Fix: rculfhash should be offline while waiting for resize to complete
[urcu.git] / rculfhash.c
CommitLineData
5e28c532 1/*
abc490a1
MD
2 * rculfhash.c
3 *
1475579c 4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
abc490a1
MD
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
0dcf4847 7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
abc490a1
MD
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
5e28c532
MD
22 */
23
e753ff5a
MD
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
1475579c 33 * Some specificities of this Lock-Free Resizable RCU Hash Table
e753ff5a
MD
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
1f67ba50
MD
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
e753ff5a
MD
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
1f67ba50
MD
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
e753ff5a
MD
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
1ee8f000 52 * - An index of bucket nodes is kept. These bucket nodes are the hash
1f67ba50
MD
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
1475579c
MD
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
4c42f1b8 64 * - Split-counters are used to keep track of the number of
1475579c 65 * nodes within the hash table for automatic resize triggering.
e753ff5a
MD
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
5c4ca589
MD
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
1f67ba50 89 * linked-list (the start node is never removed) and that it does not
5c4ca589
MD
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
1f67ba50
MD
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
29e669f6
MD
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
1f67ba50
MD
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
5f177b1c 113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
93d46c39 114 *
7f949215 115 * Ordering Guarantees:
0f5543cb 116 *
7f949215
MD
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
0f5543cb 124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
7f949215
MD
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
0f5543cb
MD
131 *
132 * We define "write" operations as any of cds_lfht_add,
7f949215
MD
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
0f5543cb 206 *
1ee8f000 207 * Bucket node tables:
93d46c39 208 *
1ee8f000
LJ
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
93d46c39
LJ
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
1ee8f000 220 * When growing/shrinking, we only focus on the last bucket node table
93d46c39
LJ
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
1ee8f000
LJ
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
93d46c39 226 *
1475579c
MD
227 * A bit of ascii art explanation:
228 *
1f67ba50
MD
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
1475579c
MD
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
0adc36a8
LJ
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
f6fdd688 251 * | | | 3 011 110 | <- |
1475579c
MD
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
e753ff5a
MD
256 */
257
2ed95849 258#define _LGPL_SOURCE
125f41db 259#define _GNU_SOURCE
2ed95849 260#include <stdlib.h>
e0ba718a
MD
261#include <errno.h>
262#include <assert.h>
263#include <stdio.h>
abc490a1 264#include <stdint.h>
f000907d 265#include <string.h>
125f41db 266#include <sched.h>
e0ba718a 267
15cfbec7 268#include "config.h"
2ed95849 269#include <urcu.h>
abc490a1 270#include <urcu-call-rcu.h>
7b17c13e 271#include <urcu-flavor.h>
a42cc659
MD
272#include <urcu/arch.h>
273#include <urcu/uatomic.h>
a42cc659 274#include <urcu/compiler.h>
abc490a1 275#include <urcu/rculfhash.h>
0b6aa001 276#include <rculfhash-internal.h>
5e28c532 277#include <stdio.h>
464a1ec9 278#include <pthread.h>
44395fb7 279
f8994aee 280/*
4c42f1b8 281 * Split-counters lazily update the global counter each 1024
f8994aee
MD
282 * addition/removal. It automatically keeps track of resize required.
283 * We use the bucket length as indicator for need to expand for small
284 * tables and machines lacking per-cpu data suppport.
285 */
286#define COUNT_COMMIT_ORDER 10
4ddbb355 287#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
6ea6bc67
MD
288#define CHAIN_LEN_TARGET 1
289#define CHAIN_LEN_RESIZE_THRESHOLD 3
2ed95849 290
cd95516d 291/*
76a73da8 292 * Define the minimum table size.
cd95516d 293 */
d0d8f9aa
LJ
294#define MIN_TABLE_ORDER 0
295#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
cd95516d 296
b7d619b0 297/*
1ee8f000 298 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
b7d619b0 299 */
6083a889
MD
300#define MIN_PARTITION_PER_THREAD_ORDER 12
301#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
b7d619b0 302
d95bd160
MD
303/*
304 * The removed flag needs to be updated atomically with the pointer.
48ed1c18 305 * It indicates that no node must attach to the node scheduled for
b198f0fd 306 * removal, and that node garbage collection must be performed.
1ee8f000 307 * The bucket flag does not require to be updated atomically with the
d95bd160 308 * pointer, but it is added as a pointer low bit flag to save space.
1f67ba50
MD
309 * The "removal owner" flag is used to detect which of the "del"
310 * operation that has set the "removed flag" gets to return the removed
311 * node to its caller. Note that the replace operation does not need to
312 * iteract with the "removal owner" flag, because it validates that
313 * the "removed" flag is not set before performing its cmpxchg.
d95bd160 314 */
d37166c6 315#define REMOVED_FLAG (1UL << 0)
1ee8f000 316#define BUCKET_FLAG (1UL << 1)
db00ccc3
MD
317#define REMOVAL_OWNER_FLAG (1UL << 2)
318#define FLAGS_MASK ((1UL << 3) - 1)
d37166c6 319
bb7b2f26 320/* Value of the end pointer. Should not interact with flags. */
f9c80341 321#define END_VALUE NULL
bb7b2f26 322
7f52427b
MD
323/*
324 * ht_items_count: Split-counters counting the number of node addition
325 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
326 * is set at hash table creation.
327 *
328 * These are free-running counters, never reset to zero. They count the
329 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
330 * operations to update the global counter. We choose a power-of-2 value
331 * for the trigger to deal with 32 or 64-bit overflow of the counter.
332 */
df44348d 333struct ht_items_count {
860d07e8 334 unsigned long add, del;
df44348d
MD
335} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
336
7f52427b
MD
337/*
338 * rcu_resize_work: Contains arguments passed to RCU worker thread
339 * responsible for performing lazy resize.
340 */
abc490a1
MD
341struct rcu_resize_work {
342 struct rcu_head head;
14044b37 343 struct cds_lfht *ht;
abc490a1 344};
2ed95849 345
7f52427b
MD
346/*
347 * partition_resize_work: Contains arguments passed to worker threads
348 * executing the hash table resize on partitions of the hash table
349 * assigned to each processor's worker thread.
350 */
b7d619b0 351struct partition_resize_work {
1af6e26e 352 pthread_t thread_id;
b7d619b0
MD
353 struct cds_lfht *ht;
354 unsigned long i, start, len;
355 void (*fct)(struct cds_lfht *ht, unsigned long i,
356 unsigned long start, unsigned long len);
357};
358
abc490a1
MD
359/*
360 * Algorithm to reverse bits in a word by lookup table, extended to
361 * 64-bit words.
f9830efd 362 * Source:
abc490a1 363 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
f9830efd 364 * Originally from Public Domain.
abc490a1
MD
365 */
366
367static const uint8_t BitReverseTable256[256] =
2ed95849 368{
abc490a1
MD
369#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
370#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
371#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
372 R6(0), R6(2), R6(1), R6(3)
373};
374#undef R2
375#undef R4
376#undef R6
2ed95849 377
abc490a1
MD
378static
379uint8_t bit_reverse_u8(uint8_t v)
380{
381 return BitReverseTable256[v];
382}
ab7d5fc6 383
abc490a1
MD
384static __attribute__((unused))
385uint32_t bit_reverse_u32(uint32_t v)
386{
387 return ((uint32_t) bit_reverse_u8(v) << 24) |
388 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
389 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
390 ((uint32_t) bit_reverse_u8(v >> 24));
2ed95849
MD
391}
392
abc490a1
MD
393static __attribute__((unused))
394uint64_t bit_reverse_u64(uint64_t v)
2ed95849 395{
abc490a1
MD
396 return ((uint64_t) bit_reverse_u8(v) << 56) |
397 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
398 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
399 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
400 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
401 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
402 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
403 ((uint64_t) bit_reverse_u8(v >> 56));
404}
405
406static
407unsigned long bit_reverse_ulong(unsigned long v)
408{
409#if (CAA_BITS_PER_LONG == 32)
410 return bit_reverse_u32(v);
411#else
412 return bit_reverse_u64(v);
413#endif
414}
415
f9830efd 416/*
24365af7
MD
417 * fls: returns the position of the most significant bit.
418 * Returns 0 if no bit is set, else returns the position of the most
419 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
f9830efd 420 */
24365af7
MD
421#if defined(__i386) || defined(__x86_64)
422static inline
423unsigned int fls_u32(uint32_t x)
f9830efd 424{
24365af7
MD
425 int r;
426
427 asm("bsrl %1,%0\n\t"
428 "jnz 1f\n\t"
429 "movl $-1,%0\n\t"
430 "1:\n\t"
431 : "=r" (r) : "rm" (x));
432 return r + 1;
433}
434#define HAS_FLS_U32
435#endif
436
437#if defined(__x86_64)
438static inline
439unsigned int fls_u64(uint64_t x)
440{
441 long r;
442
443 asm("bsrq %1,%0\n\t"
444 "jnz 1f\n\t"
445 "movq $-1,%0\n\t"
446 "1:\n\t"
447 : "=r" (r) : "rm" (x));
448 return r + 1;
449}
450#define HAS_FLS_U64
451#endif
452
453#ifndef HAS_FLS_U64
454static __attribute__((unused))
455unsigned int fls_u64(uint64_t x)
456{
457 unsigned int r = 64;
458
459 if (!x)
460 return 0;
461
462 if (!(x & 0xFFFFFFFF00000000ULL)) {
463 x <<= 32;
464 r -= 32;
465 }
466 if (!(x & 0xFFFF000000000000ULL)) {
467 x <<= 16;
468 r -= 16;
469 }
470 if (!(x & 0xFF00000000000000ULL)) {
471 x <<= 8;
472 r -= 8;
473 }
474 if (!(x & 0xF000000000000000ULL)) {
475 x <<= 4;
476 r -= 4;
477 }
478 if (!(x & 0xC000000000000000ULL)) {
479 x <<= 2;
480 r -= 2;
481 }
482 if (!(x & 0x8000000000000000ULL)) {
483 x <<= 1;
484 r -= 1;
485 }
486 return r;
487}
488#endif
489
490#ifndef HAS_FLS_U32
491static __attribute__((unused))
492unsigned int fls_u32(uint32_t x)
493{
494 unsigned int r = 32;
f9830efd 495
24365af7
MD
496 if (!x)
497 return 0;
498 if (!(x & 0xFFFF0000U)) {
499 x <<= 16;
500 r -= 16;
501 }
502 if (!(x & 0xFF000000U)) {
503 x <<= 8;
504 r -= 8;
505 }
506 if (!(x & 0xF0000000U)) {
507 x <<= 4;
508 r -= 4;
509 }
510 if (!(x & 0xC0000000U)) {
511 x <<= 2;
512 r -= 2;
513 }
514 if (!(x & 0x80000000U)) {
515 x <<= 1;
516 r -= 1;
517 }
518 return r;
519}
520#endif
521
5bc6b66f 522unsigned int cds_lfht_fls_ulong(unsigned long x)
f9830efd 523{
6887cc5e 524#if (CAA_BITS_PER_LONG == 32)
24365af7
MD
525 return fls_u32(x);
526#else
527 return fls_u64(x);
528#endif
529}
f9830efd 530
920f8ef6
LJ
531/*
532 * Return the minimum order for which x <= (1UL << order).
533 * Return -1 if x is 0.
534 */
5bc6b66f 535int cds_lfht_get_count_order_u32(uint32_t x)
24365af7 536{
920f8ef6
LJ
537 if (!x)
538 return -1;
24365af7 539
920f8ef6 540 return fls_u32(x - 1);
24365af7
MD
541}
542
920f8ef6
LJ
543/*
544 * Return the minimum order for which x <= (1UL << order).
545 * Return -1 if x is 0.
546 */
5bc6b66f 547int cds_lfht_get_count_order_ulong(unsigned long x)
24365af7 548{
920f8ef6
LJ
549 if (!x)
550 return -1;
24365af7 551
5bc6b66f 552 return cds_lfht_fls_ulong(x - 1);
f9830efd
MD
553}
554
555static
ab65b890 556void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
f9830efd 557
f8994aee 558static
4105056a 559void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
f8994aee
MD
560 unsigned long count);
561
df44348d 562static long nr_cpus_mask = -1;
4c42f1b8
LJ
563static long split_count_mask = -1;
564
4ddbb355 565#if defined(HAVE_SYSCONF)
4c42f1b8
LJ
566static void ht_init_nr_cpus_mask(void)
567{
568 long maxcpus;
569
570 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
571 if (maxcpus <= 0) {
572 nr_cpus_mask = -2;
573 return;
574 }
575 /*
576 * round up number of CPUs to next power of two, so we
577 * can use & for modulo.
578 */
5bc6b66f 579 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
4c42f1b8
LJ
580 nr_cpus_mask = maxcpus - 1;
581}
4ddbb355
LJ
582#else /* #if defined(HAVE_SYSCONF) */
583static void ht_init_nr_cpus_mask(void)
584{
585 nr_cpus_mask = -2;
586}
587#endif /* #else #if defined(HAVE_SYSCONF) */
df44348d
MD
588
589static
5afadd12 590void alloc_split_items_count(struct cds_lfht *ht)
df44348d
MD
591{
592 struct ht_items_count *count;
593
4c42f1b8
LJ
594 if (nr_cpus_mask == -1) {
595 ht_init_nr_cpus_mask();
4ddbb355
LJ
596 if (nr_cpus_mask < 0)
597 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
598 else
599 split_count_mask = nr_cpus_mask;
df44348d 600 }
4c42f1b8 601
4ddbb355 602 assert(split_count_mask >= 0);
5afadd12
LJ
603
604 if (ht->flags & CDS_LFHT_ACCOUNTING) {
605 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
606 assert(ht->split_count);
607 } else {
608 ht->split_count = NULL;
609 }
df44348d
MD
610}
611
612static
5afadd12 613void free_split_items_count(struct cds_lfht *ht)
df44348d 614{
5afadd12 615 poison_free(ht->split_count);
df44348d
MD
616}
617
14360f1c 618#if defined(HAVE_SCHED_GETCPU)
df44348d 619static
14360f1c 620int ht_get_split_count_index(unsigned long hash)
df44348d
MD
621{
622 int cpu;
623
4c42f1b8 624 assert(split_count_mask >= 0);
df44348d 625 cpu = sched_getcpu();
8ed51e04 626 if (caa_unlikely(cpu < 0))
14360f1c 627 return hash & split_count_mask;
df44348d 628 else
4c42f1b8 629 return cpu & split_count_mask;
df44348d 630}
14360f1c
LJ
631#else /* #if defined(HAVE_SCHED_GETCPU) */
632static
633int ht_get_split_count_index(unsigned long hash)
634{
635 return hash & split_count_mask;
636}
637#endif /* #else #if defined(HAVE_SCHED_GETCPU) */
df44348d
MD
638
639static
14360f1c 640void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 641{
4c42f1b8
LJ
642 unsigned long split_count;
643 int index;
314558bf 644 long count;
df44348d 645
8ed51e04 646 if (caa_unlikely(!ht->split_count))
3171717f 647 return;
14360f1c 648 index = ht_get_split_count_index(hash);
4c42f1b8 649 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
314558bf
MD
650 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
651 return;
652 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
653
654 dbg_printf("add split count %lu\n", split_count);
655 count = uatomic_add_return(&ht->count,
656 1UL << COUNT_COMMIT_ORDER);
4c299dcb 657 if (caa_likely(count & (count - 1)))
314558bf
MD
658 return;
659 /* Only if global count is power of 2 */
660
661 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
662 return;
663 dbg_printf("add set global %ld\n", count);
664 cds_lfht_resize_lazy_count(ht, size,
665 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
666}
667
668static
14360f1c 669void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 670{
4c42f1b8
LJ
671 unsigned long split_count;
672 int index;
314558bf 673 long count;
df44348d 674
8ed51e04 675 if (caa_unlikely(!ht->split_count))
3171717f 676 return;
14360f1c 677 index = ht_get_split_count_index(hash);
4c42f1b8 678 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
314558bf
MD
679 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
680 return;
681 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
682
683 dbg_printf("del split count %lu\n", split_count);
684 count = uatomic_add_return(&ht->count,
685 -(1UL << COUNT_COMMIT_ORDER));
4c299dcb 686 if (caa_likely(count & (count - 1)))
314558bf
MD
687 return;
688 /* Only if global count is power of 2 */
689
690 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
691 return;
692 dbg_printf("del set global %ld\n", count);
693 /*
694 * Don't shrink table if the number of nodes is below a
695 * certain threshold.
696 */
697 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
698 return;
699 cds_lfht_resize_lazy_count(ht, size,
700 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
701}
702
f9830efd 703static
4105056a 704void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
f9830efd 705{
f8994aee
MD
706 unsigned long count;
707
b8af5011
MD
708 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
709 return;
f8994aee
MD
710 count = uatomic_read(&ht->count);
711 /*
712 * Use bucket-local length for small table expand and for
713 * environments lacking per-cpu data support.
714 */
715 if (count >= (1UL << COUNT_COMMIT_ORDER))
716 return;
24365af7 717 if (chain_len > 100)
f0c29ed7 718 dbg_printf("WARNING: large chain length: %u.\n",
24365af7 719 chain_len);
3390d470 720 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
ab65b890 721 cds_lfht_resize_lazy_grow(ht, size,
5bc6b66f 722 cds_lfht_get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
f9830efd
MD
723}
724
abc490a1 725static
14044b37 726struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
abc490a1 727{
14044b37 728 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
abc490a1
MD
729}
730
731static
14044b37 732int is_removed(struct cds_lfht_node *node)
abc490a1 733{
d37166c6 734 return ((unsigned long) node) & REMOVED_FLAG;
abc490a1
MD
735}
736
f5596c94 737static
1ee8f000 738int is_bucket(struct cds_lfht_node *node)
f5596c94 739{
1ee8f000 740 return ((unsigned long) node) & BUCKET_FLAG;
f5596c94
MD
741}
742
743static
1ee8f000 744struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
f5596c94 745{
1ee8f000 746 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
f5596c94 747}
bb7b2f26 748
db00ccc3
MD
749static
750int is_removal_owner(struct cds_lfht_node *node)
751{
752 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
753}
754
755static
756struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
757{
758 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
759}
760
71bb3aca
MD
761static
762struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
763{
764 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
765}
766
bb7b2f26
MD
767static
768struct cds_lfht_node *get_end(void)
769{
770 return (struct cds_lfht_node *) END_VALUE;
771}
772
773static
774int is_end(struct cds_lfht_node *node)
775{
776 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
777}
778
abc490a1 779static
ab65b890
LJ
780unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
781 unsigned long v)
abc490a1
MD
782{
783 unsigned long old1, old2;
784
785 old1 = uatomic_read(ptr);
786 do {
787 old2 = old1;
788 if (old2 >= v)
f9830efd 789 return old2;
abc490a1 790 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
ab65b890 791 return old2;
abc490a1
MD
792}
793
48f1b16d
LJ
794static
795void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
796{
0b6aa001 797 return ht->mm->alloc_bucket_table(ht, order);
48f1b16d
LJ
798}
799
800/*
801 * cds_lfht_free_bucket_table() should be called with decreasing order.
802 * When cds_lfht_free_bucket_table(0) is called, it means the whole
803 * lfht is destroyed.
804 */
805static
806void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
807{
0b6aa001 808 return ht->mm->free_bucket_table(ht, order);
48f1b16d
LJ
809}
810
9d72a73f
LJ
811static inline
812struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
f4a9cc0b 813{
0b6aa001 814 return ht->bucket_at(ht, index);
f4a9cc0b
LJ
815}
816
9d72a73f
LJ
817static inline
818struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
819 unsigned long hash)
820{
821 assert(size > 0);
822 return bucket_at(ht, hash & (size - 1));
823}
824
273399de
MD
825/*
826 * Remove all logically deleted nodes from a bucket up to a certain node key.
827 */
828static
1ee8f000 829void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
273399de 830{
14044b37 831 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
273399de 832
1ee8f000
LJ
833 assert(!is_bucket(bucket));
834 assert(!is_removed(bucket));
835 assert(!is_bucket(node));
c90201ac 836 assert(!is_removed(node));
273399de 837 for (;;) {
1ee8f000
LJ
838 iter_prev = bucket;
839 /* We can always skip the bucket node initially */
04db56f8 840 iter = rcu_dereference(iter_prev->next);
b4cb483f 841 assert(!is_removed(iter));
04db56f8 842 assert(iter_prev->reverse_hash <= node->reverse_hash);
bd4db153 843 /*
1ee8f000 844 * We should never be called with bucket (start of chain)
bd4db153
MD
845 * and logically removed node (end of path compression
846 * marker) being the actual same node. This would be a
847 * bug in the algorithm implementation.
848 */
1ee8f000 849 assert(bucket != node);
273399de 850 for (;;) {
8ed51e04 851 if (caa_unlikely(is_end(iter)))
f9c80341 852 return;
04db56f8 853 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
f9c80341 854 return;
04db56f8 855 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 856 if (caa_likely(is_removed(next)))
273399de 857 break;
b453eae1 858 iter_prev = clear_flag(iter);
273399de
MD
859 iter = next;
860 }
b198f0fd 861 assert(!is_removed(iter));
1ee8f000
LJ
862 if (is_bucket(iter))
863 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
864 else
865 new_next = clear_flag(next);
04db56f8 866 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de
MD
867 }
868}
869
9357c415
MD
870static
871int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
872 struct cds_lfht_node *old_node,
3fb86f26 873 struct cds_lfht_node *old_next,
9357c415
MD
874 struct cds_lfht_node *new_node)
875{
04db56f8 876 struct cds_lfht_node *bucket, *ret_next;
9357c415
MD
877
878 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
7801dadd 879 return -ENOENT;
9357c415
MD
880
881 assert(!is_removed(old_node));
1ee8f000 882 assert(!is_bucket(old_node));
9357c415 883 assert(!is_removed(new_node));
1ee8f000 884 assert(!is_bucket(new_node));
9357c415 885 assert(new_node != old_node);
3fb86f26 886 for (;;) {
9357c415 887 /* Insert after node to be replaced */
9357c415
MD
888 if (is_removed(old_next)) {
889 /*
890 * Too late, the old node has been removed under us
891 * between lookup and replace. Fail.
892 */
7801dadd 893 return -ENOENT;
9357c415 894 }
feda2722
LJ
895 assert(old_next == clear_flag(old_next));
896 assert(new_node != old_next);
71bb3aca
MD
897 /*
898 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
899 * flag. It is either set atomically at the same time
900 * (replace) or after (del).
901 */
902 assert(!is_removal_owner(old_next));
feda2722 903 new_node->next = old_next;
9357c415
MD
904 /*
905 * Here is the whole trick for lock-free replace: we add
906 * the replacement node _after_ the node we want to
907 * replace by atomically setting its next pointer at the
908 * same time we set its removal flag. Given that
909 * the lookups/get next use an iterator aware of the
910 * next pointer, they will either skip the old node due
911 * to the removal flag and see the new node, or use
912 * the old node, but will not see the new one.
db00ccc3
MD
913 * This is a replacement of a node with another node
914 * that has the same value: we are therefore not
71bb3aca
MD
915 * removing a value from the hash table. We set both the
916 * REMOVED and REMOVAL_OWNER flags atomically so we own
917 * the node after successful cmpxchg.
9357c415 918 */
04db56f8 919 ret_next = uatomic_cmpxchg(&old_node->next,
71bb3aca 920 old_next, flag_removed_or_removal_owner(new_node));
3fb86f26 921 if (ret_next == old_next)
7801dadd 922 break; /* We performed the replacement. */
3fb86f26
LJ
923 old_next = ret_next;
924 }
9357c415 925
9357c415
MD
926 /*
927 * Ensure that the old node is not visible to readers anymore:
928 * lookup for the node, and remove it (along with any other
929 * logically removed node) if found.
930 */
04db56f8
LJ
931 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
932 _cds_lfht_gc_bucket(bucket, new_node);
7801dadd 933
a85eff52 934 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
7801dadd 935 return 0;
9357c415
MD
936}
937
83beee94
MD
938/*
939 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
940 * mode. A NULL unique_ret allows creation of duplicate keys.
941 */
abc490a1 942static
83beee94 943void _cds_lfht_add(struct cds_lfht *ht,
91a75cc5 944 unsigned long hash,
0422d92c 945 cds_lfht_match_fct match,
996ff57c 946 const void *key,
83beee94
MD
947 unsigned long size,
948 struct cds_lfht_node *node,
949 struct cds_lfht_iter *unique_ret,
1ee8f000 950 int bucket_flag)
abc490a1 951{
14044b37 952 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
960c9e4f 953 *return_node;
04db56f8 954 struct cds_lfht_node *bucket;
abc490a1 955
1ee8f000 956 assert(!is_bucket(node));
c90201ac 957 assert(!is_removed(node));
91a75cc5 958 bucket = lookup_bucket(ht, size, hash);
abc490a1 959 for (;;) {
adc0de68 960 uint32_t chain_len = 0;
abc490a1 961
11519af6
MD
962 /*
963 * iter_prev points to the non-removed node prior to the
964 * insert location.
11519af6 965 */
04db56f8 966 iter_prev = bucket;
1ee8f000 967 /* We can always skip the bucket node initially */
04db56f8
LJ
968 iter = rcu_dereference(iter_prev->next);
969 assert(iter_prev->reverse_hash <= node->reverse_hash);
abc490a1 970 for (;;) {
8ed51e04 971 if (caa_unlikely(is_end(iter)))
273399de 972 goto insert;
04db56f8 973 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
273399de 974 goto insert;
238cc06e 975
1ee8f000
LJ
976 /* bucket node is the first node of the identical-hash-value chain */
977 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
194fdbd1 978 goto insert;
238cc06e 979
04db56f8 980 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 981 if (caa_unlikely(is_removed(next)))
9dba85be 982 goto gc_node;
238cc06e
LJ
983
984 /* uniquely add */
83beee94 985 if (unique_ret
1ee8f000 986 && !is_bucket(next)
04db56f8 987 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
238cc06e
LJ
988 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
989
990 /*
991 * uniquely adding inserts the node as the first
992 * node of the identical-hash-value node chain.
993 *
994 * This semantic ensures no duplicated keys
995 * should ever be observable in the table
1f67ba50
MD
996 * (including traversing the table node by
997 * node by forward iterations)
238cc06e 998 */
04db56f8 999 cds_lfht_next_duplicate(ht, match, key, &d_iter);
238cc06e
LJ
1000 if (!d_iter.node)
1001 goto insert;
1002
1003 *unique_ret = d_iter;
83beee94 1004 return;
48ed1c18 1005 }
238cc06e 1006
11519af6 1007 /* Only account for identical reverse hash once */
04db56f8 1008 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1ee8f000 1009 && !is_bucket(next))
4105056a 1010 check_resize(ht, size, ++chain_len);
11519af6 1011 iter_prev = clear_flag(iter);
273399de 1012 iter = next;
abc490a1 1013 }
48ed1c18 1014
273399de 1015 insert:
7ec59d3b 1016 assert(node != clear_flag(iter));
11519af6 1017 assert(!is_removed(iter_prev));
c90201ac 1018 assert(!is_removed(iter));
f000907d 1019 assert(iter_prev != node);
1ee8f000 1020 if (!bucket_flag)
04db56f8 1021 node->next = clear_flag(iter);
f9c80341 1022 else
1ee8f000
LJ
1023 node->next = flag_bucket(clear_flag(iter));
1024 if (is_bucket(iter))
1025 new_node = flag_bucket(node);
f5596c94
MD
1026 else
1027 new_node = node;
04db56f8 1028 if (uatomic_cmpxchg(&iter_prev->next, iter,
48ed1c18 1029 new_node) != iter) {
273399de 1030 continue; /* retry */
48ed1c18 1031 } else {
83beee94 1032 return_node = node;
960c9e4f 1033 goto end;
48ed1c18
MD
1034 }
1035
9dba85be
MD
1036 gc_node:
1037 assert(!is_removed(iter));
1ee8f000
LJ
1038 if (is_bucket(iter))
1039 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1040 else
1041 new_next = clear_flag(next);
04db56f8 1042 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de 1043 /* retry */
464a1ec9 1044 }
9357c415 1045end:
83beee94
MD
1046 if (unique_ret) {
1047 unique_ret->node = return_node;
1048 /* unique_ret->next left unset, never used. */
1049 }
abc490a1 1050}
464a1ec9 1051
abc490a1 1052static
860d07e8 1053int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
b65ec430 1054 struct cds_lfht_node *node)
abc490a1 1055{
db00ccc3 1056 struct cds_lfht_node *bucket, *next;
5e28c532 1057
9357c415 1058 if (!node) /* Return -ENOENT if asked to delete NULL node */
743f9143 1059 return -ENOENT;
9357c415 1060
7ec59d3b 1061 /* logically delete the node */
1ee8f000 1062 assert(!is_bucket(node));
c90201ac 1063 assert(!is_removed(node));
db00ccc3 1064 assert(!is_removal_owner(node));
48ed1c18 1065
db00ccc3
MD
1066 /*
1067 * We are first checking if the node had previously been
1068 * logically removed (this check is not atomic with setting the
1069 * logical removal flag). Return -ENOENT if the node had
1070 * previously been removed.
1071 */
a85eff52 1072 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
db00ccc3
MD
1073 if (caa_unlikely(is_removed(next)))
1074 return -ENOENT;
b65ec430 1075 assert(!is_bucket(next));
196f4fab
MD
1076 /*
1077 * The del operation semantic guarantees a full memory barrier
1078 * before the uatomic_or atomic commit of the deletion flag.
1079 */
1080 cmm_smp_mb__before_uatomic_or();
db00ccc3
MD
1081 /*
1082 * We set the REMOVED_FLAG unconditionally. Note that there may
1083 * be more than one concurrent thread setting this flag.
1084 * Knowing which wins the race will be known after the garbage
1085 * collection phase, stay tuned!
1086 */
1087 uatomic_or(&node->next, REMOVED_FLAG);
7ec59d3b 1088 /* We performed the (logical) deletion. */
7ec59d3b
MD
1089
1090 /*
1091 * Ensure that the node is not visible to readers anymore: lookup for
273399de
MD
1092 * the node, and remove it (along with any other logically removed node)
1093 * if found.
11519af6 1094 */
04db56f8
LJ
1095 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1096 _cds_lfht_gc_bucket(bucket, node);
743f9143 1097
a85eff52 1098 assert(is_removed(CMM_LOAD_SHARED(node->next)));
db00ccc3
MD
1099 /*
1100 * Last phase: atomically exchange node->next with a version
1101 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1102 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1103 * the node and win the removal race.
1104 * It is interesting to note that all "add" paths are forbidden
1105 * to change the next pointer starting from the point where the
1106 * REMOVED_FLAG is set, so here using a read, followed by a
1107 * xchg() suffice to guarantee that the xchg() will ever only
1108 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1109 * was already set).
1110 */
1111 if (!is_removal_owner(uatomic_xchg(&node->next,
1112 flag_removal_owner(node->next))))
1113 return 0;
1114 else
1115 return -ENOENT;
abc490a1 1116}
2ed95849 1117
b7d619b0
MD
1118static
1119void *partition_resize_thread(void *arg)
1120{
1121 struct partition_resize_work *work = arg;
1122
7b17c13e 1123 work->ht->flavor->register_thread();
b7d619b0 1124 work->fct(work->ht, work->i, work->start, work->len);
7b17c13e 1125 work->ht->flavor->unregister_thread();
b7d619b0
MD
1126 return NULL;
1127}
1128
1129static
1130void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1131 unsigned long len,
1132 void (*fct)(struct cds_lfht *ht, unsigned long i,
1133 unsigned long start, unsigned long len))
1134{
1135 unsigned long partition_len;
1136 struct partition_resize_work *work;
6083a889
MD
1137 int thread, ret;
1138 unsigned long nr_threads;
b7d619b0 1139
6083a889
MD
1140 /*
1141 * Note: nr_cpus_mask + 1 is always power of 2.
1142 * We spawn just the number of threads we need to satisfy the minimum
1143 * partition size, up to the number of CPUs in the system.
1144 */
91452a6a
MD
1145 if (nr_cpus_mask > 0) {
1146 nr_threads = min(nr_cpus_mask + 1,
1147 len >> MIN_PARTITION_PER_THREAD_ORDER);
1148 } else {
1149 nr_threads = 1;
1150 }
5bc6b66f 1151 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
6083a889 1152 work = calloc(nr_threads, sizeof(*work));
b7d619b0 1153 assert(work);
6083a889
MD
1154 for (thread = 0; thread < nr_threads; thread++) {
1155 work[thread].ht = ht;
1156 work[thread].i = i;
1157 work[thread].len = partition_len;
1158 work[thread].start = thread * partition_len;
1159 work[thread].fct = fct;
1af6e26e 1160 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
6083a889 1161 partition_resize_thread, &work[thread]);
b7d619b0
MD
1162 assert(!ret);
1163 }
6083a889 1164 for (thread = 0; thread < nr_threads; thread++) {
1af6e26e 1165 ret = pthread_join(work[thread].thread_id, NULL);
b7d619b0
MD
1166 assert(!ret);
1167 }
1168 free(work);
b7d619b0
MD
1169}
1170
e8de508e
MD
1171/*
1172 * Holding RCU read lock to protect _cds_lfht_add against memory
1173 * reclaim that could be performed by other call_rcu worker threads (ABA
1174 * problem).
9ee0fc9a 1175 *
b7d619b0 1176 * When we reach a certain length, we can split this population phase over
9ee0fc9a
MD
1177 * many worker threads, based on the number of CPUs available in the system.
1178 * This should therefore take care of not having the expand lagging behind too
1179 * many concurrent insertion threads by using the scheduler's ability to
1ee8f000 1180 * schedule bucket node population fairly with insertions.
e8de508e 1181 */
4105056a 1182static
b7d619b0
MD
1183void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1184 unsigned long start, unsigned long len)
4105056a 1185{
9d72a73f 1186 unsigned long j, size = 1UL << (i - 1);
4105056a 1187
d0d8f9aa 1188 assert(i > MIN_TABLE_ORDER);
7b17c13e 1189 ht->flavor->read_lock();
9d72a73f
LJ
1190 for (j = size + start; j < size + start + len; j++) {
1191 struct cds_lfht_node *new_node = bucket_at(ht, j);
1192
1193 assert(j >= size && j < (size << 1));
1194 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1195 i, j, j);
1196 new_node->reverse_hash = bit_reverse_ulong(j);
91a75cc5 1197 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
4105056a 1198 }
7b17c13e 1199 ht->flavor->read_unlock();
b7d619b0
MD
1200}
1201
1202static
1203void init_table_populate(struct cds_lfht *ht, unsigned long i,
1204 unsigned long len)
1205{
1206 assert(nr_cpus_mask != -1);
6083a889 1207 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
7b17c13e 1208 ht->flavor->thread_online();
b7d619b0 1209 init_table_populate_partition(ht, i, 0, len);
7b17c13e 1210 ht->flavor->thread_offline();
b7d619b0
MD
1211 return;
1212 }
1213 partition_resize_helper(ht, i, len, init_table_populate_partition);
4105056a
MD
1214}
1215
abc490a1 1216static
4105056a 1217void init_table(struct cds_lfht *ht,
93d46c39 1218 unsigned long first_order, unsigned long last_order)
24365af7 1219{
93d46c39 1220 unsigned long i;
24365af7 1221
93d46c39
LJ
1222 dbg_printf("init table: first_order %lu last_order %lu\n",
1223 first_order, last_order);
d0d8f9aa 1224 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1225 for (i = first_order; i <= last_order; i++) {
4105056a 1226 unsigned long len;
24365af7 1227
4f6e90b7 1228 len = 1UL << (i - 1);
f0c29ed7 1229 dbg_printf("init order %lu len: %lu\n", i, len);
4d676753
MD
1230
1231 /* Stop expand if the resize target changes under us */
7b3893e4 1232 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
4d676753
MD
1233 break;
1234
48f1b16d 1235 cds_lfht_alloc_bucket_table(ht, i);
4105056a 1236
4105056a 1237 /*
1ee8f000
LJ
1238 * Set all bucket nodes reverse hash values for a level and
1239 * link all bucket nodes into the table.
4105056a 1240 */
dc1da8f6 1241 init_table_populate(ht, i, len);
4105056a 1242
f9c80341
MD
1243 /*
1244 * Update table size.
1245 */
1246 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1247 CMM_STORE_SHARED(ht->size, 1UL << i);
f9c80341 1248
4f6e90b7 1249 dbg_printf("init new size: %lu\n", 1UL << i);
4105056a
MD
1250 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1251 break;
1252 }
1253}
1254
e8de508e
MD
1255/*
1256 * Holding RCU read lock to protect _cds_lfht_remove against memory
1257 * reclaim that could be performed by other call_rcu worker threads (ABA
1258 * problem).
1259 * For a single level, we logically remove and garbage collect each node.
1260 *
1261 * As a design choice, we perform logical removal and garbage collection on a
1262 * node-per-node basis to simplify this algorithm. We also assume keeping good
1263 * cache locality of the operation would overweight possible performance gain
1264 * that could be achieved by batching garbage collection for multiple levels.
1265 * However, this would have to be justified by benchmarks.
1266 *
1267 * Concurrent removal and add operations are helping us perform garbage
1268 * collection of logically removed nodes. We guarantee that all logically
1269 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1ee8f000 1270 * invoked to free a hole level of bucket nodes (after a grace period).
e8de508e 1271 *
1f67ba50
MD
1272 * Logical removal and garbage collection can therefore be done in batch
1273 * or on a node-per-node basis, as long as the guarantee above holds.
9ee0fc9a 1274 *
b7d619b0
MD
1275 * When we reach a certain length, we can split this removal over many worker
1276 * threads, based on the number of CPUs available in the system. This should
1277 * take care of not letting resize process lag behind too many concurrent
9ee0fc9a 1278 * updater threads actively inserting into the hash table.
e8de508e 1279 */
4105056a 1280static
b7d619b0
MD
1281void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1282 unsigned long start, unsigned long len)
4105056a 1283{
9d72a73f 1284 unsigned long j, size = 1UL << (i - 1);
4105056a 1285
d0d8f9aa 1286 assert(i > MIN_TABLE_ORDER);
7b17c13e 1287 ht->flavor->read_lock();
9d72a73f 1288 for (j = size + start; j < size + start + len; j++) {
2e2ce1e9
LJ
1289 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1290 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
9d72a73f
LJ
1291
1292 assert(j >= size && j < (size << 1));
1293 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1294 i, j, j);
2e2ce1e9
LJ
1295 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1296 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1297 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
abc490a1 1298 }
7b17c13e 1299 ht->flavor->read_unlock();
b7d619b0
MD
1300}
1301
1302static
1303void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1304{
1305
1306 assert(nr_cpus_mask != -1);
6083a889 1307 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
7b17c13e 1308 ht->flavor->thread_online();
b7d619b0 1309 remove_table_partition(ht, i, 0, len);
7b17c13e 1310 ht->flavor->thread_offline();
b7d619b0
MD
1311 return;
1312 }
1313 partition_resize_helper(ht, i, len, remove_table_partition);
2ed95849
MD
1314}
1315
61adb337
MD
1316/*
1317 * fini_table() is never called for first_order == 0, which is why
1318 * free_by_rcu_order == 0 can be used as criterion to know if free must
1319 * be called.
1320 */
1475579c 1321static
4105056a 1322void fini_table(struct cds_lfht *ht,
93d46c39 1323 unsigned long first_order, unsigned long last_order)
1475579c 1324{
93d46c39 1325 long i;
48f1b16d 1326 unsigned long free_by_rcu_order = 0;
1475579c 1327
93d46c39
LJ
1328 dbg_printf("fini table: first_order %lu last_order %lu\n",
1329 first_order, last_order);
d0d8f9aa 1330 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1331 for (i = last_order; i >= first_order; i--) {
4105056a 1332 unsigned long len;
1475579c 1333
4f6e90b7 1334 len = 1UL << (i - 1);
1475579c 1335 dbg_printf("fini order %lu len: %lu\n", i, len);
4105056a 1336
4d676753 1337 /* Stop shrink if the resize target changes under us */
7b3893e4 1338 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
4d676753
MD
1339 break;
1340
1341 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1342 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
4d676753
MD
1343
1344 /*
1345 * We need to wait for all add operations to reach Q.S. (and
1346 * thus use the new table for lookups) before we can start
1ee8f000 1347 * releasing the old bucket nodes. Otherwise their lookup will
4d676753
MD
1348 * return a logically removed node as insert position.
1349 */
7b17c13e 1350 ht->flavor->update_synchronize_rcu();
48f1b16d
LJ
1351 if (free_by_rcu_order)
1352 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
4d676753 1353
21263e21 1354 /*
1ee8f000
LJ
1355 * Set "removed" flag in bucket nodes about to be removed.
1356 * Unlink all now-logically-removed bucket node pointers.
4105056a
MD
1357 * Concurrent add/remove operation are helping us doing
1358 * the gc.
21263e21 1359 */
4105056a
MD
1360 remove_table(ht, i, len);
1361
48f1b16d 1362 free_by_rcu_order = i;
4105056a
MD
1363
1364 dbg_printf("fini new size: %lu\n", 1UL << i);
1475579c
MD
1365 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1366 break;
1367 }
0d14ceb2 1368
48f1b16d 1369 if (free_by_rcu_order) {
7b17c13e 1370 ht->flavor->update_synchronize_rcu();
48f1b16d 1371 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
0d14ceb2 1372 }
1475579c
MD
1373}
1374
ff0d69de 1375static
1ee8f000 1376void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
ff0d69de 1377{
04db56f8 1378 struct cds_lfht_node *prev, *node;
9d72a73f 1379 unsigned long order, len, i;
ff0d69de 1380
48f1b16d 1381 cds_lfht_alloc_bucket_table(ht, 0);
ff0d69de 1382
9d72a73f
LJ
1383 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1384 node = bucket_at(ht, 0);
1385 node->next = flag_bucket(get_end());
1386 node->reverse_hash = 0;
ff0d69de 1387
5bc6b66f 1388 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
ff0d69de 1389 len = 1UL << (order - 1);
48f1b16d 1390 cds_lfht_alloc_bucket_table(ht, order);
ff0d69de 1391
9d72a73f
LJ
1392 for (i = 0; i < len; i++) {
1393 /*
1394 * Now, we are trying to init the node with the
1395 * hash=(len+i) (which is also a bucket with the
1396 * index=(len+i)) and insert it into the hash table,
1397 * so this node has to be inserted after the bucket
1398 * with the index=(len+i)&(len-1)=i. And because there
1399 * is no other non-bucket node nor bucket node with
1400 * larger index/hash inserted, so the bucket node
1401 * being inserted should be inserted directly linked
1402 * after the bucket node with index=i.
1403 */
1404 prev = bucket_at(ht, i);
1405 node = bucket_at(ht, len + i);
ff0d69de 1406
1ee8f000 1407 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
9d72a73f
LJ
1408 order, len + i, len + i);
1409 node->reverse_hash = bit_reverse_ulong(len + i);
1410
1411 /* insert after prev */
1412 assert(is_bucket(prev->next));
ff0d69de 1413 node->next = prev->next;
1ee8f000 1414 prev->next = flag_bucket(node);
ff0d69de
LJ
1415 }
1416 }
1417}
1418
0422d92c 1419struct cds_lfht *_cds_lfht_new(unsigned long init_size,
0722081a 1420 unsigned long min_nr_alloc_buckets,
747d725c 1421 unsigned long max_nr_buckets,
b8af5011 1422 int flags,
0b6aa001 1423 const struct cds_lfht_mm_type *mm,
7b17c13e 1424 const struct rcu_flavor_struct *flavor,
b7d619b0 1425 pthread_attr_t *attr)
abc490a1 1426{
14044b37 1427 struct cds_lfht *ht;
24365af7 1428 unsigned long order;
abc490a1 1429
0722081a
LJ
1430 /* min_nr_alloc_buckets must be power of two */
1431 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
5488222b 1432 return NULL;
747d725c 1433
8129be4e 1434 /* init_size must be power of two */
5488222b 1435 if (!init_size || (init_size & (init_size - 1)))
8129be4e 1436 return NULL;
747d725c 1437
c1888f3a
MD
1438 /*
1439 * Memory management plugin default.
1440 */
1441 if (!mm) {
5a2141a7
MD
1442 if (CAA_BITS_PER_LONG > 32
1443 && max_nr_buckets
c1888f3a
MD
1444 && max_nr_buckets <= (1ULL << 32)) {
1445 /*
1446 * For 64-bit architectures, with max number of
1447 * buckets small enough not to use the entire
1448 * 64-bit memory mapping space (and allowing a
1449 * fair number of hash table instances), use the
1450 * mmap allocator, which is faster than the
1451 * order allocator.
1452 */
1453 mm = &cds_lfht_mm_mmap;
1454 } else {
1455 /*
1456 * The fallback is to use the order allocator.
1457 */
1458 mm = &cds_lfht_mm_order;
1459 }
1460 }
1461
0b6aa001
LJ
1462 /* max_nr_buckets == 0 for order based mm means infinite */
1463 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
747d725c
LJ
1464 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1465
1466 /* max_nr_buckets must be power of two */
1467 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1468 return NULL;
1469
0722081a 1470 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
d0d8f9aa 1471 init_size = max(init_size, MIN_TABLE_SIZE);
747d725c
LJ
1472 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1473 init_size = min(init_size, max_nr_buckets);
0b6aa001
LJ
1474
1475 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
b7d619b0 1476 assert(ht);
0b6aa001
LJ
1477 assert(ht->mm == mm);
1478 assert(ht->bucket_at == mm->bucket_at);
1479
b5d6b20f 1480 ht->flags = flags;
7b17c13e 1481 ht->flavor = flavor;
b7d619b0 1482 ht->resize_attr = attr;
5afadd12 1483 alloc_split_items_count(ht);
abc490a1
MD
1484 /* this mutex should not nest in read-side C.S. */
1485 pthread_mutex_init(&ht->resize_mutex, NULL);
5bc6b66f 1486 order = cds_lfht_get_count_order_ulong(init_size);
7b3893e4 1487 ht->resize_target = 1UL << order;
1ee8f000 1488 cds_lfht_create_bucket(ht, 1UL << order);
7b3893e4 1489 ht->size = 1UL << order;
abc490a1
MD
1490 return ht;
1491}
1492
6f554439 1493void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
996ff57c 1494 cds_lfht_match_fct match, const void *key,
6f554439 1495 struct cds_lfht_iter *iter)
2ed95849 1496{
04db56f8 1497 struct cds_lfht_node *node, *next, *bucket;
0422d92c 1498 unsigned long reverse_hash, size;
2ed95849 1499
abc490a1 1500 reverse_hash = bit_reverse_ulong(hash);
464a1ec9 1501
7b3893e4 1502 size = rcu_dereference(ht->size);
04db56f8 1503 bucket = lookup_bucket(ht, size, hash);
1ee8f000 1504 /* We can always skip the bucket node initially */
04db56f8 1505 node = rcu_dereference(bucket->next);
bb7b2f26 1506 node = clear_flag(node);
2ed95849 1507 for (;;) {
8ed51e04 1508 if (caa_unlikely(is_end(node))) {
96ad1112 1509 node = next = NULL;
abc490a1 1510 break;
bb7b2f26 1511 }
04db56f8 1512 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1513 node = next = NULL;
abc490a1 1514 break;
2ed95849 1515 }
04db56f8 1516 next = rcu_dereference(node->next);
7f52427b 1517 assert(node == clear_flag(node));
8ed51e04 1518 if (caa_likely(!is_removed(next))
1ee8f000 1519 && !is_bucket(next)
04db56f8 1520 && node->reverse_hash == reverse_hash
0422d92c 1521 && caa_likely(match(node, key))) {
273399de 1522 break;
2ed95849 1523 }
1b81fe1a 1524 node = clear_flag(next);
2ed95849 1525 }
a85eff52 1526 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1527 iter->node = node;
1528 iter->next = next;
abc490a1 1529}
e0ba718a 1530
0422d92c 1531void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
996ff57c 1532 const void *key, struct cds_lfht_iter *iter)
a481e5ff 1533{
adc0de68 1534 struct cds_lfht_node *node, *next;
a481e5ff 1535 unsigned long reverse_hash;
a481e5ff 1536
adc0de68 1537 node = iter->node;
04db56f8 1538 reverse_hash = node->reverse_hash;
adc0de68 1539 next = iter->next;
a481e5ff
MD
1540 node = clear_flag(next);
1541
1542 for (;;) {
8ed51e04 1543 if (caa_unlikely(is_end(node))) {
96ad1112 1544 node = next = NULL;
a481e5ff 1545 break;
bb7b2f26 1546 }
04db56f8 1547 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1548 node = next = NULL;
a481e5ff
MD
1549 break;
1550 }
04db56f8 1551 next = rcu_dereference(node->next);
8ed51e04 1552 if (caa_likely(!is_removed(next))
1ee8f000 1553 && !is_bucket(next)
04db56f8 1554 && caa_likely(match(node, key))) {
a481e5ff
MD
1555 break;
1556 }
1557 node = clear_flag(next);
1558 }
a85eff52 1559 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1560 iter->node = node;
1561 iter->next = next;
a481e5ff
MD
1562}
1563
4e9b9fbf
MD
1564void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1565{
1566 struct cds_lfht_node *node, *next;
1567
853395e1 1568 node = clear_flag(iter->next);
4e9b9fbf 1569 for (;;) {
8ed51e04 1570 if (caa_unlikely(is_end(node))) {
4e9b9fbf
MD
1571 node = next = NULL;
1572 break;
1573 }
04db56f8 1574 next = rcu_dereference(node->next);
8ed51e04 1575 if (caa_likely(!is_removed(next))
1ee8f000 1576 && !is_bucket(next)) {
4e9b9fbf
MD
1577 break;
1578 }
1579 node = clear_flag(next);
1580 }
a85eff52 1581 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
4e9b9fbf
MD
1582 iter->node = node;
1583 iter->next = next;
1584}
1585
1586void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1587{
4e9b9fbf 1588 /*
1ee8f000 1589 * Get next after first bucket node. The first bucket node is the
4e9b9fbf
MD
1590 * first node of the linked list.
1591 */
9d72a73f 1592 iter->next = bucket_at(ht, 0)->next;
4e9b9fbf
MD
1593 cds_lfht_next(ht, iter);
1594}
1595
0422d92c
MD
1596void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1597 struct cds_lfht_node *node)
abc490a1 1598{
0422d92c 1599 unsigned long size;
ab7d5fc6 1600
709bacf9 1601 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1602 size = rcu_dereference(ht->size);
91a75cc5 1603 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
14360f1c 1604 ht_count_add(ht, size, hash);
3eca1b8c
MD
1605}
1606
14044b37 1607struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
6f554439 1608 unsigned long hash,
0422d92c 1609 cds_lfht_match_fct match,
996ff57c 1610 const void *key,
48ed1c18 1611 struct cds_lfht_node *node)
3eca1b8c 1612{
0422d92c 1613 unsigned long size;
83beee94 1614 struct cds_lfht_iter iter;
3eca1b8c 1615
709bacf9 1616 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1617 size = rcu_dereference(ht->size);
91a75cc5 1618 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1619 if (iter.node == node)
14360f1c 1620 ht_count_add(ht, size, hash);
83beee94 1621 return iter.node;
2ed95849
MD
1622}
1623
9357c415 1624struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
6f554439 1625 unsigned long hash,
0422d92c 1626 cds_lfht_match_fct match,
996ff57c 1627 const void *key,
48ed1c18
MD
1628 struct cds_lfht_node *node)
1629{
0422d92c 1630 unsigned long size;
83beee94 1631 struct cds_lfht_iter iter;
48ed1c18 1632
709bacf9 1633 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1634 size = rcu_dereference(ht->size);
83beee94 1635 for (;;) {
91a75cc5 1636 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1637 if (iter.node == node) {
14360f1c 1638 ht_count_add(ht, size, hash);
83beee94
MD
1639 return NULL;
1640 }
1641
1642 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1643 return iter.node;
1644 }
48ed1c18
MD
1645}
1646
2e79c445
MD
1647int cds_lfht_replace(struct cds_lfht *ht,
1648 struct cds_lfht_iter *old_iter,
1649 unsigned long hash,
1650 cds_lfht_match_fct match,
1651 const void *key,
9357c415
MD
1652 struct cds_lfht_node *new_node)
1653{
1654 unsigned long size;
1655
709bacf9 1656 new_node->reverse_hash = bit_reverse_ulong(hash);
2e79c445
MD
1657 if (!old_iter->node)
1658 return -ENOENT;
1659 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1660 return -EINVAL;
1661 if (caa_unlikely(!match(old_iter->node, key)))
1662 return -EINVAL;
7b3893e4 1663 size = rcu_dereference(ht->size);
9357c415
MD
1664 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1665 new_node);
1666}
1667
bc8c3c74 1668int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
2ed95849 1669{
14360f1c 1670 unsigned long size, hash;
df44348d 1671 int ret;
abc490a1 1672
7b3893e4 1673 size = rcu_dereference(ht->size);
bc8c3c74 1674 ret = _cds_lfht_del(ht, size, node);
14360f1c 1675 if (!ret) {
bc8c3c74 1676 hash = bit_reverse_ulong(node->reverse_hash);
14360f1c
LJ
1677 ht_count_del(ht, size, hash);
1678 }
df44348d 1679 return ret;
2ed95849 1680}
ab7d5fc6 1681
df55172a
MD
1682int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1683{
a85eff52 1684 return is_removed(CMM_LOAD_SHARED(node->next));
df55172a
MD
1685}
1686
abc490a1 1687static
1ee8f000 1688int cds_lfht_delete_bucket(struct cds_lfht *ht)
674f7a69 1689{
14044b37 1690 struct cds_lfht_node *node;
4105056a 1691 unsigned long order, i, size;
674f7a69 1692
abc490a1 1693 /* Check that the table is empty */
9d72a73f 1694 node = bucket_at(ht, 0);
abc490a1 1695 do {
04db56f8 1696 node = clear_flag(node)->next;
1ee8f000 1697 if (!is_bucket(node))
abc490a1 1698 return -EPERM;
273399de 1699 assert(!is_removed(node));
bb7b2f26 1700 } while (!is_end(node));
4105056a
MD
1701 /*
1702 * size accessed without rcu_dereference because hash table is
1703 * being destroyed.
1704 */
7b3893e4 1705 size = ht->size;
1f67ba50 1706 /* Internal sanity check: all nodes left should be buckets */
48f1b16d
LJ
1707 for (i = 0; i < size; i++) {
1708 node = bucket_at(ht, i);
1709 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1710 i, i, bit_reverse_ulong(node->reverse_hash));
1711 assert(is_bucket(node->next));
1712 }
24365af7 1713
5bc6b66f 1714 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
48f1b16d 1715 cds_lfht_free_bucket_table(ht, order);
5488222b 1716
abc490a1 1717 return 0;
674f7a69
MD
1718}
1719
1720/*
1721 * Should only be called when no more concurrent readers nor writers can
1722 * possibly access the table.
1723 */
b7d619b0 1724int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
674f7a69 1725{
5e28c532
MD
1726 int ret;
1727
848d4088 1728 /* Wait for in-flight resize operations to complete */
24953e08
MD
1729 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1730 cmm_smp_mb(); /* Store destroy before load resize */
285b4481 1731 ht->flavor->thread_offline();
848d4088
MD
1732 while (uatomic_read(&ht->in_progress_resize))
1733 poll(NULL, 0, 100); /* wait for 100ms */
285b4481 1734 ht->flavor->thread_online();
1ee8f000 1735 ret = cds_lfht_delete_bucket(ht);
abc490a1
MD
1736 if (ret)
1737 return ret;
5afadd12 1738 free_split_items_count(ht);
b7d619b0
MD
1739 if (attr)
1740 *attr = ht->resize_attr;
98808fb1 1741 poison_free(ht);
5e28c532 1742 return ret;
674f7a69
MD
1743}
1744
14044b37 1745void cds_lfht_count_nodes(struct cds_lfht *ht,
d933dd0e 1746 long *approx_before,
273399de 1747 unsigned long *count,
d933dd0e 1748 long *approx_after)
273399de 1749{
14044b37 1750 struct cds_lfht_node *node, *next;
caf3653d 1751 unsigned long nr_bucket = 0, nr_removed = 0;
273399de 1752
7ed7682f 1753 *approx_before = 0;
5afadd12 1754 if (ht->split_count) {
973e5e1b
MD
1755 int i;
1756
4c42f1b8
LJ
1757 for (i = 0; i < split_count_mask + 1; i++) {
1758 *approx_before += uatomic_read(&ht->split_count[i].add);
1759 *approx_before -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1760 }
1761 }
1762
273399de 1763 *count = 0;
273399de 1764
1ee8f000 1765 /* Count non-bucket nodes in the table */
9d72a73f 1766 node = bucket_at(ht, 0);
273399de 1767 do {
04db56f8 1768 next = rcu_dereference(node->next);
b198f0fd 1769 if (is_removed(next)) {
1ee8f000 1770 if (!is_bucket(next))
caf3653d 1771 (nr_removed)++;
973e5e1b 1772 else
1ee8f000
LJ
1773 (nr_bucket)++;
1774 } else if (!is_bucket(next))
273399de 1775 (*count)++;
24365af7 1776 else
1ee8f000 1777 (nr_bucket)++;
273399de 1778 node = clear_flag(next);
bb7b2f26 1779 } while (!is_end(node));
caf3653d 1780 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1ee8f000 1781 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
7ed7682f 1782 *approx_after = 0;
5afadd12 1783 if (ht->split_count) {
973e5e1b
MD
1784 int i;
1785
4c42f1b8
LJ
1786 for (i = 0; i < split_count_mask + 1; i++) {
1787 *approx_after += uatomic_read(&ht->split_count[i].add);
1788 *approx_after -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1789 }
1790 }
273399de
MD
1791}
1792
1475579c 1793/* called with resize mutex held */
abc490a1 1794static
4105056a 1795void _do_cds_lfht_grow(struct cds_lfht *ht,
1475579c 1796 unsigned long old_size, unsigned long new_size)
abc490a1 1797{
1475579c 1798 unsigned long old_order, new_order;
1475579c 1799
5bc6b66f
MD
1800 old_order = cds_lfht_get_count_order_ulong(old_size);
1801 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
1802 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1803 old_size, old_order, new_size, new_order);
1475579c 1804 assert(new_size > old_size);
93d46c39 1805 init_table(ht, old_order + 1, new_order);
abc490a1
MD
1806}
1807
1808/* called with resize mutex held */
1809static
4105056a 1810void _do_cds_lfht_shrink(struct cds_lfht *ht,
1475579c 1811 unsigned long old_size, unsigned long new_size)
464a1ec9 1812{
1475579c 1813 unsigned long old_order, new_order;
464a1ec9 1814
d0d8f9aa 1815 new_size = max(new_size, MIN_TABLE_SIZE);
5bc6b66f
MD
1816 old_order = cds_lfht_get_count_order_ulong(old_size);
1817 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
1818 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1819 old_size, old_order, new_size, new_order);
1475579c 1820 assert(new_size < old_size);
1475579c 1821
1ee8f000 1822 /* Remove and unlink all bucket nodes to remove. */
93d46c39 1823 fini_table(ht, new_order + 1, old_order);
464a1ec9
MD
1824}
1825
1475579c
MD
1826
1827/* called with resize mutex held */
1828static
1829void _do_cds_lfht_resize(struct cds_lfht *ht)
1830{
1831 unsigned long new_size, old_size;
4105056a
MD
1832
1833 /*
1834 * Resize table, re-do if the target size has changed under us.
1835 */
1836 do {
d2be3620
MD
1837 assert(uatomic_read(&ht->in_progress_resize));
1838 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1839 break;
7b3893e4
LJ
1840 ht->resize_initiated = 1;
1841 old_size = ht->size;
1842 new_size = CMM_LOAD_SHARED(ht->resize_target);
4105056a
MD
1843 if (old_size < new_size)
1844 _do_cds_lfht_grow(ht, old_size, new_size);
1845 else if (old_size > new_size)
1846 _do_cds_lfht_shrink(ht, old_size, new_size);
7b3893e4 1847 ht->resize_initiated = 0;
4105056a
MD
1848 /* write resize_initiated before read resize_target */
1849 cmm_smp_mb();
7b3893e4 1850 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1475579c
MD
1851}
1852
abc490a1 1853static
ab65b890 1854unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 1855{
7b3893e4 1856 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
464a1ec9
MD
1857}
1858
1475579c 1859static
4105056a 1860void resize_target_update_count(struct cds_lfht *ht,
b8af5011 1861 unsigned long count)
1475579c 1862{
d0d8f9aa 1863 count = max(count, MIN_TABLE_SIZE);
747d725c 1864 count = min(count, ht->max_nr_buckets);
7b3893e4 1865 uatomic_set(&ht->resize_target, count);
1475579c
MD
1866}
1867
1868void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 1869{
4105056a 1870 resize_target_update_count(ht, new_size);
7b3893e4 1871 CMM_STORE_SHARED(ht->resize_initiated, 1);
7b17c13e 1872 ht->flavor->thread_offline();
1475579c
MD
1873 pthread_mutex_lock(&ht->resize_mutex);
1874 _do_cds_lfht_resize(ht);
1875 pthread_mutex_unlock(&ht->resize_mutex);
7b17c13e 1876 ht->flavor->thread_online();
abc490a1 1877}
464a1ec9 1878
abc490a1
MD
1879static
1880void do_resize_cb(struct rcu_head *head)
1881{
1882 struct rcu_resize_work *work =
1883 caa_container_of(head, struct rcu_resize_work, head);
14044b37 1884 struct cds_lfht *ht = work->ht;
abc490a1 1885
7b17c13e 1886 ht->flavor->thread_offline();
abc490a1 1887 pthread_mutex_lock(&ht->resize_mutex);
14044b37 1888 _do_cds_lfht_resize(ht);
abc490a1 1889 pthread_mutex_unlock(&ht->resize_mutex);
7b17c13e 1890 ht->flavor->thread_online();
98808fb1 1891 poison_free(work);
848d4088
MD
1892 cmm_smp_mb(); /* finish resize before decrement */
1893 uatomic_dec(&ht->in_progress_resize);
464a1ec9
MD
1894}
1895
abc490a1 1896static
f1f119ee 1897void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
ab7d5fc6 1898{
abc490a1
MD
1899 struct rcu_resize_work *work;
1900
4105056a
MD
1901 /* Store resize_target before read resize_initiated */
1902 cmm_smp_mb();
7b3893e4 1903 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
848d4088 1904 uatomic_inc(&ht->in_progress_resize);
59290e9d 1905 cmm_smp_mb(); /* increment resize count before load destroy */
ed35e6d8
MD
1906 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1907 uatomic_dec(&ht->in_progress_resize);
59290e9d 1908 return;
ed35e6d8 1909 }
f9830efd 1910 work = malloc(sizeof(*work));
741f378e
MD
1911 if (work == NULL) {
1912 dbg_printf("error allocating resize work, bailing out\n");
1913 uatomic_dec(&ht->in_progress_resize);
1914 return;
1915 }
f9830efd 1916 work->ht = ht;
7b17c13e 1917 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
7b3893e4 1918 CMM_STORE_SHARED(ht->resize_initiated, 1);
f9830efd 1919 }
ab7d5fc6 1920}
3171717f 1921
f1f119ee
LJ
1922static
1923void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1924{
1925 unsigned long target_size = size << growth;
1926
747d725c 1927 target_size = min(target_size, ht->max_nr_buckets);
f1f119ee
LJ
1928 if (resize_target_grow(ht, target_size) >= target_size)
1929 return;
1930
1931 __cds_lfht_resize_lazy_launch(ht);
1932}
1933
89bb121d
LJ
1934/*
1935 * We favor grow operations over shrink. A shrink operation never occurs
1936 * if a grow operation is queued for lazy execution. A grow operation
1937 * cancels any pending shrink lazy execution.
1938 */
3171717f 1939static
4105056a 1940void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
3171717f
MD
1941 unsigned long count)
1942{
b8af5011
MD
1943 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1944 return;
d0d8f9aa 1945 count = max(count, MIN_TABLE_SIZE);
747d725c 1946 count = min(count, ht->max_nr_buckets);
89bb121d
LJ
1947 if (count == size)
1948 return; /* Already the right size, no resize needed */
1949 if (count > size) { /* lazy grow */
1950 if (resize_target_grow(ht, count) >= count)
1951 return;
1952 } else { /* lazy shrink */
1953 for (;;) {
1954 unsigned long s;
1955
7b3893e4 1956 s = uatomic_cmpxchg(&ht->resize_target, size, count);
89bb121d
LJ
1957 if (s == size)
1958 break; /* no resize needed */
1959 if (s > size)
1960 return; /* growing is/(was just) in progress */
1961 if (s <= count)
1962 return; /* some other thread do shrink */
1963 size = s;
1964 }
1965 }
f1f119ee 1966 __cds_lfht_resize_lazy_launch(ht);
3171717f 1967}
This page took 0.145986 seconds and 4 git commands to generate.