rculfhash: Only pass integral types to atomic builtins
[urcu.git] / src / rculfhash.c
1 // SPDX-FileCopyrightText: 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
2 // SPDX-FileCopyrightText: 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
3 //
4 // SPDX-License-Identifier: LGPL-2.1-or-later
5
6 /*
7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
8 */
9
10 /*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
19 * Some specificities of this Lock-Free Resizable RCU Hash Table
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
38 * - An index of bucket nodes is kept. These bucket nodes are the hash
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
50 * - Split-counters are used to keep track of the number of
51 * nodes within the hash table for automatic resize triggering.
52 * - Resize operation initiated by long chain detection is executed by a
53 * worker thread, which keeps lock-freedom of add and remove.
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
75 * linked-list (the start node is never removed) and that it does not
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
100 *
101 * Ordering Guarantees:
102 *
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
105 * cds_lfht_first, cds_lfht_next operation, as well as
106 * cds_lfht_add_unique (failure).
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
110 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
111 * (and/or cds_lfht_next, although less common).
112 * - cds_lfht_add_unique (failure) followed by iteration with
113 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
114 * common).
115 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
116 * cds_lfht_next_duplicate, although less common).
117 *
118 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
119 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
120 *
121 * When cds_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A cds_lfht_add_unique failure is a
125 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
192 *
193 * Bucket node tables:
194 *
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
206 * When growing/shrinking, we only focus on the last bucket node table
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
212 *
213 * A bit of ascii art explanation:
214 *
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
217 *
218 * This shows the nodes for a small table ordered by reversed bits:
219 *
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
231 * reversed-bit order.
232 *
233 * order bits reverse
234 * 0 0 000 000
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
237 * | | | 3 011 110 | <- |
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
242 */
243
244 #define _LGPL_SOURCE
245 #include <stdlib.h>
246 #include <errno.h>
247 #include <stdio.h>
248 #include <stdint.h>
249 #include <string.h>
250 #include <sched.h>
251 #include <unistd.h>
252
253 #include "compat-getcpu.h"
254 #include <urcu/assert.h>
255 #include <urcu/pointer.h>
256 #include <urcu/call-rcu.h>
257 #include <urcu/flavor.h>
258 #include <urcu/arch.h>
259 #include <urcu/uatomic.h>
260 #include <urcu/compiler.h>
261 #include <urcu/rculfhash.h>
262 #include <stdio.h>
263 #include <pthread.h>
264 #include <signal.h>
265 #include "rculfhash-internal.h"
266 #include "workqueue.h"
267 #include "urcu-die.h"
268 #include "urcu-utils.h"
269 #include "compat-smp.h"
270
271 /*
272 * Split-counters lazily update the global counter each 1024
273 * addition/removal. It automatically keeps track of resize required.
274 * We use the bucket length as indicator for need to expand for small
275 * tables and machines lacking per-cpu data support.
276 */
277 #define COUNT_COMMIT_ORDER 10
278 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
279 #define CHAIN_LEN_TARGET 1
280 #define CHAIN_LEN_RESIZE_THRESHOLD 3
281
282 /*
283 * Define the minimum table size.
284 */
285 #define MIN_TABLE_ORDER 0
286 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
287
288 /*
289 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
290 */
291 #define MIN_PARTITION_PER_THREAD_ORDER 12
292 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
293
294 /*
295 * The removed flag needs to be updated atomically with the pointer.
296 * It indicates that no node must attach to the node scheduled for
297 * removal, and that node garbage collection must be performed.
298 * The bucket flag does not require to be updated atomically with the
299 * pointer, but it is added as a pointer low bit flag to save space.
300 * The "removal owner" flag is used to detect which of the "del"
301 * operation that has set the "removed flag" gets to return the removed
302 * node to its caller. Note that the replace operation does not need to
303 * iteract with the "removal owner" flag, because it validates that
304 * the "removed" flag is not set before performing its cmpxchg.
305 */
306 #define REMOVED_FLAG (1UL << 0)
307 #define BUCKET_FLAG (1UL << 1)
308 #define REMOVAL_OWNER_FLAG (1UL << 2)
309 #define FLAGS_MASK ((1UL << 3) - 1)
310
311 /* Value of the end pointer. Should not interact with flags. */
312 #define END_VALUE NULL
313
314 /*
315 * ht_items_count: Split-counters counting the number of node addition
316 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
317 * is set at hash table creation.
318 *
319 * These are free-running counters, never reset to zero. They count the
320 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
321 * operations to update the global counter. We choose a power-of-2 value
322 * for the trigger to deal with 32 or 64-bit overflow of the counter.
323 */
324 struct ht_items_count {
325 unsigned long add, del;
326 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
327
328 /*
329 * resize_work: Contains arguments passed to worker thread
330 * responsible for performing lazy resize.
331 */
332 struct resize_work {
333 struct urcu_work work;
334 struct cds_lfht *ht;
335 };
336
337 /*
338 * partition_resize_work: Contains arguments passed to worker threads
339 * executing the hash table resize on partitions of the hash table
340 * assigned to each processor's worker thread.
341 */
342 struct partition_resize_work {
343 pthread_t thread_id;
344 struct cds_lfht *ht;
345 unsigned long i, start, len;
346 void (*fct)(struct cds_lfht *ht, unsigned long i,
347 unsigned long start, unsigned long len);
348 };
349
350 static struct urcu_workqueue *cds_lfht_workqueue;
351
352 /*
353 * Mutex ensuring mutual exclusion between workqueue initialization and
354 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
355 */
356 static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
357
358 static struct urcu_atfork cds_lfht_atfork;
359
360 /*
361 * atfork handler nesting counters. Handle being registered to many urcu
362 * flavors, thus being possibly invoked more than once in the
363 * pthread_atfork list of callbacks.
364 */
365 static int cds_lfht_workqueue_atfork_nesting;
366
367 static void __attribute__((destructor)) cds_lfht_exit(void);
368 static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
369
370 #ifdef CONFIG_CDS_LFHT_ITER_DEBUG
371
372 static
373 void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
374 {
375 iter->lfht = ht;
376 }
377
378 #define cds_lfht_iter_debug_assert(...) urcu_posix_assert(__VA_ARGS__)
379
380 #else
381
382 static
383 void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht __attribute__((unused)),
384 struct cds_lfht_iter *iter __attribute__((unused)))
385 {
386 }
387
388 #define cds_lfht_iter_debug_assert(...)
389
390 #endif
391
392 /*
393 * Algorithm to reverse bits in a word by lookup table, extended to
394 * 64-bit words.
395 * Source:
396 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
397 * Originally from Public Domain.
398 */
399
400 static const uint8_t BitReverseTable256[256] =
401 {
402 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
403 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
404 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
405 R6(0), R6(2), R6(1), R6(3)
406 };
407 #undef R2
408 #undef R4
409 #undef R6
410
411 static
412 uint8_t bit_reverse_u8(uint8_t v)
413 {
414 return BitReverseTable256[v];
415 }
416
417 #if (CAA_BITS_PER_LONG == 32)
418 static
419 uint32_t bit_reverse_u32(uint32_t v)
420 {
421 return ((uint32_t) bit_reverse_u8(v) << 24) |
422 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
423 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
424 ((uint32_t) bit_reverse_u8(v >> 24));
425 }
426 #else
427 static
428 uint64_t bit_reverse_u64(uint64_t v)
429 {
430 return ((uint64_t) bit_reverse_u8(v) << 56) |
431 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
432 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
433 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
434 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
435 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
436 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
437 ((uint64_t) bit_reverse_u8(v >> 56));
438 }
439 #endif
440
441 static
442 unsigned long bit_reverse_ulong(unsigned long v)
443 {
444 #if (CAA_BITS_PER_LONG == 32)
445 return bit_reverse_u32(v);
446 #else
447 return bit_reverse_u64(v);
448 #endif
449 }
450
451 /*
452 * fls: returns the position of the most significant bit.
453 * Returns 0 if no bit is set, else returns the position of the most
454 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
455 */
456 #if defined(URCU_ARCH_X86)
457 static inline
458 unsigned int fls_u32(uint32_t x)
459 {
460 int r;
461
462 __asm__ ("bsrl %1,%0\n\t"
463 "jnz 1f\n\t"
464 "movl $-1,%0\n\t"
465 "1:\n\t"
466 : "=r" (r) : "rm" (x));
467 return r + 1;
468 }
469 #define HAS_FLS_U32
470 #endif
471
472 #if defined(URCU_ARCH_AMD64)
473 static inline
474 unsigned int fls_u64(uint64_t x)
475 {
476 long r;
477
478 __asm__ ("bsrq %1,%0\n\t"
479 "jnz 1f\n\t"
480 "movq $-1,%0\n\t"
481 "1:\n\t"
482 : "=r" (r) : "rm" (x));
483 return r + 1;
484 }
485 #define HAS_FLS_U64
486 #endif
487
488 #ifndef HAS_FLS_U64
489 static __attribute__((unused))
490 unsigned int fls_u64(uint64_t x)
491 {
492 unsigned int r = 64;
493
494 if (!x)
495 return 0;
496
497 if (!(x & 0xFFFFFFFF00000000ULL)) {
498 x <<= 32;
499 r -= 32;
500 }
501 if (!(x & 0xFFFF000000000000ULL)) {
502 x <<= 16;
503 r -= 16;
504 }
505 if (!(x & 0xFF00000000000000ULL)) {
506 x <<= 8;
507 r -= 8;
508 }
509 if (!(x & 0xF000000000000000ULL)) {
510 x <<= 4;
511 r -= 4;
512 }
513 if (!(x & 0xC000000000000000ULL)) {
514 x <<= 2;
515 r -= 2;
516 }
517 if (!(x & 0x8000000000000000ULL)) {
518 x <<= 1;
519 r -= 1;
520 }
521 return r;
522 }
523 #endif
524
525 #ifndef HAS_FLS_U32
526 static __attribute__((unused))
527 unsigned int fls_u32(uint32_t x)
528 {
529 unsigned int r = 32;
530
531 if (!x)
532 return 0;
533 if (!(x & 0xFFFF0000U)) {
534 x <<= 16;
535 r -= 16;
536 }
537 if (!(x & 0xFF000000U)) {
538 x <<= 8;
539 r -= 8;
540 }
541 if (!(x & 0xF0000000U)) {
542 x <<= 4;
543 r -= 4;
544 }
545 if (!(x & 0xC0000000U)) {
546 x <<= 2;
547 r -= 2;
548 }
549 if (!(x & 0x80000000U)) {
550 x <<= 1;
551 r -= 1;
552 }
553 return r;
554 }
555 #endif
556
557 unsigned int cds_lfht_fls_ulong(unsigned long x)
558 {
559 #if (CAA_BITS_PER_LONG == 32)
560 return fls_u32(x);
561 #else
562 return fls_u64(x);
563 #endif
564 }
565
566 /*
567 * Return the minimum order for which x <= (1UL << order).
568 * Return -1 if x is 0.
569 */
570 static
571 int cds_lfht_get_count_order_u32(uint32_t x)
572 {
573 if (!x)
574 return -1;
575
576 return fls_u32(x - 1);
577 }
578
579 /*
580 * Return the minimum order for which x <= (1UL << order).
581 * Return -1 if x is 0.
582 */
583 int cds_lfht_get_count_order_ulong(unsigned long x)
584 {
585 if (!x)
586 return -1;
587
588 return cds_lfht_fls_ulong(x - 1);
589 }
590
591 static
592 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
593
594 static
595 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
596 unsigned long count);
597
598 static void mutex_lock(pthread_mutex_t *mutex)
599 {
600 int ret;
601
602 #ifndef DISTRUST_SIGNALS_EXTREME
603 ret = pthread_mutex_lock(mutex);
604 if (ret)
605 urcu_die(ret);
606 #else /* #ifndef DISTRUST_SIGNALS_EXTREME */
607 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
608 if (ret != EBUSY && ret != EINTR)
609 urcu_die(ret);
610 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
611 uatomic_store(&URCU_TLS(rcu_reader).need_mb, 0, CMM_SEQ_CST);
612 }
613 (void) poll(NULL, 0, 10);
614 }
615 #endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
616 }
617
618 static void mutex_unlock(pthread_mutex_t *mutex)
619 {
620 int ret;
621
622 ret = pthread_mutex_unlock(mutex);
623 if (ret)
624 urcu_die(ret);
625 }
626
627 static long nr_cpus_mask = -1;
628 static long split_count_mask = -1;
629 static int split_count_order = -1;
630
631 static void ht_init_nr_cpus_mask(void)
632 {
633 long maxcpus;
634
635 maxcpus = get_possible_cpus_array_len();
636 if (maxcpus <= 0) {
637 nr_cpus_mask = -2;
638 return;
639 }
640 /*
641 * round up number of CPUs to next power of two, so we
642 * can use & for modulo.
643 */
644 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
645 nr_cpus_mask = maxcpus - 1;
646 }
647
648 static
649 void alloc_split_items_count(struct cds_lfht *ht)
650 {
651 if (nr_cpus_mask == -1) {
652 ht_init_nr_cpus_mask();
653 if (nr_cpus_mask < 0)
654 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
655 else
656 split_count_mask = nr_cpus_mask;
657 split_count_order =
658 cds_lfht_get_count_order_ulong(split_count_mask + 1);
659 }
660
661 urcu_posix_assert(split_count_mask >= 0);
662
663 if (ht->flags & CDS_LFHT_ACCOUNTING) {
664 ht->split_count = calloc(split_count_mask + 1,
665 sizeof(struct ht_items_count));
666 urcu_posix_assert(ht->split_count);
667 } else {
668 ht->split_count = NULL;
669 }
670 }
671
672 static
673 void free_split_items_count(struct cds_lfht *ht)
674 {
675 poison_free(ht->split_count);
676 }
677
678 static
679 int ht_get_split_count_index(unsigned long hash)
680 {
681 int cpu;
682
683 urcu_posix_assert(split_count_mask >= 0);
684 cpu = urcu_sched_getcpu();
685 if (caa_unlikely(cpu < 0))
686 return hash & split_count_mask;
687 else
688 return cpu & split_count_mask;
689 }
690
691 static
692 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
693 {
694 unsigned long split_count, count;
695 int index;
696
697 if (caa_unlikely(!ht->split_count))
698 return;
699 index = ht_get_split_count_index(hash);
700 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
701 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
702 return;
703 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
704
705 dbg_printf("add split count %lu\n", split_count);
706 count = uatomic_add_return(&ht->count,
707 1UL << COUNT_COMMIT_ORDER);
708 if (caa_likely(count & (count - 1)))
709 return;
710 /* Only if global count is power of 2 */
711
712 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
713 return;
714 dbg_printf("add set global %lu\n", count);
715 cds_lfht_resize_lazy_count(ht, size,
716 count >> (CHAIN_LEN_TARGET - 1));
717 }
718
719 static
720 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
721 {
722 unsigned long split_count, count;
723 int index;
724
725 if (caa_unlikely(!ht->split_count))
726 return;
727 index = ht_get_split_count_index(hash);
728 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
729 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
730 return;
731 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
732
733 dbg_printf("del split count %lu\n", split_count);
734 count = uatomic_add_return(&ht->count,
735 -(1UL << COUNT_COMMIT_ORDER));
736 if (caa_likely(count & (count - 1)))
737 return;
738 /* Only if global count is power of 2 */
739
740 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
741 return;
742 dbg_printf("del set global %lu\n", count);
743 /*
744 * Don't shrink table if the number of nodes is below a
745 * certain threshold.
746 */
747 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
748 return;
749 cds_lfht_resize_lazy_count(ht, size,
750 count >> (CHAIN_LEN_TARGET - 1));
751 }
752
753 static
754 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
755 {
756 unsigned long count;
757
758 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
759 return;
760 count = uatomic_read(&ht->count);
761 /*
762 * Use bucket-local length for small table expand and for
763 * environments lacking per-cpu data support.
764 */
765 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
766 return;
767 if (chain_len > 100)
768 dbg_printf("WARNING: large chain length: %u.\n",
769 chain_len);
770 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
771 int growth;
772
773 /*
774 * Ideal growth calculated based on chain length.
775 */
776 growth = cds_lfht_get_count_order_u32(chain_len
777 - (CHAIN_LEN_TARGET - 1));
778 if ((ht->flags & CDS_LFHT_ACCOUNTING)
779 && (size << growth)
780 >= (1UL << (COUNT_COMMIT_ORDER
781 + split_count_order))) {
782 /*
783 * If ideal growth expands the hash table size
784 * beyond the "small hash table" sizes, use the
785 * maximum small hash table size to attempt
786 * expanding the hash table. This only applies
787 * when node accounting is available, otherwise
788 * the chain length is used to expand the hash
789 * table in every case.
790 */
791 growth = COUNT_COMMIT_ORDER + split_count_order
792 - cds_lfht_get_count_order_ulong(size);
793 if (growth <= 0)
794 return;
795 }
796 cds_lfht_resize_lazy_grow(ht, size, growth);
797 }
798 }
799
800 static
801 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
802 {
803 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
804 }
805
806 static
807 int is_removed(const struct cds_lfht_node *node)
808 {
809 return ((unsigned long) node) & REMOVED_FLAG;
810 }
811
812 static
813 int is_bucket(struct cds_lfht_node *node)
814 {
815 return ((unsigned long) node) & BUCKET_FLAG;
816 }
817
818 static
819 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
820 {
821 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
822 }
823
824 static
825 int is_removal_owner(struct cds_lfht_node *node)
826 {
827 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
828 }
829
830 static
831 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
832 {
833 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
834 }
835
836 static
837 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
838 {
839 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
840 }
841
842 static
843 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
844 {
845 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
846 }
847
848 static
849 struct cds_lfht_node *get_end(void)
850 {
851 return (struct cds_lfht_node *) END_VALUE;
852 }
853
854 static
855 int is_end(struct cds_lfht_node *node)
856 {
857 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
858 }
859
860 static
861 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
862 unsigned long v)
863 {
864 unsigned long old1, old2;
865
866 old1 = uatomic_read(ptr);
867 do {
868 old2 = old1;
869 if (old2 >= v) {
870 cmm_smp_mb();
871 return old2;
872 }
873 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
874 return old2;
875 }
876
877 static
878 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
879 {
880 return ht->mm->alloc_bucket_table(ht, order);
881 }
882
883 /*
884 * cds_lfht_free_bucket_table() should be called with decreasing order.
885 * When cds_lfht_free_bucket_table(0) is called, it means the whole
886 * lfht is destroyed.
887 */
888 static
889 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
890 {
891 return ht->mm->free_bucket_table(ht, order);
892 }
893
894 static inline
895 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
896 {
897 return ht->bucket_at(ht, index);
898 }
899
900 static inline
901 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
902 unsigned long hash)
903 {
904 urcu_posix_assert(size > 0);
905 return bucket_at(ht, hash & (size - 1));
906 }
907
908 /*
909 * Remove all logically deleted nodes from a bucket up to a certain node key.
910 */
911 static
912 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
913 {
914 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
915
916 urcu_posix_assert(!is_bucket(bucket));
917 urcu_posix_assert(!is_removed(bucket));
918 urcu_posix_assert(!is_removal_owner(bucket));
919 urcu_posix_assert(!is_bucket(node));
920 urcu_posix_assert(!is_removed(node));
921 urcu_posix_assert(!is_removal_owner(node));
922 for (;;) {
923 iter_prev = bucket;
924 /* We can always skip the bucket node initially */
925 iter = rcu_dereference(iter_prev->next);
926 urcu_posix_assert(!is_removed(iter));
927 urcu_posix_assert(!is_removal_owner(iter));
928 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
929 /*
930 * We should never be called with bucket (start of chain)
931 * and logically removed node (end of path compression
932 * marker) being the actual same node. This would be a
933 * bug in the algorithm implementation.
934 */
935 urcu_posix_assert(bucket != node);
936 for (;;) {
937 if (caa_unlikely(is_end(iter)))
938 return;
939 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
940 return;
941 next = rcu_dereference(clear_flag(iter)->next);
942 if (caa_likely(is_removed(next)))
943 break;
944 iter_prev = clear_flag(iter);
945 iter = next;
946 }
947 urcu_posix_assert(!is_removed(iter));
948 urcu_posix_assert(!is_removal_owner(iter));
949 if (is_bucket(iter))
950 new_next = flag_bucket(clear_flag(next));
951 else
952 new_next = clear_flag(next);
953 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
954 }
955 }
956
957 static
958 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
959 struct cds_lfht_node *old_node,
960 struct cds_lfht_node *old_next,
961 struct cds_lfht_node *new_node)
962 {
963 struct cds_lfht_node *bucket, *ret_next;
964
965 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
966 return -ENOENT;
967
968 urcu_posix_assert(!is_removed(old_node));
969 urcu_posix_assert(!is_removal_owner(old_node));
970 urcu_posix_assert(!is_bucket(old_node));
971 urcu_posix_assert(!is_removed(new_node));
972 urcu_posix_assert(!is_removal_owner(new_node));
973 urcu_posix_assert(!is_bucket(new_node));
974 urcu_posix_assert(new_node != old_node);
975 for (;;) {
976 /* Insert after node to be replaced */
977 if (is_removed(old_next)) {
978 /*
979 * Too late, the old node has been removed under us
980 * between lookup and replace. Fail.
981 */
982 return -ENOENT;
983 }
984 urcu_posix_assert(old_next == clear_flag(old_next));
985 urcu_posix_assert(new_node != old_next);
986 /*
987 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
988 * flag. It is either set atomically at the same time
989 * (replace) or after (del).
990 */
991 urcu_posix_assert(!is_removal_owner(old_next));
992 new_node->next = old_next;
993 /*
994 * Here is the whole trick for lock-free replace: we add
995 * the replacement node _after_ the node we want to
996 * replace by atomically setting its next pointer at the
997 * same time we set its removal flag. Given that
998 * the lookups/get next use an iterator aware of the
999 * next pointer, they will either skip the old node due
1000 * to the removal flag and see the new node, or use
1001 * the old node, but will not see the new one.
1002 * This is a replacement of a node with another node
1003 * that has the same value: we are therefore not
1004 * removing a value from the hash table. We set both the
1005 * REMOVED and REMOVAL_OWNER flags atomically so we own
1006 * the node after successful cmpxchg.
1007 */
1008 ret_next = uatomic_cmpxchg(&old_node->next,
1009 old_next, flag_removed_or_removal_owner(new_node));
1010 if (ret_next == old_next)
1011 break; /* We performed the replacement. */
1012 old_next = ret_next;
1013 }
1014
1015 /*
1016 * Ensure that the old node is not visible to readers anymore:
1017 * lookup for the node, and remove it (along with any other
1018 * logically removed node) if found.
1019 */
1020 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1021 _cds_lfht_gc_bucket(bucket, new_node);
1022
1023 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
1024 return 0;
1025 }
1026
1027 /*
1028 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1029 * mode. A NULL unique_ret allows creation of duplicate keys.
1030 */
1031 static
1032 void _cds_lfht_add(struct cds_lfht *ht,
1033 unsigned long hash,
1034 cds_lfht_match_fct match,
1035 const void *key,
1036 unsigned long size,
1037 struct cds_lfht_node *node,
1038 struct cds_lfht_iter *unique_ret,
1039 int bucket_flag)
1040 {
1041 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
1042 *return_node;
1043 struct cds_lfht_node *bucket;
1044
1045 urcu_posix_assert(!is_bucket(node));
1046 urcu_posix_assert(!is_removed(node));
1047 urcu_posix_assert(!is_removal_owner(node));
1048 bucket = lookup_bucket(ht, size, hash);
1049 for (;;) {
1050 uint32_t chain_len = 0;
1051
1052 /*
1053 * iter_prev points to the non-removed node prior to the
1054 * insert location.
1055 */
1056 iter_prev = bucket;
1057 /* We can always skip the bucket node initially */
1058 iter = rcu_dereference(iter_prev->next);
1059 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
1060 for (;;) {
1061 if (caa_unlikely(is_end(iter)))
1062 goto insert;
1063 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1064 goto insert;
1065
1066 /* bucket node is the first node of the identical-hash-value chain */
1067 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1068 goto insert;
1069
1070 next = rcu_dereference(clear_flag(iter)->next);
1071 if (caa_unlikely(is_removed(next)))
1072 goto gc_node;
1073
1074 /* uniquely add */
1075 if (unique_ret
1076 && !is_bucket(next)
1077 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1078 struct cds_lfht_iter d_iter = {
1079 .node = node,
1080 .next = iter,
1081 #ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1082 .lfht = ht,
1083 #endif
1084 };
1085
1086 /*
1087 * uniquely adding inserts the node as the first
1088 * node of the identical-hash-value node chain.
1089 *
1090 * This semantic ensures no duplicated keys
1091 * should ever be observable in the table
1092 * (including traversing the table node by
1093 * node by forward iterations)
1094 */
1095 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1096 if (!d_iter.node)
1097 goto insert;
1098
1099 *unique_ret = d_iter;
1100 return;
1101 }
1102
1103 /* Only account for identical reverse hash once */
1104 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1105 && !is_bucket(next))
1106 check_resize(ht, size, ++chain_len);
1107 iter_prev = clear_flag(iter);
1108 iter = next;
1109 }
1110
1111 insert:
1112 urcu_posix_assert(node != clear_flag(iter));
1113 urcu_posix_assert(!is_removed(iter_prev));
1114 urcu_posix_assert(!is_removal_owner(iter_prev));
1115 urcu_posix_assert(!is_removed(iter));
1116 urcu_posix_assert(!is_removal_owner(iter));
1117 urcu_posix_assert(iter_prev != node);
1118 if (!bucket_flag)
1119 node->next = clear_flag(iter);
1120 else
1121 node->next = flag_bucket(clear_flag(iter));
1122 if (is_bucket(iter))
1123 new_node = flag_bucket(node);
1124 else
1125 new_node = node;
1126 if (uatomic_cmpxchg(&iter_prev->next, iter,
1127 new_node) != iter) {
1128 continue; /* retry */
1129 } else {
1130 return_node = node;
1131 goto end;
1132 }
1133
1134 gc_node:
1135 urcu_posix_assert(!is_removed(iter));
1136 urcu_posix_assert(!is_removal_owner(iter));
1137 if (is_bucket(iter))
1138 new_next = flag_bucket(clear_flag(next));
1139 else
1140 new_next = clear_flag(next);
1141 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1142 /* retry */
1143 }
1144 end:
1145 if (unique_ret) {
1146 unique_ret->node = return_node;
1147 /* unique_ret->next left unset, never used. */
1148 }
1149 }
1150
1151 static
1152 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1153 struct cds_lfht_node *node)
1154 {
1155 struct cds_lfht_node *bucket, *next;
1156 uintptr_t *node_next;
1157
1158 if (!node) /* Return -ENOENT if asked to delete NULL node */
1159 return -ENOENT;
1160
1161 /* logically delete the node */
1162 urcu_posix_assert(!is_bucket(node));
1163 urcu_posix_assert(!is_removed(node));
1164 urcu_posix_assert(!is_removal_owner(node));
1165
1166 /*
1167 * We are first checking if the node had previously been
1168 * logically removed (this check is not atomic with setting the
1169 * logical removal flag). Return -ENOENT if the node had
1170 * previously been removed.
1171 */
1172 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1173 if (caa_unlikely(is_removed(next)))
1174 return -ENOENT;
1175 urcu_posix_assert(!is_bucket(next));
1176 /*
1177 * The del operation semantic guarantees a full memory barrier
1178 * before the uatomic_or atomic commit of the deletion flag.
1179 *
1180 * We set the REMOVED_FLAG unconditionally. Note that there may
1181 * be more than one concurrent thread setting this flag.
1182 * Knowing which wins the race will be known after the garbage
1183 * collection phase, stay tuned!
1184 *
1185 * NOTE: The node_next variable is present to avoid breaking
1186 * strict-aliasing rules.
1187 */
1188 node_next = (uintptr_t*)&node->next;
1189 uatomic_or_mo(node_next, REMOVED_FLAG, CMM_RELEASE);
1190
1191 /* We performed the (logical) deletion. */
1192
1193 /*
1194 * Ensure that the node is not visible to readers anymore: lookup for
1195 * the node, and remove it (along with any other logically removed node)
1196 * if found.
1197 */
1198 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1199 _cds_lfht_gc_bucket(bucket, node);
1200
1201 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(node->next)));
1202 /*
1203 * Last phase: atomically exchange node->next with a version
1204 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1205 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1206 * the node and win the removal race.
1207 * It is interesting to note that all "add" paths are forbidden
1208 * to change the next pointer starting from the point where the
1209 * REMOVED_FLAG is set, so here using a read, followed by a
1210 * xchg() suffice to guarantee that the xchg() will ever only
1211 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1212 * was already set).
1213 */
1214 if (!is_removal_owner(uatomic_xchg(&node->next,
1215 flag_removal_owner(uatomic_load(&node->next, CMM_RELAXED)))))
1216 return 0;
1217 else
1218 return -ENOENT;
1219 }
1220
1221 static
1222 void *partition_resize_thread(void *arg)
1223 {
1224 struct partition_resize_work *work = arg;
1225
1226 work->ht->flavor->register_thread();
1227 work->fct(work->ht, work->i, work->start, work->len);
1228 work->ht->flavor->unregister_thread();
1229 return NULL;
1230 }
1231
1232 static
1233 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1234 unsigned long len,
1235 void (*fct)(struct cds_lfht *ht, unsigned long i,
1236 unsigned long start, unsigned long len))
1237 {
1238 unsigned long partition_len, start = 0;
1239 struct partition_resize_work *work;
1240 int ret;
1241 unsigned long thread, nr_threads;
1242 sigset_t newmask, oldmask;
1243
1244 urcu_posix_assert(nr_cpus_mask != -1);
1245 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1246 goto fallback;
1247
1248 /*
1249 * Note: nr_cpus_mask + 1 is always power of 2.
1250 * We spawn just the number of threads we need to satisfy the minimum
1251 * partition size, up to the number of CPUs in the system.
1252 */
1253 if (nr_cpus_mask > 0) {
1254 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
1255 len >> MIN_PARTITION_PER_THREAD_ORDER);
1256 } else {
1257 nr_threads = 1;
1258 }
1259 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1260 work = calloc(nr_threads, sizeof(*work));
1261 if (!work) {
1262 dbg_printf("error allocating for resize, single-threading\n");
1263 goto fallback;
1264 }
1265
1266 ret = sigfillset(&newmask);
1267 urcu_posix_assert(!ret);
1268 ret = pthread_sigmask(SIG_BLOCK, &newmask, &oldmask);
1269 urcu_posix_assert(!ret);
1270
1271 for (thread = 0; thread < nr_threads; thread++) {
1272 work[thread].ht = ht;
1273 work[thread].i = i;
1274 work[thread].len = partition_len;
1275 work[thread].start = thread * partition_len;
1276 work[thread].fct = fct;
1277 ret = pthread_create(&(work[thread].thread_id),
1278 ht->caller_resize_attr ? &ht->resize_attr : NULL,
1279 partition_resize_thread, &work[thread]);
1280 if (ret == EAGAIN) {
1281 /*
1282 * Out of resources: wait and join the threads
1283 * we've created, then handle leftovers.
1284 */
1285 dbg_printf("error spawning for resize, single-threading\n");
1286 start = work[thread].start;
1287 len -= start;
1288 nr_threads = thread;
1289 break;
1290 }
1291 urcu_posix_assert(!ret);
1292 }
1293
1294 ret = pthread_sigmask(SIG_SETMASK, &oldmask, NULL);
1295 urcu_posix_assert(!ret);
1296
1297 for (thread = 0; thread < nr_threads; thread++) {
1298 ret = pthread_join(work[thread].thread_id, NULL);
1299 urcu_posix_assert(!ret);
1300 }
1301 free(work);
1302
1303 /*
1304 * A pthread_create failure above will either lead in us having
1305 * no threads to join or starting at a non-zero offset,
1306 * fallback to single thread processing of leftovers.
1307 */
1308 if (start == 0 && nr_threads > 0)
1309 return;
1310 fallback:
1311 fct(ht, i, start, len);
1312 }
1313
1314 /*
1315 * Holding RCU read lock to protect _cds_lfht_add against memory
1316 * reclaim that could be performed by other worker threads (ABA
1317 * problem).
1318 *
1319 * When we reach a certain length, we can split this population phase over
1320 * many worker threads, based on the number of CPUs available in the system.
1321 * This should therefore take care of not having the expand lagging behind too
1322 * many concurrent insertion threads by using the scheduler's ability to
1323 * schedule bucket node population fairly with insertions.
1324 */
1325 static
1326 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1327 unsigned long start, unsigned long len)
1328 {
1329 unsigned long j, size = 1UL << (i - 1);
1330
1331 urcu_posix_assert(i > MIN_TABLE_ORDER);
1332 ht->flavor->read_lock();
1333 for (j = size + start; j < size + start + len; j++) {
1334 struct cds_lfht_node *new_node = bucket_at(ht, j);
1335
1336 urcu_posix_assert(j >= size && j < (size << 1));
1337 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1338 i, j, j);
1339 new_node->reverse_hash = bit_reverse_ulong(j);
1340 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1341 }
1342 ht->flavor->read_unlock();
1343 }
1344
1345 static
1346 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1347 unsigned long len)
1348 {
1349 partition_resize_helper(ht, i, len, init_table_populate_partition);
1350 }
1351
1352 static
1353 void init_table(struct cds_lfht *ht,
1354 unsigned long first_order, unsigned long last_order)
1355 {
1356 unsigned long i;
1357
1358 dbg_printf("init table: first_order %lu last_order %lu\n",
1359 first_order, last_order);
1360 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
1361 for (i = first_order; i <= last_order; i++) {
1362 unsigned long len;
1363
1364 len = 1UL << (i - 1);
1365 dbg_printf("init order %lu len: %lu\n", i, len);
1366
1367 /* Stop expand if the resize target changes under us */
1368 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1369 break;
1370
1371 cds_lfht_alloc_bucket_table(ht, i);
1372
1373 /*
1374 * Set all bucket nodes reverse hash values for a level and
1375 * link all bucket nodes into the table.
1376 */
1377 init_table_populate(ht, i, len);
1378
1379 /*
1380 * Update table size.
1381 *
1382 * Populate data before RCU size.
1383 */
1384 uatomic_store(&ht->size, 1UL << i, CMM_RELEASE);
1385
1386 dbg_printf("init new size: %lu\n", 1UL << i);
1387 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1388 break;
1389 }
1390 }
1391
1392 /*
1393 * Holding RCU read lock to protect _cds_lfht_remove against memory
1394 * reclaim that could be performed by other worker threads (ABA
1395 * problem).
1396 * For a single level, we logically remove and garbage collect each node.
1397 *
1398 * As a design choice, we perform logical removal and garbage collection on a
1399 * node-per-node basis to simplify this algorithm. We also assume keeping good
1400 * cache locality of the operation would overweight possible performance gain
1401 * that could be achieved by batching garbage collection for multiple levels.
1402 * However, this would have to be justified by benchmarks.
1403 *
1404 * Concurrent removal and add operations are helping us perform garbage
1405 * collection of logically removed nodes. We guarantee that all logically
1406 * removed nodes have been garbage-collected (unlinked) before work
1407 * enqueue is invoked to free a hole level of bucket nodes (after a
1408 * grace period).
1409 *
1410 * Logical removal and garbage collection can therefore be done in batch
1411 * or on a node-per-node basis, as long as the guarantee above holds.
1412 *
1413 * When we reach a certain length, we can split this removal over many worker
1414 * threads, based on the number of CPUs available in the system. This should
1415 * take care of not letting resize process lag behind too many concurrent
1416 * updater threads actively inserting into the hash table.
1417 */
1418 static
1419 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1420 unsigned long start, unsigned long len)
1421 {
1422 unsigned long j, size = 1UL << (i - 1);
1423
1424 urcu_posix_assert(i > MIN_TABLE_ORDER);
1425 ht->flavor->read_lock();
1426 for (j = size + start; j < size + start + len; j++) {
1427 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1428 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1429 uintptr_t *fini_bucket_next;
1430
1431 urcu_posix_assert(j >= size && j < (size << 1));
1432 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1433 i, j, j);
1434 /* Set the REMOVED_FLAG to freeze the ->next for gc.
1435 *
1436 * NOTE: The fini_bucket_next variable is present to
1437 * avoid breaking strict-aliasing rules.
1438 */
1439 fini_bucket_next = (uintptr_t*)&fini_bucket->next;
1440 uatomic_or(fini_bucket_next, REMOVED_FLAG);
1441 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1442 }
1443 ht->flavor->read_unlock();
1444 }
1445
1446 static
1447 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1448 {
1449 partition_resize_helper(ht, i, len, remove_table_partition);
1450 }
1451
1452 /*
1453 * fini_table() is never called for first_order == 0, which is why
1454 * free_by_rcu_order == 0 can be used as criterion to know if free must
1455 * be called.
1456 */
1457 static
1458 void fini_table(struct cds_lfht *ht,
1459 unsigned long first_order, unsigned long last_order)
1460 {
1461 unsigned long free_by_rcu_order = 0, i;
1462
1463 dbg_printf("fini table: first_order %lu last_order %lu\n",
1464 first_order, last_order);
1465 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
1466 for (i = last_order; i >= first_order; i--) {
1467 unsigned long len;
1468
1469 len = 1UL << (i - 1);
1470 dbg_printf("fini order %ld len: %lu\n", i, len);
1471
1472 /* Stop shrink if the resize target changes under us */
1473 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1474 break;
1475
1476 cmm_smp_wmb(); /* populate data before RCU size */
1477 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1478
1479 /*
1480 * We need to wait for all add operations to reach Q.S. (and
1481 * thus use the new table for lookups) before we can start
1482 * releasing the old bucket nodes. Otherwise their lookup will
1483 * return a logically removed node as insert position.
1484 */
1485 ht->flavor->update_synchronize_rcu();
1486 if (free_by_rcu_order)
1487 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1488
1489 /*
1490 * Set "removed" flag in bucket nodes about to be removed.
1491 * Unlink all now-logically-removed bucket node pointers.
1492 * Concurrent add/remove operation are helping us doing
1493 * the gc.
1494 */
1495 remove_table(ht, i, len);
1496
1497 free_by_rcu_order = i;
1498
1499 dbg_printf("fini new size: %lu\n", 1UL << i);
1500 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1501 break;
1502 }
1503
1504 if (free_by_rcu_order) {
1505 ht->flavor->update_synchronize_rcu();
1506 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1507 }
1508 }
1509
1510 /*
1511 * Never called with size < 1.
1512 */
1513 static
1514 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1515 {
1516 struct cds_lfht_node *prev, *node;
1517 unsigned long order, len, i;
1518 int bucket_order;
1519
1520 cds_lfht_alloc_bucket_table(ht, 0);
1521
1522 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1523 node = bucket_at(ht, 0);
1524 node->next = flag_bucket(get_end());
1525 node->reverse_hash = 0;
1526
1527 bucket_order = cds_lfht_get_count_order_ulong(size);
1528 urcu_posix_assert(bucket_order >= 0);
1529
1530 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
1531 len = 1UL << (order - 1);
1532 cds_lfht_alloc_bucket_table(ht, order);
1533
1534 for (i = 0; i < len; i++) {
1535 /*
1536 * Now, we are trying to init the node with the
1537 * hash=(len+i) (which is also a bucket with the
1538 * index=(len+i)) and insert it into the hash table,
1539 * so this node has to be inserted after the bucket
1540 * with the index=(len+i)&(len-1)=i. And because there
1541 * is no other non-bucket node nor bucket node with
1542 * larger index/hash inserted, so the bucket node
1543 * being inserted should be inserted directly linked
1544 * after the bucket node with index=i.
1545 */
1546 prev = bucket_at(ht, i);
1547 node = bucket_at(ht, len + i);
1548
1549 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1550 order, len + i, len + i);
1551 node->reverse_hash = bit_reverse_ulong(len + i);
1552
1553 /* insert after prev */
1554 urcu_posix_assert(is_bucket(prev->next));
1555 node->next = prev->next;
1556 prev->next = flag_bucket(node);
1557 }
1558 }
1559 }
1560
1561 #if (CAA_BITS_PER_LONG > 32)
1562 /*
1563 * For 64-bit architectures, with max number of buckets small enough not to
1564 * use the entire 64-bit memory mapping space (and allowing a fair number of
1565 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1566 * fallback to the order allocator.
1567 */
1568 static
1569 const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1570 {
1571 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1572 return &cds_lfht_mm_mmap;
1573 else
1574 return &cds_lfht_mm_order;
1575 }
1576 #else
1577 /*
1578 * For 32-bit architectures, use the order allocator.
1579 */
1580 static
1581 const struct cds_lfht_mm_type *get_mm_type(
1582 unsigned long max_nr_buckets __attribute__((unused)))
1583 {
1584 return &cds_lfht_mm_order;
1585 }
1586 #endif
1587
1588 void cds_lfht_node_init_deleted(struct cds_lfht_node *node)
1589 {
1590 cds_lfht_node_init(node);
1591 node->next = flag_removed(NULL);
1592 }
1593
1594 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1595 unsigned long min_nr_alloc_buckets,
1596 unsigned long max_nr_buckets,
1597 int flags,
1598 const struct cds_lfht_mm_type *mm,
1599 const struct rcu_flavor_struct *flavor,
1600 pthread_attr_t *attr)
1601 {
1602 struct cds_lfht *ht;
1603 unsigned long order;
1604
1605 /* min_nr_alloc_buckets must be power of two */
1606 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1607 return NULL;
1608
1609 /* init_size must be power of two */
1610 if (!init_size || (init_size & (init_size - 1)))
1611 return NULL;
1612
1613 /*
1614 * Memory management plugin default.
1615 */
1616 if (!mm)
1617 mm = get_mm_type(max_nr_buckets);
1618
1619 /* max_nr_buckets == 0 for order based mm means infinite */
1620 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1621 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1622
1623 /* max_nr_buckets must be power of two */
1624 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1625 return NULL;
1626
1627 if (flags & CDS_LFHT_AUTO_RESIZE)
1628 cds_lfht_init_worker(flavor);
1629
1630 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1631 init_size = max(init_size, MIN_TABLE_SIZE);
1632 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1633 init_size = min(init_size, max_nr_buckets);
1634
1635 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1636 urcu_posix_assert(ht);
1637 urcu_posix_assert(ht->mm == mm);
1638 urcu_posix_assert(ht->bucket_at == mm->bucket_at);
1639
1640 ht->flags = flags;
1641 ht->flavor = flavor;
1642 ht->caller_resize_attr = attr;
1643 if (attr)
1644 ht->resize_attr = *attr;
1645 alloc_split_items_count(ht);
1646 /* this mutex should not nest in read-side C.S. */
1647 pthread_mutex_init(&ht->resize_mutex, NULL);
1648 order = cds_lfht_get_count_order_ulong(init_size);
1649 ht->resize_target = 1UL << order;
1650 cds_lfht_create_bucket(ht, 1UL << order);
1651 ht->size = 1UL << order;
1652 return ht;
1653 }
1654
1655 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1656 cds_lfht_match_fct match, const void *key,
1657 struct cds_lfht_iter *iter)
1658 {
1659 struct cds_lfht_node *node, *next, *bucket;
1660 unsigned long reverse_hash, size;
1661
1662 cds_lfht_iter_debug_set_ht(ht, iter);
1663
1664 reverse_hash = bit_reverse_ulong(hash);
1665
1666 /*
1667 * Use load acquire instead of rcu_dereference because there is no
1668 * dependency between the table size and the dereference of the bucket
1669 * content.
1670 *
1671 * This acquire is paired with the store release in init_table().
1672 */
1673 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1674 bucket = lookup_bucket(ht, size, hash);
1675 /* We can always skip the bucket node initially */
1676 node = rcu_dereference(bucket->next);
1677 node = clear_flag(node);
1678 for (;;) {
1679 if (caa_unlikely(is_end(node))) {
1680 node = next = NULL;
1681 break;
1682 }
1683 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1684 node = next = NULL;
1685 break;
1686 }
1687 next = rcu_dereference(node->next);
1688 urcu_posix_assert(node == clear_flag(node));
1689 if (caa_likely(!is_removed(next))
1690 && !is_bucket(next)
1691 && node->reverse_hash == reverse_hash
1692 && caa_likely(match(node, key))) {
1693 break;
1694 }
1695 node = clear_flag(next);
1696 }
1697 urcu_posix_assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1698 iter->node = node;
1699 iter->next = next;
1700 }
1701
1702 void cds_lfht_next_duplicate(struct cds_lfht *ht __attribute__((unused)),
1703 cds_lfht_match_fct match,
1704 const void *key, struct cds_lfht_iter *iter)
1705 {
1706 struct cds_lfht_node *node, *next;
1707 unsigned long reverse_hash;
1708
1709 cds_lfht_iter_debug_assert(ht == iter->lfht);
1710 node = iter->node;
1711 reverse_hash = node->reverse_hash;
1712 next = iter->next;
1713 node = clear_flag(next);
1714
1715 for (;;) {
1716 if (caa_unlikely(is_end(node))) {
1717 node = next = NULL;
1718 break;
1719 }
1720 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1721 node = next = NULL;
1722 break;
1723 }
1724 next = rcu_dereference(node->next);
1725 if (caa_likely(!is_removed(next))
1726 && !is_bucket(next)
1727 && caa_likely(match(node, key))) {
1728 break;
1729 }
1730 node = clear_flag(next);
1731 }
1732 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
1733 iter->node = node;
1734 iter->next = next;
1735 }
1736
1737 void cds_lfht_next(struct cds_lfht *ht __attribute__((unused)),
1738 struct cds_lfht_iter *iter)
1739 {
1740 struct cds_lfht_node *node, *next;
1741
1742 cds_lfht_iter_debug_assert(ht == iter->lfht);
1743 node = clear_flag(iter->next);
1744 for (;;) {
1745 if (caa_unlikely(is_end(node))) {
1746 node = next = NULL;
1747 break;
1748 }
1749 next = rcu_dereference(node->next);
1750 if (caa_likely(!is_removed(next))
1751 && !is_bucket(next)) {
1752 break;
1753 }
1754 node = clear_flag(next);
1755 }
1756 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
1757 iter->node = node;
1758 iter->next = next;
1759 }
1760
1761 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1762 {
1763 cds_lfht_iter_debug_set_ht(ht, iter);
1764 /*
1765 * Get next after first bucket node. The first bucket node is the
1766 * first node of the linked list.
1767 */
1768 iter->next = uatomic_load(&bucket_at(ht, 0)->next, CMM_CONSUME);
1769 cds_lfht_next(ht, iter);
1770 }
1771
1772 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1773 struct cds_lfht_node *node)
1774 {
1775 unsigned long size;
1776
1777 node->reverse_hash = bit_reverse_ulong(hash);
1778 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1779 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1780 ht_count_add(ht, size, hash);
1781 }
1782
1783 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1784 unsigned long hash,
1785 cds_lfht_match_fct match,
1786 const void *key,
1787 struct cds_lfht_node *node)
1788 {
1789 unsigned long size;
1790 struct cds_lfht_iter iter;
1791
1792 node->reverse_hash = bit_reverse_ulong(hash);
1793 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1794 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1795 if (iter.node == node)
1796 ht_count_add(ht, size, hash);
1797 return iter.node;
1798 }
1799
1800 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1801 unsigned long hash,
1802 cds_lfht_match_fct match,
1803 const void *key,
1804 struct cds_lfht_node *node)
1805 {
1806 unsigned long size;
1807 struct cds_lfht_iter iter;
1808
1809 node->reverse_hash = bit_reverse_ulong(hash);
1810 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1811 for (;;) {
1812 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1813 if (iter.node == node) {
1814 ht_count_add(ht, size, hash);
1815 return NULL;
1816 }
1817
1818 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1819 return iter.node;
1820 }
1821 }
1822
1823 int cds_lfht_replace(struct cds_lfht *ht,
1824 struct cds_lfht_iter *old_iter,
1825 unsigned long hash,
1826 cds_lfht_match_fct match,
1827 const void *key,
1828 struct cds_lfht_node *new_node)
1829 {
1830 unsigned long size;
1831
1832 new_node->reverse_hash = bit_reverse_ulong(hash);
1833 if (!old_iter->node)
1834 return -ENOENT;
1835 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1836 return -EINVAL;
1837 if (caa_unlikely(!match(old_iter->node, key)))
1838 return -EINVAL;
1839 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1840 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1841 new_node);
1842 }
1843
1844 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1845 {
1846 unsigned long size;
1847 int ret;
1848
1849 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1850 ret = _cds_lfht_del(ht, size, node);
1851 if (!ret) {
1852 unsigned long hash;
1853
1854 hash = bit_reverse_ulong(node->reverse_hash);
1855 ht_count_del(ht, size, hash);
1856 }
1857 return ret;
1858 }
1859
1860 int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
1861 {
1862 return is_removed(CMM_LOAD_SHARED(node->next));
1863 }
1864
1865 static
1866 bool cds_lfht_is_empty(struct cds_lfht *ht)
1867 {
1868 struct cds_lfht_node *node, *next;
1869 bool empty = true;
1870 bool was_online;
1871
1872 was_online = ht->flavor->read_ongoing();
1873 if (!was_online) {
1874 ht->flavor->thread_online();
1875 ht->flavor->read_lock();
1876 }
1877 /* Check that the table is empty */
1878 node = bucket_at(ht, 0);
1879 do {
1880 next = rcu_dereference(node->next);
1881 if (!is_bucket(next)) {
1882 empty = false;
1883 break;
1884 }
1885 node = clear_flag(next);
1886 } while (!is_end(node));
1887 if (!was_online) {
1888 ht->flavor->read_unlock();
1889 ht->flavor->thread_offline();
1890 }
1891 return empty;
1892 }
1893
1894 static
1895 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1896 {
1897 struct cds_lfht_node *node;
1898 unsigned long order, i, size;
1899
1900 /* Check that the table is empty */
1901 node = bucket_at(ht, 0);
1902 do {
1903 node = clear_flag(node)->next;
1904 if (!is_bucket(node))
1905 return -EPERM;
1906 urcu_posix_assert(!is_removed(node));
1907 urcu_posix_assert(!is_removal_owner(node));
1908 } while (!is_end(node));
1909 /*
1910 * size accessed without rcu_dereference because hash table is
1911 * being destroyed.
1912 */
1913 size = ht->size;
1914 /* Internal sanity check: all nodes left should be buckets */
1915 for (i = 0; i < size; i++) {
1916 node = bucket_at(ht, i);
1917 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1918 i, i, bit_reverse_ulong(node->reverse_hash));
1919 urcu_posix_assert(is_bucket(node->next));
1920 }
1921
1922 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1923 cds_lfht_free_bucket_table(ht, order);
1924
1925 return 0;
1926 }
1927
1928 static
1929 void do_auto_resize_destroy_cb(struct urcu_work *work)
1930 {
1931 struct cds_lfht *ht = caa_container_of(work, struct cds_lfht, destroy_work);
1932 int ret;
1933
1934 ht->flavor->register_thread();
1935 ret = cds_lfht_delete_bucket(ht);
1936 if (ret)
1937 urcu_die(-ret);
1938 free_split_items_count(ht);
1939 ret = pthread_mutex_destroy(&ht->resize_mutex);
1940 if (ret)
1941 urcu_die(ret);
1942 ht->flavor->unregister_thread();
1943 poison_free(ht);
1944 }
1945
1946 /*
1947 * Should only be called when no more concurrent readers nor writers can
1948 * possibly access the table.
1949 */
1950 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1951 {
1952 int ret;
1953
1954 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
1955 /*
1956 * Perform error-checking for emptiness before queuing
1957 * work, so we can return error to the caller. This runs
1958 * concurrently with ongoing resize.
1959 */
1960 if (!cds_lfht_is_empty(ht))
1961 return -EPERM;
1962 /* Cancel ongoing resize operations. */
1963 uatomic_store(&ht->in_progress_destroy, 1, CMM_RELAXED);
1964 if (attr) {
1965 *attr = ht->caller_resize_attr;
1966 ht->caller_resize_attr = NULL;
1967 }
1968 /*
1969 * Queue destroy work after prior queued resize
1970 * operations. Given there are no concurrent writers
1971 * accessing the hash table at this point, no resize
1972 * operations can be queued after this destroy work.
1973 */
1974 urcu_workqueue_queue_work(cds_lfht_workqueue,
1975 &ht->destroy_work, do_auto_resize_destroy_cb);
1976 return 0;
1977 }
1978 ret = cds_lfht_delete_bucket(ht);
1979 if (ret)
1980 return ret;
1981 free_split_items_count(ht);
1982 if (attr)
1983 *attr = ht->caller_resize_attr;
1984 ret = pthread_mutex_destroy(&ht->resize_mutex);
1985 if (ret)
1986 ret = -EBUSY;
1987 poison_free(ht);
1988 return ret;
1989 }
1990
1991 void cds_lfht_count_nodes(struct cds_lfht *ht,
1992 long *approx_before,
1993 unsigned long *count,
1994 long *approx_after)
1995 {
1996 struct cds_lfht_node *node, *next;
1997 unsigned long nr_bucket = 0, nr_removed = 0;
1998
1999 *approx_before = 0;
2000 if (ht->split_count) {
2001 int i;
2002
2003 for (i = 0; i < split_count_mask + 1; i++) {
2004 *approx_before += uatomic_read(&ht->split_count[i].add);
2005 *approx_before -= uatomic_read(&ht->split_count[i].del);
2006 }
2007 }
2008
2009 *count = 0;
2010
2011 /* Count non-bucket nodes in the table */
2012 node = bucket_at(ht, 0);
2013 do {
2014 next = rcu_dereference(node->next);
2015 if (is_removed(next)) {
2016 if (!is_bucket(next))
2017 (nr_removed)++;
2018 else
2019 (nr_bucket)++;
2020 } else if (!is_bucket(next))
2021 (*count)++;
2022 else
2023 (nr_bucket)++;
2024 node = clear_flag(next);
2025 } while (!is_end(node));
2026 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
2027 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
2028 *approx_after = 0;
2029 if (ht->split_count) {
2030 int i;
2031
2032 for (i = 0; i < split_count_mask + 1; i++) {
2033 *approx_after += uatomic_read(&ht->split_count[i].add);
2034 *approx_after -= uatomic_read(&ht->split_count[i].del);
2035 }
2036 }
2037 }
2038
2039 /* called with resize mutex held */
2040 static
2041 void _do_cds_lfht_grow(struct cds_lfht *ht,
2042 unsigned long old_size, unsigned long new_size)
2043 {
2044 unsigned long old_order, new_order;
2045
2046 old_order = cds_lfht_get_count_order_ulong(old_size);
2047 new_order = cds_lfht_get_count_order_ulong(new_size);
2048 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2049 old_size, old_order, new_size, new_order);
2050 urcu_posix_assert(new_size > old_size);
2051 init_table(ht, old_order + 1, new_order);
2052 }
2053
2054 /* called with resize mutex held */
2055 static
2056 void _do_cds_lfht_shrink(struct cds_lfht *ht,
2057 unsigned long old_size, unsigned long new_size)
2058 {
2059 unsigned long old_order, new_order;
2060
2061 new_size = max(new_size, MIN_TABLE_SIZE);
2062 old_order = cds_lfht_get_count_order_ulong(old_size);
2063 new_order = cds_lfht_get_count_order_ulong(new_size);
2064 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2065 old_size, old_order, new_size, new_order);
2066 urcu_posix_assert(new_size < old_size);
2067
2068 /* Remove and unlink all bucket nodes to remove. */
2069 fini_table(ht, new_order + 1, old_order);
2070 }
2071
2072
2073 /* called with resize mutex held */
2074 static
2075 void _do_cds_lfht_resize(struct cds_lfht *ht)
2076 {
2077 unsigned long new_size, old_size;
2078
2079 /*
2080 * Resize table, re-do if the target size has changed under us.
2081 */
2082 do {
2083 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED))
2084 break;
2085
2086 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2087
2088 old_size = ht->size;
2089 new_size = uatomic_load(&ht->resize_target, CMM_RELAXED);
2090 if (old_size < new_size)
2091 _do_cds_lfht_grow(ht, old_size, new_size);
2092 else if (old_size > new_size)
2093 _do_cds_lfht_shrink(ht, old_size, new_size);
2094
2095 uatomic_store(&ht->resize_initiated, 0, CMM_RELAXED);
2096 /* write resize_initiated before read resize_target */
2097 cmm_smp_mb();
2098 } while (ht->size != uatomic_load(&ht->resize_target, CMM_RELAXED));
2099 }
2100
2101 static
2102 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
2103 {
2104 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
2105 }
2106
2107 static
2108 void resize_target_update_count(struct cds_lfht *ht,
2109 unsigned long count)
2110 {
2111 count = max(count, MIN_TABLE_SIZE);
2112 count = min(count, ht->max_nr_buckets);
2113 uatomic_set(&ht->resize_target, count);
2114 }
2115
2116 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
2117 {
2118 resize_target_update_count(ht, new_size);
2119
2120 /*
2121 * Set flags has early as possible even in contention case.
2122 */
2123 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2124
2125 mutex_lock(&ht->resize_mutex);
2126 _do_cds_lfht_resize(ht);
2127 mutex_unlock(&ht->resize_mutex);
2128 }
2129
2130 static
2131 void do_resize_cb(struct urcu_work *work)
2132 {
2133 struct resize_work *resize_work =
2134 caa_container_of(work, struct resize_work, work);
2135 struct cds_lfht *ht = resize_work->ht;
2136
2137 ht->flavor->register_thread();
2138 mutex_lock(&ht->resize_mutex);
2139 _do_cds_lfht_resize(ht);
2140 mutex_unlock(&ht->resize_mutex);
2141 ht->flavor->unregister_thread();
2142 poison_free(work);
2143 }
2144
2145 static
2146 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
2147 {
2148 struct resize_work *work;
2149
2150 /*
2151 * Store to resize_target is before read resize_initiated as guaranteed
2152 * by either cmpxchg or _uatomic_xchg_monotonic_increase.
2153 */
2154 if (!uatomic_load(&ht->resize_initiated, CMM_RELAXED)) {
2155 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED)) {
2156 return;
2157 }
2158 work = malloc(sizeof(*work));
2159 if (work == NULL) {
2160 dbg_printf("error allocating resize work, bailing out\n");
2161 return;
2162 }
2163 work->ht = ht;
2164 urcu_workqueue_queue_work(cds_lfht_workqueue,
2165 &work->work, do_resize_cb);
2166 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2167 }
2168 }
2169
2170 static
2171 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2172 {
2173 unsigned long target_size = size << growth;
2174
2175 target_size = min(target_size, ht->max_nr_buckets);
2176 if (resize_target_grow(ht, target_size) >= target_size)
2177 return;
2178
2179 __cds_lfht_resize_lazy_launch(ht);
2180 }
2181
2182 /*
2183 * We favor grow operations over shrink. A shrink operation never occurs
2184 * if a grow operation is queued for lazy execution. A grow operation
2185 * cancels any pending shrink lazy execution.
2186 */
2187 static
2188 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2189 unsigned long count)
2190 {
2191 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2192 return;
2193 count = max(count, MIN_TABLE_SIZE);
2194 count = min(count, ht->max_nr_buckets);
2195 if (count == size)
2196 return; /* Already the right size, no resize needed */
2197 if (count > size) { /* lazy grow */
2198 if (resize_target_grow(ht, count) >= count)
2199 return;
2200 } else { /* lazy shrink */
2201 for (;;) {
2202 unsigned long s;
2203
2204 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2205 if (s == size)
2206 break; /* no resize needed */
2207 if (s > size)
2208 return; /* growing is/(was just) in progress */
2209 if (s <= count)
2210 return; /* some other thread do shrink */
2211 size = s;
2212 }
2213 }
2214 __cds_lfht_resize_lazy_launch(ht);
2215 }
2216
2217 static void cds_lfht_before_fork(void *priv __attribute__((unused)))
2218 {
2219 if (cds_lfht_workqueue_atfork_nesting++)
2220 return;
2221 mutex_lock(&cds_lfht_fork_mutex);
2222 if (!cds_lfht_workqueue)
2223 return;
2224 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2225 }
2226
2227 static void cds_lfht_after_fork_parent(void *priv __attribute__((unused)))
2228 {
2229 if (--cds_lfht_workqueue_atfork_nesting)
2230 return;
2231 if (!cds_lfht_workqueue)
2232 goto end;
2233 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2234 end:
2235 mutex_unlock(&cds_lfht_fork_mutex);
2236 }
2237
2238 static void cds_lfht_after_fork_child(void *priv __attribute__((unused)))
2239 {
2240 if (--cds_lfht_workqueue_atfork_nesting)
2241 return;
2242 if (!cds_lfht_workqueue)
2243 goto end;
2244 urcu_workqueue_create_worker(cds_lfht_workqueue);
2245 end:
2246 mutex_unlock(&cds_lfht_fork_mutex);
2247 }
2248
2249 static struct urcu_atfork cds_lfht_atfork = {
2250 .before_fork = cds_lfht_before_fork,
2251 .after_fork_parent = cds_lfht_after_fork_parent,
2252 .after_fork_child = cds_lfht_after_fork_child,
2253 };
2254
2255 static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2256 {
2257 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2258
2259 mutex_lock(&cds_lfht_fork_mutex);
2260 if (!cds_lfht_workqueue)
2261 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2262 NULL, NULL, NULL, NULL, NULL, NULL, NULL);
2263 mutex_unlock(&cds_lfht_fork_mutex);
2264 }
2265
2266 static void cds_lfht_exit(void)
2267 {
2268 mutex_lock(&cds_lfht_fork_mutex);
2269 if (cds_lfht_workqueue) {
2270 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
2271 urcu_workqueue_destroy(cds_lfht_workqueue);
2272 cds_lfht_workqueue = NULL;
2273 }
2274 mutex_unlock(&cds_lfht_fork_mutex);
2275 }
This page took 0.155649 seconds and 5 git commands to generate.