Fix: post-clear trace chunk has a late beginning packet
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Copyright (C) 2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
5 *
6 * SPDX-License-Identifier: GPL-2.0-only
7 *
8 */
9
10 #include "common/index/ctf-index.h"
11 #define _LGPL_SOURCE
12 #include <assert.h>
13 #include <poll.h>
14 #include <pthread.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <sys/mman.h>
18 #include <sys/socket.h>
19 #include <sys/types.h>
20 #include <unistd.h>
21 #include <inttypes.h>
22 #include <signal.h>
23
24 #include <bin/lttng-consumerd/health-consumerd.h>
25 #include <common/common.h>
26 #include <common/utils.h>
27 #include <common/time.h>
28 #include <common/compat/poll.h>
29 #include <common/compat/endian.h>
30 #include <common/index/index.h>
31 #include <common/kernel-ctl/kernel-ctl.h>
32 #include <common/sessiond-comm/relayd.h>
33 #include <common/sessiond-comm/sessiond-comm.h>
34 #include <common/kernel-consumer/kernel-consumer.h>
35 #include <common/relayd/relayd.h>
36 #include <common/ust-consumer/ust-consumer.h>
37 #include <common/consumer/consumer-timer.h>
38 #include <common/consumer/consumer.h>
39 #include <common/consumer/consumer-stream.h>
40 #include <common/consumer/consumer-testpoint.h>
41 #include <common/align.h>
42 #include <common/consumer/consumer-metadata-cache.h>
43 #include <common/trace-chunk.h>
44 #include <common/trace-chunk-registry.h>
45 #include <common/string-utils/format.h>
46 #include <common/dynamic-array.h>
47
48 struct lttng_consumer_global_data consumer_data = {
49 .stream_count = 0,
50 .need_update = 1,
51 .type = LTTNG_CONSUMER_UNKNOWN,
52 };
53
54 enum consumer_channel_action {
55 CONSUMER_CHANNEL_ADD,
56 CONSUMER_CHANNEL_DEL,
57 CONSUMER_CHANNEL_QUIT,
58 };
59
60 struct consumer_channel_msg {
61 enum consumer_channel_action action;
62 struct lttng_consumer_channel *chan; /* add */
63 uint64_t key; /* del */
64 };
65
66 enum open_packet_status {
67 OPEN_PACKET_STATUS_OPENED,
68 OPEN_PACKET_STATUS_NO_SPACE,
69 OPEN_PACKET_STATUS_ERROR,
70 };
71
72 /* Flag used to temporarily pause data consumption from testpoints. */
73 int data_consumption_paused;
74
75 /*
76 * Flag to inform the polling thread to quit when all fd hung up. Updated by
77 * the consumer_thread_receive_fds when it notices that all fds has hung up.
78 * Also updated by the signal handler (consumer_should_exit()). Read by the
79 * polling threads.
80 */
81 int consumer_quit;
82
83 /*
84 * Global hash table containing respectively metadata and data streams. The
85 * stream element in this ht should only be updated by the metadata poll thread
86 * for the metadata and the data poll thread for the data.
87 */
88 static struct lttng_ht *metadata_ht;
89 static struct lttng_ht *data_ht;
90
91 static const char *get_consumer_domain(void)
92 {
93 switch (consumer_data.type) {
94 case LTTNG_CONSUMER_KERNEL:
95 return DEFAULT_KERNEL_TRACE_DIR;
96 case LTTNG_CONSUMER64_UST:
97 /* Fall-through. */
98 case LTTNG_CONSUMER32_UST:
99 return DEFAULT_UST_TRACE_DIR;
100 default:
101 abort();
102 }
103 }
104
105 /*
106 * Notify a thread lttng pipe to poll back again. This usually means that some
107 * global state has changed so we just send back the thread in a poll wait
108 * call.
109 */
110 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
111 {
112 struct lttng_consumer_stream *null_stream = NULL;
113
114 assert(pipe);
115
116 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
117 }
118
119 static void notify_health_quit_pipe(int *pipe)
120 {
121 ssize_t ret;
122
123 ret = lttng_write(pipe[1], "4", 1);
124 if (ret < 1) {
125 PERROR("write consumer health quit");
126 }
127 }
128
129 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
130 struct lttng_consumer_channel *chan,
131 uint64_t key,
132 enum consumer_channel_action action)
133 {
134 struct consumer_channel_msg msg;
135 ssize_t ret;
136
137 memset(&msg, 0, sizeof(msg));
138
139 msg.action = action;
140 msg.chan = chan;
141 msg.key = key;
142 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
143 if (ret < sizeof(msg)) {
144 PERROR("notify_channel_pipe write error");
145 }
146 }
147
148 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
149 uint64_t key)
150 {
151 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
152 }
153
154 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
155 struct lttng_consumer_channel **chan,
156 uint64_t *key,
157 enum consumer_channel_action *action)
158 {
159 struct consumer_channel_msg msg;
160 ssize_t ret;
161
162 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
163 if (ret < sizeof(msg)) {
164 ret = -1;
165 goto error;
166 }
167 *action = msg.action;
168 *chan = msg.chan;
169 *key = msg.key;
170 error:
171 return (int) ret;
172 }
173
174 /*
175 * Cleanup the stream list of a channel. Those streams are not yet globally
176 * visible
177 */
178 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
179 {
180 struct lttng_consumer_stream *stream, *stmp;
181
182 assert(channel);
183
184 /* Delete streams that might have been left in the stream list. */
185 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
186 send_node) {
187 cds_list_del(&stream->send_node);
188 /*
189 * Once a stream is added to this list, the buffers were created so we
190 * have a guarantee that this call will succeed. Setting the monitor
191 * mode to 0 so we don't lock nor try to delete the stream from the
192 * global hash table.
193 */
194 stream->monitor = 0;
195 consumer_stream_destroy(stream, NULL);
196 }
197 }
198
199 /*
200 * Find a stream. The consumer_data.lock must be locked during this
201 * call.
202 */
203 static struct lttng_consumer_stream *find_stream(uint64_t key,
204 struct lttng_ht *ht)
205 {
206 struct lttng_ht_iter iter;
207 struct lttng_ht_node_u64 *node;
208 struct lttng_consumer_stream *stream = NULL;
209
210 assert(ht);
211
212 /* -1ULL keys are lookup failures */
213 if (key == (uint64_t) -1ULL) {
214 return NULL;
215 }
216
217 rcu_read_lock();
218
219 lttng_ht_lookup(ht, &key, &iter);
220 node = lttng_ht_iter_get_node_u64(&iter);
221 if (node != NULL) {
222 stream = caa_container_of(node, struct lttng_consumer_stream, node);
223 }
224
225 rcu_read_unlock();
226
227 return stream;
228 }
229
230 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
231 {
232 struct lttng_consumer_stream *stream;
233
234 rcu_read_lock();
235 stream = find_stream(key, ht);
236 if (stream) {
237 stream->key = (uint64_t) -1ULL;
238 /*
239 * We don't want the lookup to match, but we still need
240 * to iterate on this stream when iterating over the hash table. Just
241 * change the node key.
242 */
243 stream->node.key = (uint64_t) -1ULL;
244 }
245 rcu_read_unlock();
246 }
247
248 /*
249 * Return a channel object for the given key.
250 *
251 * RCU read side lock MUST be acquired before calling this function and
252 * protects the channel ptr.
253 */
254 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
255 {
256 struct lttng_ht_iter iter;
257 struct lttng_ht_node_u64 *node;
258 struct lttng_consumer_channel *channel = NULL;
259
260 /* -1ULL keys are lookup failures */
261 if (key == (uint64_t) -1ULL) {
262 return NULL;
263 }
264
265 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
266 node = lttng_ht_iter_get_node_u64(&iter);
267 if (node != NULL) {
268 channel = caa_container_of(node, struct lttng_consumer_channel, node);
269 }
270
271 return channel;
272 }
273
274 /*
275 * There is a possibility that the consumer does not have enough time between
276 * the close of the channel on the session daemon and the cleanup in here thus
277 * once we have a channel add with an existing key, we know for sure that this
278 * channel will eventually get cleaned up by all streams being closed.
279 *
280 * This function just nullifies the already existing channel key.
281 */
282 static void steal_channel_key(uint64_t key)
283 {
284 struct lttng_consumer_channel *channel;
285
286 rcu_read_lock();
287 channel = consumer_find_channel(key);
288 if (channel) {
289 channel->key = (uint64_t) -1ULL;
290 /*
291 * We don't want the lookup to match, but we still need to iterate on
292 * this channel when iterating over the hash table. Just change the
293 * node key.
294 */
295 channel->node.key = (uint64_t) -1ULL;
296 }
297 rcu_read_unlock();
298 }
299
300 static void free_channel_rcu(struct rcu_head *head)
301 {
302 struct lttng_ht_node_u64 *node =
303 caa_container_of(head, struct lttng_ht_node_u64, head);
304 struct lttng_consumer_channel *channel =
305 caa_container_of(node, struct lttng_consumer_channel, node);
306
307 switch (consumer_data.type) {
308 case LTTNG_CONSUMER_KERNEL:
309 break;
310 case LTTNG_CONSUMER32_UST:
311 case LTTNG_CONSUMER64_UST:
312 lttng_ustconsumer_free_channel(channel);
313 break;
314 default:
315 ERR("Unknown consumer_data type");
316 abort();
317 }
318 free(channel);
319 }
320
321 /*
322 * RCU protected relayd socket pair free.
323 */
324 static void free_relayd_rcu(struct rcu_head *head)
325 {
326 struct lttng_ht_node_u64 *node =
327 caa_container_of(head, struct lttng_ht_node_u64, head);
328 struct consumer_relayd_sock_pair *relayd =
329 caa_container_of(node, struct consumer_relayd_sock_pair, node);
330
331 /*
332 * Close all sockets. This is done in the call RCU since we don't want the
333 * socket fds to be reassigned thus potentially creating bad state of the
334 * relayd object.
335 *
336 * We do not have to lock the control socket mutex here since at this stage
337 * there is no one referencing to this relayd object.
338 */
339 (void) relayd_close(&relayd->control_sock);
340 (void) relayd_close(&relayd->data_sock);
341
342 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
343 free(relayd);
344 }
345
346 /*
347 * Destroy and free relayd socket pair object.
348 */
349 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
350 {
351 int ret;
352 struct lttng_ht_iter iter;
353
354 if (relayd == NULL) {
355 return;
356 }
357
358 DBG("Consumer destroy and close relayd socket pair");
359
360 iter.iter.node = &relayd->node.node;
361 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
362 if (ret != 0) {
363 /* We assume the relayd is being or is destroyed */
364 return;
365 }
366
367 /* RCU free() call */
368 call_rcu(&relayd->node.head, free_relayd_rcu);
369 }
370
371 /*
372 * Remove a channel from the global list protected by a mutex. This function is
373 * also responsible for freeing its data structures.
374 */
375 void consumer_del_channel(struct lttng_consumer_channel *channel)
376 {
377 struct lttng_ht_iter iter;
378
379 DBG("Consumer delete channel key %" PRIu64, channel->key);
380
381 pthread_mutex_lock(&consumer_data.lock);
382 pthread_mutex_lock(&channel->lock);
383
384 /* Destroy streams that might have been left in the stream list. */
385 clean_channel_stream_list(channel);
386
387 if (channel->live_timer_enabled == 1) {
388 consumer_timer_live_stop(channel);
389 }
390 if (channel->monitor_timer_enabled == 1) {
391 consumer_timer_monitor_stop(channel);
392 }
393
394 switch (consumer_data.type) {
395 case LTTNG_CONSUMER_KERNEL:
396 break;
397 case LTTNG_CONSUMER32_UST:
398 case LTTNG_CONSUMER64_UST:
399 lttng_ustconsumer_del_channel(channel);
400 break;
401 default:
402 ERR("Unknown consumer_data type");
403 assert(0);
404 goto end;
405 }
406
407 lttng_trace_chunk_put(channel->trace_chunk);
408 channel->trace_chunk = NULL;
409
410 if (channel->is_published) {
411 int ret;
412
413 rcu_read_lock();
414 iter.iter.node = &channel->node.node;
415 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
416 assert(!ret);
417
418 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
419 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
420 &iter);
421 assert(!ret);
422 rcu_read_unlock();
423 }
424
425 channel->is_deleted = true;
426 call_rcu(&channel->node.head, free_channel_rcu);
427 end:
428 pthread_mutex_unlock(&channel->lock);
429 pthread_mutex_unlock(&consumer_data.lock);
430 }
431
432 /*
433 * Iterate over the relayd hash table and destroy each element. Finally,
434 * destroy the whole hash table.
435 */
436 static void cleanup_relayd_ht(void)
437 {
438 struct lttng_ht_iter iter;
439 struct consumer_relayd_sock_pair *relayd;
440
441 rcu_read_lock();
442
443 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
444 node.node) {
445 consumer_destroy_relayd(relayd);
446 }
447
448 rcu_read_unlock();
449
450 lttng_ht_destroy(consumer_data.relayd_ht);
451 }
452
453 /*
454 * Update the end point status of all streams having the given network sequence
455 * index (relayd index).
456 *
457 * It's atomically set without having the stream mutex locked which is fine
458 * because we handle the write/read race with a pipe wakeup for each thread.
459 */
460 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
461 enum consumer_endpoint_status status)
462 {
463 struct lttng_ht_iter iter;
464 struct lttng_consumer_stream *stream;
465
466 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
467
468 rcu_read_lock();
469
470 /* Let's begin with metadata */
471 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
472 if (stream->net_seq_idx == net_seq_idx) {
473 uatomic_set(&stream->endpoint_status, status);
474 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
475 }
476 }
477
478 /* Follow up by the data streams */
479 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
480 if (stream->net_seq_idx == net_seq_idx) {
481 uatomic_set(&stream->endpoint_status, status);
482 DBG("Delete flag set to data stream %d", stream->wait_fd);
483 }
484 }
485 rcu_read_unlock();
486 }
487
488 /*
489 * Cleanup a relayd object by flagging every associated streams for deletion,
490 * destroying the object meaning removing it from the relayd hash table,
491 * closing the sockets and freeing the memory in a RCU call.
492 *
493 * If a local data context is available, notify the threads that the streams'
494 * state have changed.
495 */
496 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
497 {
498 uint64_t netidx;
499
500 assert(relayd);
501
502 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
503
504 /* Save the net sequence index before destroying the object */
505 netidx = relayd->net_seq_idx;
506
507 /*
508 * Delete the relayd from the relayd hash table, close the sockets and free
509 * the object in a RCU call.
510 */
511 consumer_destroy_relayd(relayd);
512
513 /* Set inactive endpoint to all streams */
514 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
515
516 /*
517 * With a local data context, notify the threads that the streams' state
518 * have changed. The write() action on the pipe acts as an "implicit"
519 * memory barrier ordering the updates of the end point status from the
520 * read of this status which happens AFTER receiving this notify.
521 */
522 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
523 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
524 }
525
526 /*
527 * Flag a relayd socket pair for destruction. Destroy it if the refcount
528 * reaches zero.
529 *
530 * RCU read side lock MUST be aquired before calling this function.
531 */
532 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
533 {
534 assert(relayd);
535
536 /* Set destroy flag for this object */
537 uatomic_set(&relayd->destroy_flag, 1);
538
539 /* Destroy the relayd if refcount is 0 */
540 if (uatomic_read(&relayd->refcount) == 0) {
541 consumer_destroy_relayd(relayd);
542 }
543 }
544
545 /*
546 * Completly destroy stream from every visiable data structure and the given
547 * hash table if one.
548 *
549 * One this call returns, the stream object is not longer usable nor visible.
550 */
551 void consumer_del_stream(struct lttng_consumer_stream *stream,
552 struct lttng_ht *ht)
553 {
554 consumer_stream_destroy(stream, ht);
555 }
556
557 /*
558 * XXX naming of del vs destroy is all mixed up.
559 */
560 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
561 {
562 consumer_stream_destroy(stream, data_ht);
563 }
564
565 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
566 {
567 consumer_stream_destroy(stream, metadata_ht);
568 }
569
570 void consumer_stream_update_channel_attributes(
571 struct lttng_consumer_stream *stream,
572 struct lttng_consumer_channel *channel)
573 {
574 stream->channel_read_only_attributes.tracefile_size =
575 channel->tracefile_size;
576 }
577
578 /*
579 * Add a stream to the global list protected by a mutex.
580 */
581 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
582 {
583 struct lttng_ht *ht = data_ht;
584
585 assert(stream);
586 assert(ht);
587
588 DBG3("Adding consumer stream %" PRIu64, stream->key);
589
590 pthread_mutex_lock(&consumer_data.lock);
591 pthread_mutex_lock(&stream->chan->lock);
592 pthread_mutex_lock(&stream->chan->timer_lock);
593 pthread_mutex_lock(&stream->lock);
594 rcu_read_lock();
595
596 /* Steal stream identifier to avoid having streams with the same key */
597 steal_stream_key(stream->key, ht);
598
599 lttng_ht_add_unique_u64(ht, &stream->node);
600
601 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
602 &stream->node_channel_id);
603
604 /*
605 * Add stream to the stream_list_ht of the consumer data. No need to steal
606 * the key since the HT does not use it and we allow to add redundant keys
607 * into this table.
608 */
609 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
610
611 /*
612 * When nb_init_stream_left reaches 0, we don't need to trigger any action
613 * in terms of destroying the associated channel, because the action that
614 * causes the count to become 0 also causes a stream to be added. The
615 * channel deletion will thus be triggered by the following removal of this
616 * stream.
617 */
618 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
619 /* Increment refcount before decrementing nb_init_stream_left */
620 cmm_smp_wmb();
621 uatomic_dec(&stream->chan->nb_init_stream_left);
622 }
623
624 /* Update consumer data once the node is inserted. */
625 consumer_data.stream_count++;
626 consumer_data.need_update = 1;
627
628 rcu_read_unlock();
629 pthread_mutex_unlock(&stream->lock);
630 pthread_mutex_unlock(&stream->chan->timer_lock);
631 pthread_mutex_unlock(&stream->chan->lock);
632 pthread_mutex_unlock(&consumer_data.lock);
633 }
634
635 /*
636 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
637 * be acquired before calling this.
638 */
639 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
640 {
641 int ret = 0;
642 struct lttng_ht_node_u64 *node;
643 struct lttng_ht_iter iter;
644
645 assert(relayd);
646
647 lttng_ht_lookup(consumer_data.relayd_ht,
648 &relayd->net_seq_idx, &iter);
649 node = lttng_ht_iter_get_node_u64(&iter);
650 if (node != NULL) {
651 goto end;
652 }
653 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
654
655 end:
656 return ret;
657 }
658
659 /*
660 * Allocate and return a consumer relayd socket.
661 */
662 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
663 uint64_t net_seq_idx)
664 {
665 struct consumer_relayd_sock_pair *obj = NULL;
666
667 /* net sequence index of -1 is a failure */
668 if (net_seq_idx == (uint64_t) -1ULL) {
669 goto error;
670 }
671
672 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
673 if (obj == NULL) {
674 PERROR("zmalloc relayd sock");
675 goto error;
676 }
677
678 obj->net_seq_idx = net_seq_idx;
679 obj->refcount = 0;
680 obj->destroy_flag = 0;
681 obj->control_sock.sock.fd = -1;
682 obj->data_sock.sock.fd = -1;
683 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
684 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
685
686 error:
687 return obj;
688 }
689
690 /*
691 * Find a relayd socket pair in the global consumer data.
692 *
693 * Return the object if found else NULL.
694 * RCU read-side lock must be held across this call and while using the
695 * returned object.
696 */
697 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
698 {
699 struct lttng_ht_iter iter;
700 struct lttng_ht_node_u64 *node;
701 struct consumer_relayd_sock_pair *relayd = NULL;
702
703 /* Negative keys are lookup failures */
704 if (key == (uint64_t) -1ULL) {
705 goto error;
706 }
707
708 lttng_ht_lookup(consumer_data.relayd_ht, &key,
709 &iter);
710 node = lttng_ht_iter_get_node_u64(&iter);
711 if (node != NULL) {
712 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
713 }
714
715 error:
716 return relayd;
717 }
718
719 /*
720 * Find a relayd and send the stream
721 *
722 * Returns 0 on success, < 0 on error
723 */
724 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
725 char *path)
726 {
727 int ret = 0;
728 struct consumer_relayd_sock_pair *relayd;
729
730 assert(stream);
731 assert(stream->net_seq_idx != -1ULL);
732 assert(path);
733
734 /* The stream is not metadata. Get relayd reference if exists. */
735 rcu_read_lock();
736 relayd = consumer_find_relayd(stream->net_seq_idx);
737 if (relayd != NULL) {
738 /* Add stream on the relayd */
739 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
740 ret = relayd_add_stream(&relayd->control_sock, stream->name,
741 get_consumer_domain(), path, &stream->relayd_stream_id,
742 stream->chan->tracefile_size,
743 stream->chan->tracefile_count,
744 stream->trace_chunk);
745 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
746 if (ret < 0) {
747 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
748 lttng_consumer_cleanup_relayd(relayd);
749 goto end;
750 }
751
752 uatomic_inc(&relayd->refcount);
753 stream->sent_to_relayd = 1;
754 } else {
755 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
756 stream->key, stream->net_seq_idx);
757 ret = -1;
758 goto end;
759 }
760
761 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
762 stream->name, stream->key, stream->net_seq_idx);
763
764 end:
765 rcu_read_unlock();
766 return ret;
767 }
768
769 /*
770 * Find a relayd and send the streams sent message
771 *
772 * Returns 0 on success, < 0 on error
773 */
774 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
775 {
776 int ret = 0;
777 struct consumer_relayd_sock_pair *relayd;
778
779 assert(net_seq_idx != -1ULL);
780
781 /* The stream is not metadata. Get relayd reference if exists. */
782 rcu_read_lock();
783 relayd = consumer_find_relayd(net_seq_idx);
784 if (relayd != NULL) {
785 /* Add stream on the relayd */
786 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
787 ret = relayd_streams_sent(&relayd->control_sock);
788 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
789 if (ret < 0) {
790 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
791 lttng_consumer_cleanup_relayd(relayd);
792 goto end;
793 }
794 } else {
795 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
796 net_seq_idx);
797 ret = -1;
798 goto end;
799 }
800
801 ret = 0;
802 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
803
804 end:
805 rcu_read_unlock();
806 return ret;
807 }
808
809 /*
810 * Find a relayd and close the stream
811 */
812 void close_relayd_stream(struct lttng_consumer_stream *stream)
813 {
814 struct consumer_relayd_sock_pair *relayd;
815
816 /* The stream is not metadata. Get relayd reference if exists. */
817 rcu_read_lock();
818 relayd = consumer_find_relayd(stream->net_seq_idx);
819 if (relayd) {
820 consumer_stream_relayd_close(stream, relayd);
821 }
822 rcu_read_unlock();
823 }
824
825 /*
826 * Handle stream for relayd transmission if the stream applies for network
827 * streaming where the net sequence index is set.
828 *
829 * Return destination file descriptor or negative value on error.
830 */
831 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
832 size_t data_size, unsigned long padding,
833 struct consumer_relayd_sock_pair *relayd)
834 {
835 int outfd = -1, ret;
836 struct lttcomm_relayd_data_hdr data_hdr;
837
838 /* Safety net */
839 assert(stream);
840 assert(relayd);
841
842 /* Reset data header */
843 memset(&data_hdr, 0, sizeof(data_hdr));
844
845 if (stream->metadata_flag) {
846 /* Caller MUST acquire the relayd control socket lock */
847 ret = relayd_send_metadata(&relayd->control_sock, data_size);
848 if (ret < 0) {
849 goto error;
850 }
851
852 /* Metadata are always sent on the control socket. */
853 outfd = relayd->control_sock.sock.fd;
854 } else {
855 /* Set header with stream information */
856 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
857 data_hdr.data_size = htobe32(data_size);
858 data_hdr.padding_size = htobe32(padding);
859
860 /*
861 * Note that net_seq_num below is assigned with the *current* value of
862 * next_net_seq_num and only after that the next_net_seq_num will be
863 * increment. This is why when issuing a command on the relayd using
864 * this next value, 1 should always be substracted in order to compare
865 * the last seen sequence number on the relayd side to the last sent.
866 */
867 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
868 /* Other fields are zeroed previously */
869
870 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
871 sizeof(data_hdr));
872 if (ret < 0) {
873 goto error;
874 }
875
876 ++stream->next_net_seq_num;
877
878 /* Set to go on data socket */
879 outfd = relayd->data_sock.sock.fd;
880 }
881
882 error:
883 return outfd;
884 }
885
886 /*
887 * Trigger a dump of the metadata content. Following/during the succesful
888 * completion of this call, the metadata poll thread will start receiving
889 * metadata packets to consume.
890 *
891 * The caller must hold the channel and stream locks.
892 */
893 static
894 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
895 {
896 int ret;
897
898 ASSERT_LOCKED(stream->chan->lock);
899 ASSERT_LOCKED(stream->lock);
900 assert(stream->metadata_flag);
901 assert(stream->chan->trace_chunk);
902
903 switch (consumer_data.type) {
904 case LTTNG_CONSUMER_KERNEL:
905 /*
906 * Reset the position of what has been read from the
907 * metadata cache to 0 so we can dump it again.
908 */
909 ret = kernctl_metadata_cache_dump(stream->wait_fd);
910 break;
911 case LTTNG_CONSUMER32_UST:
912 case LTTNG_CONSUMER64_UST:
913 /*
914 * Reset the position pushed from the metadata cache so it
915 * will write from the beginning on the next push.
916 */
917 stream->ust_metadata_pushed = 0;
918 ret = consumer_metadata_wakeup_pipe(stream->chan);
919 break;
920 default:
921 ERR("Unknown consumer_data type");
922 abort();
923 }
924 if (ret < 0) {
925 ERR("Failed to dump the metadata cache");
926 }
927 return ret;
928 }
929
930 static
931 int lttng_consumer_channel_set_trace_chunk(
932 struct lttng_consumer_channel *channel,
933 struct lttng_trace_chunk *new_trace_chunk)
934 {
935 pthread_mutex_lock(&channel->lock);
936 if (channel->is_deleted) {
937 /*
938 * The channel has been logically deleted and should no longer
939 * be used. It has released its reference to its current trace
940 * chunk and should not acquire a new one.
941 *
942 * Return success as there is nothing for the caller to do.
943 */
944 goto end;
945 }
946
947 /*
948 * The acquisition of the reference cannot fail (barring
949 * a severe internal error) since a reference to the published
950 * chunk is already held by the caller.
951 */
952 if (new_trace_chunk) {
953 const bool acquired_reference = lttng_trace_chunk_get(
954 new_trace_chunk);
955
956 assert(acquired_reference);
957 }
958
959 lttng_trace_chunk_put(channel->trace_chunk);
960 channel->trace_chunk = new_trace_chunk;
961 end:
962 pthread_mutex_unlock(&channel->lock);
963 return 0;
964 }
965
966 /*
967 * Allocate and return a new lttng_consumer_channel object using the given key
968 * to initialize the hash table node.
969 *
970 * On error, return NULL.
971 */
972 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
973 uint64_t session_id,
974 const uint64_t *chunk_id,
975 const char *pathname,
976 const char *name,
977 uint64_t relayd_id,
978 enum lttng_event_output output,
979 uint64_t tracefile_size,
980 uint64_t tracefile_count,
981 uint64_t session_id_per_pid,
982 unsigned int monitor,
983 unsigned int live_timer_interval,
984 bool is_in_live_session,
985 const char *root_shm_path,
986 const char *shm_path)
987 {
988 struct lttng_consumer_channel *channel = NULL;
989 struct lttng_trace_chunk *trace_chunk = NULL;
990
991 if (chunk_id) {
992 trace_chunk = lttng_trace_chunk_registry_find_chunk(
993 consumer_data.chunk_registry, session_id,
994 *chunk_id);
995 if (!trace_chunk) {
996 ERR("Failed to find trace chunk reference during creation of channel");
997 goto end;
998 }
999 }
1000
1001 channel = zmalloc(sizeof(*channel));
1002 if (channel == NULL) {
1003 PERROR("malloc struct lttng_consumer_channel");
1004 goto end;
1005 }
1006
1007 channel->key = key;
1008 channel->refcount = 0;
1009 channel->session_id = session_id;
1010 channel->session_id_per_pid = session_id_per_pid;
1011 channel->relayd_id = relayd_id;
1012 channel->tracefile_size = tracefile_size;
1013 channel->tracefile_count = tracefile_count;
1014 channel->monitor = monitor;
1015 channel->live_timer_interval = live_timer_interval;
1016 channel->is_live = is_in_live_session;
1017 pthread_mutex_init(&channel->lock, NULL);
1018 pthread_mutex_init(&channel->timer_lock, NULL);
1019
1020 switch (output) {
1021 case LTTNG_EVENT_SPLICE:
1022 channel->output = CONSUMER_CHANNEL_SPLICE;
1023 break;
1024 case LTTNG_EVENT_MMAP:
1025 channel->output = CONSUMER_CHANNEL_MMAP;
1026 break;
1027 default:
1028 assert(0);
1029 free(channel);
1030 channel = NULL;
1031 goto end;
1032 }
1033
1034 /*
1035 * In monitor mode, the streams associated with the channel will be put in
1036 * a special list ONLY owned by this channel. So, the refcount is set to 1
1037 * here meaning that the channel itself has streams that are referenced.
1038 *
1039 * On a channel deletion, once the channel is no longer visible, the
1040 * refcount is decremented and checked for a zero value to delete it. With
1041 * streams in no monitor mode, it will now be safe to destroy the channel.
1042 */
1043 if (!channel->monitor) {
1044 channel->refcount = 1;
1045 }
1046
1047 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1048 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1049
1050 strncpy(channel->name, name, sizeof(channel->name));
1051 channel->name[sizeof(channel->name) - 1] = '\0';
1052
1053 if (root_shm_path) {
1054 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1055 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1056 }
1057 if (shm_path) {
1058 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1059 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1060 }
1061
1062 lttng_ht_node_init_u64(&channel->node, channel->key);
1063 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1064 channel->session_id);
1065
1066 channel->wait_fd = -1;
1067 CDS_INIT_LIST_HEAD(&channel->streams.head);
1068
1069 if (trace_chunk) {
1070 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1071 trace_chunk);
1072 if (ret) {
1073 goto error;
1074 }
1075 }
1076
1077 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1078
1079 end:
1080 lttng_trace_chunk_put(trace_chunk);
1081 return channel;
1082 error:
1083 consumer_del_channel(channel);
1084 channel = NULL;
1085 goto end;
1086 }
1087
1088 /*
1089 * Add a channel to the global list protected by a mutex.
1090 *
1091 * Always return 0 indicating success.
1092 */
1093 int consumer_add_channel(struct lttng_consumer_channel *channel,
1094 struct lttng_consumer_local_data *ctx)
1095 {
1096 pthread_mutex_lock(&consumer_data.lock);
1097 pthread_mutex_lock(&channel->lock);
1098 pthread_mutex_lock(&channel->timer_lock);
1099
1100 /*
1101 * This gives us a guarantee that the channel we are about to add to the
1102 * channel hash table will be unique. See this function comment on the why
1103 * we need to steel the channel key at this stage.
1104 */
1105 steal_channel_key(channel->key);
1106
1107 rcu_read_lock();
1108 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1109 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1110 &channel->channels_by_session_id_ht_node);
1111 rcu_read_unlock();
1112 channel->is_published = true;
1113
1114 pthread_mutex_unlock(&channel->timer_lock);
1115 pthread_mutex_unlock(&channel->lock);
1116 pthread_mutex_unlock(&consumer_data.lock);
1117
1118 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1119 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1120 }
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * Allocate the pollfd structure and the local view of the out fds to avoid
1127 * doing a lookup in the linked list and concurrency issues when writing is
1128 * needed. Called with consumer_data.lock held.
1129 *
1130 * Returns the number of fds in the structures.
1131 */
1132 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1133 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1134 struct lttng_ht *ht, int *nb_inactive_fd)
1135 {
1136 int i = 0;
1137 struct lttng_ht_iter iter;
1138 struct lttng_consumer_stream *stream;
1139
1140 assert(ctx);
1141 assert(ht);
1142 assert(pollfd);
1143 assert(local_stream);
1144
1145 DBG("Updating poll fd array");
1146 *nb_inactive_fd = 0;
1147 rcu_read_lock();
1148 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1149 /*
1150 * Only active streams with an active end point can be added to the
1151 * poll set and local stream storage of the thread.
1152 *
1153 * There is a potential race here for endpoint_status to be updated
1154 * just after the check. However, this is OK since the stream(s) will
1155 * be deleted once the thread is notified that the end point state has
1156 * changed where this function will be called back again.
1157 *
1158 * We track the number of inactive FDs because they still need to be
1159 * closed by the polling thread after a wakeup on the data_pipe or
1160 * metadata_pipe.
1161 */
1162 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1163 (*nb_inactive_fd)++;
1164 continue;
1165 }
1166 /*
1167 * This clobbers way too much the debug output. Uncomment that if you
1168 * need it for debugging purposes.
1169 */
1170 (*pollfd)[i].fd = stream->wait_fd;
1171 (*pollfd)[i].events = POLLIN | POLLPRI;
1172 local_stream[i] = stream;
1173 i++;
1174 }
1175 rcu_read_unlock();
1176
1177 /*
1178 * Insert the consumer_data_pipe at the end of the array and don't
1179 * increment i so nb_fd is the number of real FD.
1180 */
1181 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1182 (*pollfd)[i].events = POLLIN | POLLPRI;
1183
1184 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1185 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1186 return i;
1187 }
1188
1189 /*
1190 * Poll on the should_quit pipe and the command socket return -1 on
1191 * error, 1 if should exit, 0 if data is available on the command socket
1192 */
1193 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1194 {
1195 int num_rdy;
1196
1197 restart:
1198 num_rdy = poll(consumer_sockpoll, 2, -1);
1199 if (num_rdy == -1) {
1200 /*
1201 * Restart interrupted system call.
1202 */
1203 if (errno == EINTR) {
1204 goto restart;
1205 }
1206 PERROR("Poll error");
1207 return -1;
1208 }
1209 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1210 DBG("consumer_should_quit wake up");
1211 return 1;
1212 }
1213 return 0;
1214 }
1215
1216 /*
1217 * Set the error socket.
1218 */
1219 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1220 int sock)
1221 {
1222 ctx->consumer_error_socket = sock;
1223 }
1224
1225 /*
1226 * Set the command socket path.
1227 */
1228 void lttng_consumer_set_command_sock_path(
1229 struct lttng_consumer_local_data *ctx, char *sock)
1230 {
1231 ctx->consumer_command_sock_path = sock;
1232 }
1233
1234 /*
1235 * Send return code to the session daemon.
1236 * If the socket is not defined, we return 0, it is not a fatal error
1237 */
1238 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1239 {
1240 if (ctx->consumer_error_socket > 0) {
1241 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1242 sizeof(enum lttcomm_sessiond_command));
1243 }
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * Close all the tracefiles and stream fds and MUST be called when all
1250 * instances are destroyed i.e. when all threads were joined and are ended.
1251 */
1252 void lttng_consumer_cleanup(void)
1253 {
1254 struct lttng_ht_iter iter;
1255 struct lttng_consumer_channel *channel;
1256 unsigned int trace_chunks_left;
1257
1258 rcu_read_lock();
1259
1260 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1261 node.node) {
1262 consumer_del_channel(channel);
1263 }
1264
1265 rcu_read_unlock();
1266
1267 lttng_ht_destroy(consumer_data.channel_ht);
1268 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1269
1270 cleanup_relayd_ht();
1271
1272 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1273
1274 /*
1275 * This HT contains streams that are freed by either the metadata thread or
1276 * the data thread so we do *nothing* on the hash table and simply destroy
1277 * it.
1278 */
1279 lttng_ht_destroy(consumer_data.stream_list_ht);
1280
1281 /*
1282 * Trace chunks in the registry may still exist if the session
1283 * daemon has encountered an internal error and could not
1284 * tear down its sessions and/or trace chunks properly.
1285 *
1286 * Release the session daemon's implicit reference to any remaining
1287 * trace chunk and print an error if any trace chunk was found. Note
1288 * that there are _no_ legitimate cases for trace chunks to be left,
1289 * it is a leak. However, it can happen following a crash of the
1290 * session daemon and not emptying the registry would cause an assertion
1291 * to hit.
1292 */
1293 trace_chunks_left = lttng_trace_chunk_registry_put_each_chunk(
1294 consumer_data.chunk_registry);
1295 if (trace_chunks_left) {
1296 ERR("%u trace chunks are leaked by lttng-consumerd. "
1297 "This can be caused by an internal error of the session daemon.",
1298 trace_chunks_left);
1299 }
1300 /* Run all callbacks freeing each chunk. */
1301 rcu_barrier();
1302 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1303 }
1304
1305 /*
1306 * Called from signal handler.
1307 */
1308 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1309 {
1310 ssize_t ret;
1311
1312 CMM_STORE_SHARED(consumer_quit, 1);
1313 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1314 if (ret < 1) {
1315 PERROR("write consumer quit");
1316 }
1317
1318 DBG("Consumer flag that it should quit");
1319 }
1320
1321
1322 /*
1323 * Flush pending writes to trace output disk file.
1324 */
1325 static
1326 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1327 off_t orig_offset)
1328 {
1329 int ret;
1330 int outfd = stream->out_fd;
1331
1332 /*
1333 * This does a blocking write-and-wait on any page that belongs to the
1334 * subbuffer prior to the one we just wrote.
1335 * Don't care about error values, as these are just hints and ways to
1336 * limit the amount of page cache used.
1337 */
1338 if (orig_offset < stream->max_sb_size) {
1339 return;
1340 }
1341 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1342 stream->max_sb_size,
1343 SYNC_FILE_RANGE_WAIT_BEFORE
1344 | SYNC_FILE_RANGE_WRITE
1345 | SYNC_FILE_RANGE_WAIT_AFTER);
1346 /*
1347 * Give hints to the kernel about how we access the file:
1348 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1349 * we write it.
1350 *
1351 * We need to call fadvise again after the file grows because the
1352 * kernel does not seem to apply fadvise to non-existing parts of the
1353 * file.
1354 *
1355 * Call fadvise _after_ having waited for the page writeback to
1356 * complete because the dirty page writeback semantic is not well
1357 * defined. So it can be expected to lead to lower throughput in
1358 * streaming.
1359 */
1360 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1361 stream->max_sb_size, POSIX_FADV_DONTNEED);
1362 if (ret && ret != -ENOSYS) {
1363 errno = ret;
1364 PERROR("posix_fadvise on fd %i", outfd);
1365 }
1366 }
1367
1368 /*
1369 * Initialise the necessary environnement :
1370 * - create a new context
1371 * - create the poll_pipe
1372 * - create the should_quit pipe (for signal handler)
1373 * - create the thread pipe (for splice)
1374 *
1375 * Takes a function pointer as argument, this function is called when data is
1376 * available on a buffer. This function is responsible to do the
1377 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1378 * buffer configuration and then kernctl_put_next_subbuf at the end.
1379 *
1380 * Returns a pointer to the new context or NULL on error.
1381 */
1382 struct lttng_consumer_local_data *lttng_consumer_create(
1383 enum lttng_consumer_type type,
1384 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1385 struct lttng_consumer_local_data *ctx, bool locked_by_caller),
1386 int (*recv_channel)(struct lttng_consumer_channel *channel),
1387 int (*recv_stream)(struct lttng_consumer_stream *stream),
1388 int (*update_stream)(uint64_t stream_key, uint32_t state))
1389 {
1390 int ret;
1391 struct lttng_consumer_local_data *ctx;
1392
1393 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1394 consumer_data.type == type);
1395 consumer_data.type = type;
1396
1397 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1398 if (ctx == NULL) {
1399 PERROR("allocating context");
1400 goto error;
1401 }
1402
1403 ctx->consumer_error_socket = -1;
1404 ctx->consumer_metadata_socket = -1;
1405 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1406 /* assign the callbacks */
1407 ctx->on_buffer_ready = buffer_ready;
1408 ctx->on_recv_channel = recv_channel;
1409 ctx->on_recv_stream = recv_stream;
1410 ctx->on_update_stream = update_stream;
1411
1412 ctx->consumer_data_pipe = lttng_pipe_open(0);
1413 if (!ctx->consumer_data_pipe) {
1414 goto error_poll_pipe;
1415 }
1416
1417 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1418 if (!ctx->consumer_wakeup_pipe) {
1419 goto error_wakeup_pipe;
1420 }
1421
1422 ret = pipe(ctx->consumer_should_quit);
1423 if (ret < 0) {
1424 PERROR("Error creating recv pipe");
1425 goto error_quit_pipe;
1426 }
1427
1428 ret = pipe(ctx->consumer_channel_pipe);
1429 if (ret < 0) {
1430 PERROR("Error creating channel pipe");
1431 goto error_channel_pipe;
1432 }
1433
1434 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1435 if (!ctx->consumer_metadata_pipe) {
1436 goto error_metadata_pipe;
1437 }
1438
1439 ctx->channel_monitor_pipe = -1;
1440
1441 return ctx;
1442
1443 error_metadata_pipe:
1444 utils_close_pipe(ctx->consumer_channel_pipe);
1445 error_channel_pipe:
1446 utils_close_pipe(ctx->consumer_should_quit);
1447 error_quit_pipe:
1448 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1449 error_wakeup_pipe:
1450 lttng_pipe_destroy(ctx->consumer_data_pipe);
1451 error_poll_pipe:
1452 free(ctx);
1453 error:
1454 return NULL;
1455 }
1456
1457 /*
1458 * Iterate over all streams of the hashtable and free them properly.
1459 */
1460 static void destroy_data_stream_ht(struct lttng_ht *ht)
1461 {
1462 struct lttng_ht_iter iter;
1463 struct lttng_consumer_stream *stream;
1464
1465 if (ht == NULL) {
1466 return;
1467 }
1468
1469 rcu_read_lock();
1470 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1471 /*
1472 * Ignore return value since we are currently cleaning up so any error
1473 * can't be handled.
1474 */
1475 (void) consumer_del_stream(stream, ht);
1476 }
1477 rcu_read_unlock();
1478
1479 lttng_ht_destroy(ht);
1480 }
1481
1482 /*
1483 * Iterate over all streams of the metadata hashtable and free them
1484 * properly.
1485 */
1486 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1487 {
1488 struct lttng_ht_iter iter;
1489 struct lttng_consumer_stream *stream;
1490
1491 if (ht == NULL) {
1492 return;
1493 }
1494
1495 rcu_read_lock();
1496 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1497 /*
1498 * Ignore return value since we are currently cleaning up so any error
1499 * can't be handled.
1500 */
1501 (void) consumer_del_metadata_stream(stream, ht);
1502 }
1503 rcu_read_unlock();
1504
1505 lttng_ht_destroy(ht);
1506 }
1507
1508 /*
1509 * Close all fds associated with the instance and free the context.
1510 */
1511 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1512 {
1513 int ret;
1514
1515 DBG("Consumer destroying it. Closing everything.");
1516
1517 if (!ctx) {
1518 return;
1519 }
1520
1521 destroy_data_stream_ht(data_ht);
1522 destroy_metadata_stream_ht(metadata_ht);
1523
1524 ret = close(ctx->consumer_error_socket);
1525 if (ret) {
1526 PERROR("close");
1527 }
1528 ret = close(ctx->consumer_metadata_socket);
1529 if (ret) {
1530 PERROR("close");
1531 }
1532 utils_close_pipe(ctx->consumer_channel_pipe);
1533 lttng_pipe_destroy(ctx->consumer_data_pipe);
1534 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1535 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1536 utils_close_pipe(ctx->consumer_should_quit);
1537
1538 unlink(ctx->consumer_command_sock_path);
1539 free(ctx);
1540 }
1541
1542 /*
1543 * Write the metadata stream id on the specified file descriptor.
1544 */
1545 static int write_relayd_metadata_id(int fd,
1546 struct lttng_consumer_stream *stream,
1547 unsigned long padding)
1548 {
1549 ssize_t ret;
1550 struct lttcomm_relayd_metadata_payload hdr;
1551
1552 hdr.stream_id = htobe64(stream->relayd_stream_id);
1553 hdr.padding_size = htobe32(padding);
1554 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1555 if (ret < sizeof(hdr)) {
1556 /*
1557 * This error means that the fd's end is closed so ignore the PERROR
1558 * not to clubber the error output since this can happen in a normal
1559 * code path.
1560 */
1561 if (errno != EPIPE) {
1562 PERROR("write metadata stream id");
1563 }
1564 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1565 /*
1566 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1567 * handle writting the missing part so report that as an error and
1568 * don't lie to the caller.
1569 */
1570 ret = -1;
1571 goto end;
1572 }
1573 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1574 stream->relayd_stream_id, padding);
1575
1576 end:
1577 return (int) ret;
1578 }
1579
1580 /*
1581 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1582 * core function for writing trace buffers to either the local filesystem or
1583 * the network.
1584 *
1585 * It must be called with the stream and the channel lock held.
1586 *
1587 * Careful review MUST be put if any changes occur!
1588 *
1589 * Returns the number of bytes written
1590 */
1591 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1592 struct lttng_consumer_stream *stream,
1593 const struct lttng_buffer_view *buffer,
1594 unsigned long padding)
1595 {
1596 ssize_t ret = 0;
1597 off_t orig_offset = stream->out_fd_offset;
1598 /* Default is on the disk */
1599 int outfd = stream->out_fd;
1600 struct consumer_relayd_sock_pair *relayd = NULL;
1601 unsigned int relayd_hang_up = 0;
1602 const size_t subbuf_content_size = buffer->size - padding;
1603 size_t write_len;
1604
1605 /* RCU lock for the relayd pointer */
1606 rcu_read_lock();
1607 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1608 stream->trace_chunk);
1609
1610 /* Flag that the current stream if set for network streaming. */
1611 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1612 relayd = consumer_find_relayd(stream->net_seq_idx);
1613 if (relayd == NULL) {
1614 ret = -EPIPE;
1615 goto end;
1616 }
1617 }
1618
1619 /* Handle stream on the relayd if the output is on the network */
1620 if (relayd) {
1621 unsigned long netlen = subbuf_content_size;
1622
1623 /*
1624 * Lock the control socket for the complete duration of the function
1625 * since from this point on we will use the socket.
1626 */
1627 if (stream->metadata_flag) {
1628 /* Metadata requires the control socket. */
1629 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1630 if (stream->reset_metadata_flag) {
1631 ret = relayd_reset_metadata(&relayd->control_sock,
1632 stream->relayd_stream_id,
1633 stream->metadata_version);
1634 if (ret < 0) {
1635 relayd_hang_up = 1;
1636 goto write_error;
1637 }
1638 stream->reset_metadata_flag = 0;
1639 }
1640 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1641 }
1642
1643 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1644 if (ret < 0) {
1645 relayd_hang_up = 1;
1646 goto write_error;
1647 }
1648 /* Use the returned socket. */
1649 outfd = ret;
1650
1651 /* Write metadata stream id before payload */
1652 if (stream->metadata_flag) {
1653 ret = write_relayd_metadata_id(outfd, stream, padding);
1654 if (ret < 0) {
1655 relayd_hang_up = 1;
1656 goto write_error;
1657 }
1658 }
1659
1660 write_len = subbuf_content_size;
1661 } else {
1662 /* No streaming; we have to write the full padding. */
1663 if (stream->metadata_flag && stream->reset_metadata_flag) {
1664 ret = utils_truncate_stream_file(stream->out_fd, 0);
1665 if (ret < 0) {
1666 ERR("Reset metadata file");
1667 goto end;
1668 }
1669 stream->reset_metadata_flag = 0;
1670 }
1671
1672 /*
1673 * Check if we need to change the tracefile before writing the packet.
1674 */
1675 if (stream->chan->tracefile_size > 0 &&
1676 (stream->tracefile_size_current + buffer->size) >
1677 stream->chan->tracefile_size) {
1678 ret = consumer_stream_rotate_output_files(stream);
1679 if (ret) {
1680 goto end;
1681 }
1682 outfd = stream->out_fd;
1683 orig_offset = 0;
1684 }
1685 stream->tracefile_size_current += buffer->size;
1686 write_len = buffer->size;
1687 }
1688
1689 /*
1690 * This call guarantee that len or less is returned. It's impossible to
1691 * receive a ret value that is bigger than len.
1692 */
1693 ret = lttng_write(outfd, buffer->data, write_len);
1694 DBG("Consumer mmap write() ret %zd (len %zu)", ret, write_len);
1695 if (ret < 0 || ((size_t) ret != write_len)) {
1696 /*
1697 * Report error to caller if nothing was written else at least send the
1698 * amount written.
1699 */
1700 if (ret < 0) {
1701 ret = -errno;
1702 }
1703 relayd_hang_up = 1;
1704
1705 /* Socket operation failed. We consider the relayd dead */
1706 if (errno == EPIPE) {
1707 /*
1708 * This is possible if the fd is closed on the other side
1709 * (outfd) or any write problem. It can be verbose a bit for a
1710 * normal execution if for instance the relayd is stopped
1711 * abruptly. This can happen so set this to a DBG statement.
1712 */
1713 DBG("Consumer mmap write detected relayd hang up");
1714 } else {
1715 /* Unhandled error, print it and stop function right now. */
1716 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret,
1717 write_len);
1718 }
1719 goto write_error;
1720 }
1721 stream->output_written += ret;
1722
1723 /* This call is useless on a socket so better save a syscall. */
1724 if (!relayd) {
1725 /* This won't block, but will start writeout asynchronously */
1726 lttng_sync_file_range(outfd, stream->out_fd_offset, write_len,
1727 SYNC_FILE_RANGE_WRITE);
1728 stream->out_fd_offset += write_len;
1729 lttng_consumer_sync_trace_file(stream, orig_offset);
1730 }
1731
1732 write_error:
1733 /*
1734 * This is a special case that the relayd has closed its socket. Let's
1735 * cleanup the relayd object and all associated streams.
1736 */
1737 if (relayd && relayd_hang_up) {
1738 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1739 lttng_consumer_cleanup_relayd(relayd);
1740 }
1741
1742 end:
1743 /* Unlock only if ctrl socket used */
1744 if (relayd && stream->metadata_flag) {
1745 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1746 }
1747
1748 rcu_read_unlock();
1749 return ret;
1750 }
1751
1752 /*
1753 * Splice the data from the ring buffer to the tracefile.
1754 *
1755 * It must be called with the stream lock held.
1756 *
1757 * Returns the number of bytes spliced.
1758 */
1759 ssize_t lttng_consumer_on_read_subbuffer_splice(
1760 struct lttng_consumer_local_data *ctx,
1761 struct lttng_consumer_stream *stream, unsigned long len,
1762 unsigned long padding)
1763 {
1764 ssize_t ret = 0, written = 0, ret_splice = 0;
1765 loff_t offset = 0;
1766 off_t orig_offset = stream->out_fd_offset;
1767 int fd = stream->wait_fd;
1768 /* Default is on the disk */
1769 int outfd = stream->out_fd;
1770 struct consumer_relayd_sock_pair *relayd = NULL;
1771 int *splice_pipe;
1772 unsigned int relayd_hang_up = 0;
1773
1774 switch (consumer_data.type) {
1775 case LTTNG_CONSUMER_KERNEL:
1776 break;
1777 case LTTNG_CONSUMER32_UST:
1778 case LTTNG_CONSUMER64_UST:
1779 /* Not supported for user space tracing */
1780 return -ENOSYS;
1781 default:
1782 ERR("Unknown consumer_data type");
1783 assert(0);
1784 }
1785
1786 /* RCU lock for the relayd pointer */
1787 rcu_read_lock();
1788
1789 /* Flag that the current stream if set for network streaming. */
1790 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1791 relayd = consumer_find_relayd(stream->net_seq_idx);
1792 if (relayd == NULL) {
1793 written = -ret;
1794 goto end;
1795 }
1796 }
1797 splice_pipe = stream->splice_pipe;
1798
1799 /* Write metadata stream id before payload */
1800 if (relayd) {
1801 unsigned long total_len = len;
1802
1803 if (stream->metadata_flag) {
1804 /*
1805 * Lock the control socket for the complete duration of the function
1806 * since from this point on we will use the socket.
1807 */
1808 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1809
1810 if (stream->reset_metadata_flag) {
1811 ret = relayd_reset_metadata(&relayd->control_sock,
1812 stream->relayd_stream_id,
1813 stream->metadata_version);
1814 if (ret < 0) {
1815 relayd_hang_up = 1;
1816 goto write_error;
1817 }
1818 stream->reset_metadata_flag = 0;
1819 }
1820 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1821 padding);
1822 if (ret < 0) {
1823 written = ret;
1824 relayd_hang_up = 1;
1825 goto write_error;
1826 }
1827
1828 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1829 }
1830
1831 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1832 if (ret < 0) {
1833 written = ret;
1834 relayd_hang_up = 1;
1835 goto write_error;
1836 }
1837 /* Use the returned socket. */
1838 outfd = ret;
1839 } else {
1840 /* No streaming, we have to set the len with the full padding */
1841 len += padding;
1842
1843 if (stream->metadata_flag && stream->reset_metadata_flag) {
1844 ret = utils_truncate_stream_file(stream->out_fd, 0);
1845 if (ret < 0) {
1846 ERR("Reset metadata file");
1847 goto end;
1848 }
1849 stream->reset_metadata_flag = 0;
1850 }
1851 /*
1852 * Check if we need to change the tracefile before writing the packet.
1853 */
1854 if (stream->chan->tracefile_size > 0 &&
1855 (stream->tracefile_size_current + len) >
1856 stream->chan->tracefile_size) {
1857 ret = consumer_stream_rotate_output_files(stream);
1858 if (ret < 0) {
1859 written = ret;
1860 goto end;
1861 }
1862 outfd = stream->out_fd;
1863 orig_offset = 0;
1864 }
1865 stream->tracefile_size_current += len;
1866 }
1867
1868 while (len > 0) {
1869 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1870 (unsigned long)offset, len, fd, splice_pipe[1]);
1871 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1872 SPLICE_F_MOVE | SPLICE_F_MORE);
1873 DBG("splice chan to pipe, ret %zd", ret_splice);
1874 if (ret_splice < 0) {
1875 ret = errno;
1876 written = -ret;
1877 PERROR("Error in relay splice");
1878 goto splice_error;
1879 }
1880
1881 /* Handle stream on the relayd if the output is on the network */
1882 if (relayd && stream->metadata_flag) {
1883 size_t metadata_payload_size =
1884 sizeof(struct lttcomm_relayd_metadata_payload);
1885
1886 /* Update counter to fit the spliced data */
1887 ret_splice += metadata_payload_size;
1888 len += metadata_payload_size;
1889 /*
1890 * We do this so the return value can match the len passed as
1891 * argument to this function.
1892 */
1893 written -= metadata_payload_size;
1894 }
1895
1896 /* Splice data out */
1897 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1898 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1899 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1900 outfd, ret_splice);
1901 if (ret_splice < 0) {
1902 ret = errno;
1903 written = -ret;
1904 relayd_hang_up = 1;
1905 goto write_error;
1906 } else if (ret_splice > len) {
1907 /*
1908 * We don't expect this code path to be executed but you never know
1909 * so this is an extra protection agains a buggy splice().
1910 */
1911 ret = errno;
1912 written += ret_splice;
1913 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1914 len);
1915 goto splice_error;
1916 } else {
1917 /* All good, update current len and continue. */
1918 len -= ret_splice;
1919 }
1920
1921 /* This call is useless on a socket so better save a syscall. */
1922 if (!relayd) {
1923 /* This won't block, but will start writeout asynchronously */
1924 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1925 SYNC_FILE_RANGE_WRITE);
1926 stream->out_fd_offset += ret_splice;
1927 }
1928 stream->output_written += ret_splice;
1929 written += ret_splice;
1930 }
1931 if (!relayd) {
1932 lttng_consumer_sync_trace_file(stream, orig_offset);
1933 }
1934 goto end;
1935
1936 write_error:
1937 /*
1938 * This is a special case that the relayd has closed its socket. Let's
1939 * cleanup the relayd object and all associated streams.
1940 */
1941 if (relayd && relayd_hang_up) {
1942 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1943 lttng_consumer_cleanup_relayd(relayd);
1944 /* Skip splice error so the consumer does not fail */
1945 goto end;
1946 }
1947
1948 splice_error:
1949 /* send the appropriate error description to sessiond */
1950 switch (ret) {
1951 case EINVAL:
1952 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1953 break;
1954 case ENOMEM:
1955 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1956 break;
1957 case ESPIPE:
1958 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1959 break;
1960 }
1961
1962 end:
1963 if (relayd && stream->metadata_flag) {
1964 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1965 }
1966
1967 rcu_read_unlock();
1968 return written;
1969 }
1970
1971 /*
1972 * Sample the snapshot positions for a specific fd
1973 *
1974 * Returns 0 on success, < 0 on error
1975 */
1976 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
1977 {
1978 switch (consumer_data.type) {
1979 case LTTNG_CONSUMER_KERNEL:
1980 return lttng_kconsumer_sample_snapshot_positions(stream);
1981 case LTTNG_CONSUMER32_UST:
1982 case LTTNG_CONSUMER64_UST:
1983 return lttng_ustconsumer_sample_snapshot_positions(stream);
1984 default:
1985 ERR("Unknown consumer_data type");
1986 assert(0);
1987 return -ENOSYS;
1988 }
1989 }
1990 /*
1991 * Take a snapshot for a specific fd
1992 *
1993 * Returns 0 on success, < 0 on error
1994 */
1995 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1996 {
1997 switch (consumer_data.type) {
1998 case LTTNG_CONSUMER_KERNEL:
1999 return lttng_kconsumer_take_snapshot(stream);
2000 case LTTNG_CONSUMER32_UST:
2001 case LTTNG_CONSUMER64_UST:
2002 return lttng_ustconsumer_take_snapshot(stream);
2003 default:
2004 ERR("Unknown consumer_data type");
2005 assert(0);
2006 return -ENOSYS;
2007 }
2008 }
2009
2010 /*
2011 * Get the produced position
2012 *
2013 * Returns 0 on success, < 0 on error
2014 */
2015 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2016 unsigned long *pos)
2017 {
2018 switch (consumer_data.type) {
2019 case LTTNG_CONSUMER_KERNEL:
2020 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2021 case LTTNG_CONSUMER32_UST:
2022 case LTTNG_CONSUMER64_UST:
2023 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2024 default:
2025 ERR("Unknown consumer_data type");
2026 assert(0);
2027 return -ENOSYS;
2028 }
2029 }
2030
2031 /*
2032 * Get the consumed position (free-running counter position in bytes).
2033 *
2034 * Returns 0 on success, < 0 on error
2035 */
2036 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2037 unsigned long *pos)
2038 {
2039 switch (consumer_data.type) {
2040 case LTTNG_CONSUMER_KERNEL:
2041 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2042 case LTTNG_CONSUMER32_UST:
2043 case LTTNG_CONSUMER64_UST:
2044 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2045 default:
2046 ERR("Unknown consumer_data type");
2047 assert(0);
2048 return -ENOSYS;
2049 }
2050 }
2051
2052 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2053 int sock, struct pollfd *consumer_sockpoll)
2054 {
2055 switch (consumer_data.type) {
2056 case LTTNG_CONSUMER_KERNEL:
2057 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2058 case LTTNG_CONSUMER32_UST:
2059 case LTTNG_CONSUMER64_UST:
2060 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2061 default:
2062 ERR("Unknown consumer_data type");
2063 assert(0);
2064 return -ENOSYS;
2065 }
2066 }
2067
2068 static
2069 void lttng_consumer_close_all_metadata(void)
2070 {
2071 switch (consumer_data.type) {
2072 case LTTNG_CONSUMER_KERNEL:
2073 /*
2074 * The Kernel consumer has a different metadata scheme so we don't
2075 * close anything because the stream will be closed by the session
2076 * daemon.
2077 */
2078 break;
2079 case LTTNG_CONSUMER32_UST:
2080 case LTTNG_CONSUMER64_UST:
2081 /*
2082 * Close all metadata streams. The metadata hash table is passed and
2083 * this call iterates over it by closing all wakeup fd. This is safe
2084 * because at this point we are sure that the metadata producer is
2085 * either dead or blocked.
2086 */
2087 lttng_ustconsumer_close_all_metadata(metadata_ht);
2088 break;
2089 default:
2090 ERR("Unknown consumer_data type");
2091 assert(0);
2092 }
2093 }
2094
2095 /*
2096 * Clean up a metadata stream and free its memory.
2097 */
2098 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2099 struct lttng_ht *ht)
2100 {
2101 struct lttng_consumer_channel *channel = NULL;
2102 bool free_channel = false;
2103
2104 assert(stream);
2105 /*
2106 * This call should NEVER receive regular stream. It must always be
2107 * metadata stream and this is crucial for data structure synchronization.
2108 */
2109 assert(stream->metadata_flag);
2110
2111 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2112
2113 pthread_mutex_lock(&consumer_data.lock);
2114 /*
2115 * Note that this assumes that a stream's channel is never changed and
2116 * that the stream's lock doesn't need to be taken to sample its
2117 * channel.
2118 */
2119 channel = stream->chan;
2120 pthread_mutex_lock(&channel->lock);
2121 pthread_mutex_lock(&stream->lock);
2122 if (channel->metadata_cache) {
2123 /* Only applicable to userspace consumers. */
2124 pthread_mutex_lock(&channel->metadata_cache->lock);
2125 }
2126
2127 /* Remove any reference to that stream. */
2128 consumer_stream_delete(stream, ht);
2129
2130 /* Close down everything including the relayd if one. */
2131 consumer_stream_close(stream);
2132 /* Destroy tracer buffers of the stream. */
2133 consumer_stream_destroy_buffers(stream);
2134
2135 /* Atomically decrement channel refcount since other threads can use it. */
2136 if (!uatomic_sub_return(&channel->refcount, 1)
2137 && !uatomic_read(&channel->nb_init_stream_left)) {
2138 /* Go for channel deletion! */
2139 free_channel = true;
2140 }
2141 stream->chan = NULL;
2142
2143 /*
2144 * Nullify the stream reference so it is not used after deletion. The
2145 * channel lock MUST be acquired before being able to check for a NULL
2146 * pointer value.
2147 */
2148 channel->metadata_stream = NULL;
2149
2150 if (channel->metadata_cache) {
2151 pthread_mutex_unlock(&channel->metadata_cache->lock);
2152 }
2153 pthread_mutex_unlock(&stream->lock);
2154 pthread_mutex_unlock(&channel->lock);
2155 pthread_mutex_unlock(&consumer_data.lock);
2156
2157 if (free_channel) {
2158 consumer_del_channel(channel);
2159 }
2160
2161 lttng_trace_chunk_put(stream->trace_chunk);
2162 stream->trace_chunk = NULL;
2163 consumer_stream_free(stream);
2164 }
2165
2166 /*
2167 * Action done with the metadata stream when adding it to the consumer internal
2168 * data structures to handle it.
2169 */
2170 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2171 {
2172 struct lttng_ht *ht = metadata_ht;
2173 struct lttng_ht_iter iter;
2174 struct lttng_ht_node_u64 *node;
2175
2176 assert(stream);
2177 assert(ht);
2178
2179 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2180
2181 pthread_mutex_lock(&consumer_data.lock);
2182 pthread_mutex_lock(&stream->chan->lock);
2183 pthread_mutex_lock(&stream->chan->timer_lock);
2184 pthread_mutex_lock(&stream->lock);
2185
2186 /*
2187 * From here, refcounts are updated so be _careful_ when returning an error
2188 * after this point.
2189 */
2190
2191 rcu_read_lock();
2192
2193 /*
2194 * Lookup the stream just to make sure it does not exist in our internal
2195 * state. This should NEVER happen.
2196 */
2197 lttng_ht_lookup(ht, &stream->key, &iter);
2198 node = lttng_ht_iter_get_node_u64(&iter);
2199 assert(!node);
2200
2201 /*
2202 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2203 * in terms of destroying the associated channel, because the action that
2204 * causes the count to become 0 also causes a stream to be added. The
2205 * channel deletion will thus be triggered by the following removal of this
2206 * stream.
2207 */
2208 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2209 /* Increment refcount before decrementing nb_init_stream_left */
2210 cmm_smp_wmb();
2211 uatomic_dec(&stream->chan->nb_init_stream_left);
2212 }
2213
2214 lttng_ht_add_unique_u64(ht, &stream->node);
2215
2216 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2217 &stream->node_channel_id);
2218
2219 /*
2220 * Add stream to the stream_list_ht of the consumer data. No need to steal
2221 * the key since the HT does not use it and we allow to add redundant keys
2222 * into this table.
2223 */
2224 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2225
2226 rcu_read_unlock();
2227
2228 pthread_mutex_unlock(&stream->lock);
2229 pthread_mutex_unlock(&stream->chan->lock);
2230 pthread_mutex_unlock(&stream->chan->timer_lock);
2231 pthread_mutex_unlock(&consumer_data.lock);
2232 }
2233
2234 /*
2235 * Delete data stream that are flagged for deletion (endpoint_status).
2236 */
2237 static void validate_endpoint_status_data_stream(void)
2238 {
2239 struct lttng_ht_iter iter;
2240 struct lttng_consumer_stream *stream;
2241
2242 DBG("Consumer delete flagged data stream");
2243
2244 rcu_read_lock();
2245 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2246 /* Validate delete flag of the stream */
2247 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2248 continue;
2249 }
2250 /* Delete it right now */
2251 consumer_del_stream(stream, data_ht);
2252 }
2253 rcu_read_unlock();
2254 }
2255
2256 /*
2257 * Delete metadata stream that are flagged for deletion (endpoint_status).
2258 */
2259 static void validate_endpoint_status_metadata_stream(
2260 struct lttng_poll_event *pollset)
2261 {
2262 struct lttng_ht_iter iter;
2263 struct lttng_consumer_stream *stream;
2264
2265 DBG("Consumer delete flagged metadata stream");
2266
2267 assert(pollset);
2268
2269 rcu_read_lock();
2270 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2271 /* Validate delete flag of the stream */
2272 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2273 continue;
2274 }
2275 /*
2276 * Remove from pollset so the metadata thread can continue without
2277 * blocking on a deleted stream.
2278 */
2279 lttng_poll_del(pollset, stream->wait_fd);
2280
2281 /* Delete it right now */
2282 consumer_del_metadata_stream(stream, metadata_ht);
2283 }
2284 rcu_read_unlock();
2285 }
2286
2287 /*
2288 * Thread polls on metadata file descriptor and write them on disk or on the
2289 * network.
2290 */
2291 void *consumer_thread_metadata_poll(void *data)
2292 {
2293 int ret, i, pollfd, err = -1;
2294 uint32_t revents, nb_fd;
2295 struct lttng_consumer_stream *stream = NULL;
2296 struct lttng_ht_iter iter;
2297 struct lttng_ht_node_u64 *node;
2298 struct lttng_poll_event events;
2299 struct lttng_consumer_local_data *ctx = data;
2300 ssize_t len;
2301
2302 rcu_register_thread();
2303
2304 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2305
2306 if (testpoint(consumerd_thread_metadata)) {
2307 goto error_testpoint;
2308 }
2309
2310 health_code_update();
2311
2312 DBG("Thread metadata poll started");
2313
2314 /* Size is set to 1 for the consumer_metadata pipe */
2315 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2316 if (ret < 0) {
2317 ERR("Poll set creation failed");
2318 goto end_poll;
2319 }
2320
2321 ret = lttng_poll_add(&events,
2322 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2323 if (ret < 0) {
2324 goto end;
2325 }
2326
2327 /* Main loop */
2328 DBG("Metadata main loop started");
2329
2330 while (1) {
2331 restart:
2332 health_code_update();
2333 health_poll_entry();
2334 DBG("Metadata poll wait");
2335 ret = lttng_poll_wait(&events, -1);
2336 DBG("Metadata poll return from wait with %d fd(s)",
2337 LTTNG_POLL_GETNB(&events));
2338 health_poll_exit();
2339 DBG("Metadata event caught in thread");
2340 if (ret < 0) {
2341 if (errno == EINTR) {
2342 ERR("Poll EINTR caught");
2343 goto restart;
2344 }
2345 if (LTTNG_POLL_GETNB(&events) == 0) {
2346 err = 0; /* All is OK */
2347 }
2348 goto end;
2349 }
2350
2351 nb_fd = ret;
2352
2353 /* From here, the event is a metadata wait fd */
2354 for (i = 0; i < nb_fd; i++) {
2355 health_code_update();
2356
2357 revents = LTTNG_POLL_GETEV(&events, i);
2358 pollfd = LTTNG_POLL_GETFD(&events, i);
2359
2360 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2361 if (revents & LPOLLIN) {
2362 ssize_t pipe_len;
2363
2364 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2365 &stream, sizeof(stream));
2366 if (pipe_len < sizeof(stream)) {
2367 if (pipe_len < 0) {
2368 PERROR("read metadata stream");
2369 }
2370 /*
2371 * Remove the pipe from the poll set and continue the loop
2372 * since their might be data to consume.
2373 */
2374 lttng_poll_del(&events,
2375 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2376 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2377 continue;
2378 }
2379
2380 /* A NULL stream means that the state has changed. */
2381 if (stream == NULL) {
2382 /* Check for deleted streams. */
2383 validate_endpoint_status_metadata_stream(&events);
2384 goto restart;
2385 }
2386
2387 DBG("Adding metadata stream %d to poll set",
2388 stream->wait_fd);
2389
2390 /* Add metadata stream to the global poll events list */
2391 lttng_poll_add(&events, stream->wait_fd,
2392 LPOLLIN | LPOLLPRI | LPOLLHUP);
2393 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2394 DBG("Metadata thread pipe hung up");
2395 /*
2396 * Remove the pipe from the poll set and continue the loop
2397 * since their might be data to consume.
2398 */
2399 lttng_poll_del(&events,
2400 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2401 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2402 continue;
2403 } else {
2404 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2405 goto end;
2406 }
2407
2408 /* Handle other stream */
2409 continue;
2410 }
2411
2412 rcu_read_lock();
2413 {
2414 uint64_t tmp_id = (uint64_t) pollfd;
2415
2416 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2417 }
2418 node = lttng_ht_iter_get_node_u64(&iter);
2419 assert(node);
2420
2421 stream = caa_container_of(node, struct lttng_consumer_stream,
2422 node);
2423
2424 if (revents & (LPOLLIN | LPOLLPRI)) {
2425 /* Get the data out of the metadata file descriptor */
2426 DBG("Metadata available on fd %d", pollfd);
2427 assert(stream->wait_fd == pollfd);
2428
2429 do {
2430 health_code_update();
2431
2432 len = ctx->on_buffer_ready(stream, ctx, false);
2433 /*
2434 * We don't check the return value here since if we get
2435 * a negative len, it means an error occurred thus we
2436 * simply remove it from the poll set and free the
2437 * stream.
2438 */
2439 } while (len > 0);
2440
2441 /* It's ok to have an unavailable sub-buffer */
2442 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2443 /* Clean up stream from consumer and free it. */
2444 lttng_poll_del(&events, stream->wait_fd);
2445 consumer_del_metadata_stream(stream, metadata_ht);
2446 }
2447 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2448 DBG("Metadata fd %d is hup|err.", pollfd);
2449 if (!stream->hangup_flush_done
2450 && (consumer_data.type == LTTNG_CONSUMER32_UST
2451 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2452 DBG("Attempting to flush and consume the UST buffers");
2453 lttng_ustconsumer_on_stream_hangup(stream);
2454
2455 /* We just flushed the stream now read it. */
2456 do {
2457 health_code_update();
2458
2459 len = ctx->on_buffer_ready(stream, ctx, false);
2460 /*
2461 * We don't check the return value here since if we get
2462 * a negative len, it means an error occurred thus we
2463 * simply remove it from the poll set and free the
2464 * stream.
2465 */
2466 } while (len > 0);
2467 }
2468
2469 lttng_poll_del(&events, stream->wait_fd);
2470 /*
2471 * This call update the channel states, closes file descriptors
2472 * and securely free the stream.
2473 */
2474 consumer_del_metadata_stream(stream, metadata_ht);
2475 } else {
2476 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2477 rcu_read_unlock();
2478 goto end;
2479 }
2480 /* Release RCU lock for the stream looked up */
2481 rcu_read_unlock();
2482 }
2483 }
2484
2485 /* All is OK */
2486 err = 0;
2487 end:
2488 DBG("Metadata poll thread exiting");
2489
2490 lttng_poll_clean(&events);
2491 end_poll:
2492 error_testpoint:
2493 if (err) {
2494 health_error();
2495 ERR("Health error occurred in %s", __func__);
2496 }
2497 health_unregister(health_consumerd);
2498 rcu_unregister_thread();
2499 return NULL;
2500 }
2501
2502 /*
2503 * This thread polls the fds in the set to consume the data and write
2504 * it to tracefile if necessary.
2505 */
2506 void *consumer_thread_data_poll(void *data)
2507 {
2508 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2509 struct pollfd *pollfd = NULL;
2510 /* local view of the streams */
2511 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2512 /* local view of consumer_data.fds_count */
2513 int nb_fd = 0;
2514 /* 2 for the consumer_data_pipe and wake up pipe */
2515 const int nb_pipes_fd = 2;
2516 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2517 int nb_inactive_fd = 0;
2518 struct lttng_consumer_local_data *ctx = data;
2519 ssize_t len;
2520
2521 rcu_register_thread();
2522
2523 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2524
2525 if (testpoint(consumerd_thread_data)) {
2526 goto error_testpoint;
2527 }
2528
2529 health_code_update();
2530
2531 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2532 if (local_stream == NULL) {
2533 PERROR("local_stream malloc");
2534 goto end;
2535 }
2536
2537 while (1) {
2538 health_code_update();
2539
2540 high_prio = 0;
2541 num_hup = 0;
2542
2543 /*
2544 * the fds set has been updated, we need to update our
2545 * local array as well
2546 */
2547 pthread_mutex_lock(&consumer_data.lock);
2548 if (consumer_data.need_update) {
2549 free(pollfd);
2550 pollfd = NULL;
2551
2552 free(local_stream);
2553 local_stream = NULL;
2554
2555 /* Allocate for all fds */
2556 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2557 if (pollfd == NULL) {
2558 PERROR("pollfd malloc");
2559 pthread_mutex_unlock(&consumer_data.lock);
2560 goto end;
2561 }
2562
2563 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2564 sizeof(struct lttng_consumer_stream *));
2565 if (local_stream == NULL) {
2566 PERROR("local_stream malloc");
2567 pthread_mutex_unlock(&consumer_data.lock);
2568 goto end;
2569 }
2570 ret = update_poll_array(ctx, &pollfd, local_stream,
2571 data_ht, &nb_inactive_fd);
2572 if (ret < 0) {
2573 ERR("Error in allocating pollfd or local_outfds");
2574 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2575 pthread_mutex_unlock(&consumer_data.lock);
2576 goto end;
2577 }
2578 nb_fd = ret;
2579 consumer_data.need_update = 0;
2580 }
2581 pthread_mutex_unlock(&consumer_data.lock);
2582
2583 /* No FDs and consumer_quit, consumer_cleanup the thread */
2584 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2585 CMM_LOAD_SHARED(consumer_quit) == 1) {
2586 err = 0; /* All is OK */
2587 goto end;
2588 }
2589 /* poll on the array of fds */
2590 restart:
2591 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2592 if (testpoint(consumerd_thread_data_poll)) {
2593 goto end;
2594 }
2595 health_poll_entry();
2596 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2597 health_poll_exit();
2598 DBG("poll num_rdy : %d", num_rdy);
2599 if (num_rdy == -1) {
2600 /*
2601 * Restart interrupted system call.
2602 */
2603 if (errno == EINTR) {
2604 goto restart;
2605 }
2606 PERROR("Poll error");
2607 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2608 goto end;
2609 } else if (num_rdy == 0) {
2610 DBG("Polling thread timed out");
2611 goto end;
2612 }
2613
2614 if (caa_unlikely(data_consumption_paused)) {
2615 DBG("Data consumption paused, sleeping...");
2616 sleep(1);
2617 goto restart;
2618 }
2619
2620 /*
2621 * If the consumer_data_pipe triggered poll go directly to the
2622 * beginning of the loop to update the array. We want to prioritize
2623 * array update over low-priority reads.
2624 */
2625 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2626 ssize_t pipe_readlen;
2627
2628 DBG("consumer_data_pipe wake up");
2629 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2630 &new_stream, sizeof(new_stream));
2631 if (pipe_readlen < sizeof(new_stream)) {
2632 PERROR("Consumer data pipe");
2633 /* Continue so we can at least handle the current stream(s). */
2634 continue;
2635 }
2636
2637 /*
2638 * If the stream is NULL, just ignore it. It's also possible that
2639 * the sessiond poll thread changed the consumer_quit state and is
2640 * waking us up to test it.
2641 */
2642 if (new_stream == NULL) {
2643 validate_endpoint_status_data_stream();
2644 continue;
2645 }
2646
2647 /* Continue to update the local streams and handle prio ones */
2648 continue;
2649 }
2650
2651 /* Handle wakeup pipe. */
2652 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2653 char dummy;
2654 ssize_t pipe_readlen;
2655
2656 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2657 sizeof(dummy));
2658 if (pipe_readlen < 0) {
2659 PERROR("Consumer data wakeup pipe");
2660 }
2661 /* We've been awakened to handle stream(s). */
2662 ctx->has_wakeup = 0;
2663 }
2664
2665 /* Take care of high priority channels first. */
2666 for (i = 0; i < nb_fd; i++) {
2667 health_code_update();
2668
2669 if (local_stream[i] == NULL) {
2670 continue;
2671 }
2672 if (pollfd[i].revents & POLLPRI) {
2673 DBG("Urgent read on fd %d", pollfd[i].fd);
2674 high_prio = 1;
2675 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2676 /* it's ok to have an unavailable sub-buffer */
2677 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2678 /* Clean the stream and free it. */
2679 consumer_del_stream(local_stream[i], data_ht);
2680 local_stream[i] = NULL;
2681 } else if (len > 0) {
2682 local_stream[i]->data_read = 1;
2683 }
2684 }
2685 }
2686
2687 /*
2688 * If we read high prio channel in this loop, try again
2689 * for more high prio data.
2690 */
2691 if (high_prio) {
2692 continue;
2693 }
2694
2695 /* Take care of low priority channels. */
2696 for (i = 0; i < nb_fd; i++) {
2697 health_code_update();
2698
2699 if (local_stream[i] == NULL) {
2700 continue;
2701 }
2702 if ((pollfd[i].revents & POLLIN) ||
2703 local_stream[i]->hangup_flush_done ||
2704 local_stream[i]->has_data) {
2705 DBG("Normal read on fd %d", pollfd[i].fd);
2706 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2707 /* it's ok to have an unavailable sub-buffer */
2708 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2709 /* Clean the stream and free it. */
2710 consumer_del_stream(local_stream[i], data_ht);
2711 local_stream[i] = NULL;
2712 } else if (len > 0) {
2713 local_stream[i]->data_read = 1;
2714 }
2715 }
2716 }
2717
2718 /* Handle hangup and errors */
2719 for (i = 0; i < nb_fd; i++) {
2720 health_code_update();
2721
2722 if (local_stream[i] == NULL) {
2723 continue;
2724 }
2725 if (!local_stream[i]->hangup_flush_done
2726 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2727 && (consumer_data.type == LTTNG_CONSUMER32_UST
2728 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2729 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2730 pollfd[i].fd);
2731 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2732 /* Attempt read again, for the data we just flushed. */
2733 local_stream[i]->data_read = 1;
2734 }
2735 /*
2736 * If the poll flag is HUP/ERR/NVAL and we have
2737 * read no data in this pass, we can remove the
2738 * stream from its hash table.
2739 */
2740 if ((pollfd[i].revents & POLLHUP)) {
2741 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2742 if (!local_stream[i]->data_read) {
2743 consumer_del_stream(local_stream[i], data_ht);
2744 local_stream[i] = NULL;
2745 num_hup++;
2746 }
2747 } else if (pollfd[i].revents & POLLERR) {
2748 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2749 if (!local_stream[i]->data_read) {
2750 consumer_del_stream(local_stream[i], data_ht);
2751 local_stream[i] = NULL;
2752 num_hup++;
2753 }
2754 } else if (pollfd[i].revents & POLLNVAL) {
2755 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2756 if (!local_stream[i]->data_read) {
2757 consumer_del_stream(local_stream[i], data_ht);
2758 local_stream[i] = NULL;
2759 num_hup++;
2760 }
2761 }
2762 if (local_stream[i] != NULL) {
2763 local_stream[i]->data_read = 0;
2764 }
2765 }
2766 }
2767 /* All is OK */
2768 err = 0;
2769 end:
2770 DBG("polling thread exiting");
2771 free(pollfd);
2772 free(local_stream);
2773
2774 /*
2775 * Close the write side of the pipe so epoll_wait() in
2776 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2777 * read side of the pipe. If we close them both, epoll_wait strangely does
2778 * not return and could create a endless wait period if the pipe is the
2779 * only tracked fd in the poll set. The thread will take care of closing
2780 * the read side.
2781 */
2782 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2783
2784 error_testpoint:
2785 if (err) {
2786 health_error();
2787 ERR("Health error occurred in %s", __func__);
2788 }
2789 health_unregister(health_consumerd);
2790
2791 rcu_unregister_thread();
2792 return NULL;
2793 }
2794
2795 /*
2796 * Close wake-up end of each stream belonging to the channel. This will
2797 * allow the poll() on the stream read-side to detect when the
2798 * write-side (application) finally closes them.
2799 */
2800 static
2801 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2802 {
2803 struct lttng_ht *ht;
2804 struct lttng_consumer_stream *stream;
2805 struct lttng_ht_iter iter;
2806
2807 ht = consumer_data.stream_per_chan_id_ht;
2808
2809 rcu_read_lock();
2810 cds_lfht_for_each_entry_duplicate(ht->ht,
2811 ht->hash_fct(&channel->key, lttng_ht_seed),
2812 ht->match_fct, &channel->key,
2813 &iter.iter, stream, node_channel_id.node) {
2814 /*
2815 * Protect against teardown with mutex.
2816 */
2817 pthread_mutex_lock(&stream->lock);
2818 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2819 goto next;
2820 }
2821 switch (consumer_data.type) {
2822 case LTTNG_CONSUMER_KERNEL:
2823 break;
2824 case LTTNG_CONSUMER32_UST:
2825 case LTTNG_CONSUMER64_UST:
2826 if (stream->metadata_flag) {
2827 /* Safe and protected by the stream lock. */
2828 lttng_ustconsumer_close_metadata(stream->chan);
2829 } else {
2830 /*
2831 * Note: a mutex is taken internally within
2832 * liblttng-ust-ctl to protect timer wakeup_fd
2833 * use from concurrent close.
2834 */
2835 lttng_ustconsumer_close_stream_wakeup(stream);
2836 }
2837 break;
2838 default:
2839 ERR("Unknown consumer_data type");
2840 assert(0);
2841 }
2842 next:
2843 pthread_mutex_unlock(&stream->lock);
2844 }
2845 rcu_read_unlock();
2846 }
2847
2848 static void destroy_channel_ht(struct lttng_ht *ht)
2849 {
2850 struct lttng_ht_iter iter;
2851 struct lttng_consumer_channel *channel;
2852 int ret;
2853
2854 if (ht == NULL) {
2855 return;
2856 }
2857
2858 rcu_read_lock();
2859 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2860 ret = lttng_ht_del(ht, &iter);
2861 assert(ret != 0);
2862 }
2863 rcu_read_unlock();
2864
2865 lttng_ht_destroy(ht);
2866 }
2867
2868 /*
2869 * This thread polls the channel fds to detect when they are being
2870 * closed. It closes all related streams if the channel is detected as
2871 * closed. It is currently only used as a shim layer for UST because the
2872 * consumerd needs to keep the per-stream wakeup end of pipes open for
2873 * periodical flush.
2874 */
2875 void *consumer_thread_channel_poll(void *data)
2876 {
2877 int ret, i, pollfd, err = -1;
2878 uint32_t revents, nb_fd;
2879 struct lttng_consumer_channel *chan = NULL;
2880 struct lttng_ht_iter iter;
2881 struct lttng_ht_node_u64 *node;
2882 struct lttng_poll_event events;
2883 struct lttng_consumer_local_data *ctx = data;
2884 struct lttng_ht *channel_ht;
2885
2886 rcu_register_thread();
2887
2888 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2889
2890 if (testpoint(consumerd_thread_channel)) {
2891 goto error_testpoint;
2892 }
2893
2894 health_code_update();
2895
2896 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2897 if (!channel_ht) {
2898 /* ENOMEM at this point. Better to bail out. */
2899 goto end_ht;
2900 }
2901
2902 DBG("Thread channel poll started");
2903
2904 /* Size is set to 1 for the consumer_channel pipe */
2905 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2906 if (ret < 0) {
2907 ERR("Poll set creation failed");
2908 goto end_poll;
2909 }
2910
2911 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2912 if (ret < 0) {
2913 goto end;
2914 }
2915
2916 /* Main loop */
2917 DBG("Channel main loop started");
2918
2919 while (1) {
2920 restart:
2921 health_code_update();
2922 DBG("Channel poll wait");
2923 health_poll_entry();
2924 ret = lttng_poll_wait(&events, -1);
2925 DBG("Channel poll return from wait with %d fd(s)",
2926 LTTNG_POLL_GETNB(&events));
2927 health_poll_exit();
2928 DBG("Channel event caught in thread");
2929 if (ret < 0) {
2930 if (errno == EINTR) {
2931 ERR("Poll EINTR caught");
2932 goto restart;
2933 }
2934 if (LTTNG_POLL_GETNB(&events) == 0) {
2935 err = 0; /* All is OK */
2936 }
2937 goto end;
2938 }
2939
2940 nb_fd = ret;
2941
2942 /* From here, the event is a channel wait fd */
2943 for (i = 0; i < nb_fd; i++) {
2944 health_code_update();
2945
2946 revents = LTTNG_POLL_GETEV(&events, i);
2947 pollfd = LTTNG_POLL_GETFD(&events, i);
2948
2949 if (pollfd == ctx->consumer_channel_pipe[0]) {
2950 if (revents & LPOLLIN) {
2951 enum consumer_channel_action action;
2952 uint64_t key;
2953
2954 ret = read_channel_pipe(ctx, &chan, &key, &action);
2955 if (ret <= 0) {
2956 if (ret < 0) {
2957 ERR("Error reading channel pipe");
2958 }
2959 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2960 continue;
2961 }
2962
2963 switch (action) {
2964 case CONSUMER_CHANNEL_ADD:
2965 DBG("Adding channel %d to poll set",
2966 chan->wait_fd);
2967
2968 lttng_ht_node_init_u64(&chan->wait_fd_node,
2969 chan->wait_fd);
2970 rcu_read_lock();
2971 lttng_ht_add_unique_u64(channel_ht,
2972 &chan->wait_fd_node);
2973 rcu_read_unlock();
2974 /* Add channel to the global poll events list */
2975 lttng_poll_add(&events, chan->wait_fd,
2976 LPOLLERR | LPOLLHUP);
2977 break;
2978 case CONSUMER_CHANNEL_DEL:
2979 {
2980 /*
2981 * This command should never be called if the channel
2982 * has streams monitored by either the data or metadata
2983 * thread. The consumer only notify this thread with a
2984 * channel del. command if it receives a destroy
2985 * channel command from the session daemon that send it
2986 * if a command prior to the GET_CHANNEL failed.
2987 */
2988
2989 rcu_read_lock();
2990 chan = consumer_find_channel(key);
2991 if (!chan) {
2992 rcu_read_unlock();
2993 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2994 break;
2995 }
2996 lttng_poll_del(&events, chan->wait_fd);
2997 iter.iter.node = &chan->wait_fd_node.node;
2998 ret = lttng_ht_del(channel_ht, &iter);
2999 assert(ret == 0);
3000
3001 switch (consumer_data.type) {
3002 case LTTNG_CONSUMER_KERNEL:
3003 break;
3004 case LTTNG_CONSUMER32_UST:
3005 case LTTNG_CONSUMER64_UST:
3006 health_code_update();
3007 /* Destroy streams that might have been left in the stream list. */
3008 clean_channel_stream_list(chan);
3009 break;
3010 default:
3011 ERR("Unknown consumer_data type");
3012 assert(0);
3013 }
3014
3015 /*
3016 * Release our own refcount. Force channel deletion even if
3017 * streams were not initialized.
3018 */
3019 if (!uatomic_sub_return(&chan->refcount, 1)) {
3020 consumer_del_channel(chan);
3021 }
3022 rcu_read_unlock();
3023 goto restart;
3024 }
3025 case CONSUMER_CHANNEL_QUIT:
3026 /*
3027 * Remove the pipe from the poll set and continue the loop
3028 * since their might be data to consume.
3029 */
3030 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3031 continue;
3032 default:
3033 ERR("Unknown action");
3034 break;
3035 }
3036 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3037 DBG("Channel thread pipe hung up");
3038 /*
3039 * Remove the pipe from the poll set and continue the loop
3040 * since their might be data to consume.
3041 */
3042 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3043 continue;
3044 } else {
3045 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3046 goto end;
3047 }
3048
3049 /* Handle other stream */
3050 continue;
3051 }
3052
3053 rcu_read_lock();
3054 {
3055 uint64_t tmp_id = (uint64_t) pollfd;
3056
3057 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3058 }
3059 node = lttng_ht_iter_get_node_u64(&iter);
3060 assert(node);
3061
3062 chan = caa_container_of(node, struct lttng_consumer_channel,
3063 wait_fd_node);
3064
3065 /* Check for error event */
3066 if (revents & (LPOLLERR | LPOLLHUP)) {
3067 DBG("Channel fd %d is hup|err.", pollfd);
3068
3069 lttng_poll_del(&events, chan->wait_fd);
3070 ret = lttng_ht_del(channel_ht, &iter);
3071 assert(ret == 0);
3072
3073 /*
3074 * This will close the wait fd for each stream associated to
3075 * this channel AND monitored by the data/metadata thread thus
3076 * will be clean by the right thread.
3077 */
3078 consumer_close_channel_streams(chan);
3079
3080 /* Release our own refcount */
3081 if (!uatomic_sub_return(&chan->refcount, 1)
3082 && !uatomic_read(&chan->nb_init_stream_left)) {
3083 consumer_del_channel(chan);
3084 }
3085 } else {
3086 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3087 rcu_read_unlock();
3088 goto end;
3089 }
3090
3091 /* Release RCU lock for the channel looked up */
3092 rcu_read_unlock();
3093 }
3094 }
3095
3096 /* All is OK */
3097 err = 0;
3098 end:
3099 lttng_poll_clean(&events);
3100 end_poll:
3101 destroy_channel_ht(channel_ht);
3102 end_ht:
3103 error_testpoint:
3104 DBG("Channel poll thread exiting");
3105 if (err) {
3106 health_error();
3107 ERR("Health error occurred in %s", __func__);
3108 }
3109 health_unregister(health_consumerd);
3110 rcu_unregister_thread();
3111 return NULL;
3112 }
3113
3114 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3115 struct pollfd *sockpoll, int client_socket)
3116 {
3117 int ret;
3118
3119 assert(ctx);
3120 assert(sockpoll);
3121
3122 ret = lttng_consumer_poll_socket(sockpoll);
3123 if (ret) {
3124 goto error;
3125 }
3126 DBG("Metadata connection on client_socket");
3127
3128 /* Blocking call, waiting for transmission */
3129 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3130 if (ctx->consumer_metadata_socket < 0) {
3131 WARN("On accept metadata");
3132 ret = -1;
3133 goto error;
3134 }
3135 ret = 0;
3136
3137 error:
3138 return ret;
3139 }
3140
3141 /*
3142 * This thread listens on the consumerd socket and receives the file
3143 * descriptors from the session daemon.
3144 */
3145 void *consumer_thread_sessiond_poll(void *data)
3146 {
3147 int sock = -1, client_socket, ret, err = -1;
3148 /*
3149 * structure to poll for incoming data on communication socket avoids
3150 * making blocking sockets.
3151 */
3152 struct pollfd consumer_sockpoll[2];
3153 struct lttng_consumer_local_data *ctx = data;
3154
3155 rcu_register_thread();
3156
3157 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3158
3159 if (testpoint(consumerd_thread_sessiond)) {
3160 goto error_testpoint;
3161 }
3162
3163 health_code_update();
3164
3165 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3166 unlink(ctx->consumer_command_sock_path);
3167 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3168 if (client_socket < 0) {
3169 ERR("Cannot create command socket");
3170 goto end;
3171 }
3172
3173 ret = lttcomm_listen_unix_sock(client_socket);
3174 if (ret < 0) {
3175 goto end;
3176 }
3177
3178 DBG("Sending ready command to lttng-sessiond");
3179 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3180 /* return < 0 on error, but == 0 is not fatal */
3181 if (ret < 0) {
3182 ERR("Error sending ready command to lttng-sessiond");
3183 goto end;
3184 }
3185
3186 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3187 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3188 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3189 consumer_sockpoll[1].fd = client_socket;
3190 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3191
3192 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3193 if (ret) {
3194 if (ret > 0) {
3195 /* should exit */
3196 err = 0;
3197 }
3198 goto end;
3199 }
3200 DBG("Connection on client_socket");
3201
3202 /* Blocking call, waiting for transmission */
3203 sock = lttcomm_accept_unix_sock(client_socket);
3204 if (sock < 0) {
3205 WARN("On accept");
3206 goto end;
3207 }
3208
3209 /*
3210 * Setup metadata socket which is the second socket connection on the
3211 * command unix socket.
3212 */
3213 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3214 if (ret) {
3215 if (ret > 0) {
3216 /* should exit */
3217 err = 0;
3218 }
3219 goto end;
3220 }
3221
3222 /* This socket is not useful anymore. */
3223 ret = close(client_socket);
3224 if (ret < 0) {
3225 PERROR("close client_socket");
3226 }
3227 client_socket = -1;
3228
3229 /* update the polling structure to poll on the established socket */
3230 consumer_sockpoll[1].fd = sock;
3231 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3232
3233 while (1) {
3234 health_code_update();
3235
3236 health_poll_entry();
3237 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3238 health_poll_exit();
3239 if (ret) {
3240 if (ret > 0) {
3241 /* should exit */
3242 err = 0;
3243 }
3244 goto end;
3245 }
3246 DBG("Incoming command on sock");
3247 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3248 if (ret <= 0) {
3249 /*
3250 * This could simply be a session daemon quitting. Don't output
3251 * ERR() here.
3252 */
3253 DBG("Communication interrupted on command socket");
3254 err = 0;
3255 goto end;
3256 }
3257 if (CMM_LOAD_SHARED(consumer_quit)) {
3258 DBG("consumer_thread_receive_fds received quit from signal");
3259 err = 0; /* All is OK */
3260 goto end;
3261 }
3262 DBG("received command on sock");
3263 }
3264 /* All is OK */
3265 err = 0;
3266
3267 end:
3268 DBG("Consumer thread sessiond poll exiting");
3269
3270 /*
3271 * Close metadata streams since the producer is the session daemon which
3272 * just died.
3273 *
3274 * NOTE: for now, this only applies to the UST tracer.
3275 */
3276 lttng_consumer_close_all_metadata();
3277
3278 /*
3279 * when all fds have hung up, the polling thread
3280 * can exit cleanly
3281 */
3282 CMM_STORE_SHARED(consumer_quit, 1);
3283
3284 /*
3285 * Notify the data poll thread to poll back again and test the
3286 * consumer_quit state that we just set so to quit gracefully.
3287 */
3288 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3289
3290 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3291
3292 notify_health_quit_pipe(health_quit_pipe);
3293
3294 /* Cleaning up possibly open sockets. */
3295 if (sock >= 0) {
3296 ret = close(sock);
3297 if (ret < 0) {
3298 PERROR("close sock sessiond poll");
3299 }
3300 }
3301 if (client_socket >= 0) {
3302 ret = close(client_socket);
3303 if (ret < 0) {
3304 PERROR("close client_socket sessiond poll");
3305 }
3306 }
3307
3308 error_testpoint:
3309 if (err) {
3310 health_error();
3311 ERR("Health error occurred in %s", __func__);
3312 }
3313 health_unregister(health_consumerd);
3314
3315 rcu_unregister_thread();
3316 return NULL;
3317 }
3318
3319 static
3320 int consumer_flush_buffer(struct lttng_consumer_stream *stream,
3321 int producer_active)
3322 {
3323 int ret = 0;
3324
3325 switch (consumer_data.type) {
3326 case LTTNG_CONSUMER_KERNEL:
3327 if (producer_active) {
3328 ret = kernctl_buffer_flush(stream->wait_fd);
3329 if (ret < 0) {
3330 ERR("Failed to flush kernel stream");
3331 goto end;
3332 }
3333 } else {
3334 ret = kernctl_buffer_flush_empty(stream->wait_fd);
3335 if (ret < 0) {
3336 /*
3337 * Doing a buffer flush which does not take into
3338 * account empty packets. This is not perfect,
3339 * but required as a fall-back when
3340 * "flush_empty" is not implemented by
3341 * lttng-modules.
3342 */
3343 ret = kernctl_buffer_flush(stream->wait_fd);
3344 if (ret < 0) {
3345 ERR("Failed to flush kernel stream");
3346 goto end;
3347 }
3348 }
3349 }
3350 break;
3351 case LTTNG_CONSUMER32_UST:
3352 case LTTNG_CONSUMER64_UST:
3353 lttng_ustconsumer_flush_buffer(stream, producer_active);
3354 break;
3355 default:
3356 ERR("Unknown consumer_data type");
3357 abort();
3358 }
3359
3360 end:
3361 return ret;
3362 }
3363
3364 static enum open_packet_status open_packet(struct lttng_consumer_stream *stream)
3365 {
3366 int ret;
3367 enum open_packet_status status;
3368 unsigned long produced_pos_before, produced_pos_after;
3369
3370 ret = lttng_consumer_sample_snapshot_positions(stream);
3371 if (ret < 0) {
3372 ERR("Failed to snapshot positions before post-rotation empty packet flush: stream id = %" PRIu64
3373 ", channel name = %s, session id = %" PRIu64,
3374 stream->key, stream->chan->name,
3375 stream->chan->session_id);
3376 status = OPEN_PACKET_STATUS_ERROR;
3377 goto end;
3378 }
3379
3380 ret = lttng_consumer_get_produced_snapshot(
3381 stream, &produced_pos_before);
3382 if (ret < 0) {
3383 ERR("Failed to read produced position before post-rotation empty packet flush: stream id = %" PRIu64
3384 ", channel name = %s, session id = %" PRIu64,
3385 stream->key, stream->chan->name,
3386 stream->chan->session_id);
3387 status = OPEN_PACKET_STATUS_ERROR;
3388 goto end;
3389 }
3390
3391 ret = consumer_flush_buffer(stream, 0);
3392 if (ret) {
3393 ERR("Failed to flush an empty packet at rotation point: stream id = %" PRIu64
3394 ", channel name = %s, session id = %" PRIu64,
3395 stream->key, stream->chan->name,
3396 stream->chan->session_id);
3397 status = OPEN_PACKET_STATUS_ERROR;
3398 goto end;
3399 }
3400
3401 ret = lttng_consumer_sample_snapshot_positions(stream);
3402 if (ret < 0) {
3403 ERR("Failed to snapshot positions after post-rotation empty packet flush: stream id = %" PRIu64
3404 ", channel name = %s, session id = %" PRIu64,
3405 stream->key, stream->chan->name,
3406 stream->chan->session_id);
3407 status = OPEN_PACKET_STATUS_ERROR;
3408 goto end;
3409 }
3410
3411 ret = lttng_consumer_get_produced_snapshot(stream, &produced_pos_after);
3412 if (ret < 0) {
3413 ERR("Failed to read produced position after post-rotation empty packet flush: stream id = %" PRIu64
3414 ", channel name = %s, session id = %" PRIu64,
3415 stream->key, stream->chan->name,
3416 stream->chan->session_id);
3417 status = OPEN_PACKET_STATUS_ERROR;
3418 goto end;
3419 }
3420
3421 /*
3422 * Determine if the flush had an effect by comparing the produced
3423 * positons before and after the flush.
3424 */
3425 status = produced_pos_before != produced_pos_after ?
3426 OPEN_PACKET_STATUS_OPENED :
3427 OPEN_PACKET_STATUS_NO_SPACE;
3428 end:
3429 return status;
3430 }
3431
3432 static bool stream_is_rotating_to_null_chunk(
3433 const struct lttng_consumer_stream *stream)
3434 {
3435 bool rotating_to_null_chunk = false;
3436
3437 if (stream->rotate_position == -1ULL) {
3438 /* No rotation ongoing. */
3439 goto end;
3440 }
3441
3442 if (stream->trace_chunk == stream->chan->trace_chunk ||
3443 !stream->chan->trace_chunk) {
3444 rotating_to_null_chunk = true;
3445 }
3446 end:
3447 return rotating_to_null_chunk;
3448 }
3449
3450 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3451 struct lttng_consumer_local_data *ctx,
3452 bool locked_by_caller)
3453 {
3454 ssize_t ret, written_bytes = 0;
3455 int rotation_ret;
3456 struct stream_subbuffer subbuffer = {};
3457
3458 if (!locked_by_caller) {
3459 stream->read_subbuffer_ops.lock(stream);
3460 }
3461
3462 if (stream->read_subbuffer_ops.on_wake_up) {
3463 ret = stream->read_subbuffer_ops.on_wake_up(stream);
3464 if (ret) {
3465 goto end;
3466 }
3467 }
3468
3469 /*
3470 * If the stream was flagged to be ready for rotation before we extract
3471 * the next packet, rotate it now.
3472 */
3473 if (stream->rotate_ready) {
3474 DBG("Rotate stream before consuming data");
3475 ret = lttng_consumer_rotate_stream(ctx, stream);
3476 if (ret < 0) {
3477 ERR("Stream rotation error before consuming data");
3478 goto end;
3479 }
3480 }
3481
3482 ret = stream->read_subbuffer_ops.get_next_subbuffer(stream, &subbuffer);
3483 if (ret) {
3484 if (ret == -ENODATA) {
3485 /* Not an error. */
3486 ret = 0;
3487 goto sleep_stream;
3488 }
3489 goto end;
3490 }
3491
3492 ret = stream->read_subbuffer_ops.pre_consume_subbuffer(
3493 stream, &subbuffer);
3494 if (ret) {
3495 goto error_put_subbuf;
3496 }
3497
3498 written_bytes = stream->read_subbuffer_ops.consume_subbuffer(
3499 ctx, stream, &subbuffer);
3500 /*
3501 * Should write subbuf_size amount of data when network streaming or
3502 * the full padded size when we are not streaming.
3503 */
3504 if ((written_bytes != subbuffer.info.data.subbuf_size &&
3505 stream->net_seq_idx != (uint64_t) -1ULL) ||
3506 (written_bytes != subbuffer.info.data.padded_subbuf_size &&
3507 stream->net_seq_idx ==
3508 (uint64_t) -1ULL)) {
3509 /*
3510 * Display the error but continue processing to try to
3511 * release the subbuffer. This is a DBG statement
3512 * since this can happen without being a critical
3513 * error.
3514 */
3515 DBG("Failed to write to tracefile (written_bytes: %zd != padded subbuffer size: %lu, subbuffer size: %lu)",
3516 written_bytes, subbuffer.info.data.padded_subbuf_size,
3517 subbuffer.info.data.subbuf_size);
3518 }
3519
3520 ret = stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3521 if (ret) {
3522 goto end;
3523 }
3524
3525 if (stream->read_subbuffer_ops.post_consume) {
3526 ret = stream->read_subbuffer_ops.post_consume(stream, &subbuffer, ctx);
3527 if (ret) {
3528 goto end;
3529 }
3530 }
3531
3532 /*
3533 * After extracting the packet, we check if the stream is now ready to
3534 * be rotated and perform the action immediately.
3535 *
3536 * Don't overwrite `ret` as callers expect the number of bytes
3537 * consumed to be returned on success.
3538 */
3539 rotation_ret = lttng_consumer_stream_is_rotate_ready(stream);
3540 if (rotation_ret == 1) {
3541 rotation_ret = lttng_consumer_rotate_stream(ctx, stream);
3542 if (rotation_ret < 0) {
3543 ret = rotation_ret;
3544 ERR("Stream rotation error after consuming data");
3545 goto end;
3546 }
3547 } else if (rotation_ret < 0) {
3548 ret = rotation_ret;
3549 ERR("Failed to check if stream was ready to rotate after consuming data");
3550 goto end;
3551 }
3552
3553 /*
3554 * TODO roll into a post_consume op as this doesn't apply to metadata
3555 * streams.
3556 */
3557 if (!stream->opened_packet_in_current_trace_chunk &&
3558 stream->trace_chunk && !stream->metadata_flag &&
3559 !stream_is_rotating_to_null_chunk(stream)) {
3560 const enum open_packet_status status = open_packet(stream);
3561
3562 switch (status) {
3563 case OPEN_PACKET_STATUS_OPENED:
3564 DBG("Opened a packet after consuming a packet rotation: stream id = %" PRIu64
3565 ", channel name = %s, session id = %" PRIu64,
3566 stream->key, stream->chan->name,
3567 stream->chan->session_id);
3568 stream->opened_packet_in_current_trace_chunk =
3569 true;
3570 break;
3571 case OPEN_PACKET_STATUS_NO_SPACE:
3572 /*
3573 * Can't open a packet as there is no space left.
3574 * This means that new events were produced, resulting
3575 * in a packet being opened, which is what we want
3576 * anyhow.
3577 */
3578 DBG("No space left to open a packet after consuming a packet: stream id = %" PRIu64
3579 ", channel name = %s, session id = %" PRIu64,
3580 stream->key, stream->chan->name,
3581 stream->chan->session_id);
3582 stream->opened_packet_in_current_trace_chunk = true;
3583 break;
3584 case OPEN_PACKET_STATUS_ERROR:
3585 /* Logged by callee. */
3586 ret = -1;
3587 goto end;
3588 default:
3589 abort();
3590 }
3591
3592 stream->opened_packet_in_current_trace_chunk = true;
3593 }
3594
3595 sleep_stream:
3596 if (stream->read_subbuffer_ops.on_sleep) {
3597 stream->read_subbuffer_ops.on_sleep(stream, ctx);
3598 }
3599
3600 ret = written_bytes;
3601 end:
3602 if (!locked_by_caller) {
3603 stream->read_subbuffer_ops.unlock(stream);
3604 }
3605
3606 return ret;
3607 error_put_subbuf:
3608 (void) stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3609 goto end;
3610 }
3611
3612 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3613 {
3614 switch (consumer_data.type) {
3615 case LTTNG_CONSUMER_KERNEL:
3616 return lttng_kconsumer_on_recv_stream(stream);
3617 case LTTNG_CONSUMER32_UST:
3618 case LTTNG_CONSUMER64_UST:
3619 return lttng_ustconsumer_on_recv_stream(stream);
3620 default:
3621 ERR("Unknown consumer_data type");
3622 assert(0);
3623 return -ENOSYS;
3624 }
3625 }
3626
3627 /*
3628 * Allocate and set consumer data hash tables.
3629 */
3630 int lttng_consumer_init(void)
3631 {
3632 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3633 if (!consumer_data.channel_ht) {
3634 goto error;
3635 }
3636
3637 consumer_data.channels_by_session_id_ht =
3638 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3639 if (!consumer_data.channels_by_session_id_ht) {
3640 goto error;
3641 }
3642
3643 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3644 if (!consumer_data.relayd_ht) {
3645 goto error;
3646 }
3647
3648 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3649 if (!consumer_data.stream_list_ht) {
3650 goto error;
3651 }
3652
3653 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3654 if (!consumer_data.stream_per_chan_id_ht) {
3655 goto error;
3656 }
3657
3658 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3659 if (!data_ht) {
3660 goto error;
3661 }
3662
3663 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3664 if (!metadata_ht) {
3665 goto error;
3666 }
3667
3668 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3669 if (!consumer_data.chunk_registry) {
3670 goto error;
3671 }
3672
3673 return 0;
3674
3675 error:
3676 return -1;
3677 }
3678
3679 /*
3680 * Process the ADD_RELAYD command receive by a consumer.
3681 *
3682 * This will create a relayd socket pair and add it to the relayd hash table.
3683 * The caller MUST acquire a RCU read side lock before calling it.
3684 */
3685 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3686 struct lttng_consumer_local_data *ctx, int sock,
3687 struct pollfd *consumer_sockpoll,
3688 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3689 uint64_t relayd_session_id)
3690 {
3691 int fd = -1, ret = -1, relayd_created = 0;
3692 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3693 struct consumer_relayd_sock_pair *relayd = NULL;
3694
3695 assert(ctx);
3696 assert(relayd_sock);
3697
3698 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3699
3700 /* Get relayd reference if exists. */
3701 relayd = consumer_find_relayd(net_seq_idx);
3702 if (relayd == NULL) {
3703 assert(sock_type == LTTNG_STREAM_CONTROL);
3704 /* Not found. Allocate one. */
3705 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3706 if (relayd == NULL) {
3707 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3708 goto error;
3709 } else {
3710 relayd->sessiond_session_id = sessiond_id;
3711 relayd_created = 1;
3712 }
3713
3714 /*
3715 * This code path MUST continue to the consumer send status message to
3716 * we can notify the session daemon and continue our work without
3717 * killing everything.
3718 */
3719 } else {
3720 /*
3721 * relayd key should never be found for control socket.
3722 */
3723 assert(sock_type != LTTNG_STREAM_CONTROL);
3724 }
3725
3726 /* First send a status message before receiving the fds. */
3727 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3728 if (ret < 0) {
3729 /* Somehow, the session daemon is not responding anymore. */
3730 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3731 goto error_nosignal;
3732 }
3733
3734 /* Poll on consumer socket. */
3735 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3736 if (ret) {
3737 /* Needing to exit in the middle of a command: error. */
3738 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3739 goto error_nosignal;
3740 }
3741
3742 /* Get relayd socket from session daemon */
3743 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3744 if (ret != sizeof(fd)) {
3745 fd = -1; /* Just in case it gets set with an invalid value. */
3746
3747 /*
3748 * Failing to receive FDs might indicate a major problem such as
3749 * reaching a fd limit during the receive where the kernel returns a
3750 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3751 * don't take any chances and stop everything.
3752 *
3753 * XXX: Feature request #558 will fix that and avoid this possible
3754 * issue when reaching the fd limit.
3755 */
3756 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3757 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3758 goto error;
3759 }
3760
3761 /* Copy socket information and received FD */
3762 switch (sock_type) {
3763 case LTTNG_STREAM_CONTROL:
3764 /* Copy received lttcomm socket */
3765 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3766 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3767 /* Handle create_sock error. */
3768 if (ret < 0) {
3769 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3770 goto error;
3771 }
3772 /*
3773 * Close the socket created internally by
3774 * lttcomm_create_sock, so we can replace it by the one
3775 * received from sessiond.
3776 */
3777 if (close(relayd->control_sock.sock.fd)) {
3778 PERROR("close");
3779 }
3780
3781 /* Assign new file descriptor */
3782 relayd->control_sock.sock.fd = fd;
3783 /* Assign version values. */
3784 relayd->control_sock.major = relayd_sock->major;
3785 relayd->control_sock.minor = relayd_sock->minor;
3786
3787 relayd->relayd_session_id = relayd_session_id;
3788
3789 break;
3790 case LTTNG_STREAM_DATA:
3791 /* Copy received lttcomm socket */
3792 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3793 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3794 /* Handle create_sock error. */
3795 if (ret < 0) {
3796 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3797 goto error;
3798 }
3799 /*
3800 * Close the socket created internally by
3801 * lttcomm_create_sock, so we can replace it by the one
3802 * received from sessiond.
3803 */
3804 if (close(relayd->data_sock.sock.fd)) {
3805 PERROR("close");
3806 }
3807
3808 /* Assign new file descriptor */
3809 relayd->data_sock.sock.fd = fd;
3810 /* Assign version values. */
3811 relayd->data_sock.major = relayd_sock->major;
3812 relayd->data_sock.minor = relayd_sock->minor;
3813 break;
3814 default:
3815 ERR("Unknown relayd socket type (%d)", sock_type);
3816 ret_code = LTTCOMM_CONSUMERD_FATAL;
3817 goto error;
3818 }
3819
3820 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3821 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3822 relayd->net_seq_idx, fd);
3823 /*
3824 * We gave the ownership of the fd to the relayd structure. Set the
3825 * fd to -1 so we don't call close() on it in the error path below.
3826 */
3827 fd = -1;
3828
3829 /* We successfully added the socket. Send status back. */
3830 ret = consumer_send_status_msg(sock, ret_code);
3831 if (ret < 0) {
3832 /* Somehow, the session daemon is not responding anymore. */
3833 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3834 goto error_nosignal;
3835 }
3836
3837 /*
3838 * Add relayd socket pair to consumer data hashtable. If object already
3839 * exists or on error, the function gracefully returns.
3840 */
3841 relayd->ctx = ctx;
3842 add_relayd(relayd);
3843
3844 /* All good! */
3845 return;
3846
3847 error:
3848 if (consumer_send_status_msg(sock, ret_code) < 0) {
3849 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3850 }
3851
3852 error_nosignal:
3853 /* Close received socket if valid. */
3854 if (fd >= 0) {
3855 if (close(fd)) {
3856 PERROR("close received socket");
3857 }
3858 }
3859
3860 if (relayd_created) {
3861 free(relayd);
3862 }
3863 }
3864
3865 /*
3866 * Search for a relayd associated to the session id and return the reference.
3867 *
3868 * A rcu read side lock MUST be acquire before calling this function and locked
3869 * until the relayd object is no longer necessary.
3870 */
3871 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3872 {
3873 struct lttng_ht_iter iter;
3874 struct consumer_relayd_sock_pair *relayd = NULL;
3875
3876 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3877 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3878 node.node) {
3879 /*
3880 * Check by sessiond id which is unique here where the relayd session
3881 * id might not be when having multiple relayd.
3882 */
3883 if (relayd->sessiond_session_id == id) {
3884 /* Found the relayd. There can be only one per id. */
3885 goto found;
3886 }
3887 }
3888
3889 return NULL;
3890
3891 found:
3892 return relayd;
3893 }
3894
3895 /*
3896 * Check if for a given session id there is still data needed to be extract
3897 * from the buffers.
3898 *
3899 * Return 1 if data is pending or else 0 meaning ready to be read.
3900 */
3901 int consumer_data_pending(uint64_t id)
3902 {
3903 int ret;
3904 struct lttng_ht_iter iter;
3905 struct lttng_ht *ht;
3906 struct lttng_consumer_stream *stream;
3907 struct consumer_relayd_sock_pair *relayd = NULL;
3908 int (*data_pending)(struct lttng_consumer_stream *);
3909
3910 DBG("Consumer data pending command on session id %" PRIu64, id);
3911
3912 rcu_read_lock();
3913 pthread_mutex_lock(&consumer_data.lock);
3914
3915 switch (consumer_data.type) {
3916 case LTTNG_CONSUMER_KERNEL:
3917 data_pending = lttng_kconsumer_data_pending;
3918 break;
3919 case LTTNG_CONSUMER32_UST:
3920 case LTTNG_CONSUMER64_UST:
3921 data_pending = lttng_ustconsumer_data_pending;
3922 break;
3923 default:
3924 ERR("Unknown consumer data type");
3925 assert(0);
3926 }
3927
3928 /* Ease our life a bit */
3929 ht = consumer_data.stream_list_ht;
3930
3931 cds_lfht_for_each_entry_duplicate(ht->ht,
3932 ht->hash_fct(&id, lttng_ht_seed),
3933 ht->match_fct, &id,
3934 &iter.iter, stream, node_session_id.node) {
3935 pthread_mutex_lock(&stream->lock);
3936
3937 /*
3938 * A removed node from the hash table indicates that the stream has
3939 * been deleted thus having a guarantee that the buffers are closed
3940 * on the consumer side. However, data can still be transmitted
3941 * over the network so don't skip the relayd check.
3942 */
3943 ret = cds_lfht_is_node_deleted(&stream->node.node);
3944 if (!ret) {
3945 /* Check the stream if there is data in the buffers. */
3946 ret = data_pending(stream);
3947 if (ret == 1) {
3948 pthread_mutex_unlock(&stream->lock);
3949 goto data_pending;
3950 }
3951 }
3952
3953 pthread_mutex_unlock(&stream->lock);
3954 }
3955
3956 relayd = find_relayd_by_session_id(id);
3957 if (relayd) {
3958 unsigned int is_data_inflight = 0;
3959
3960 /* Send init command for data pending. */
3961 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3962 ret = relayd_begin_data_pending(&relayd->control_sock,
3963 relayd->relayd_session_id);
3964 if (ret < 0) {
3965 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3966 /* Communication error thus the relayd so no data pending. */
3967 goto data_not_pending;
3968 }
3969
3970 cds_lfht_for_each_entry_duplicate(ht->ht,
3971 ht->hash_fct(&id, lttng_ht_seed),
3972 ht->match_fct, &id,
3973 &iter.iter, stream, node_session_id.node) {
3974 if (stream->metadata_flag) {
3975 ret = relayd_quiescent_control(&relayd->control_sock,
3976 stream->relayd_stream_id);
3977 } else {
3978 ret = relayd_data_pending(&relayd->control_sock,
3979 stream->relayd_stream_id,
3980 stream->next_net_seq_num - 1);
3981 }
3982
3983 if (ret == 1) {
3984 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3985 goto data_pending;
3986 } else if (ret < 0) {
3987 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3988 lttng_consumer_cleanup_relayd(relayd);
3989 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3990 goto data_not_pending;
3991 }
3992 }
3993
3994 /* Send end command for data pending. */
3995 ret = relayd_end_data_pending(&relayd->control_sock,
3996 relayd->relayd_session_id, &is_data_inflight);
3997 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3998 if (ret < 0) {
3999 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
4000 lttng_consumer_cleanup_relayd(relayd);
4001 goto data_not_pending;
4002 }
4003 if (is_data_inflight) {
4004 goto data_pending;
4005 }
4006 }
4007
4008 /*
4009 * Finding _no_ node in the hash table and no inflight data means that the
4010 * stream(s) have been removed thus data is guaranteed to be available for
4011 * analysis from the trace files.
4012 */
4013
4014 data_not_pending:
4015 /* Data is available to be read by a viewer. */
4016 pthread_mutex_unlock(&consumer_data.lock);
4017 rcu_read_unlock();
4018 return 0;
4019
4020 data_pending:
4021 /* Data is still being extracted from buffers. */
4022 pthread_mutex_unlock(&consumer_data.lock);
4023 rcu_read_unlock();
4024 return 1;
4025 }
4026
4027 /*
4028 * Send a ret code status message to the sessiond daemon.
4029 *
4030 * Return the sendmsg() return value.
4031 */
4032 int consumer_send_status_msg(int sock, int ret_code)
4033 {
4034 struct lttcomm_consumer_status_msg msg;
4035
4036 memset(&msg, 0, sizeof(msg));
4037 msg.ret_code = ret_code;
4038
4039 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
4040 }
4041
4042 /*
4043 * Send a channel status message to the sessiond daemon.
4044 *
4045 * Return the sendmsg() return value.
4046 */
4047 int consumer_send_status_channel(int sock,
4048 struct lttng_consumer_channel *channel)
4049 {
4050 struct lttcomm_consumer_status_channel msg;
4051
4052 assert(sock >= 0);
4053
4054 memset(&msg, 0, sizeof(msg));
4055 if (!channel) {
4056 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
4057 } else {
4058 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4059 msg.key = channel->key;
4060 msg.stream_count = channel->streams.count;
4061 }
4062
4063 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
4064 }
4065
4066 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
4067 unsigned long produced_pos, uint64_t nb_packets_per_stream,
4068 uint64_t max_sb_size)
4069 {
4070 unsigned long start_pos;
4071
4072 if (!nb_packets_per_stream) {
4073 return consumed_pos; /* Grab everything */
4074 }
4075 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
4076 start_pos -= max_sb_size * nb_packets_per_stream;
4077 if ((long) (start_pos - consumed_pos) < 0) {
4078 return consumed_pos; /* Grab everything */
4079 }
4080 return start_pos;
4081 }
4082
4083 /*
4084 * Sample the rotate position for all the streams of a channel. If a stream
4085 * is already at the rotate position (produced == consumed), we flag it as
4086 * ready for rotation. The rotation of ready streams occurs after we have
4087 * replied to the session daemon that we have finished sampling the positions.
4088 * Must be called with RCU read-side lock held to ensure existence of channel.
4089 *
4090 * Returns 0 on success, < 0 on error
4091 */
4092 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
4093 uint64_t key, uint64_t relayd_id, uint32_t metadata,
4094 struct lttng_consumer_local_data *ctx)
4095 {
4096 int ret;
4097 struct lttng_consumer_stream *stream;
4098 struct lttng_ht_iter iter;
4099 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4100 struct lttng_dynamic_array stream_rotation_positions;
4101 uint64_t next_chunk_id, stream_count = 0;
4102 enum lttng_trace_chunk_status chunk_status;
4103 const bool is_local_trace = relayd_id == -1ULL;
4104 struct consumer_relayd_sock_pair *relayd = NULL;
4105 bool rotating_to_new_chunk = true;
4106
4107 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4108
4109 lttng_dynamic_array_init(&stream_rotation_positions,
4110 sizeof(struct relayd_stream_rotation_position), NULL);
4111
4112 rcu_read_lock();
4113
4114 pthread_mutex_lock(&channel->lock);
4115 assert(channel->trace_chunk);
4116 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
4117 &next_chunk_id);
4118 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4119 ret = -1;
4120 goto end_unlock_channel;
4121 }
4122
4123 cds_lfht_for_each_entry_duplicate(ht->ht,
4124 ht->hash_fct(&channel->key, lttng_ht_seed),
4125 ht->match_fct, &channel->key, &iter.iter,
4126 stream, node_channel_id.node) {
4127 unsigned long produced_pos = 0, consumed_pos = 0;
4128
4129 health_code_update();
4130
4131 /*
4132 * Lock stream because we are about to change its state.
4133 */
4134 pthread_mutex_lock(&stream->lock);
4135
4136 if (stream->trace_chunk == stream->chan->trace_chunk) {
4137 rotating_to_new_chunk = false;
4138 }
4139
4140 /*
4141 * Do not flush an empty packet when rotating from a NULL trace
4142 * chunk. The stream has no means to output data, and the prior
4143 * rotation which rotated to NULL performed that side-effect already.
4144 */
4145 if (stream->trace_chunk) {
4146 /*
4147 * For metadata stream, do an active flush, which does not
4148 * produce empty packets. For data streams, empty-flush;
4149 * ensures we have at least one packet in each stream per trace
4150 * chunk, even if no data was produced.
4151 */
4152 ret = consumer_flush_buffer(stream, stream->metadata_flag ? 1 : 0);
4153 if (ret < 0) {
4154 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4155 stream->key);
4156 goto end_unlock_stream;
4157 }
4158 }
4159
4160 ret = lttng_consumer_take_snapshot(stream);
4161 if (ret < 0 && ret != -ENODATA && ret != -EAGAIN) {
4162 ERR("Failed to sample snapshot position during channel rotation");
4163 goto end_unlock_stream;
4164 }
4165 if (!ret) {
4166 ret = lttng_consumer_get_produced_snapshot(stream,
4167 &produced_pos);
4168 if (ret < 0) {
4169 ERR("Failed to sample produced position during channel rotation");
4170 goto end_unlock_stream;
4171 }
4172
4173 ret = lttng_consumer_get_consumed_snapshot(stream,
4174 &consumed_pos);
4175 if (ret < 0) {
4176 ERR("Failed to sample consumed position during channel rotation");
4177 goto end_unlock_stream;
4178 }
4179 }
4180 /*
4181 * Align produced position on the start-of-packet boundary of the first
4182 * packet going into the next trace chunk.
4183 */
4184 produced_pos = ALIGN_FLOOR(produced_pos, stream->max_sb_size);
4185 if (consumed_pos == produced_pos) {
4186 DBG("Set rotate ready for stream %" PRIu64 " produced = %lu consumed = %lu",
4187 stream->key, produced_pos, consumed_pos);
4188 stream->rotate_ready = true;
4189 } else {
4190 DBG("Different consumed and produced positions "
4191 "for stream %" PRIu64 " produced = %lu consumed = %lu",
4192 stream->key, produced_pos, consumed_pos);
4193 }
4194 /*
4195 * The rotation position is based on the packet_seq_num of the
4196 * packet following the last packet that was consumed for this
4197 * stream, incremented by the offset between produced and
4198 * consumed positions. This rotation position is a lower bound
4199 * (inclusive) at which the next trace chunk starts. Since it
4200 * is a lower bound, it is OK if the packet_seq_num does not
4201 * correspond exactly to the same packet identified by the
4202 * consumed_pos, which can happen in overwrite mode.
4203 */
4204 if (stream->sequence_number_unavailable) {
4205 /*
4206 * Rotation should never be performed on a session which
4207 * interacts with a pre-2.8 lttng-modules, which does
4208 * not implement packet sequence number.
4209 */
4210 ERR("Failure to rotate stream %" PRIu64 ": sequence number unavailable",
4211 stream->key);
4212 ret = -1;
4213 goto end_unlock_stream;
4214 }
4215 stream->rotate_position = stream->last_sequence_number + 1 +
4216 ((produced_pos - consumed_pos) / stream->max_sb_size);
4217 DBG("Set rotation position for stream %" PRIu64 " at position %" PRIu64,
4218 stream->key, stream->rotate_position);
4219
4220 if (!is_local_trace) {
4221 /*
4222 * The relay daemon control protocol expects a rotation
4223 * position as "the sequence number of the first packet
4224 * _after_ the current trace chunk".
4225 */
4226 const struct relayd_stream_rotation_position position = {
4227 .stream_id = stream->relayd_stream_id,
4228 .rotate_at_seq_num = stream->rotate_position,
4229 };
4230
4231 ret = lttng_dynamic_array_add_element(
4232 &stream_rotation_positions,
4233 &position);
4234 if (ret) {
4235 ERR("Failed to allocate stream rotation position");
4236 goto end_unlock_stream;
4237 }
4238 stream_count++;
4239 }
4240
4241 stream->opened_packet_in_current_trace_chunk = false;
4242
4243 if (rotating_to_new_chunk && !stream->metadata_flag) {
4244 /*
4245 * Attempt to flush an empty packet as close to the
4246 * rotation point as possible. In the event where a
4247 * stream remains inactive after the rotation point,
4248 * this ensures that the new trace chunk has a
4249 * beginning timestamp set at the begining of the
4250 * trace chunk instead of only creating an empty
4251 * packet when the trace chunk is stopped.
4252 *
4253 * This indicates to the viewers that the stream
4254 * was being recorded, but more importantly it
4255 * allows viewers to determine a useable trace
4256 * intersection.
4257 *
4258 * This presents a problem in the case where the
4259 * ring-buffer is completely full.
4260 *
4261 * Consider the following scenario:
4262 * - The consumption of data is slow (slow network,
4263 * for instance),
4264 * - The ring buffer is full,
4265 * - A rotation is initiated,
4266 * - The flush below does nothing (no space left to
4267 * open a new packet),
4268 * - The other streams rotate very soon, and new
4269 * data is produced in the new chunk,
4270 * - This stream completes its rotation long after the
4271 * rotation was initiated
4272 * - The session is stopped before any event can be
4273 * produced in this stream's buffers.
4274 *
4275 * The resulting trace chunk will have a single packet
4276 * temporaly at the end of the trace chunk for this
4277 * stream making the stream intersection more narrow
4278 * than it should be.
4279 *
4280 * To work-around this, an empty flush is performed
4281 * after the first consumption of a packet during a
4282 * rotation if open_packet fails. The idea is that
4283 * consuming a packet frees enough space to switch
4284 * packets in this scenario and allows the tracer to
4285 * "stamp" the beginning of the new trace chunk at the
4286 * earliest possible point.
4287 */
4288 const enum open_packet_status status =
4289 open_packet(stream);
4290
4291 switch (status) {
4292 case OPEN_PACKET_STATUS_OPENED:
4293 DBG("Opened a packet after a rotation: stream id = %" PRIu64
4294 ", channel name = %s, session id = %" PRIu64,
4295 stream->key, stream->chan->name,
4296 stream->chan->session_id);
4297 stream->opened_packet_in_current_trace_chunk =
4298 true;
4299 break;
4300 case OPEN_PACKET_STATUS_NO_SPACE:
4301 /*
4302 * Can't open a packet as there is no space left
4303 * in the buffer. A new packet will be opened
4304 * once one has been consumed.
4305 */
4306 DBG("No space left to open a packet after a rotation: stream id = %" PRIu64
4307 ", channel name = %s, session id = %" PRIu64,
4308 stream->key, stream->chan->name,
4309 stream->chan->session_id);
4310 break;
4311 case OPEN_PACKET_STATUS_ERROR:
4312 /* Logged by callee. */
4313 ret = -1;
4314 goto end_unlock_stream;
4315 default:
4316 abort();
4317 }
4318 }
4319
4320 pthread_mutex_unlock(&stream->lock);
4321 }
4322 stream = NULL;
4323 pthread_mutex_unlock(&channel->lock);
4324
4325 if (is_local_trace) {
4326 ret = 0;
4327 goto end;
4328 }
4329
4330 relayd = consumer_find_relayd(relayd_id);
4331 if (!relayd) {
4332 ERR("Failed to find relayd %" PRIu64, relayd_id);
4333 ret = -1;
4334 goto end;
4335 }
4336
4337 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4338 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4339 rotating_to_new_chunk ? &next_chunk_id : NULL,
4340 (const struct relayd_stream_rotation_position *)
4341 stream_rotation_positions.buffer.data);
4342 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4343 if (ret < 0) {
4344 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4345 relayd->net_seq_idx);
4346 lttng_consumer_cleanup_relayd(relayd);
4347 goto end;
4348 }
4349
4350 ret = 0;
4351 goto end;
4352
4353 end_unlock_stream:
4354 pthread_mutex_unlock(&stream->lock);
4355 end_unlock_channel:
4356 pthread_mutex_unlock(&channel->lock);
4357 end:
4358 rcu_read_unlock();
4359 lttng_dynamic_array_reset(&stream_rotation_positions);
4360 return ret;
4361 }
4362
4363 static
4364 int consumer_clear_buffer(struct lttng_consumer_stream *stream)
4365 {
4366 int ret = 0;
4367 unsigned long consumed_pos_before, consumed_pos_after;
4368
4369 ret = lttng_consumer_sample_snapshot_positions(stream);
4370 if (ret < 0) {
4371 ERR("Taking snapshot positions");
4372 goto end;
4373 }
4374
4375 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_before);
4376 if (ret < 0) {
4377 ERR("Consumed snapshot position");
4378 goto end;
4379 }
4380
4381 switch (consumer_data.type) {
4382 case LTTNG_CONSUMER_KERNEL:
4383 ret = kernctl_buffer_clear(stream->wait_fd);
4384 if (ret < 0) {
4385 ERR("Failed to clear kernel stream (ret = %d)", ret);
4386 goto end;
4387 }
4388 break;
4389 case LTTNG_CONSUMER32_UST:
4390 case LTTNG_CONSUMER64_UST:
4391 lttng_ustconsumer_clear_buffer(stream);
4392 break;
4393 default:
4394 ERR("Unknown consumer_data type");
4395 abort();
4396 }
4397
4398 ret = lttng_consumer_sample_snapshot_positions(stream);
4399 if (ret < 0) {
4400 ERR("Taking snapshot positions");
4401 goto end;
4402 }
4403 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_after);
4404 if (ret < 0) {
4405 ERR("Consumed snapshot position");
4406 goto end;
4407 }
4408 DBG("clear: before: %lu after: %lu", consumed_pos_before, consumed_pos_after);
4409 end:
4410 return ret;
4411 }
4412
4413 static
4414 int consumer_clear_stream(struct lttng_consumer_stream *stream)
4415 {
4416 int ret;
4417
4418 ret = consumer_flush_buffer(stream, 1);
4419 if (ret < 0) {
4420 ERR("Failed to flush stream %" PRIu64 " during channel clear",
4421 stream->key);
4422 ret = LTTCOMM_CONSUMERD_FATAL;
4423 goto error;
4424 }
4425
4426 ret = consumer_clear_buffer(stream);
4427 if (ret < 0) {
4428 ERR("Failed to clear stream %" PRIu64 " during channel clear",
4429 stream->key);
4430 ret = LTTCOMM_CONSUMERD_FATAL;
4431 goto error;
4432 }
4433
4434 ret = LTTCOMM_CONSUMERD_SUCCESS;
4435 error:
4436 return ret;
4437 }
4438
4439 static
4440 int consumer_clear_unmonitored_channel(struct lttng_consumer_channel *channel)
4441 {
4442 int ret;
4443 struct lttng_consumer_stream *stream;
4444
4445 rcu_read_lock();
4446 pthread_mutex_lock(&channel->lock);
4447 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
4448 health_code_update();
4449 pthread_mutex_lock(&stream->lock);
4450 ret = consumer_clear_stream(stream);
4451 if (ret) {
4452 goto error_unlock;
4453 }
4454 pthread_mutex_unlock(&stream->lock);
4455 }
4456 pthread_mutex_unlock(&channel->lock);
4457 rcu_read_unlock();
4458 return 0;
4459
4460 error_unlock:
4461 pthread_mutex_unlock(&stream->lock);
4462 pthread_mutex_unlock(&channel->lock);
4463 rcu_read_unlock();
4464 return ret;
4465 }
4466
4467 /*
4468 * Check if a stream is ready to be rotated after extracting it.
4469 *
4470 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4471 * error. Stream lock must be held.
4472 */
4473 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4474 {
4475 DBG("Check is rotate ready for stream %" PRIu64
4476 " ready %u rotate_position %" PRIu64
4477 " last_sequence_number %" PRIu64,
4478 stream->key, stream->rotate_ready,
4479 stream->rotate_position, stream->last_sequence_number);
4480 if (stream->rotate_ready) {
4481 return 1;
4482 }
4483
4484 /*
4485 * If packet seq num is unavailable, it means we are interacting
4486 * with a pre-2.8 lttng-modules which does not implement the
4487 * sequence number. Rotation should never be used by sessiond in this
4488 * scenario.
4489 */
4490 if (stream->sequence_number_unavailable) {
4491 ERR("Internal error: rotation used on stream %" PRIu64
4492 " with unavailable sequence number",
4493 stream->key);
4494 return -1;
4495 }
4496
4497 if (stream->rotate_position == -1ULL ||
4498 stream->last_sequence_number == -1ULL) {
4499 return 0;
4500 }
4501
4502 /*
4503 * Rotate position not reached yet. The stream rotate position is
4504 * the position of the next packet belonging to the next trace chunk,
4505 * but consumerd considers rotation ready when reaching the last
4506 * packet of the current chunk, hence the "rotate_position - 1".
4507 */
4508
4509 DBG("Check is rotate ready for stream %" PRIu64
4510 " last_sequence_number %" PRIu64
4511 " rotate_position %" PRIu64,
4512 stream->key, stream->last_sequence_number,
4513 stream->rotate_position);
4514 if (stream->last_sequence_number >= stream->rotate_position - 1) {
4515 return 1;
4516 }
4517
4518 return 0;
4519 }
4520
4521 /*
4522 * Reset the state for a stream after a rotation occurred.
4523 */
4524 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4525 {
4526 DBG("lttng_consumer_reset_stream_rotate_state for stream %" PRIu64,
4527 stream->key);
4528 stream->rotate_position = -1ULL;
4529 stream->rotate_ready = false;
4530 }
4531
4532 /*
4533 * Perform the rotation a local stream file.
4534 */
4535 static
4536 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4537 struct lttng_consumer_stream *stream)
4538 {
4539 int ret = 0;
4540
4541 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4542 stream->key,
4543 stream->chan->key);
4544 stream->tracefile_size_current = 0;
4545 stream->tracefile_count_current = 0;
4546
4547 if (stream->out_fd >= 0) {
4548 ret = close(stream->out_fd);
4549 if (ret) {
4550 PERROR("Failed to close stream out_fd of channel \"%s\"",
4551 stream->chan->name);
4552 }
4553 stream->out_fd = -1;
4554 }
4555
4556 if (stream->index_file) {
4557 lttng_index_file_put(stream->index_file);
4558 stream->index_file = NULL;
4559 }
4560
4561 if (!stream->trace_chunk) {
4562 goto end;
4563 }
4564
4565 ret = consumer_stream_create_output_files(stream, true);
4566 end:
4567 return ret;
4568 }
4569
4570 /*
4571 * Performs the stream rotation for the rotate session feature if needed.
4572 * It must be called with the channel and stream locks held.
4573 *
4574 * Return 0 on success, a negative number of error.
4575 */
4576 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4577 struct lttng_consumer_stream *stream)
4578 {
4579 int ret;
4580
4581 DBG("Consumer rotate stream %" PRIu64, stream->key);
4582
4583 /*
4584 * Update the stream's 'current' chunk to the session's (channel)
4585 * now-current chunk.
4586 */
4587 lttng_trace_chunk_put(stream->trace_chunk);
4588 if (stream->chan->trace_chunk == stream->trace_chunk) {
4589 /*
4590 * A channel can be rotated and not have a "next" chunk
4591 * to transition to. In that case, the channel's "current chunk"
4592 * has not been closed yet, but it has not been updated to
4593 * a "next" trace chunk either. Hence, the stream, like its
4594 * parent channel, becomes part of no chunk and can't output
4595 * anything until a new trace chunk is created.
4596 */
4597 stream->trace_chunk = NULL;
4598 } else if (stream->chan->trace_chunk &&
4599 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4600 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4601 ret = -1;
4602 goto error;
4603 } else {
4604 /*
4605 * Update the stream's trace chunk to its parent channel's
4606 * current trace chunk.
4607 */
4608 stream->trace_chunk = stream->chan->trace_chunk;
4609 }
4610
4611 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4612 ret = rotate_local_stream(ctx, stream);
4613 if (ret < 0) {
4614 ERR("Failed to rotate stream, ret = %i", ret);
4615 goto error;
4616 }
4617 }
4618
4619 if (stream->metadata_flag && stream->trace_chunk) {
4620 /*
4621 * If the stream has transitioned to a new trace
4622 * chunk, the metadata should be re-dumped to the
4623 * newest chunk.
4624 *
4625 * However, it is possible for a stream to transition to
4626 * a "no-chunk" state. This can happen if a rotation
4627 * occurs on an inactive session. In such cases, the metadata
4628 * regeneration will happen when the next trace chunk is
4629 * created.
4630 */
4631 ret = consumer_metadata_stream_dump(stream);
4632 if (ret) {
4633 goto error;
4634 }
4635 }
4636 lttng_consumer_reset_stream_rotate_state(stream);
4637
4638 ret = 0;
4639
4640 error:
4641 return ret;
4642 }
4643
4644 /*
4645 * Rotate all the ready streams now.
4646 *
4647 * This is especially important for low throughput streams that have already
4648 * been consumed, we cannot wait for their next packet to perform the
4649 * rotation.
4650 * Need to be called with RCU read-side lock held to ensure existence of
4651 * channel.
4652 *
4653 * Returns 0 on success, < 0 on error
4654 */
4655 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4656 uint64_t key, struct lttng_consumer_local_data *ctx)
4657 {
4658 int ret;
4659 struct lttng_consumer_stream *stream;
4660 struct lttng_ht_iter iter;
4661 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4662
4663 rcu_read_lock();
4664
4665 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4666
4667 cds_lfht_for_each_entry_duplicate(ht->ht,
4668 ht->hash_fct(&channel->key, lttng_ht_seed),
4669 ht->match_fct, &channel->key, &iter.iter,
4670 stream, node_channel_id.node) {
4671 health_code_update();
4672
4673 pthread_mutex_lock(&stream->chan->lock);
4674 pthread_mutex_lock(&stream->lock);
4675
4676 if (!stream->rotate_ready) {
4677 pthread_mutex_unlock(&stream->lock);
4678 pthread_mutex_unlock(&stream->chan->lock);
4679 continue;
4680 }
4681 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4682
4683 ret = lttng_consumer_rotate_stream(ctx, stream);
4684 pthread_mutex_unlock(&stream->lock);
4685 pthread_mutex_unlock(&stream->chan->lock);
4686 if (ret) {
4687 goto end;
4688 }
4689 }
4690
4691 ret = 0;
4692
4693 end:
4694 rcu_read_unlock();
4695 return ret;
4696 }
4697
4698 enum lttcomm_return_code lttng_consumer_init_command(
4699 struct lttng_consumer_local_data *ctx,
4700 const lttng_uuid sessiond_uuid)
4701 {
4702 enum lttcomm_return_code ret;
4703 char uuid_str[LTTNG_UUID_STR_LEN];
4704
4705 if (ctx->sessiond_uuid.is_set) {
4706 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4707 goto end;
4708 }
4709
4710 ctx->sessiond_uuid.is_set = true;
4711 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4712 ret = LTTCOMM_CONSUMERD_SUCCESS;
4713 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4714 DBG("Received session daemon UUID: %s", uuid_str);
4715 end:
4716 return ret;
4717 }
4718
4719 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4720 const uint64_t *relayd_id, uint64_t session_id,
4721 uint64_t chunk_id,
4722 time_t chunk_creation_timestamp,
4723 const char *chunk_override_name,
4724 const struct lttng_credentials *credentials,
4725 struct lttng_directory_handle *chunk_directory_handle)
4726 {
4727 int ret;
4728 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4729 struct lttng_trace_chunk *created_chunk = NULL, *published_chunk = NULL;
4730 enum lttng_trace_chunk_status chunk_status;
4731 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4732 char creation_timestamp_buffer[ISO8601_STR_LEN];
4733 const char *relayd_id_str = "(none)";
4734 const char *creation_timestamp_str;
4735 struct lttng_ht_iter iter;
4736 struct lttng_consumer_channel *channel;
4737
4738 if (relayd_id) {
4739 /* Only used for logging purposes. */
4740 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4741 "%" PRIu64, *relayd_id);
4742 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4743 relayd_id_str = relayd_id_buffer;
4744 } else {
4745 relayd_id_str = "(formatting error)";
4746 }
4747 }
4748
4749 /* Local protocol error. */
4750 assert(chunk_creation_timestamp);
4751 ret = time_to_iso8601_str(chunk_creation_timestamp,
4752 creation_timestamp_buffer,
4753 sizeof(creation_timestamp_buffer));
4754 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4755 "(formatting error)";
4756
4757 DBG("Consumer create trace chunk command: relay_id = %s"
4758 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4759 ", chunk_override_name = %s"
4760 ", chunk_creation_timestamp = %s",
4761 relayd_id_str, session_id, chunk_id,
4762 chunk_override_name ? : "(none)",
4763 creation_timestamp_str);
4764
4765 /*
4766 * The trace chunk registry, as used by the consumer daemon, implicitly
4767 * owns the trace chunks. This is only needed in the consumer since
4768 * the consumer has no notion of a session beyond session IDs being
4769 * used to identify other objects.
4770 *
4771 * The lttng_trace_chunk_registry_publish() call below provides a
4772 * reference which is not released; it implicitly becomes the session
4773 * daemon's reference to the chunk in the consumer daemon.
4774 *
4775 * The lifetime of trace chunks in the consumer daemon is managed by
4776 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4777 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4778 */
4779 created_chunk = lttng_trace_chunk_create(chunk_id,
4780 chunk_creation_timestamp, NULL);
4781 if (!created_chunk) {
4782 ERR("Failed to create trace chunk");
4783 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4784 goto error;
4785 }
4786
4787 if (chunk_override_name) {
4788 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4789 chunk_override_name);
4790 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4791 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4792 goto error;
4793 }
4794 }
4795
4796 if (chunk_directory_handle) {
4797 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4798 credentials);
4799 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4800 ERR("Failed to set trace chunk credentials");
4801 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4802 goto error;
4803 }
4804 /*
4805 * The consumer daemon has no ownership of the chunk output
4806 * directory.
4807 */
4808 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4809 chunk_directory_handle);
4810 chunk_directory_handle = NULL;
4811 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4812 ERR("Failed to set trace chunk's directory handle");
4813 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4814 goto error;
4815 }
4816 }
4817
4818 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4819 consumer_data.chunk_registry, session_id,
4820 created_chunk);
4821 lttng_trace_chunk_put(created_chunk);
4822 created_chunk = NULL;
4823 if (!published_chunk) {
4824 ERR("Failed to publish trace chunk");
4825 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4826 goto error;
4827 }
4828
4829 rcu_read_lock();
4830 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4831 consumer_data.channels_by_session_id_ht->hash_fct(
4832 &session_id, lttng_ht_seed),
4833 consumer_data.channels_by_session_id_ht->match_fct,
4834 &session_id, &iter.iter, channel,
4835 channels_by_session_id_ht_node.node) {
4836 ret = lttng_consumer_channel_set_trace_chunk(channel,
4837 published_chunk);
4838 if (ret) {
4839 /*
4840 * Roll-back the creation of this chunk.
4841 *
4842 * This is important since the session daemon will
4843 * assume that the creation of this chunk failed and
4844 * will never ask for it to be closed, resulting
4845 * in a leak and an inconsistent state for some
4846 * channels.
4847 */
4848 enum lttcomm_return_code close_ret;
4849 char path[LTTNG_PATH_MAX];
4850
4851 DBG("Failed to set new trace chunk on existing channels, rolling back");
4852 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4853 session_id, chunk_id,
4854 chunk_creation_timestamp, NULL,
4855 path);
4856 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4857 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4858 session_id, chunk_id);
4859 }
4860
4861 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4862 break;
4863 }
4864 }
4865
4866 if (relayd_id) {
4867 struct consumer_relayd_sock_pair *relayd;
4868
4869 relayd = consumer_find_relayd(*relayd_id);
4870 if (relayd) {
4871 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4872 ret = relayd_create_trace_chunk(
4873 &relayd->control_sock, published_chunk);
4874 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4875 } else {
4876 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4877 }
4878
4879 if (!relayd || ret) {
4880 enum lttcomm_return_code close_ret;
4881 char path[LTTNG_PATH_MAX];
4882
4883 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4884 session_id,
4885 chunk_id,
4886 chunk_creation_timestamp,
4887 NULL, path);
4888 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4889 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4890 session_id,
4891 chunk_id);
4892 }
4893
4894 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4895 goto error_unlock;
4896 }
4897 }
4898 error_unlock:
4899 rcu_read_unlock();
4900 error:
4901 /* Release the reference returned by the "publish" operation. */
4902 lttng_trace_chunk_put(published_chunk);
4903 lttng_trace_chunk_put(created_chunk);
4904 return ret_code;
4905 }
4906
4907 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4908 const uint64_t *relayd_id, uint64_t session_id,
4909 uint64_t chunk_id, time_t chunk_close_timestamp,
4910 const enum lttng_trace_chunk_command_type *close_command,
4911 char *path)
4912 {
4913 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4914 struct lttng_trace_chunk *chunk;
4915 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4916 const char *relayd_id_str = "(none)";
4917 const char *close_command_name = "none";
4918 struct lttng_ht_iter iter;
4919 struct lttng_consumer_channel *channel;
4920 enum lttng_trace_chunk_status chunk_status;
4921
4922 if (relayd_id) {
4923 int ret;
4924
4925 /* Only used for logging purposes. */
4926 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4927 "%" PRIu64, *relayd_id);
4928 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4929 relayd_id_str = relayd_id_buffer;
4930 } else {
4931 relayd_id_str = "(formatting error)";
4932 }
4933 }
4934 if (close_command) {
4935 close_command_name = lttng_trace_chunk_command_type_get_name(
4936 *close_command);
4937 }
4938
4939 DBG("Consumer close trace chunk command: relayd_id = %s"
4940 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4941 ", close command = %s",
4942 relayd_id_str, session_id, chunk_id,
4943 close_command_name);
4944
4945 chunk = lttng_trace_chunk_registry_find_chunk(
4946 consumer_data.chunk_registry, session_id, chunk_id);
4947 if (!chunk) {
4948 ERR("Failed to find chunk: session_id = %" PRIu64
4949 ", chunk_id = %" PRIu64,
4950 session_id, chunk_id);
4951 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4952 goto end;
4953 }
4954
4955 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4956 chunk_close_timestamp);
4957 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4958 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4959 goto end;
4960 }
4961
4962 if (close_command) {
4963 chunk_status = lttng_trace_chunk_set_close_command(
4964 chunk, *close_command);
4965 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4966 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4967 goto end;
4968 }
4969 }
4970
4971 /*
4972 * chunk is now invalid to access as we no longer hold a reference to
4973 * it; it is only kept around to compare it (by address) to the
4974 * current chunk found in the session's channels.
4975 */
4976 rcu_read_lock();
4977 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4978 channel, node.node) {
4979 int ret;
4980
4981 /*
4982 * Only change the channel's chunk to NULL if it still
4983 * references the chunk being closed. The channel may
4984 * reference a newer channel in the case of a session
4985 * rotation. When a session rotation occurs, the "next"
4986 * chunk is created before the "current" chunk is closed.
4987 */
4988 if (channel->trace_chunk != chunk) {
4989 continue;
4990 }
4991 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4992 if (ret) {
4993 /*
4994 * Attempt to close the chunk on as many channels as
4995 * possible.
4996 */
4997 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4998 }
4999 }
5000
5001 if (relayd_id) {
5002 int ret;
5003 struct consumer_relayd_sock_pair *relayd;
5004
5005 relayd = consumer_find_relayd(*relayd_id);
5006 if (relayd) {
5007 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
5008 ret = relayd_close_trace_chunk(
5009 &relayd->control_sock, chunk,
5010 path);
5011 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
5012 } else {
5013 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
5014 *relayd_id);
5015 }
5016
5017 if (!relayd || ret) {
5018 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
5019 goto error_unlock;
5020 }
5021 }
5022 error_unlock:
5023 rcu_read_unlock();
5024 end:
5025 /*
5026 * Release the reference returned by the "find" operation and
5027 * the session daemon's implicit reference to the chunk.
5028 */
5029 lttng_trace_chunk_put(chunk);
5030 lttng_trace_chunk_put(chunk);
5031
5032 return ret_code;
5033 }
5034
5035 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
5036 const uint64_t *relayd_id, uint64_t session_id,
5037 uint64_t chunk_id)
5038 {
5039 int ret;
5040 enum lttcomm_return_code ret_code;
5041 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
5042 const char *relayd_id_str = "(none)";
5043 const bool is_local_trace = !relayd_id;
5044 struct consumer_relayd_sock_pair *relayd = NULL;
5045 bool chunk_exists_local, chunk_exists_remote;
5046
5047 if (relayd_id) {
5048 int ret;
5049
5050 /* Only used for logging purposes. */
5051 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
5052 "%" PRIu64, *relayd_id);
5053 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
5054 relayd_id_str = relayd_id_buffer;
5055 } else {
5056 relayd_id_str = "(formatting error)";
5057 }
5058 }
5059
5060 DBG("Consumer trace chunk exists command: relayd_id = %s"
5061 ", chunk_id = %" PRIu64, relayd_id_str,
5062 chunk_id);
5063 ret = lttng_trace_chunk_registry_chunk_exists(
5064 consumer_data.chunk_registry, session_id,
5065 chunk_id, &chunk_exists_local);
5066 if (ret) {
5067 /* Internal error. */
5068 ERR("Failed to query the existence of a trace chunk");
5069 ret_code = LTTCOMM_CONSUMERD_FATAL;
5070 goto end;
5071 }
5072 DBG("Trace chunk %s locally",
5073 chunk_exists_local ? "exists" : "does not exist");
5074 if (chunk_exists_local) {
5075 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
5076 goto end;
5077 } else if (is_local_trace) {
5078 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
5079 goto end;
5080 }
5081
5082 rcu_read_lock();
5083 relayd = consumer_find_relayd(*relayd_id);
5084 if (!relayd) {
5085 ERR("Failed to find relayd %" PRIu64, *relayd_id);
5086 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
5087 goto end_rcu_unlock;
5088 }
5089 DBG("Looking up existence of trace chunk on relay daemon");
5090 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
5091 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
5092 &chunk_exists_remote);
5093 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
5094 if (ret < 0) {
5095 ERR("Failed to look-up the existence of trace chunk on relay daemon");
5096 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
5097 goto end_rcu_unlock;
5098 }
5099
5100 ret_code = chunk_exists_remote ?
5101 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
5102 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
5103 DBG("Trace chunk %s on relay daemon",
5104 chunk_exists_remote ? "exists" : "does not exist");
5105
5106 end_rcu_unlock:
5107 rcu_read_unlock();
5108 end:
5109 return ret_code;
5110 }
5111
5112 static
5113 int consumer_clear_monitored_channel(struct lttng_consumer_channel *channel)
5114 {
5115 struct lttng_ht *ht;
5116 struct lttng_consumer_stream *stream;
5117 struct lttng_ht_iter iter;
5118 int ret;
5119
5120 ht = consumer_data.stream_per_chan_id_ht;
5121
5122 rcu_read_lock();
5123 cds_lfht_for_each_entry_duplicate(ht->ht,
5124 ht->hash_fct(&channel->key, lttng_ht_seed),
5125 ht->match_fct, &channel->key,
5126 &iter.iter, stream, node_channel_id.node) {
5127 /*
5128 * Protect against teardown with mutex.
5129 */
5130 pthread_mutex_lock(&stream->lock);
5131 if (cds_lfht_is_node_deleted(&stream->node.node)) {
5132 goto next;
5133 }
5134 ret = consumer_clear_stream(stream);
5135 if (ret) {
5136 goto error_unlock;
5137 }
5138 next:
5139 pthread_mutex_unlock(&stream->lock);
5140 }
5141 rcu_read_unlock();
5142 return LTTCOMM_CONSUMERD_SUCCESS;
5143
5144 error_unlock:
5145 pthread_mutex_unlock(&stream->lock);
5146 rcu_read_unlock();
5147 return ret;
5148 }
5149
5150 int lttng_consumer_clear_channel(struct lttng_consumer_channel *channel)
5151 {
5152 int ret;
5153
5154 DBG("Consumer clear channel %" PRIu64, channel->key);
5155
5156 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
5157 /*
5158 * Nothing to do for the metadata channel/stream.
5159 * Snapshot mechanism already take care of the metadata
5160 * handling/generation, and monitored channels only need to
5161 * have their data stream cleared..
5162 */
5163 ret = LTTCOMM_CONSUMERD_SUCCESS;
5164 goto end;
5165 }
5166
5167 if (!channel->monitor) {
5168 ret = consumer_clear_unmonitored_channel(channel);
5169 } else {
5170 ret = consumer_clear_monitored_channel(channel);
5171 }
5172 end:
5173 return ret;
5174 }
This page took 0.138953 seconds and 5 git commands to generate.