#define NO_RMB #define NO_WMB #define NR_READERS 1 #define NR_WRITERS 1 #define NR_PROCS 2 #if (NR_READERS == 1) #define read_free_race (read_generation[0] == last_free_gen) #define read_free (free_done && data_access[0]) #elif (NR_READERS == 2) #define read_free_race (read_generation[0] == last_free_gen || read_generation[1] == last_free_gen) #define read_free (free_done && (data_access[0] || data_access[1])) #else #error "Too many readers" #endif #define RCU_GP_CTR_BIT (1 << 7) #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BIT - 1) #ifndef READER_NEST_LEVEL #define READER_NEST_LEVEL 2 #endif #define REMOTE_BARRIERS /* * mem.spin: Promela code to validate memory barriers with OOO memory. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (c) 2009 Mathieu Desnoyers */ /* Promela validation variables. */ /* specific defines "included" here */ /* DEFINES file "included" here */ #define get_pid() (_pid) /* * Each process have its own data in cache. Caches are randomly updated. * smp_wmb and smp_rmb forces cache updates (write and read), smp_mb forces * both. */ typedef per_proc_byte { byte val[NR_PROCS]; }; /* Bitfield has a maximum of 8 procs */ typedef per_proc_bit { byte bitfield; }; #define DECLARE_CACHED_VAR(type, x) \ type mem_##x; \ per_proc_##type cached_##x; \ per_proc_bit cache_dirty_##x; #define INIT_CACHED_VAR(x, v, j) \ mem_##x = v; \ cache_dirty_##x.bitfield = 0; \ j = 0; \ do \ :: j < NR_PROCS -> \ cached_##x.val[j] = v; \ j++ \ :: j >= NR_PROCS -> break \ od; #define IS_CACHE_DIRTY(x, id) (cache_dirty_##x.bitfield & (1 << id)) #define READ_CACHED_VAR(x) (cached_##x.val[get_pid()]) #define WRITE_CACHED_VAR(x, v) \ atomic { \ cached_##x.val[get_pid()] = v; \ cache_dirty_##x.bitfield = \ cache_dirty_##x.bitfield | (1 << get_pid()); \ } #define CACHE_WRITE_TO_MEM(x, id) \ if \ :: IS_CACHE_DIRTY(x, id) -> \ mem_##x = cached_##x.val[id]; \ cache_dirty_##x.bitfield = \ cache_dirty_##x.bitfield & (~(1 << id)); \ :: else -> \ skip \ fi; #define CACHE_READ_FROM_MEM(x, id) \ if \ :: !IS_CACHE_DIRTY(x, id) -> \ cached_##x.val[id] = mem_##x;\ :: else -> \ skip \ fi; /* * May update other caches if cache is dirty, or not. */ #define RANDOM_CACHE_WRITE_TO_MEM(x, id)\ if \ :: 1 -> CACHE_WRITE_TO_MEM(x, id); \ :: 1 -> skip \ fi; #define RANDOM_CACHE_READ_FROM_MEM(x, id)\ if \ :: 1 -> CACHE_READ_FROM_MEM(x, id); \ :: 1 -> skip \ fi; /* * Remote barriers tests the scheme where a signal (or IPI) is sent to all * reader threads to promote their compiler barrier to a smp_mb(). */ #ifdef REMOTE_BARRIERS inline smp_rmb_pid(i, j) { atomic { CACHE_READ_FROM_MEM(urcu_gp_ctr, i); j = 0; do :: j < NR_READERS -> CACHE_READ_FROM_MEM(urcu_active_readers[j], i); j++ :: j >= NR_READERS -> break od; CACHE_READ_FROM_MEM(generation_ptr, i); } } inline smp_wmb_pid(i, j) { atomic { CACHE_WRITE_TO_MEM(urcu_gp_ctr, i); j = 0; do :: j < NR_READERS -> CACHE_WRITE_TO_MEM(urcu_active_readers[j], i); j++ :: j >= NR_READERS -> break od; CACHE_WRITE_TO_MEM(generation_ptr, i); } } inline smp_mb_pid(i, j) { atomic { #ifndef NO_WMB smp_wmb_pid(i, j); #endif #ifndef NO_RMB smp_rmb_pid(i, j); #endif #ifdef NO_WMB #ifdef NO_RMB ooo_mem(j); #endif #endif } } /* * Readers do a simple barrier(), writers are doing a smp_mb() _and_ sending a * signal or IPI to have all readers execute a smp_mb. * We are not modeling the whole rendez-vous between readers and writers here, * we just let the writer update each reader's caches remotely. */ inline smp_mb(i, j) { if :: get_pid() >= NR_READERS -> smp_mb_pid(get_pid(), j); i = 0; do :: i < NR_READERS -> smp_mb_pid(i, j); i++; :: i >= NR_READERS -> break od; smp_mb_pid(get_pid(), j); :: else -> skip; fi; } #else inline smp_rmb(i, j) { atomic { CACHE_READ_FROM_MEM(urcu_gp_ctr, get_pid()); i = 0; do :: i < NR_READERS -> CACHE_READ_FROM_MEM(urcu_active_readers[i], get_pid()); i++ :: i >= NR_READERS -> break od; CACHE_READ_FROM_MEM(generation_ptr, get_pid()); } } inline smp_wmb(i, j) { atomic { CACHE_WRITE_TO_MEM(urcu_gp_ctr, get_pid()); i = 0; do :: i < NR_READERS -> CACHE_WRITE_TO_MEM(urcu_active_readers[i], get_pid()); i++ :: i >= NR_READERS -> break od; CACHE_WRITE_TO_MEM(generation_ptr, get_pid()); } } inline smp_mb(i, j) { atomic { #ifndef NO_WMB smp_wmb(i, j); #endif #ifndef NO_RMB smp_rmb(i, j); #endif #ifdef NO_WMB #ifdef NO_RMB ooo_mem(i); #endif #endif } } #endif /* Keep in sync manually with smp_rmb, wmp_wmb, ooo_mem and init() */ DECLARE_CACHED_VAR(byte, urcu_gp_ctr); /* Note ! currently only two readers */ DECLARE_CACHED_VAR(byte, urcu_active_readers[NR_READERS]); /* pointer generation */ DECLARE_CACHED_VAR(byte, generation_ptr); byte last_free_gen = 0; bit free_done = 0; byte read_generation[NR_READERS]; bit data_access[NR_READERS]; bit write_lock = 0; bit init_done = 0; inline wait_init_done() { do :: init_done == 0 -> skip; :: else -> break; od; } inline ooo_mem(i) { atomic { RANDOM_CACHE_WRITE_TO_MEM(urcu_gp_ctr, get_pid()); i = 0; do :: i < NR_READERS -> RANDOM_CACHE_WRITE_TO_MEM(urcu_active_readers[i], get_pid()); i++ :: i >= NR_READERS -> break od; RANDOM_CACHE_WRITE_TO_MEM(generation_ptr, get_pid()); RANDOM_CACHE_READ_FROM_MEM(urcu_gp_ctr, get_pid()); i = 0; do :: i < NR_READERS -> RANDOM_CACHE_READ_FROM_MEM(urcu_active_readers[i], get_pid()); i++ :: i >= NR_READERS -> break od; RANDOM_CACHE_READ_FROM_MEM(generation_ptr, get_pid()); } } #define get_readerid() (get_pid()) #define get_writerid() (get_readerid() + NR_READERS) inline wait_for_reader(tmp, tmp2, i, j) { do :: 1 -> tmp2 = READ_CACHED_VAR(urcu_active_readers[tmp]); ooo_mem(i); if :: (tmp2 & RCU_GP_CTR_NEST_MASK) && ((tmp2 ^ READ_CACHED_VAR(urcu_gp_ctr)) & RCU_GP_CTR_BIT) -> #ifndef GEN_ERROR_WRITER_PROGRESS smp_mb(i, j); #else ooo_mem(i); #endif :: else -> break; fi; od; } inline wait_for_quiescent_state(tmp, tmp2, i, j) { tmp = 0; do :: tmp < NR_READERS -> wait_for_reader(tmp, tmp2, i, j); if :: (NR_READERS > 1) && (tmp < NR_READERS - 1) -> ooo_mem(i); :: else -> skip; fi; tmp++ :: tmp >= NR_READERS -> break od; } /* Model the RCU read-side critical section. */ inline urcu_one_read(i, j, nest_i, tmp, tmp2) { nest_i = 0; do :: nest_i < READER_NEST_LEVEL -> ooo_mem(i); tmp = READ_CACHED_VAR(urcu_active_readers[get_readerid()]); ooo_mem(i); if :: (!(tmp & RCU_GP_CTR_NEST_MASK)) -> tmp2 = READ_CACHED_VAR(urcu_gp_ctr); ooo_mem(i); WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], tmp2); :: else -> WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], tmp + 1); fi; smp_mb(i, j); nest_i++; :: nest_i >= READER_NEST_LEVEL -> break; od; ooo_mem(i); read_generation[get_readerid()] = READ_CACHED_VAR(generation_ptr); ooo_mem(i); data_access[get_readerid()] = 1; ooo_mem(i); data_access[get_readerid()] = 0; nest_i = 0; do :: nest_i < READER_NEST_LEVEL -> smp_mb(i, j); tmp2 = READ_CACHED_VAR(urcu_active_readers[get_readerid()]); ooo_mem(i); WRITE_CACHED_VAR(urcu_active_readers[get_readerid()], tmp2 - 1); nest_i++; :: nest_i >= READER_NEST_LEVEL -> break; od; ooo_mem(i); //smp_mc(i); /* added */ } active [NR_READERS] proctype urcu_reader() { byte i, j, nest_i; byte tmp, tmp2; wait_init_done(); assert(get_pid() < NR_PROCS); end_reader: do :: 1 -> /* * We do not test reader's progress here, because we are mainly * interested in writer's progress. The reader never blocks * anyway. We have to test for reader/writer's progress * separately, otherwise we could think the writer is doing * progress when it's blocked by an always progressing reader. */ #ifdef READER_PROGRESS /* Only test progress of one random reader. They are all the * same. */ atomic { if :: get_readerid() == 0 -> progress_reader: skip; :: else -> skip; fi; } #endif urcu_one_read(i, j, nest_i, tmp, tmp2); od; } /* Model the RCU update process. */ active proctype urcu_writer() { byte i, j; byte tmp, tmp2; byte old_gen; wait_init_done(); assert(get_pid() < NR_PROCS); do :: (READ_CACHED_VAR(generation_ptr) < 5) -> #ifdef WRITER_PROGRESS progress_writer1: #endif ooo_mem(i); atomic { old_gen = READ_CACHED_VAR(generation_ptr); WRITE_CACHED_VAR(generation_ptr, old_gen + 1); } ooo_mem(i); do :: 1 -> atomic { if :: write_lock == 0 -> write_lock = 1; break; :: else -> skip; fi; } od; smp_mb(i, j); tmp = READ_CACHED_VAR(urcu_gp_ctr); ooo_mem(i); WRITE_CACHED_VAR(urcu_gp_ctr, tmp ^ RCU_GP_CTR_BIT); ooo_mem(i); //smp_mc(i); wait_for_quiescent_state(tmp, tmp2, i, j); //smp_mc(i); #ifndef SINGLE_FLIP ooo_mem(i); tmp = READ_CACHED_VAR(urcu_gp_ctr); ooo_mem(i); WRITE_CACHED_VAR(urcu_gp_ctr, tmp ^ RCU_GP_CTR_BIT); //smp_mc(i); ooo_mem(i); wait_for_quiescent_state(tmp, tmp2, i, j); #endif smp_mb(i, j); write_lock = 0; /* free-up step, e.g., kfree(). */ atomic { last_free_gen = old_gen; free_done = 1; } :: else -> break; od; /* * Given the reader loops infinitely, let the writer also busy-loop * with progress here so, with weak fairness, we can test the * writer's progress. */ end_writer: do :: 1 -> #ifdef WRITER_PROGRESS progress_writer2: #endif skip; od; } /* Leave after the readers and writers so the pid count is ok. */ init { byte i, j; atomic { INIT_CACHED_VAR(urcu_gp_ctr, 1, j); INIT_CACHED_VAR(generation_ptr, 0, j); i = 0; do :: i < NR_READERS -> INIT_CACHED_VAR(urcu_active_readers[i], 0, j); read_generation[i] = 1; data_access[i] = 0; i++; :: i >= NR_READERS -> break od; init_done = 1; } }