is useless on a socket so better save a syscall. */
1757 /* This won't block, but will start writeout asynchronously */
1758 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, write_len
,
1759 SYNC_FILE_RANGE_WRITE
);
1760 stream
->out_fd_offset
+= write_len
;
1761 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1766 * This is a special case that the relayd has closed its socket. Let's
1767 * cleanup the relayd object and all associated streams.
1769 if (relayd
&& relayd_hang_up
) {
1770 ERR("Relayd hangup. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
1771 lttng_consumer_cleanup_relayd(relayd
);
1775 /* Unlock only if ctrl socket used */
1776 if (relayd
&& stream
->metadata_flag
) {
1777 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1785 * Splice the data from the ring buffer to the tracefile.
1787 * It must be called with the stream lock held.
1789 * Returns the number of bytes spliced.
1791 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1792 struct lttng_consumer_local_data
*ctx
,
1793 struct lttng_consumer_stream
*stream
, unsigned long len
,
1794 unsigned long padding
)
1796 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1798 off_t orig_offset
= stream
->out_fd_offset
;
1799 int fd
= stream
->wait_fd
;
1800 /* Default is on the disk */
1801 int outfd
= stream
->out_fd
;
1802 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1804 unsigned int relayd_hang_up
= 0;
1806 switch (the_consumer_data
.type
) {
1807 case LTTNG_CONSUMER_KERNEL
:
1809 case LTTNG_CONSUMER32_UST
:
1810 case LTTNG_CONSUMER64_UST
:
1811 /* Not supported for user space tracing */
1814 ERR("Unknown consumer_data type");
1818 /* RCU lock for the relayd pointer */
1821 /* Flag that the current stream if set for network streaming. */
1822 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1823 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1824 if (relayd
== NULL
) {
1829 splice_pipe
= stream
->splice_pipe
;
1831 /* Write metadata stream id before payload */
1833 unsigned long total_len
= len
;
1835 if (stream
->metadata_flag
) {
1837 * Lock the control socket for the complete duration of the function
1838 * since from this point on we will use the socket.
1840 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1842 if (stream
->reset_metadata_flag
) {
1843 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1844 stream
->relayd_stream_id
,
1845 stream
->metadata_version
);
1850 stream
->reset_metadata_flag
= 0;
1852 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
,
1860 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1863 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1869 /* Use the returned socket. */
1872 /* No streaming, we have to set the len with the full padding */
1875 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1876 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1878 ERR("Reset metadata file");
1881 stream
->reset_metadata_flag
= 0;
1884 * Check if we need to change the tracefile before writing the packet.
1886 if (stream
->chan
->tracefile_size
> 0 &&
1887 (stream
->tracefile_size_current
+ len
) >
1888 stream
->chan
->tracefile_size
) {
1889 ret
= consumer_stream_rotate_output_files(stream
);
1894 outfd
= stream
->out_fd
;
1897 stream
->tracefile_size_current
+= len
;
1901 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1902 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1903 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1904 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1905 DBG("splice chan to pipe, ret %zd", ret_splice
);
1906 if (ret_splice
< 0) {
1909 PERROR("Error in relay splice");
1913 /* Handle stream on the relayd if the output is on the network */
1914 if (relayd
&& stream
->metadata_flag
) {
1915 size_t metadata_payload_size
=
1916 sizeof(struct lttcomm_relayd_metadata_payload
);
1918 /* Update counter to fit the spliced data */
1919 ret_splice
+= metadata_payload_size
;
1920 len
+= metadata_payload_size
;
1922 * We do this so the return value can match the len passed as
1923 * argument to this function.
1925 written
-= metadata_payload_size
;
1928 /* Splice data out */
1929 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1930 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1931 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1933 if (ret_splice
< 0) {
1938 } else if (ret_splice
> len
) {
1940 * We don't expect this code path to be executed but you never know
1941 * so this is an extra protection agains a buggy splice().
1944 written
+= ret_splice
;
1945 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
1949 /* All good, update current len and continue. */
1953 /* This call is useless on a socket so better save a syscall. */
1955 /* This won't block, but will start writeout asynchronously */
1956 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1957 SYNC_FILE_RANGE_WRITE
);
1958 stream
->out_fd_offset
+= ret_splice
;
1960 stream
->output_written
+= ret_splice
;
1961 written
+= ret_splice
;
1964 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1970 * This is a special case that the relayd has closed its socket. Let's
1971 * cleanup the relayd object and all associated streams.
1973 if (relayd
&& relayd_hang_up
) {
1974 ERR("Relayd hangup. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
1975 lttng_consumer_cleanup_relayd(relayd
);
1976 /* Skip splice error so the consumer does not fail */
1981 /* send the appropriate error description to sessiond */
1984 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1987 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1990 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1995 if (relayd
&& stream
->metadata_flag
) {
1996 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2004 * Sample the snapshot positions for a specific fd
2006 * Returns 0 on success, < 0 on error
2008 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream
*stream
)
2010 switch (the_consumer_data
.type
) {
2011 case LTTNG_CONSUMER_KERNEL
:
2012 return lttng_kconsumer_sample_snapshot_positions(stream
);
2013 case LTTNG_CONSUMER32_UST
:
2014 case LTTNG_CONSUMER64_UST
:
2015 return lttng_ustconsumer_sample_snapshot_positions(stream
);
2017 ERR("Unknown consumer_data type");
2023 * Take a snapshot for a specific fd
2025 * Returns 0 on success, < 0 on error
2027 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
2029 switch (the_consumer_data
.type
) {
2030 case LTTNG_CONSUMER_KERNEL
:
2031 return lttng_kconsumer_take_snapshot(stream
);
2032 case LTTNG_CONSUMER32_UST
:
2033 case LTTNG_CONSUMER64_UST
:
2034 return lttng_ustconsumer_take_snapshot(stream
);
2036 ERR("Unknown consumer_data type");
2043 * Get the produced position
2045 * Returns 0 on success, < 0 on error
2047 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
2050 switch (the_consumer_data
.type
) {
2051 case LTTNG_CONSUMER_KERNEL
:
2052 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
2053 case LTTNG_CONSUMER32_UST
:
2054 case LTTNG_CONSUMER64_UST
:
2055 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
2057 ERR("Unknown consumer_data type");
2064 * Get the consumed position (free-running counter position in bytes).
2066 * Returns 0 on success, < 0 on error
2068 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream
*stream
,
2071 switch (the_consumer_data
.type
) {
2072 case LTTNG_CONSUMER_KERNEL
:
2073 return lttng_kconsumer_get_consumed_snapshot(stream
, pos
);
2074 case LTTNG_CONSUMER32_UST
:
2075 case LTTNG_CONSUMER64_UST
:
2076 return lttng_ustconsumer_get_consumed_snapshot(stream
, pos
);
2078 ERR("Unknown consumer_data type");
2084 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
2085 int sock
, struct pollfd
*consumer_sockpoll
)
2087 switch (the_consumer_data
.type
) {
2088 case LTTNG_CONSUMER_KERNEL
:
2089 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2090 case LTTNG_CONSUMER32_UST
:
2091 case LTTNG_CONSUMER64_UST
:
2092 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2094 ERR("Unknown consumer_data type");
2101 void lttng_consumer_close_all_metadata(void)
2103 switch (the_consumer_data
.type
) {
2104 case LTTNG_CONSUMER_KERNEL
:
2106 * The Kernel consumer has a different metadata scheme so we don't
2107 * close anything because the stream will be closed by the session
2111 case LTTNG_CONSUMER32_UST
:
2112 case LTTNG_CONSUMER64_UST
:
2114 * Close all metadata streams. The metadata hash table is passed and
2115 * this call iterates over it by closing all wakeup fd. This is safe
2116 * because at this point we are sure that the metadata producer is
2117 * either dead or blocked.
2119 lttng_ustconsumer_close_all_metadata(metadata_ht
);
2122 ERR("Unknown consumer_data type");
2128 * Clean up a metadata stream and free its memory.
2130 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
2131 struct lttng_ht
*ht
)
2133 struct lttng_consumer_channel
*channel
= NULL
;
2134 bool free_channel
= false;
2136 LTTNG_ASSERT(stream
);
2138 * This call should NEVER receive regular stream. It must always be
2139 * metadata stream and this is crucial for data structure synchronization.
2141 LTTNG_ASSERT(stream
->metadata_flag
);
2143 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2145 pthread_mutex_lock(&the_consumer_data
.lock
);
2147 * Note that this assumes that a stream's channel is never changed and
2148 * that the stream's lock doesn't need to be taken to sample its
2151 channel
= stream
->chan
;
2152 pthread_mutex_lock(&channel
->lock
);
2153 pthread_mutex_lock(&stream
->lock
);
2154 if (channel
->metadata_cache
) {
2155 /* Only applicable to userspace consumers. */
2156 pthread_mutex_lock(&channel
->metadata_cache
->lock
);
2159 /* Remove any reference to that stream. */
2160 consumer_stream_delete(stream
, ht
);
2162 /* Close down everything including the relayd if one. */
2163 consumer_stream_close(stream
);
2164 /* Destroy tracer buffers of the stream. */
2165 consumer_stream_destroy_buffers(stream
);
2167 /* Atomically decrement channel refcount since other threads can use it. */
2168 if (!uatomic_sub_return(&channel
->refcount
, 1)
2169 && !uatomic_read(&channel
->nb_init_stream_left
)) {
2170 /* Go for channel deletion! */
2171 free_channel
= true;
2173 stream
->chan
= NULL
;
2176 * Nullify the stream reference so it is not used after deletion. The
2177 * channel lock MUST be acquired before being able to check for a NULL
2180 channel
->metadata_stream
= NULL
;
2182 if (channel
->metadata_cache
) {
2183 pthread_mutex_unlock(&channel
->metadata_cache
->lock
);
2185 pthread_mutex_unlock(&stream
->lock
);
2186 pthread_mutex_unlock(&channel
->lock
);
2187 pthread_mutex_unlock(&the_consumer_data
.lock
);
2190 consumer_del_channel(channel
);
2193 lttng_trace_chunk_put(stream
->trace_chunk
);
2194 stream
->trace_chunk
= NULL
;
2195 consumer_stream_free(stream
);
2199 * Action done with the metadata stream when adding it to the consumer internal
2200 * data structures to handle it.
2202 void consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2204 struct lttng_ht
*ht
= metadata_ht
;
2205 struct lttng_ht_iter iter
;
2206 struct lttng_ht_node_u64
*node
;
2208 LTTNG_ASSERT(stream
);
2211 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2213 pthread_mutex_lock(&the_consumer_data
.lock
);
2214 pthread_mutex_lock(&stream
->chan
->lock
);
2215 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2216 pthread_mutex_lock(&stream
->lock
);
2219 * From here, refcounts are updated so be _careful_ when returning an error
2226 * Lookup the stream just to make sure it does not exist in our internal
2227 * state. This should NEVER happen.
2229 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2230 node
= lttng_ht_iter_get_node_u64(&iter
);
2231 LTTNG_ASSERT(!node
);
2234 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2235 * in terms of destroying the associated channel, because the action that
2236 * causes the count to become 0 also causes a stream to be added. The
2237 * channel deletion will thus be triggered by the following removal of this
2240 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2241 /* Increment refcount before decrementing nb_init_stream_left */
2243 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2246 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2248 lttng_ht_add_u64(the_consumer_data
.stream_per_chan_id_ht
,
2249 &stream
->node_channel_id
);
2252 * Add stream to the stream_list_ht of the consumer data. No need to steal
2253 * the key since the HT does not use it and we allow to add redundant keys
2256 lttng_ht_add_u64(the_consumer_data
.stream_list_ht
,
2257 &stream
->node_session_id
);
2261 pthread_mutex_unlock(&stream
->lock
);
2262 pthread_mutex_unlock(&stream
->chan
->lock
);
2263 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2264 pthread_mutex_unlock(&the_consumer_data
.lock
);
2268 * Delete data stream that are flagged for deletion (endpoint_status).
2270 static void validate_endpoint_status_data_stream(void)
2272 struct lttng_ht_iter iter
;
2273 struct lttng_consumer_stream
*stream
;
2275 DBG("Consumer delete flagged data stream");
2278 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2279 /* Validate delete flag of the stream */
2280 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2283 /* Delete it right now */
2284 consumer_del_stream(stream
, data_ht
);
2290 * Delete metadata stream that are flagged for deletion (endpoint_status).
2292 static void validate_endpoint_status_metadata_stream(
2293 struct lttng_poll_event
*pollset
)
2295 struct lttng_ht_iter iter
;
2296 struct lttng_consumer_stream
*stream
;
2298 DBG("Consumer delete flagged metadata stream");
2300 LTTNG_ASSERT(pollset
);
2303 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2304 /* Validate delete flag of the stream */
2305 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2309 * Remove from pollset so the metadata thread can continue without
2310 * blocking on a deleted stream.
2312 lttng_poll_del(pollset
, stream
->wait_fd
);
2314 /* Delete it right now */
2315 consumer_del_metadata_stream(stream
, metadata_ht
);
2321 * Thread polls on metadata file descriptor and write them on disk or on the
2324 void *consumer_thread_metadata_poll(void *data
)
2326 int ret
, i
, pollfd
, err
= -1;
2327 uint32_t revents
, nb_fd
;
2328 struct lttng_consumer_stream
*stream
= NULL
;
2329 struct lttng_ht_iter iter
;
2330 struct lttng_ht_node_u64
*node
;
2331 struct lttng_poll_event events
;
2332 struct lttng_consumer_local_data
*ctx
= (lttng_consumer_local_data
*) data
;
2335 rcu_register_thread();
2337 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2339 if (testpoint(consumerd_thread_metadata
)) {
2340 goto error_testpoint
;
2343 health_code_update();
2345 DBG("Thread metadata poll started");
2347 /* Size is set to 1 for the consumer_metadata pipe */
2348 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2350 ERR("Poll set creation failed");
2354 ret
= lttng_poll_add(&events
,
2355 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2361 DBG("Metadata main loop started");
2365 health_code_update();
2366 health_poll_entry();
2367 DBG("Metadata poll wait");
2368 ret
= lttng_poll_wait(&events
, -1);
2369 DBG("Metadata poll return from wait with %d fd(s)",
2370 LTTNG_POLL_GETNB(&events
));
2372 DBG("Metadata event caught in thread");
2374 if (errno
== EINTR
) {
2375 ERR("Poll EINTR caught");
2378 if (LTTNG_POLL_GETNB(&events
) == 0) {
2379 err
= 0; /* All is OK */
2386 /* From here, the event is a metadata wait fd */
2387 for (i
= 0; i
< nb_fd
; i
++) {
2388 health_code_update();
2390 revents
= LTTNG_POLL_GETEV(&events
, i
);
2391 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2393 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2394 if (revents
& LPOLLIN
) {
2397 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2398 &stream
, sizeof(stream
));
2399 if (pipe_len
< sizeof(stream
)) {
2401 PERROR("read metadata stream");
2404 * Remove the pipe from the poll set and continue the loop
2405 * since their might be data to consume.
2407 lttng_poll_del(&events
,
2408 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2409 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2413 /* A NULL stream means that the state has changed. */
2414 if (stream
== NULL
) {
2415 /* Check for deleted streams. */
2416 validate_endpoint_status_metadata_stream(&events
);
2420 DBG("Adding metadata stream %d to poll set",
2423 /* Add metadata stream to the global poll events list */
2424 lttng_poll_add(&events
, stream
->wait_fd
,
2425 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2426 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2427 DBG("Metadata thread pipe hung up");
2429 * Remove the pipe from the poll set and continue the loop
2430 * since their might be data to consume.
2432 lttng_poll_del(&events
,
2433 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2434 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2437 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2441 /* Handle other stream */
2447 uint64_t tmp_id
= (uint64_t) pollfd
;
2449 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2451 node
= lttng_ht_iter_get_node_u64(&iter
);
2454 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2457 if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2458 /* Get the data out of the metadata file descriptor */
2459 DBG("Metadata available on fd %d", pollfd
);
2460 LTTNG_ASSERT(stream
->wait_fd
== pollfd
);
2463 health_code_update();
2465 len
= ctx
->on_buffer_ready(stream
, ctx
, false);
2467 * We don't check the return value here since if we get
2468 * a negative len, it means an error occurred thus we
2469 * simply remove it from the poll set and free the
2474 /* It's ok to have an unavailable sub-buffer */
2475 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2476 /* Clean up stream from consumer and free it. */
2477 lttng_poll_del(&events
, stream
->wait_fd
);
2478 consumer_del_metadata_stream(stream
, metadata_ht
);
2480 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2481 DBG("Metadata fd %d is hup|err.", pollfd
);
2482 if (!stream
->hangup_flush_done
&&
2483 (the_consumer_data
.type
== LTTNG_CONSUMER32_UST
||
2484 the_consumer_data
.type
==
2485 LTTNG_CONSUMER64_UST
)) {
2486 DBG("Attempting to flush and consume the UST buffers");
2487 lttng_ustconsumer_on_stream_hangup(stream
);
2489 /* We just flushed the stream now read it. */
2491 health_code_update();
2493 len
= ctx
->on_buffer_ready(stream
, ctx
, false);
2495 * We don't check the return value here since if we get
2496 * a negative len, it means an error occurred thus we
2497 * simply remove it from the poll set and free the
2503 lttng_poll_del(&events
, stream
->wait_fd
);
2505 * This call update the channel states, closes file descriptors
2506 * and securely free the stream.
2508 consumer_del_metadata_stream(stream
, metadata_ht
);
2510 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2514 /* Release RCU lock for the stream looked up */
2522 DBG("Metadata poll thread exiting");
2524 lttng_poll_clean(&events
);
2529 ERR("Health error occurred in %s", __func__
);
2531 health_unregister(health_consumerd
);
2532 rcu_unregister_thread();
2537 * This thread polls the fds in the set to consume the data and write
2538 * it to tracefile if necessary.
2540 void *consumer_thread_data_poll(void *data
)
2542 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2543 struct pollfd
*pollfd
= NULL
;
2544 /* local view of the streams */
2545 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2546 /* local view of consumer_data.fds_count */
2548 /* 2 for the consumer_data_pipe and wake up pipe */
2549 const int nb_pipes_fd
= 2;
2550 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2551 int nb_inactive_fd
= 0;
2552 struct lttng_consumer_local_data
*ctx
= (lttng_consumer_local_data
*) data
;
2555 rcu_register_thread();
2557 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2559 if (testpoint(consumerd_thread_data
)) {
2560 goto error_testpoint
;
2563 health_code_update();
2565 local_stream
= (lttng_consumer_stream
**) zmalloc(sizeof(struct lttng_consumer_stream
*));
2566 if (local_stream
== NULL
) {
2567 PERROR("local_stream malloc");
2572 health_code_update();
2578 * the fds set has been updated, we need to update our
2579 * local array as well
2581 pthread_mutex_lock(&the_consumer_data
.lock
);
2582 if (the_consumer_data
.need_update
) {
2587 local_stream
= NULL
;
2589 /* Allocate for all fds */
2590 pollfd
= (struct pollfd
*) zmalloc((the_consumer_data
.stream_count
+
2592 sizeof(struct pollfd
));
2593 if (pollfd
== NULL
) {
2594 PERROR("pollfd malloc");
2595 pthread_mutex_unlock(&the_consumer_data
.lock
);
2599 local_stream
= (lttng_consumer_stream
**) zmalloc((the_consumer_data
.stream_count
+
2601 sizeof(struct lttng_consumer_stream
*));
2602 if (local_stream
== NULL
) {
2603 PERROR("local_stream malloc");
2604 pthread_mutex_unlock(&the_consumer_data
.lock
);
2607 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2608 data_ht
, &nb_inactive_fd
);
2610 ERR("Error in allocating pollfd or local_outfds");
2611 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2612 pthread_mutex_unlock(&the_consumer_data
.lock
);
2616 the_consumer_data
.need_update
= 0;
2618 pthread_mutex_unlock(&the_consumer_data
.lock
);
2620 /* No FDs and consumer_quit, consumer_cleanup the thread */
2621 if (nb_fd
== 0 && nb_inactive_fd
== 0 &&
2622 CMM_LOAD_SHARED(consumer_quit
) == 1) {
2623 err
= 0; /* All is OK */
2626 /* poll on the array of fds */
2628 DBG("polling on %d fd", nb_fd
+ nb_pipes_fd
);
2629 if (testpoint(consumerd_thread_data_poll
)) {
2632 health_poll_entry();
2633 num_rdy
= poll(pollfd
, nb_fd
+ nb_pipes_fd
, -1);
2635 DBG("poll num_rdy : %d", num_rdy
);
2636 if (num_rdy
== -1) {
2638 * Restart interrupted system call.
2640 if (errno
== EINTR
) {
2643 PERROR("Poll error");
2644 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2646 } else if (num_rdy
== 0) {
2647 DBG("Polling thread timed out");
2651 if (caa_unlikely(data_consumption_paused
)) {
2652 DBG("Data consumption paused, sleeping...");
2658 * If the consumer_data_pipe triggered poll go directly to the
2659 * beginning of the loop to update the array. We want to prioritize
2660 * array update over low-priority reads.
2662 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2663 ssize_t pipe_readlen
;
2665 DBG("consumer_data_pipe wake up");
2666 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2667 &new_stream
, sizeof(new_stream
));
2668 if (pipe_readlen
< sizeof(new_stream
)) {
2669 PERROR("Consumer data pipe");
2670 /* Continue so we can at least handle the current stream(s). */
2675 * If the stream is NULL, just ignore it. It's also possible that
2676 * the sessiond poll thread changed the consumer_quit state and is
2677 * waking us up to test it.
2679 if (new_stream
== NULL
) {
2680 validate_endpoint_status_data_stream();
2684 /* Continue to update the local streams and handle prio ones */
2688 /* Handle wakeup pipe. */
2689 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2691 ssize_t pipe_readlen
;
2693 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2695 if (pipe_readlen
< 0) {
2696 PERROR("Consumer data wakeup pipe");
2698 /* We've been awakened to handle stream(s). */
2699 ctx
->has_wakeup
= 0;
2702 /* Take care of high priority channels first. */
2703 for (i
= 0; i
< nb_fd
; i
++) {
2704 health_code_update();
2706 if (local_stream
[i
] == NULL
) {
2709 if (pollfd
[i
].revents
& POLLPRI
) {
2710 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2712 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
, false);
2713 /* it's ok to have an unavailable sub-buffer */
2714 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2715 /* Clean the stream and free it. */
2716 consumer_del_stream(local_stream
[i
], data_ht
);
2717 local_stream
[i
] = NULL
;
2718 } else if (len
> 0) {
2719 local_stream
[i
]->data_read
= 1;
2725 * If we read high prio channel in this loop, try again
2726 * for more high prio data.
2732 /* Take care of low priority channels. */
2733 for (i
= 0; i
< nb_fd
; i
++) {
2734 health_code_update();
2736 if (local_stream
[i
] == NULL
) {
2739 if ((pollfd
[i
].revents
& POLLIN
) ||
2740 local_stream
[i
]->hangup_flush_done
||
2741 local_stream
[i
]->has_data
) {
2742 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2743 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
, false);
2744 /* it's ok to have an unavailable sub-buffer */
2745 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2746 /* Clean the stream and free it. */
2747 consumer_del_stream(local_stream
[i
], data_ht
);
2748 local_stream
[i
] = NULL
;
2749 } else if (len
> 0) {
2750 local_stream
[i
]->data_read
= 1;
2755 /* Handle hangup and errors */
2756 for (i
= 0; i
< nb_fd
; i
++) {
2757 health_code_update();
2759 if (local_stream
[i
] == NULL
) {
2762 if (!local_stream
[i
]->hangup_flush_done
2763 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2764 && (the_consumer_data
.type
== LTTNG_CONSUMER32_UST
2765 || the_consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2766 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2768 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2769 /* Attempt read again, for the data we just flushed. */
2770 local_stream
[i
]->data_read
= 1;
2773 * If the poll flag is HUP/ERR/NVAL and we have
2774 * read no data in this pass, we can remove the
2775 * stream from its hash table.
2777 if ((pollfd
[i
].revents
& POLLHUP
)) {
2778 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2779 if (!local_stream
[i
]->data_read
) {
2780 consumer_del_stream(local_stream
[i
], data_ht
);
2781 local_stream
[i
] = NULL
;
2784 } else if (pollfd
[i
].revents
& POLLERR
) {
2785 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2786 if (!local_stream
[i
]->data_read
) {
2787 consumer_del_stream(local_stream
[i
], data_ht
);
2788 local_stream
[i
] = NULL
;
2791 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2792 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2793 if (!local_stream
[i
]->data_read
) {
2794 consumer_del_stream(local_stream
[i
], data_ht
);
2795 local_stream
[i
] = NULL
;
2799 if (local_stream
[i
] != NULL
) {
2800 local_stream
[i
]->data_read
= 0;
2807 DBG("polling thread exiting");
2812 * Close the write side of the pipe so epoll_wait() in
2813 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2814 * read side of the pipe. If we close them both, epoll_wait strangely does
2815 * not return and could create a endless wait period if the pipe is the
2816 * only tracked fd in the poll set. The thread will take care of closing
2819 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2824 ERR("Health error occurred in %s", __func__
);
2826 health_unregister(health_consumerd
);
2828 rcu_unregister_thread();
2833 * Close wake-up end of each stream belonging to the channel. This will
2834 * allow the poll() on the stream read-side to detect when the
2835 * write-side (application) finally closes them.
2838 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2840 struct lttng_ht
*ht
;
2841 struct lttng_consumer_stream
*stream
;
2842 struct lttng_ht_iter iter
;
2844 ht
= the_consumer_data
.stream_per_chan_id_ht
;
2847 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2848 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2849 ht
->match_fct
, &channel
->key
,
2850 &iter
.iter
, stream
, node_channel_id
.node
) {
2852 * Protect against teardown with mutex.
2854 pthread_mutex_lock(&stream
->lock
);
2855 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2858 switch (the_consumer_data
.type
) {
2859 case LTTNG_CONSUMER_KERNEL
:
2861 case LTTNG_CONSUMER32_UST
:
2862 case LTTNG_CONSUMER64_UST
:
2863 if (stream
->metadata_flag
) {
2864 /* Safe and protected by the stream lock. */
2865 lttng_ustconsumer_close_metadata(stream
->chan
);
2868 * Note: a mutex is taken internally within
2869 * liblttng-ust-ctl to protect timer wakeup_fd
2870 * use from concurrent close.
2872 lttng_ustconsumer_close_stream_wakeup(stream
);
2876 ERR("Unknown consumer_data type");
2880 pthread_mutex_unlock(&stream
->lock
);
2885 static void destroy_channel_ht(struct lttng_ht
*ht
)
2887 struct lttng_ht_iter iter
;
2888 struct lttng_consumer_channel
*channel
;
2896 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2897 ret
= lttng_ht_del(ht
, &iter
);
2898 LTTNG_ASSERT(ret
!= 0);
2902 lttng_ht_destroy(ht
);
2906 * This thread polls the channel fds to detect when they are being
2907 * closed. It closes all related streams if the channel is detected as
2908 * closed. It is currently only used as a shim layer for UST because the
2909 * consumerd needs to keep the per-stream wakeup end of pipes open for
2912 void *consumer_thread_channel_poll(void *data
)
2914 int ret
, i
, pollfd
, err
= -1;
2915 uint32_t revents
, nb_fd
;
2916 struct lttng_consumer_channel
*chan
= NULL
;
2917 struct lttng_ht_iter iter
;
2918 struct lttng_ht_node_u64
*node
;
2919 struct lttng_poll_event events
;
2920 struct lttng_consumer_local_data
*ctx
= (lttng_consumer_local_data
*) data
;
2921 struct lttng_ht
*channel_ht
;
2923 rcu_register_thread();
2925 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2927 if (testpoint(consumerd_thread_channel
)) {
2928 goto error_testpoint
;
2931 health_code_update();
2933 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2935 /* ENOMEM at this point. Better to bail out. */
2939 DBG("Thread channel poll started");
2941 /* Size is set to 1 for the consumer_channel pipe */
2942 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2944 ERR("Poll set creation failed");
2948 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2954 DBG("Channel main loop started");
2958 health_code_update();
2959 DBG("Channel poll wait");
2960 health_poll_entry();
2961 ret
= lttng_poll_wait(&events
, -1);
2962 DBG("Channel poll return from wait with %d fd(s)",
2963 LTTNG_POLL_GETNB(&events
));
2965 DBG("Channel event caught in thread");
2967 if (errno
== EINTR
) {
2968 ERR("Poll EINTR caught");
2971 if (LTTNG_POLL_GETNB(&events
) == 0) {
2972 err
= 0; /* All is OK */
2979 /* From here, the event is a channel wait fd */
2980 for (i
= 0; i
< nb_fd
; i
++) {
2981 health_code_update();
2983 revents
= LTTNG_POLL_GETEV(&events
, i
);
2984 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2986 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2987 if (revents
& LPOLLIN
) {
2988 enum consumer_channel_action action
;
2991 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2994 ERR("Error reading channel pipe");
2996 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3001 case CONSUMER_CHANNEL_ADD
:
3002 DBG("Adding channel %d to poll set",
3005 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
3008 lttng_ht_add_unique_u64(channel_ht
,
3009 &chan
->wait_fd_node
);
3011 /* Add channel to the global poll events list */
3012 lttng_poll_add(&events
, chan
->wait_fd
,
3013 LPOLLERR
| LPOLLHUP
);
3015 case CONSUMER_CHANNEL_DEL
:
3018 * This command should never be called if the channel
3019 * has streams monitored by either the data or metadata
3020 * thread. The consumer only notify this thread with a
3021 * channel del. command if it receives a destroy
3022 * channel command from the session daemon that send it
3023 * if a command prior to the GET_CHANNEL failed.
3027 chan
= consumer_find_channel(key
);
3030 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
3033 lttng_poll_del(&events
, chan
->wait_fd
);
3034 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
3035 ret
= lttng_ht_del(channel_ht
, &iter
);
3036 LTTNG_ASSERT(ret
== 0);
3038 switch (the_consumer_data
.type
) {
3039 case LTTNG_CONSUMER_KERNEL
:
3041 case LTTNG_CONSUMER32_UST
:
3042 case LTTNG_CONSUMER64_UST
:
3043 health_code_update();
3044 /* Destroy streams that might have been left in the stream list. */
3045 clean_channel_stream_list(chan
);
3048 ERR("Unknown consumer_data type");
3053 * Release our own refcount. Force channel deletion even if
3054 * streams were not initialized.
3056 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
3057 consumer_del_channel(chan
);
3062 case CONSUMER_CHANNEL_QUIT
:
3064 * Remove the pipe from the poll set and continue the loop
3065 * since their might be data to consume.
3067 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3070 ERR("Unknown action");
3073 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3074 DBG("Channel thread pipe hung up");
3076 * Remove the pipe from the poll set and continue the loop
3077 * since their might be data to consume.
3079 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3082 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3086 /* Handle other stream */
3092 uint64_t tmp_id
= (uint64_t) pollfd
;
3094 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
3096 node
= lttng_ht_iter_get_node_u64(&iter
);
3099 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
3102 /* Check for error event */
3103 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3104 DBG("Channel fd %d is hup|err.", pollfd
);
3106 lttng_poll_del(&events
, chan
->wait_fd
);
3107 ret
= lttng_ht_del(channel_ht
, &iter
);
3108 LTTNG_ASSERT(ret
== 0);
3111 * This will close the wait fd for each stream associated to
3112 * this channel AND monitored by the data/metadata thread thus
3113 * will be clean by the right thread.
3115 consumer_close_channel_streams(chan
);
3117 /* Release our own refcount */
3118 if (!uatomic_sub_return(&chan
->refcount
, 1)
3119 && !uatomic_read(&chan
->nb_init_stream_left
)) {
3120 consumer_del_channel(chan
);
3123 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3128 /* Release RCU lock for the channel looked up */
3136 lttng_poll_clean(&events
);
3138 destroy_channel_ht(channel_ht
);
3141 DBG("Channel poll thread exiting");
3144 ERR("Health error occurred in %s", __func__
);
3146 health_unregister(health_consumerd
);
3147 rcu_unregister_thread();
3151 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
3152 struct pollfd
*sockpoll
, int client_socket
)
3157 LTTNG_ASSERT(sockpoll
);
3159 ret
= lttng_consumer_poll_socket(sockpoll
);
3163 DBG("Metadata connection on client_socket");
3165 /* Blocking call, waiting for transmission */
3166 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
3167 if (ctx
->consumer_metadata_socket
< 0) {
3168 WARN("On accept metadata");
3179 * This thread listens on the consumerd socket and receives the file
3180 * descriptors from the session daemon.
3182 void *consumer_thread_sessiond_poll(void *data
)
3184 int sock
= -1, client_socket
, ret
, err
= -1;
3186 * structure to poll for incoming data on communication socket avoids
3187 * making blocking sockets.
3189 struct pollfd consumer_sockpoll
[2];
3190 struct lttng_consumer_local_data
*ctx
= (lttng_consumer_local_data
*) data
;
3192 rcu_register_thread();
3194 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3196 if (testpoint(consumerd_thread_sessiond
)) {
3197 goto error_testpoint
;
3200 health_code_update();
3202 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3203 unlink(ctx
->consumer_command_sock_path
);
3204 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3205 if (client_socket
< 0) {
3206 ERR("Cannot create command socket");
3210 ret
= lttcomm_listen_unix_sock(client_socket
);
3215 DBG("Sending ready command to lttng-sessiond");
3216 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3217 /* return < 0 on error, but == 0 is not fatal */
3219 ERR("Error sending ready command to lttng-sessiond");
3223 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3224 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3225 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3226 consumer_sockpoll
[1].fd
= client_socket
;
3227 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3229 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3237 DBG("Connection on client_socket");
3239 /* Blocking call, waiting for transmission */
3240 sock
= lttcomm_accept_unix_sock(client_socket
);
3247 * Setup metadata socket which is the second socket connection on the
3248 * command unix socket.
3250 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3259 /* This socket is not useful anymore. */
3260 ret
= close(client_socket
);
3262 PERROR("close client_socket");
3266 /* update the polling structure to poll on the established socket */
3267 consumer_sockpoll
[1].fd
= sock
;
3268 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3271 health_code_update();
3273 health_poll_entry();
3274 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3283 DBG("Incoming command on sock");
3284 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3287 * This could simply be a session daemon quitting. Don't output
3290 DBG("Communication interrupted on command socket");
3294 if (CMM_LOAD_SHARED(consumer_quit
)) {
3295 DBG("consumer_thread_receive_fds received quit from signal");
3296 err
= 0; /* All is OK */
3299 DBG("Received command on sock");
3305 DBG("Consumer thread sessiond poll exiting");
3308 * Close metadata streams since the producer is the session daemon which
3311 * NOTE: for now, this only applies to the UST tracer.
3313 lttng_consumer_close_all_metadata();
3316 * when all fds have hung up, the polling thread
3319 CMM_STORE_SHARED(consumer_quit
, 1);
3322 * Notify the data poll thread to poll back again and test the
3323 * consumer_quit state that we just set so to quit gracefully.
3325 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3327 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3329 notify_health_quit_pipe(health_quit_pipe
);
3331 /* Cleaning up possibly open sockets. */
3335 PERROR("close sock sessiond poll");
3338 if (client_socket
>= 0) {
3339 ret
= close(client_socket
);
3341 PERROR("close client_socket sessiond poll");
3348 ERR("Health error occurred in %s", __func__
);
3350 health_unregister(health_consumerd
);
3352 rcu_unregister_thread();
3356 static int post_consume(struct lttng_consumer_stream
*stream
,
3357 const struct stream_subbuffer
*subbuffer
,
3358 struct lttng_consumer_local_data
*ctx
)
3362 const size_t count
= lttng_dynamic_array_get_count(
3363 &stream
->read_subbuffer_ops
.post_consume_cbs
);
3365 for (i
= 0; i
< count
; i
++) {
3366 const post_consume_cb op
= *(post_consume_cb
*) lttng_dynamic_array_get_element(
3367 &stream
->read_subbuffer_ops
.post_consume_cbs
,
3370 ret
= op(stream
, subbuffer
, ctx
);
3379 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3380 struct lttng_consumer_local_data
*ctx
,
3381 bool locked_by_caller
)
3383 ssize_t ret
, written_bytes
= 0;
3385 struct stream_subbuffer subbuffer
= {};
3386 enum get_next_subbuffer_status get_next_status
;
3388 if (!locked_by_caller
) {
3389 stream
->read_subbuffer_ops
.lock(stream
);
3391 stream
->read_subbuffer_ops
.assert_locked(stream
);
3394 if (stream
->read_subbuffer_ops
.on_wake_up
) {
3395 ret
= stream
->read_subbuffer_ops
.on_wake_up(stream
);
3402 * If the stream was flagged to be ready for rotation before we extract
3403 * the next packet, rotate it now.
3405 if (stream
->rotate_ready
) {
3406 DBG("Rotate stream before consuming data");
3407 ret
= lttng_consumer_rotate_stream(ctx
, stream
);
3409 ERR("Stream rotation error before consuming data");
3414 get_next_status
= stream
->read_subbuffer_ops
.get_next_subbuffer(
3415 stream
, &subbuffer
);
3416 switch (get_next_status
) {
3417 case GET_NEXT_SUBBUFFER_STATUS_OK
:
3419 case GET_NEXT_SUBBUFFER_STATUS_NO_DATA
:
3423 case GET_NEXT_SUBBUFFER_STATUS_ERROR
:
3430 ret
= stream
->read_subbuffer_ops
.pre_consume_subbuffer(
3431 stream
, &subbuffer
);
3433 goto error_put_subbuf
;
3436 written_bytes
= stream
->read_subbuffer_ops
.consume_subbuffer(
3437 ctx
, stream
, &subbuffer
);
3438 if (written_bytes
<= 0) {
3439 ERR("Error consuming subbuffer: (%zd)", written_bytes
);
3440 ret
= (int) written_bytes
;
3441 goto error_put_subbuf
;
3444 ret
= stream
->read_subbuffer_ops
.put_next_subbuffer(stream
, &subbuffer
);
3449 ret
= post_consume(stream
, &subbuffer
, ctx
);
3455 * After extracting the packet, we check if the stream is now ready to
3456 * be rotated and perform the action immediately.
3458 * Don't overwrite `ret` as callers expect the number of bytes
3459 * consumed to be returned on success.
3461 rotation_ret
= lttng_consumer_stream_is_rotate_ready(stream
);
3462 if (rotation_ret
== 1) {
3463 rotation_ret
= lttng_consumer_rotate_stream(ctx
, stream
);
3464 if (rotation_ret
< 0) {
3466 ERR("Stream rotation error after consuming data");
3470 } else if (rotation_ret
< 0) {
3472 ERR("Failed to check if stream was ready to rotate after consuming data");
3477 if (stream
->read_subbuffer_ops
.on_sleep
) {
3478 stream
->read_subbuffer_ops
.on_sleep(stream
, ctx
);
3481 ret
= written_bytes
;
3483 if (!locked_by_caller
) {
3484 stream
->read_subbuffer_ops
.unlock(stream
);
3489 (void) stream
->read_subbuffer_ops
.put_next_subbuffer(stream
, &subbuffer
);
3493 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3495 switch (the_consumer_data
.type
) {
3496 case LTTNG_CONSUMER_KERNEL
:
3497 return lttng_kconsumer_on_recv_stream(stream
);
3498 case LTTNG_CONSUMER32_UST
:
3499 case LTTNG_CONSUMER64_UST
:
3500 return lttng_ustconsumer_on_recv_stream(stream
);
3502 ERR("Unknown consumer_data type");
3509 * Allocate and set consumer data hash tables.
3511 int lttng_consumer_init(void)
3513 the_consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3514 if (!the_consumer_data
.channel_ht
) {
3518 the_consumer_data
.channels_by_session_id_ht
=
3519 lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3520 if (!the_consumer_data
.channels_by_session_id_ht
) {
3524 the_consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3525 if (!the_consumer_data
.relayd_ht
) {
3529 the_consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3530 if (!the_consumer_data
.stream_list_ht
) {
3534 the_consumer_data
.stream_per_chan_id_ht
=
3535 lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3536 if (!the_consumer_data
.stream_per_chan_id_ht
) {
3540 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3545 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3550 the_consumer_data
.chunk_registry
= lttng_trace_chunk_registry_create();
3551 if (!the_consumer_data
.chunk_registry
) {
3562 * Process the ADD_RELAYD command receive by a consumer.
3564 * This will create a relayd socket pair and add it to the relayd hash table.
3565 * The caller MUST acquire a RCU read side lock before calling it.
3567 void consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3568 struct lttng_consumer_local_data
*ctx
, int sock
,
3569 struct pollfd
*consumer_sockpoll
,
3570 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3571 uint64_t relayd_session_id
)
3573 int fd
= -1, ret
= -1, relayd_created
= 0;
3574 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3575 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3578 LTTNG_ASSERT(relayd_sock
);
3579 ASSERT_RCU_READ_LOCKED();
3581 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3583 /* Get relayd reference if exists. */
3584 relayd
= consumer_find_relayd(net_seq_idx
);
3585 if (relayd
== NULL
) {
3586 LTTNG_ASSERT(sock_type
== LTTNG_STREAM_CONTROL
);
3587 /* Not found. Allocate one. */
3588 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3589 if (relayd
== NULL
) {
3590 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3593 relayd
->sessiond_session_id
= sessiond_id
;
3598 * This code path MUST continue to the consumer send status message to
3599 * we can notify the session daemon and continue our work without
3600 * killing everything.
3604 * relayd key should never be found for control socket.
3606 LTTNG_ASSERT(sock_type
!= LTTNG_STREAM_CONTROL
);
3609 /* First send a status message before receiving the fds. */
3610 ret
= consumer_send_status_msg(sock
, LTTCOMM_CONSUMERD_SUCCESS
);
3612 /* Somehow, the session daemon is not responding anymore. */
3613 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3614 goto error_nosignal
;
3617 /* Poll on consumer socket. */
3618 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3620 /* Needing to exit in the middle of a command: error. */
3621 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3622 goto error_nosignal
;
3625 /* Get relayd socket from session daemon */
3626 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3627 if (ret
!= sizeof(fd
)) {
3628 fd
= -1; /* Just in case it gets set with an invalid value. */
3631 * Failing to receive FDs might indicate a major problem such as
3632 * reaching a fd limit during the receive where the kernel returns a
3633 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3634 * don't take any chances and stop everything.
3636 * XXX: Feature request #558 will fix that and avoid this possible
3637 * issue when reaching the fd limit.
3639 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3640 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3644 /* Copy socket information and received FD */
3645 switch (sock_type
) {
3646 case LTTNG_STREAM_CONTROL
:
3647 /* Copy received lttcomm socket */
3648 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3649 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3650 /* Handle create_sock error. */
3652 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3656 * Close the socket created internally by
3657 * lttcomm_create_sock, so we can replace it by the one
3658 * received from sessiond.
3660 if (close(relayd
->control_sock
.sock
.fd
)) {
3664 /* Assign new file descriptor */
3665 relayd
->control_sock
.sock
.fd
= fd
;
3666 /* Assign version values. */
3667 relayd
->control_sock
.major
= relayd_sock
->major
;
3668 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3670 relayd
->relayd_session_id
= relayd_session_id
;
3673 case LTTNG_STREAM_DATA
:
3674 /* Copy received lttcomm socket */
3675 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3676 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3677 /* Handle create_sock error. */
3679 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3683 * Close the socket created internally by
3684 * lttcomm_create_sock, so we can replace it by the one
3685 * received from sessiond.
3687 if (close(relayd
->data_sock
.sock
.fd
)) {
3691 /* Assign new file descriptor */
3692 relayd
->data_sock
.sock
.fd
= fd
;
3693 /* Assign version values. */
3694 relayd
->data_sock
.major
= relayd_sock
->major
;
3695 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3698 ERR("Unknown relayd socket type (%d)", sock_type
);
3699 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3703 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3704 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3705 relayd
->net_seq_idx
, fd
);
3707 * We gave the ownership of the fd to the relayd structure. Set the
3708 * fd to -1 so we don't call close() on it in the error path below.
3712 /* We successfully added the socket. Send status back. */
3713 ret
= consumer_send_status_msg(sock
, ret_code
);
3715 /* Somehow, the session daemon is not responding anymore. */
3716 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3717 goto error_nosignal
;
3721 * Add relayd socket pair to consumer data hashtable. If object already
3722 * exists or on error, the function gracefully returns.
3731 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3732 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3736 /* Close received socket if valid. */
3739 PERROR("close received socket");
3743 if (relayd_created
) {
3749 * Search for a relayd associated to the session id and return the reference.
3751 * A rcu read side lock MUST be acquire before calling this function and locked
3752 * until the relayd object is no longer necessary.
3754 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3756 struct lttng_ht_iter iter
;
3757 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3759 ASSERT_RCU_READ_LOCKED();
3761 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3762 cds_lfht_for_each_entry(the_consumer_data
.relayd_ht
->ht
, &iter
.iter
,
3763 relayd
, node
.node
) {
3765 * Check by sessiond id which is unique here where the relayd session
3766 * id might not be when having multiple relayd.
3768 if (relayd
->sessiond_session_id
== id
) {
3769 /* Found the relayd. There can be only one per id. */
3781 * Check if for a given session id there is still data needed to be extract
3784 * Return 1 if data is pending or else 0 meaning ready to be read.
3786 int consumer_data_pending(uint64_t id
)
3789 struct lttng_ht_iter iter
;
3790 struct lttng_ht
*ht
;
3791 struct lttng_consumer_stream
*stream
;
3792 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3793 int (*data_pending
)(struct lttng_consumer_stream
*);
3795 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3798 pthread_mutex_lock(&the_consumer_data
.lock
);
3800 switch (the_consumer_data
.type
) {
3801 case LTTNG_CONSUMER_KERNEL
:
3802 data_pending
= lttng_kconsumer_data_pending
;
3804 case LTTNG_CONSUMER32_UST
:
3805 case LTTNG_CONSUMER64_UST
:
3806 data_pending
= lttng_ustconsumer_data_pending
;
3809 ERR("Unknown consumer data type");
3813 /* Ease our life a bit */
3814 ht
= the_consumer_data
.stream_list_ht
;
3816 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3817 ht
->hash_fct(&id
, lttng_ht_seed
),
3819 &iter
.iter
, stream
, node_session_id
.node
) {
3820 pthread_mutex_lock(&stream
->lock
);
3823 * A removed node from the hash table indicates that the stream has
3824 * been deleted thus having a guarantee that the buffers are closed
3825 * on the consumer side. However, data can still be transmitted
3826 * over the network so don't skip the relayd check.
3828 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3830 /* Check the stream if there is data in the buffers. */
3831 ret
= data_pending(stream
);
3833 pthread_mutex_unlock(&stream
->lock
);
3838 pthread_mutex_unlock(&stream
->lock
);
3841 relayd
= find_relayd_by_session_id(id
);
3843 unsigned int is_data_inflight
= 0;
3845 /* Send init command for data pending. */
3846 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3847 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3848 relayd
->relayd_session_id
);
3850 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3851 /* Communication error thus the relayd so no data pending. */
3852 goto data_not_pending
;
3855 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3856 ht
->hash_fct(&id
, lttng_ht_seed
),
3858 &iter
.iter
, stream
, node_session_id
.node
) {
3859 if (stream
->metadata_flag
) {
3860 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3861 stream
->relayd_stream_id
);
3863 ret
= relayd_data_pending(&relayd
->control_sock
,
3864 stream
->relayd_stream_id
,
3865 stream
->next_net_seq_num
- 1);
3869 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3871 } else if (ret
< 0) {
3872 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
3873 lttng_consumer_cleanup_relayd(relayd
);
3874 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3875 goto data_not_pending
;
3879 /* Send end command for data pending. */
3880 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3881 relayd
->relayd_session_id
, &is_data_inflight
);
3882 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3884 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
3885 lttng_consumer_cleanup_relayd(relayd
);
3886 goto data_not_pending
;
3888 if (is_data_inflight
) {
3894 * Finding _no_ node in the hash table and no inflight data means that the
3895 * stream(s) have been removed thus data is guaranteed to be available for
3896 * analysis from the trace files.
3900 /* Data is available to be read by a viewer. */
3901 pthread_mutex_unlock(&the_consumer_data
.lock
);
3906 /* Data is still being extracted from buffers. */
3907 pthread_mutex_unlock(&the_consumer_data
.lock
);
3913 * Send a ret code status message to the sessiond daemon.
3915 * Return the sendmsg() return value.
3917 int consumer_send_status_msg(int sock
, int ret_code
)
3919 struct lttcomm_consumer_status_msg msg
;
3921 memset(&msg
, 0, sizeof(msg
));
3922 msg
.ret_code
= (lttcomm_return_code
) ret_code
;
3924 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3928 * Send a channel status message to the sessiond daemon.
3930 * Return the sendmsg() return value.
3932 int consumer_send_status_channel(int sock
,
3933 struct lttng_consumer_channel
*channel
)
3935 struct lttcomm_consumer_status_channel msg
;
3937 LTTNG_ASSERT(sock
>= 0);
3939 memset(&msg
, 0, sizeof(msg
));
3941 msg
.ret_code
= LTTCOMM_CONSUMERD_CHANNEL_FAIL
;
3943 msg
.ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3944 msg
.key
= channel
->key
;
3945 msg
.stream_count
= channel
->streams
.count
;
3948 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3951 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos
,
3952 unsigned long produced_pos
, uint64_t nb_packets_per_stream
,
3953 uint64_t max_sb_size
)
3955 unsigned long start_pos
;
3957 if (!nb_packets_per_stream
) {
3958 return consumed_pos
; /* Grab everything */
3960 start_pos
= produced_pos
- lttng_offset_align_floor(produced_pos
, max_sb_size
);
3961 start_pos
-= max_sb_size
* nb_packets_per_stream
;
3962 if ((long) (start_pos
- consumed_pos
) < 0) {
3963 return consumed_pos
; /* Grab everything */
3968 /* Stream lock must be held by the caller. */
3969 static int sample_stream_positions(struct lttng_consumer_stream
*stream
,
3970 unsigned long *produced
, unsigned long *consumed
)
3974 ASSERT_LOCKED(stream
->lock
);
3976 ret
= lttng_consumer_sample_snapshot_positions(stream
);
3978 ERR("Failed to sample snapshot positions");
3982 ret
= lttng_consumer_get_produced_snapshot(stream
, produced
);
3984 ERR("Failed to sample produced position");
3988 ret
= lttng_consumer_get_consumed_snapshot(stream
, consumed
);
3990 ERR("Failed to sample consumed position");
3999 * Sample the rotate position for all the streams of a channel. If a stream
4000 * is already at the rotate position (produced == consumed), we flag it as
4001 * ready for rotation. The rotation of ready streams occurs after we have
4002 * replied to the session daemon that we have finished sampling the positions.
4003 * Must be called with RCU read-side lock held to ensure existence of channel.
4005 * Returns 0 on success, < 0 on error
4007 int lttng_consumer_rotate_channel(struct lttng_consumer_channel
*channel
,
4008 uint64_t key
, uint64_t relayd_id
, uint32_t metadata
,
4009 struct lttng_consumer_local_data
*ctx
)
4012 struct lttng_consumer_stream
*stream
;
4013 struct lttng_ht_iter iter
;
4014 struct lttng_ht
*ht
= the_consumer_data
.stream_per_chan_id_ht
;
4015 struct lttng_dynamic_array stream_rotation_positions
;
4016 uint64_t next_chunk_id
, stream_count
= 0;
4017 enum lttng_trace_chunk_status chunk_status
;
4018 const bool is_local_trace
= relayd_id
== -1ULL;
4019 struct consumer_relayd_sock_pair
*relayd
= NULL
;
4020 bool rotating_to_new_chunk
= true;
4021 /* Array of `struct lttng_consumer_stream *` */
4022 struct lttng_dynamic_pointer_array streams_packet_to_open
;
4025 ASSERT_RCU_READ_LOCKED();
4027 DBG("Consumer sample rotate position for channel %" PRIu64
, key
);
4029 lttng_dynamic_array_init(&stream_rotation_positions
,
4030 sizeof(struct relayd_stream_rotation_position
), NULL
);
4031 lttng_dynamic_pointer_array_init(&streams_packet_to_open
, NULL
);
4035 pthread_mutex_lock(&channel
->lock
);
4036 LTTNG_ASSERT(channel
->trace_chunk
);
4037 chunk_status
= lttng_trace_chunk_get_id(channel
->trace_chunk
,
4039 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4041 goto end_unlock_channel
;
4044 cds_lfht_for_each_entry_duplicate(ht
->ht
,
4045 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
4046 ht
->match_fct
, &channel
->key
, &iter
.iter
,
4047 stream
, node_channel_id
.node
) {
4048 unsigned long produced_pos
= 0, consumed_pos
= 0;
4050 health_code_update();
4053 * Lock stream because we are about to change its state.
4055 pthread_mutex_lock(&stream
->lock
);
4057 if (stream
->trace_chunk
== stream
->chan
->trace_chunk
) {
4058 rotating_to_new_chunk
= false;
4062 * Do not flush a packet when rotating from a NULL trace
4063 * chunk. The stream has no means to output data, and the prior
4064 * rotation which rotated to NULL performed that side-effect
4065 * already. No new data can be produced when a stream has no
4066 * associated trace chunk (e.g. a stop followed by a rotate).
4068 if (stream
->trace_chunk
) {
4071 if (stream
->metadata_flag
) {
4073 * Don't produce an empty metadata packet,
4074 * simply close the current one.
4076 * Metadata is regenerated on every trace chunk
4077 * switch; there is no concern that no data was
4080 flush_active
= true;
4083 * Only flush an empty packet if the "packet
4084 * open" could not be performed on transition
4085 * to a new trace chunk and no packets were
4086 * consumed within the chunk's lifetime.
4088 if (stream
->opened_packet_in_current_trace_chunk
) {
4089 flush_active
= true;
4092 * Stream could have been full at the
4093 * time of rotation, but then have had
4094 * no activity at all.
4096 * It is important to flush a packet
4097 * to prevent 0-length files from being
4098 * produced as most viewers choke on
4101 * Unfortunately viewers will not be
4102 * able to know that tracing was active
4103 * for this stream during this trace
4106 ret
= sample_stream_positions(stream
, &produced_pos
, &consumed_pos
);
4108 goto end_unlock_stream
;
4112 * Don't flush an empty packet if data
4113 * was produced; it will be consumed
4114 * before the rotation completes.
4116 flush_active
= produced_pos
!= consumed_pos
;
4117 if (!flush_active
) {
4118 const char *trace_chunk_name
;
4119 uint64_t trace_chunk_id
;
4121 chunk_status
= lttng_trace_chunk_get_name(
4122 stream
->trace_chunk
,
4125 if (chunk_status
== LTTNG_TRACE_CHUNK_STATUS_NONE
) {
4126 trace_chunk_name
= "none";
4130 * Consumer trace chunks are
4133 chunk_status
= lttng_trace_chunk_get_id(
4134 stream
->trace_chunk
,
4136 LTTNG_ASSERT(chunk_status
==
4137 LTTNG_TRACE_CHUNK_STATUS_OK
);
4139 DBG("Unable to open packet for stream during trace chunk's lifetime. "
4140 "Flushing an empty packet to prevent an empty file from being created: "
4141 "stream id = %" PRIu64
", trace chunk name = `%s`, trace chunk id = %" PRIu64
,
4142 stream
->key
, trace_chunk_name
, trace_chunk_id
);
4148 * Close the current packet before sampling the
4149 * ring buffer positions.
4151 ret
= consumer_stream_flush_buffer(stream
, flush_active
);
4153 ERR("Failed to flush stream %" PRIu64
" during channel rotation",
4155 goto end_unlock_stream
;
4159 ret
= lttng_consumer_take_snapshot(stream
);
4160 if (ret
< 0 && ret
!= -ENODATA
&& ret
!= -EAGAIN
) {
4161 ERR("Failed to sample snapshot position during channel rotation");
4162 goto end_unlock_stream
;
4165 ret
= lttng_consumer_get_produced_snapshot(stream
,
4168 ERR("Failed to sample produced position during channel rotation");
4169 goto end_unlock_stream
;
4172 ret
= lttng_consumer_get_consumed_snapshot(stream
,
4175 ERR("Failed to sample consumed position during channel rotation");
4176 goto end_unlock_stream
;
4180 * Align produced position on the start-of-packet boundary of the first
4181 * packet going into the next trace chunk.
4183 produced_pos
= lttng_align_floor(produced_pos
, stream
->max_sb_size
);
4184 if (consumed_pos
== produced_pos
) {
4185 DBG("Set rotate ready for stream %" PRIu64
" produced = %lu consumed = %lu",
4186 stream
->key
, produced_pos
, consumed_pos
);
4187 stream
->rotate_ready
= true;
4189 DBG("Different consumed and produced positions "
4190 "for stream %" PRIu64
" produced = %lu consumed = %lu",
4191 stream
->key
, produced_pos
, consumed_pos
);
4194 * The rotation position is based on the packet_seq_num of the
4195 * packet following the last packet that was consumed for this
4196 * stream, incremented by the offset between produced and
4197 * consumed positions. This rotation position is a lower bound
4198 * (inclusive) at which the next trace chunk starts. Since it
4199 * is a lower bound, it is OK if the packet_seq_num does not
4200 * correspond exactly to the same packet identified by the
4201 * consumed_pos, which can happen in overwrite mode.
4203 if (stream
->sequence_number_unavailable
) {
4205 * Rotation should never be performed on a session which
4206 * interacts with a pre-2.8 lttng-modules, which does
4207 * not implement packet sequence number.
4209 ERR("Failure to rotate stream %" PRIu64
": sequence number unavailable",
4212 goto end_unlock_stream
;
4214 stream
->rotate_position
= stream
->last_sequence_number
+ 1 +
4215 ((produced_pos
- consumed_pos
) / stream
->max_sb_size
);
4216 DBG("Set rotation position for stream %" PRIu64
" at position %" PRIu64
,
4217 stream
->key
, stream
->rotate_position
);
4219 if (!is_local_trace
) {
4221 * The relay daemon control protocol expects a rotation
4222 * position as "the sequence number of the first packet
4223 * _after_ the current trace chunk".
4225 const struct relayd_stream_rotation_position position
= {
4226 .stream_id
= stream
->relayd_stream_id
,
4227 .rotate_at_seq_num
= stream
->rotate_position
,
4230 ret
= lttng_dynamic_array_add_element(
4231 &stream_rotation_positions
,
4234 ERR("Failed to allocate stream rotation position");
4235 goto end_unlock_stream
;
4240 stream
->opened_packet_in_current_trace_chunk
= false;
4242 if (rotating_to_new_chunk
&& !stream
->metadata_flag
) {
4244 * Attempt to flush an empty packet as close to the
4245 * rotation point as possible. In the event where a
4246 * stream remains inactive after the rotation point,
4247 * this ensures that the new trace chunk has a
4248 * beginning timestamp set at the begining of the
4249 * trace chunk instead of only creating an empty
4250 * packet when the trace chunk is stopped.
4252 * This indicates to the viewers that the stream
4253 * was being recorded, but more importantly it
4254 * allows viewers to determine a useable trace
4257 * This presents a problem in the case where the
4258 * ring-buffer is completely full.
4260 * Consider the following scenario:
4261 * - The consumption of data is slow (slow network,
4263 * - The ring buffer is full,
4264 * - A rotation is initiated,
4265 * - The flush below does nothing (no space left to
4266 * open a new packet),
4267 * - The other streams rotate very soon, and new
4268 * data is produced in the new chunk,
4269 * - This stream completes its rotation long after the
4270 * rotation was initiated
4271 * - The session is stopped before any event can be
4272 * produced in this stream's buffers.
4274 * The resulting trace chunk will have a single packet
4275 * temporaly at the end of the trace chunk for this
4276 * stream making the stream intersection more narrow
4277 * than it should be.
4279 * To work-around this, an empty flush is performed
4280 * after the first consumption of a packet during a
4281 * rotation if open_packet fails. The idea is that
4282 * consuming a packet frees enough space to switch
4283 * packets in this scenario and allows the tracer to
4284 * "stamp" the beginning of the new trace chunk at the
4285 * earliest possible point.
4287 * The packet open is performed after the channel
4288 * rotation to ensure that no attempt to open a packet
4289 * is performed in a stream that has no active trace
4292 ret
= lttng_dynamic_pointer_array_add_pointer(
4293 &streams_packet_to_open
, stream
);
4295 PERROR("Failed to add a stream pointer to array of streams in which to open a packet");
4297 goto end_unlock_stream
;
4301 pthread_mutex_unlock(&stream
->lock
);
4305 if (!is_local_trace
) {
4306 relayd
= consumer_find_relayd(relayd_id
);
4308 ERR("Failed to find relayd %" PRIu64
, relayd_id
);
4310 goto end_unlock_channel
;
4313 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
4314 ret
= relayd_rotate_streams(&relayd
->control_sock
, stream_count
,
4315 rotating_to_new_chunk
? &next_chunk_id
: NULL
,
4316 (const struct relayd_stream_rotation_position
*)
4317 stream_rotation_positions
.buffer
4319 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
4321 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64
,
4322 relayd
->net_seq_idx
);
4323 lttng_consumer_cleanup_relayd(relayd
);
4324 goto end_unlock_channel
;
4328 for (stream_idx
= 0;
4329 stream_idx
< lttng_dynamic_pointer_array_get_count(
4330 &streams_packet_to_open
);
4332 enum consumer_stream_open_packet_status status
;
4334 stream
= (lttng_consumer_stream
*) lttng_dynamic_pointer_array_get_pointer(
4335 &streams_packet_to_open
, stream_idx
);
4337 pthread_mutex_lock(&stream
->lock
);
4338 status
= consumer_stream_open_packet(stream
);
4339 pthread_mutex_unlock(&stream
->lock
);
4341 case CONSUMER_STREAM_OPEN_PACKET_STATUS_OPENED
:
4342 DBG("Opened a packet after a rotation: stream id = %" PRIu64
4343 ", channel name = %s, session id = %" PRIu64
,
4344 stream
->key
, stream
->chan
->name
,
4345 stream
->chan
->session_id
);
4347 case CONSUMER_STREAM_OPEN_PACKET_STATUS_NO_SPACE
:
4349 * Can't open a packet as there is no space left
4350 * in the buffer. A new packet will be opened
4351 * once one has been consumed.
4353 DBG("No space left to open a packet after a rotation: stream id = %" PRIu64
4354 ", channel name = %s, session id = %" PRIu64
,
4355 stream
->key
, stream
->chan
->name
,
4356 stream
->chan
->session_id
);
4358 case CONSUMER_STREAM_OPEN_PACKET_STATUS_ERROR
:
4359 /* Logged by callee. */
4361 goto end_unlock_channel
;
4367 pthread_mutex_unlock(&channel
->lock
);
4372 pthread_mutex_unlock(&stream
->lock
);
4374 pthread_mutex_unlock(&channel
->lock
);
4377 lttng_dynamic_array_reset(&stream_rotation_positions
);
4378 lttng_dynamic_pointer_array_reset(&streams_packet_to_open
);
4383 int consumer_clear_buffer(struct lttng_consumer_stream
*stream
)
4386 unsigned long consumed_pos_before
, consumed_pos_after
;
4388 ret
= lttng_consumer_sample_snapshot_positions(stream
);
4390 ERR("Taking snapshot positions");
4394 ret
= lttng_consumer_get_consumed_snapshot(stream
, &consumed_pos_before
);
4396 ERR("Consumed snapshot position");
4400 switch (the_consumer_data
.type
) {
4401 case LTTNG_CONSUMER_KERNEL
:
4402 ret
= kernctl_buffer_clear(stream
->wait_fd
);
4404 ERR("Failed to clear kernel stream (ret = %d)", ret
);
4408 case LTTNG_CONSUMER32_UST
:
4409 case LTTNG_CONSUMER64_UST
:
4410 ret
= lttng_ustconsumer_clear_buffer(stream
);
4412 ERR("Failed to clear ust stream (ret = %d)", ret
);
4417 ERR("Unknown consumer_data type");
4421 ret
= lttng_consumer_sample_snapshot_positions(stream
);
4423 ERR("Taking snapshot positions");
4426 ret
= lttng_consumer_get_consumed_snapshot(stream
, &consumed_pos_after
);
4428 ERR("Consumed snapshot position");
4431 DBG("clear: before: %lu after: %lu", consumed_pos_before
, consumed_pos_after
);
4437 int consumer_clear_stream(struct lttng_consumer_stream
*stream
)
4441 ret
= consumer_stream_flush_buffer(stream
, 1);
4443 ERR("Failed to flush stream %" PRIu64
" during channel clear",
4445 ret
= LTTCOMM_CONSUMERD_FATAL
;
4449 ret
= consumer_clear_buffer(stream
);
4451 ERR("Failed to clear stream %" PRIu64
" during channel clear",
4453 ret
= LTTCOMM_CONSUMERD_FATAL
;
4457 ret
= LTTCOMM_CONSUMERD_SUCCESS
;
4463 int consumer_clear_unmonitored_channel(struct lttng_consumer_channel
*channel
)
4466 struct lttng_consumer_stream
*stream
;
4469 pthread_mutex_lock(&channel
->lock
);
4470 cds_list_for_each_entry(stream
, &channel
->streams
.head
, send_node
) {
4471 health_code_update();
4472 pthread_mutex_lock(&stream
->lock
);
4473 ret
= consumer_clear_stream(stream
);
4477 pthread_mutex_unlock(&stream
->lock
);
4479 pthread_mutex_unlock(&channel
->lock
);
4484 pthread_mutex_unlock(&stream
->lock
);
4485 pthread_mutex_unlock(&channel
->lock
);
4491 * Check if a stream is ready to be rotated after extracting it.
4493 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4494 * error. Stream lock must be held.
4496 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream
*stream
)
4498 DBG("Check is rotate ready for stream %" PRIu64
4499 " ready %u rotate_position %" PRIu64
4500 " last_sequence_number %" PRIu64
,
4501 stream
->key
, stream
->rotate_ready
,
4502 stream
->rotate_position
, stream
->last_sequence_number
);
4503 if (stream
->rotate_ready
) {
4508 * If packet seq num is unavailable, it means we are interacting
4509 * with a pre-2.8 lttng-modules which does not implement the
4510 * sequence number. Rotation should never be used by sessiond in this
4513 if (stream
->sequence_number_unavailable
) {
4514 ERR("Internal error: rotation used on stream %" PRIu64
4515 " with unavailable sequence number",
4520 if (stream
->rotate_position
== -1ULL ||
4521 stream
->last_sequence_number
== -1ULL) {
4526 * Rotate position not reached yet. The stream rotate position is
4527 * the position of the next packet belonging to the next trace chunk,
4528 * but consumerd considers rotation ready when reaching the last
4529 * packet of the current chunk, hence the "rotate_position - 1".
4532 DBG("Check is rotate ready for stream %" PRIu64
4533 " last_sequence_number %" PRIu64
4534 " rotate_position %" PRIu64
,
4535 stream
->key
, stream
->last_sequence_number
,
4536 stream
->rotate_position
);
4537 if (stream
->last_sequence_number
>= stream
->rotate_position
- 1) {
4545 * Reset the state for a stream after a rotation occurred.
4547 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream
*stream
)
4549 DBG("lttng_consumer_reset_stream_rotate_state for stream %" PRIu64
,
4551 stream
->rotate_position
= -1ULL;
4552 stream
->rotate_ready
= false;
4556 * Perform the rotation a local stream file.
4559 int rotate_local_stream(struct lttng_consumer_local_data
*ctx
,
4560 struct lttng_consumer_stream
*stream
)
4564 DBG("Rotate local stream: stream key %" PRIu64
", channel key %" PRIu64
,
4567 stream
->tracefile_size_current
= 0;
4568 stream
->tracefile_count_current
= 0;
4570 if (stream
->out_fd
>= 0) {
4571 ret
= close(stream
->out_fd
);
4573 PERROR("Failed to close stream out_fd of channel \"%s\"",
4574 stream
->chan
->name
);
4576 stream
->out_fd
= -1;
4579 if (stream
->index_file
) {
4580 lttng_index_file_put(stream
->index_file
);
4581 stream
->index_file
= NULL
;
4584 if (!stream
->trace_chunk
) {
4588 ret
= consumer_stream_create_output_files(stream
, true);
4594 * Performs the stream rotation for the rotate session feature if needed.
4595 * It must be called with the channel and stream locks held.
4597 * Return 0 on success, a negative number of error.
4599 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data
*ctx
,
4600 struct lttng_consumer_stream
*stream
)
4604 DBG("Consumer rotate stream %" PRIu64
, stream
->key
);
4607 * Update the stream's 'current' chunk to the session's (channel)
4608 * now-current chunk.
4610 lttng_trace_chunk_put(stream
->trace_chunk
);
4611 if (stream
->chan
->trace_chunk
== stream
->trace_chunk
) {
4613 * A channel can be rotated and not have a "next" chunk
4614 * to transition to. In that case, the channel's "current chunk"
4615 * has not been closed yet, but it has not been updated to
4616 * a "next" trace chunk either. Hence, the stream, like its
4617 * parent channel, becomes part of no chunk and can't output
4618 * anything until a new trace chunk is created.
4620 stream
->trace_chunk
= NULL
;
4621 } else if (stream
->chan
->trace_chunk
&&
4622 !lttng_trace_chunk_get(stream
->chan
->trace_chunk
)) {
4623 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4628 * Update the stream's trace chunk to its parent channel's
4629 * current trace chunk.
4631 stream
->trace_chunk
= stream
->chan
->trace_chunk
;
4634 if (stream
->net_seq_idx
== (uint64_t) -1ULL) {
4635 ret
= rotate_local_stream(ctx
, stream
);
4637 ERR("Failed to rotate stream, ret = %i", ret
);
4642 if (stream
->metadata_flag
&& stream
->trace_chunk
) {
4644 * If the stream has transitioned to a new trace
4645 * chunk, the metadata should be re-dumped to the
4648 * However, it is possible for a stream to transition to
4649 * a "no-chunk" state. This can happen if a rotation
4650 * occurs on an inactive session. In such cases, the metadata
4651 * regeneration will happen when the next trace chunk is
4654 ret
= consumer_metadata_stream_dump(stream
);
4659 lttng_consumer_reset_stream_rotate_state(stream
);
4668 * Rotate all the ready streams now.
4670 * This is especially important for low throughput streams that have already
4671 * been consumed, we cannot wait for their next packet to perform the
4673 * Need to be called with RCU read-side lock held to ensure existence of
4676 * Returns 0 on success, < 0 on error
4678 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel
*channel
,
4679 uint64_t key
, struct lttng_consumer_local_data
*ctx
)
4682 struct lttng_consumer_stream
*stream
;
4683 struct lttng_ht_iter iter
;
4684 struct lttng_ht
*ht
= the_consumer_data
.stream_per_chan_id_ht
;
4686 ASSERT_RCU_READ_LOCKED();
4690 DBG("Consumer rotate ready streams in channel %" PRIu64
, key
);
4692 cds_lfht_for_each_entry_duplicate(ht
->ht
,
4693 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
4694 ht
->match_fct
, &channel
->key
, &iter
.iter
,
4695 stream
, node_channel_id
.node
) {
4696 health_code_update();
4698 pthread_mutex_lock(&stream
->chan
->lock
);
4699 pthread_mutex_lock(&stream
->lock
);
4701 if (!stream
->rotate_ready
) {
4702 pthread_mutex_unlock(&stream
->lock
);
4703 pthread_mutex_unlock(&stream
->chan
->lock
);
4706 DBG("Consumer rotate ready stream %" PRIu64
, stream
->key
);
4708 ret
= lttng_consumer_rotate_stream(ctx
, stream
);
4709 pthread_mutex_unlock(&stream
->lock
);
4710 pthread_mutex_unlock(&stream
->chan
->lock
);
4723 enum lttcomm_return_code
lttng_consumer_init_command(
4724 struct lttng_consumer_local_data
*ctx
,
4725 const lttng_uuid sessiond_uuid
)
4727 enum lttcomm_return_code ret
;
4728 char uuid_str
[LTTNG_UUID_STR_LEN
];
4730 if (ctx
->sessiond_uuid
.is_set
) {
4731 ret
= LTTCOMM_CONSUMERD_ALREADY_SET
;
4735 ctx
->sessiond_uuid
.is_set
= true;
4736 memcpy(ctx
->sessiond_uuid
.value
, sessiond_uuid
, sizeof(lttng_uuid
));
4737 ret
= LTTCOMM_CONSUMERD_SUCCESS
;
4738 lttng_uuid_to_str(sessiond_uuid
, uuid_str
);
4739 DBG("Received session daemon UUID: %s", uuid_str
);
4744 enum lttcomm_return_code
lttng_consumer_create_trace_chunk(
4745 const uint64_t *relayd_id
, uint64_t session_id
,
4747 time_t chunk_creation_timestamp
,
4748 const char *chunk_override_name
,
4749 const struct lttng_credentials
*credentials
,
4750 struct lttng_directory_handle
*chunk_directory_handle
)
4753 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
4754 struct lttng_trace_chunk
*created_chunk
= NULL
, *published_chunk
= NULL
;
4755 enum lttng_trace_chunk_status chunk_status
;
4756 char relayd_id_buffer
[MAX_INT_DEC_LEN(*relayd_id
)];
4757 char creation_timestamp_buffer
[ISO8601_STR_LEN
];
4758 const char *relayd_id_str
= "(none)";
4759 const char *creation_timestamp_str
;
4760 struct lttng_ht_iter iter
;
4761 struct lttng_consumer_channel
*channel
;
4764 /* Only used for logging purposes. */
4765 ret
= snprintf(relayd_id_buffer
, sizeof(relayd_id_buffer
),
4766 "%" PRIu64
, *relayd_id
);
4767 if (ret
> 0 && ret
< sizeof(relayd_id_buffer
)) {
4768 relayd_id_str
= relayd_id_buffer
;
4770 relayd_id_str
= "(formatting error)";
4774 /* Local protocol error. */
4775 LTTNG_ASSERT(chunk_creation_timestamp
);
4776 ret
= time_to_iso8601_str(chunk_creation_timestamp
,
4777 creation_timestamp_buffer
,
4778 sizeof(creation_timestamp_buffer
));
4779 creation_timestamp_str
= !ret
? creation_timestamp_buffer
:
4780 "(formatting error)";
4782 DBG("Consumer create trace chunk command: relay_id = %s"
4783 ", session_id = %" PRIu64
", chunk_id = %" PRIu64
4784 ", chunk_override_name = %s"
4785 ", chunk_creation_timestamp = %s",
4786 relayd_id_str
, session_id
, chunk_id
,
4787 chunk_override_name
? : "(none)",
4788 creation_timestamp_str
);
4791 * The trace chunk registry, as used by the consumer daemon, implicitly
4792 * owns the trace chunks. This is only needed in the consumer since
4793 * the consumer has no notion of a session beyond session IDs being
4794 * used to identify other objects.
4796 * The lttng_trace_chunk_registry_publish() call below provides a
4797 * reference which is not released; it implicitly becomes the session
4798 * daemon's reference to the chunk in the consumer daemon.
4800 * The lifetime of trace chunks in the consumer daemon is managed by
4801 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4802 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4804 created_chunk
= lttng_trace_chunk_create(chunk_id
,
4805 chunk_creation_timestamp
, NULL
);
4806 if (!created_chunk
) {
4807 ERR("Failed to create trace chunk");
4808 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4812 if (chunk_override_name
) {
4813 chunk_status
= lttng_trace_chunk_override_name(created_chunk
,
4814 chunk_override_name
);
4815 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4816 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4821 if (chunk_directory_handle
) {
4822 chunk_status
= lttng_trace_chunk_set_credentials(created_chunk
,
4824 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4825 ERR("Failed to set trace chunk credentials");
4826 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4830 * The consumer daemon has no ownership of the chunk output
4833 chunk_status
= lttng_trace_chunk_set_as_user(created_chunk
,
4834 chunk_directory_handle
);
4835 chunk_directory_handle
= NULL
;
4836 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4837 ERR("Failed to set trace chunk's directory handle");
4838 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4843 published_chunk
= lttng_trace_chunk_registry_publish_chunk(
4844 the_consumer_data
.chunk_registry
, session_id
,
4846 lttng_trace_chunk_put(created_chunk
);
4847 created_chunk
= NULL
;
4848 if (!published_chunk
) {
4849 ERR("Failed to publish trace chunk");
4850 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4855 cds_lfht_for_each_entry_duplicate(
4856 the_consumer_data
.channels_by_session_id_ht
->ht
,
4857 the_consumer_data
.channels_by_session_id_ht
->hash_fct(
4858 &session_id
, lttng_ht_seed
),
4859 the_consumer_data
.channels_by_session_id_ht
->match_fct
,
4860 &session_id
, &iter
.iter
, channel
,
4861 channels_by_session_id_ht_node
.node
) {
4862 ret
= lttng_consumer_channel_set_trace_chunk(channel
,
4866 * Roll-back the creation of this chunk.
4868 * This is important since the session daemon will
4869 * assume that the creation of this chunk failed and
4870 * will never ask for it to be closed, resulting
4871 * in a leak and an inconsistent state for some
4874 enum lttcomm_return_code close_ret
;
4875 char path
[LTTNG_PATH_MAX
];
4877 DBG("Failed to set new trace chunk on existing channels, rolling back");
4878 close_ret
= lttng_consumer_close_trace_chunk(relayd_id
,
4879 session_id
, chunk_id
,
4880 chunk_creation_timestamp
, NULL
,
4882 if (close_ret
!= LTTCOMM_CONSUMERD_SUCCESS
) {
4883 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64
", chunk_id = %" PRIu64
,
4884 session_id
, chunk_id
);
4887 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4893 struct consumer_relayd_sock_pair
*relayd
;
4895 relayd
= consumer_find_relayd(*relayd_id
);
4897 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
4898 ret
= relayd_create_trace_chunk(
4899 &relayd
->control_sock
, published_chunk
);
4900 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
4902 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64
, *relayd_id
);
4905 if (!relayd
|| ret
) {
4906 enum lttcomm_return_code close_ret
;
4907 char path
[LTTNG_PATH_MAX
];
4909 close_ret
= lttng_consumer_close_trace_chunk(relayd_id
,
4912 chunk_creation_timestamp
,
4914 if (close_ret
!= LTTCOMM_CONSUMERD_SUCCESS
) {
4915 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64
", chunk_id = %" PRIu64
,
4920 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4927 /* Release the reference returned by the "publish" operation. */
4928 lttng_trace_chunk_put(published_chunk
);
4929 lttng_trace_chunk_put(created_chunk
);
4933 enum lttcomm_return_code
lttng_consumer_close_trace_chunk(
4934 const uint64_t *relayd_id
, uint64_t session_id
,
4935 uint64_t chunk_id
, time_t chunk_close_timestamp
,
4936 const enum lttng_trace_chunk_command_type
*close_command
,
4939 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
4940 struct lttng_trace_chunk
*chunk
;
4941 char relayd_id_buffer
[MAX_INT_DEC_LEN(*relayd_id
)];
4942 const char *relayd_id_str
= "(none)";
4943 const char *close_command_name
= "none";
4944 struct lttng_ht_iter iter
;
4945 struct lttng_consumer_channel
*channel
;
4946 enum lttng_trace_chunk_status chunk_status
;
4951 /* Only used for logging purposes. */
4952 ret
= snprintf(relayd_id_buffer
, sizeof(relayd_id_buffer
),
4953 "%" PRIu64
, *relayd_id
);
4954 if (ret
> 0 && ret
< sizeof(relayd_id_buffer
)) {
4955 relayd_id_str
= relayd_id_buffer
;
4957 relayd_id_str
= "(formatting error)";
4960 if (close_command
) {
4961 close_command_name
= lttng_trace_chunk_command_type_get_name(
4965 DBG("Consumer close trace chunk command: relayd_id = %s"
4966 ", session_id = %" PRIu64
", chunk_id = %" PRIu64
4967 ", close command = %s",
4968 relayd_id_str
, session_id
, chunk_id
,
4969 close_command_name
);
4971 chunk
= lttng_trace_chunk_registry_find_chunk(
4972 the_consumer_data
.chunk_registry
, session_id
, chunk_id
);
4974 ERR("Failed to find chunk: session_id = %" PRIu64
4975 ", chunk_id = %" PRIu64
,
4976 session_id
, chunk_id
);
4977 ret_code
= LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK
;
4981 chunk_status
= lttng_trace_chunk_set_close_timestamp(chunk
,
4982 chunk_close_timestamp
);
4983 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4984 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
4988 if (close_command
) {
4989 chunk_status
= lttng_trace_chunk_set_close_command(
4990 chunk
, *close_command
);
4991 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4992 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
4998 * chunk is now invalid to access as we no longer hold a reference to
4999 * it; it is only kept around to compare it (by address) to the
5000 * current chunk found in the session's channels.
5003 cds_lfht_for_each_entry(the_consumer_data
.channel_ht
->ht
, &iter
.iter
,
5004 channel
, node
.node
) {
5008 * Only change the channel's chunk to NULL if it still
5009 * references the chunk being closed. The channel may
5010 * reference a newer channel in the case of a session
5011 * rotation. When a session rotation occurs, the "next"
5012 * chunk is created before the "current" chunk is closed.
5014 if (channel
->trace_chunk
!= chunk
) {
5017 ret
= lttng_consumer_channel_set_trace_chunk(channel
, NULL
);
5020 * Attempt to close the chunk on as many channels as
5023 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
5029 struct consumer_relayd_sock_pair
*relayd
;
5031 relayd
= consumer_find_relayd(*relayd_id
);
5033 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
5034 ret
= relayd_close_trace_chunk(
5035 &relayd
->control_sock
, chunk
,
5037 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
5039 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64
,
5043 if (!relayd
|| ret
) {
5044 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
5052 * Release the reference returned by the "find" operation and
5053 * the session daemon's implicit reference to the chunk.
5055 lttng_trace_chunk_put(chunk
);
5056 lttng_trace_chunk_put(chunk
);
5061 enum lttcomm_return_code
lttng_consumer_trace_chunk_exists(
5062 const uint64_t *relayd_id
, uint64_t session_id
,
5066 enum lttcomm_return_code ret_code
;
5067 char relayd_id_buffer
[MAX_INT_DEC_LEN(*relayd_id
)];
5068 const char *relayd_id_str
= "(none)";
5069 const bool is_local_trace
= !relayd_id
;
5070 struct consumer_relayd_sock_pair
*relayd
= NULL
;
5071 bool chunk_exists_local
, chunk_exists_remote
;
5074 /* Only used for logging purposes. */
5075 ret
= snprintf(relayd_id_buffer
, sizeof(relayd_id_buffer
),
5076 "%" PRIu64
, *relayd_id
);
5077 if (ret
> 0 && ret
< sizeof(relayd_id_buffer
)) {
5078 relayd_id_str
= relayd_id_buffer
;
5080 relayd_id_str
= "(formatting error)";
5084 DBG("Consumer trace chunk exists command: relayd_id = %s"
5085 ", chunk_id = %" PRIu64
, relayd_id_str
,
5087 ret
= lttng_trace_chunk_registry_chunk_exists(
5088 the_consumer_data
.chunk_registry
, session_id
, chunk_id
,
5089 &chunk_exists_local
);
5091 /* Internal error. */
5092 ERR("Failed to query the existence of a trace chunk");
5093 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
5096 DBG("Trace chunk %s locally",
5097 chunk_exists_local
? "exists" : "does not exist");
5098 if (chunk_exists_local
) {
5099 ret_code
= LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL
;
5101 } else if (is_local_trace
) {
5102 ret_code
= LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK
;
5107 relayd
= consumer_find_relayd(*relayd_id
);
5109 ERR("Failed to find relayd %" PRIu64
, *relayd_id
);
5110 ret_code
= LTTCOMM_CONSUMERD_INVALID_PARAMETERS
;
5111 goto end_rcu_unlock
;
5113 DBG("Looking up existence of trace chunk on relay daemon");
5114 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
5115 ret
= relayd_trace_chunk_exists(&relayd
->control_sock
, chunk_id
,
5116 &chunk_exists_remote
);
5117 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
5119 ERR("Failed to look-up the existence of trace chunk on relay daemon");
5120 ret_code
= LTTCOMM_CONSUMERD_RELAYD_FAIL
;
5121 goto end_rcu_unlock
;
5124 ret_code
= chunk_exists_remote
?
5125 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE
:
5126 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK
;
5127 DBG("Trace chunk %s on relay daemon",
5128 chunk_exists_remote
? "exists" : "does not exist");
5137 int consumer_clear_monitored_channel(struct lttng_consumer_channel
*channel
)
5139 struct lttng_ht
*ht
;
5140 struct lttng_consumer_stream
*stream
;
5141 struct lttng_ht_iter iter
;
5144 ht
= the_consumer_data
.stream_per_chan_id_ht
;
5147 cds_lfht_for_each_entry_duplicate(ht
->ht
,
5148 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
5149 ht
->match_fct
, &channel
->key
,
5150 &iter
.iter
, stream
, node_channel_id
.node
) {
5152 * Protect against teardown with mutex.
5154 pthread_mutex_lock(&stream
->lock
);
5155 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
5158 ret
= consumer_clear_stream(stream
);
5163 pthread_mutex_unlock(&stream
->lock
);
5166 return LTTCOMM_CONSUMERD_SUCCESS
;
5169 pthread_mutex_unlock(&stream
->lock
);
5174 int lttng_consumer_clear_channel(struct lttng_consumer_channel
*channel
)
5178 DBG("Consumer clear channel %" PRIu64
, channel
->key
);
5180 if (channel
->type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
5182 * Nothing to do for the metadata channel/stream.
5183 * Snapshot mechanism already take care of the metadata
5184 * handling/generation, and monitored channels only need to
5185 * have their data stream cleared..
5187 ret
= LTTCOMM_CONSUMERD_SUCCESS
;
5191 if (!channel
->monitor
) {
5192 ret
= consumer_clear_unmonitored_channel(channel
);
5194 ret
= consumer_clear_monitored_channel(channel
);
5200 enum lttcomm_return_code
lttng_consumer_open_channel_packets(
5201 struct lttng_consumer_channel
*channel
)
5203 struct lttng_consumer_stream
*stream
;
5204 enum lttcomm_return_code ret
= LTTCOMM_CONSUMERD_SUCCESS
;
5206 if (channel
->metadata_stream
) {
5207 ERR("Open channel packets command attempted on a metadata channel");
5208 ret
= LTTCOMM_CONSUMERD_INVALID_PARAMETERS
;
5213 cds_list_for_each_entry(stream
, &channel
->streams
.head
, send_node
) {
5214 enum consumer_stream_open_packet_status status
;
5216 pthread_mutex_lock(&stream
->lock
);
5217 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
5221 status
= consumer_stream_open_packet(stream
);
5223 case CONSUMER_STREAM_OPEN_PACKET_STATUS_OPENED
:
5224 DBG("Opened a packet in \"open channel packets\" command: stream id = %" PRIu64
5225 ", channel name = %s, session id = %" PRIu64
,
5226 stream
->key
, stream
->chan
->name
,
5227 stream
->chan
->session_id
);
5228 stream
->opened_packet_in_current_trace_chunk
= true;
5230 case CONSUMER_STREAM_OPEN_PACKET_STATUS_NO_SPACE
:
5231 DBG("No space left to open a packet in \"open channel packets\" command: stream id = %" PRIu64
5232 ", channel name = %s, session id = %" PRIu64
,
5233 stream
->key
, stream
->chan
->name
,
5234 stream
->chan
->session_id
);
5236 case CONSUMER_STREAM_OPEN_PACKET_STATUS_ERROR
:
5238 * Only unexpected internal errors can lead to this
5239 * failing. Report an unknown error.
5241 ERR("Failed to flush empty buffer in \"open channel packets\" command: stream id = %" PRIu64
5242 ", channel id = %" PRIu64
5243 ", channel name = %s"
5244 ", session id = %" PRIu64
,
5245 stream
->key
, channel
->key
,
5246 channel
->name
, channel
->session_id
);
5247 ret
= LTTCOMM_CONSUMERD_UNKNOWN_ERROR
;
5254 pthread_mutex_unlock(&stream
->lock
);
5263 pthread_mutex_unlock(&stream
->lock
);
5264 goto end_rcu_unlock
;
5267 void lttng_consumer_sigbus_handle(void *addr
)
5269 lttng_ustconsumer_sigbus_handle(addr
);