rculfhash: create dummy nodes directly when create lfht
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order (except for order 0).
95 * - synchronzie_rcu is used to garbage-collect the old dummy node table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * Dummy node tables:
101 *
102 * hash table hash table the last all dummy node tables
103 * order size dummy node 0 1 2 3 4 5 6(index)
104 * table size
105 * 0 1 1 1
106 * 1 2 1 1 1
107 * 2 4 2 1 1 2
108 * 3 8 4 1 1 2 4
109 * 4 16 8 1 1 2 4 8
110 * 5 32 16 1 1 2 4 8 16
111 * 6 64 32 1 1 2 4 8 16 32
112 *
113 * When growing/shrinking, we only focus on the last dummy node table
114 * which size is (!order ? 1 : (1 << (order -1))).
115 *
116 * Example for growing/shrinking:
117 * grow hash table from order 5 to 6: init the index=6 dummy node table
118 * shrink hash table from order 6 to 5: fini the index=6 dummy node table
119 *
120 * A bit of ascii art explanation:
121 *
122 * Order index is the off-by-one compare to the actual power of 2 because
123 * we use index 0 to deal with the 0 special-case.
124 *
125 * This shows the nodes for a small table ordered by reversed bits:
126 *
127 * bits reverse
128 * 0 000 000
129 * 4 100 001
130 * 2 010 010
131 * 6 110 011
132 * 1 001 100
133 * 5 101 101
134 * 3 011 110
135 * 7 111 111
136 *
137 * This shows the nodes in order of non-reversed bits, linked by
138 * reversed-bit order.
139 *
140 * order bits reverse
141 * 0 0 000 000
142 * 1 | 1 001 100 <-
143 * 2 | | 2 010 010 <- |
144 * | | | 3 011 110 | <- |
145 * 3 -> | | | 4 100 001 | |
146 * -> | | 5 101 101 |
147 * -> | 6 110 011
148 * -> 7 111 111
149 */
150
151 #define _LGPL_SOURCE
152 #include <stdlib.h>
153 #include <errno.h>
154 #include <assert.h>
155 #include <stdio.h>
156 #include <stdint.h>
157 #include <string.h>
158
159 #include "config.h"
160 #include <urcu.h>
161 #include <urcu-call-rcu.h>
162 #include <urcu/arch.h>
163 #include <urcu/uatomic.h>
164 #include <urcu/compiler.h>
165 #include <urcu/rculfhash.h>
166 #include <stdio.h>
167 #include <pthread.h>
168
169 #ifdef DEBUG
170 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
171 #else
172 #define dbg_printf(fmt, args...)
173 #endif
174
175 /*
176 * Per-CPU split-counters lazily update the global counter each 1024
177 * addition/removal. It automatically keeps track of resize required.
178 * We use the bucket length as indicator for need to expand for small
179 * tables and machines lacking per-cpu data suppport.
180 */
181 #define COUNT_COMMIT_ORDER 10
182 #define CHAIN_LEN_TARGET 1
183 #define CHAIN_LEN_RESIZE_THRESHOLD 3
184
185 /*
186 * Define the minimum table size.
187 */
188 #define MIN_TABLE_SIZE 1
189
190 #if (CAA_BITS_PER_LONG == 32)
191 #define MAX_TABLE_ORDER 32
192 #else
193 #define MAX_TABLE_ORDER 64
194 #endif
195
196 /*
197 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
198 */
199 #define MIN_PARTITION_PER_THREAD_ORDER 12
200 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
201
202 #ifndef min
203 #define min(a, b) ((a) < (b) ? (a) : (b))
204 #endif
205
206 #ifndef max
207 #define max(a, b) ((a) > (b) ? (a) : (b))
208 #endif
209
210 /*
211 * The removed flag needs to be updated atomically with the pointer.
212 * It indicates that no node must attach to the node scheduled for
213 * removal, and that node garbage collection must be performed.
214 * The dummy flag does not require to be updated atomically with the
215 * pointer, but it is added as a pointer low bit flag to save space.
216 */
217 #define REMOVED_FLAG (1UL << 0)
218 #define DUMMY_FLAG (1UL << 1)
219 #define FLAGS_MASK ((1UL << 2) - 1)
220
221 /* Value of the end pointer. Should not interact with flags. */
222 #define END_VALUE NULL
223
224 struct ht_items_count {
225 unsigned long add, del;
226 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
227
228 struct rcu_level {
229 /* Note: manually update allocation length when adding a field */
230 struct _cds_lfht_node nodes[0];
231 };
232
233 struct rcu_table {
234 unsigned long size; /* always a power of 2, shared (RCU) */
235 unsigned long resize_target;
236 int resize_initiated;
237 struct rcu_level *tbl[MAX_TABLE_ORDER];
238 };
239
240 struct cds_lfht {
241 struct rcu_table t;
242 cds_lfht_hash_fct hash_fct;
243 cds_lfht_compare_fct compare_fct;
244 unsigned long hash_seed;
245 int flags;
246 /*
247 * We need to put the work threads offline (QSBR) when taking this
248 * mutex, because we use synchronize_rcu within this mutex critical
249 * section, which waits on read-side critical sections, and could
250 * therefore cause grace-period deadlock if we hold off RCU G.P.
251 * completion.
252 */
253 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
254 unsigned int in_progress_resize, in_progress_destroy;
255 void (*cds_lfht_call_rcu)(struct rcu_head *head,
256 void (*func)(struct rcu_head *head));
257 void (*cds_lfht_synchronize_rcu)(void);
258 void (*cds_lfht_rcu_read_lock)(void);
259 void (*cds_lfht_rcu_read_unlock)(void);
260 void (*cds_lfht_rcu_thread_offline)(void);
261 void (*cds_lfht_rcu_thread_online)(void);
262 void (*cds_lfht_rcu_register_thread)(void);
263 void (*cds_lfht_rcu_unregister_thread)(void);
264 pthread_attr_t *resize_attr; /* Resize threads attributes */
265 long count; /* global approximate item count */
266 struct ht_items_count *percpu_count; /* per-cpu item count */
267 };
268
269 struct rcu_resize_work {
270 struct rcu_head head;
271 struct cds_lfht *ht;
272 };
273
274 struct partition_resize_work {
275 pthread_t thread_id;
276 struct cds_lfht *ht;
277 unsigned long i, start, len;
278 void (*fct)(struct cds_lfht *ht, unsigned long i,
279 unsigned long start, unsigned long len);
280 };
281
282 static
283 void _cds_lfht_add(struct cds_lfht *ht,
284 unsigned long size,
285 struct cds_lfht_node *node,
286 struct cds_lfht_iter *unique_ret,
287 int dummy);
288
289 /*
290 * Algorithm to reverse bits in a word by lookup table, extended to
291 * 64-bit words.
292 * Source:
293 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
294 * Originally from Public Domain.
295 */
296
297 static const uint8_t BitReverseTable256[256] =
298 {
299 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
300 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
301 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
302 R6(0), R6(2), R6(1), R6(3)
303 };
304 #undef R2
305 #undef R4
306 #undef R6
307
308 static
309 uint8_t bit_reverse_u8(uint8_t v)
310 {
311 return BitReverseTable256[v];
312 }
313
314 static __attribute__((unused))
315 uint32_t bit_reverse_u32(uint32_t v)
316 {
317 return ((uint32_t) bit_reverse_u8(v) << 24) |
318 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
319 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
320 ((uint32_t) bit_reverse_u8(v >> 24));
321 }
322
323 static __attribute__((unused))
324 uint64_t bit_reverse_u64(uint64_t v)
325 {
326 return ((uint64_t) bit_reverse_u8(v) << 56) |
327 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
328 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
329 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
330 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
331 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
332 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
333 ((uint64_t) bit_reverse_u8(v >> 56));
334 }
335
336 static
337 unsigned long bit_reverse_ulong(unsigned long v)
338 {
339 #if (CAA_BITS_PER_LONG == 32)
340 return bit_reverse_u32(v);
341 #else
342 return bit_reverse_u64(v);
343 #endif
344 }
345
346 /*
347 * fls: returns the position of the most significant bit.
348 * Returns 0 if no bit is set, else returns the position of the most
349 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
350 */
351 #if defined(__i386) || defined(__x86_64)
352 static inline
353 unsigned int fls_u32(uint32_t x)
354 {
355 int r;
356
357 asm("bsrl %1,%0\n\t"
358 "jnz 1f\n\t"
359 "movl $-1,%0\n\t"
360 "1:\n\t"
361 : "=r" (r) : "rm" (x));
362 return r + 1;
363 }
364 #define HAS_FLS_U32
365 #endif
366
367 #if defined(__x86_64)
368 static inline
369 unsigned int fls_u64(uint64_t x)
370 {
371 long r;
372
373 asm("bsrq %1,%0\n\t"
374 "jnz 1f\n\t"
375 "movq $-1,%0\n\t"
376 "1:\n\t"
377 : "=r" (r) : "rm" (x));
378 return r + 1;
379 }
380 #define HAS_FLS_U64
381 #endif
382
383 #ifndef HAS_FLS_U64
384 static __attribute__((unused))
385 unsigned int fls_u64(uint64_t x)
386 {
387 unsigned int r = 64;
388
389 if (!x)
390 return 0;
391
392 if (!(x & 0xFFFFFFFF00000000ULL)) {
393 x <<= 32;
394 r -= 32;
395 }
396 if (!(x & 0xFFFF000000000000ULL)) {
397 x <<= 16;
398 r -= 16;
399 }
400 if (!(x & 0xFF00000000000000ULL)) {
401 x <<= 8;
402 r -= 8;
403 }
404 if (!(x & 0xF000000000000000ULL)) {
405 x <<= 4;
406 r -= 4;
407 }
408 if (!(x & 0xC000000000000000ULL)) {
409 x <<= 2;
410 r -= 2;
411 }
412 if (!(x & 0x8000000000000000ULL)) {
413 x <<= 1;
414 r -= 1;
415 }
416 return r;
417 }
418 #endif
419
420 #ifndef HAS_FLS_U32
421 static __attribute__((unused))
422 unsigned int fls_u32(uint32_t x)
423 {
424 unsigned int r = 32;
425
426 if (!x)
427 return 0;
428 if (!(x & 0xFFFF0000U)) {
429 x <<= 16;
430 r -= 16;
431 }
432 if (!(x & 0xFF000000U)) {
433 x <<= 8;
434 r -= 8;
435 }
436 if (!(x & 0xF0000000U)) {
437 x <<= 4;
438 r -= 4;
439 }
440 if (!(x & 0xC0000000U)) {
441 x <<= 2;
442 r -= 2;
443 }
444 if (!(x & 0x80000000U)) {
445 x <<= 1;
446 r -= 1;
447 }
448 return r;
449 }
450 #endif
451
452 unsigned int fls_ulong(unsigned long x)
453 {
454 #if (CAA_BITS_PER_lONG == 32)
455 return fls_u32(x);
456 #else
457 return fls_u64(x);
458 #endif
459 }
460
461 /*
462 * Return the minimum order for which x <= (1UL << order).
463 * Return -1 if x is 0.
464 */
465 int get_count_order_u32(uint32_t x)
466 {
467 if (!x)
468 return -1;
469
470 return fls_u32(x - 1);
471 }
472
473 /*
474 * Return the minimum order for which x <= (1UL << order).
475 * Return -1 if x is 0.
476 */
477 int get_count_order_ulong(unsigned long x)
478 {
479 if (!x)
480 return -1;
481
482 return fls_ulong(x - 1);
483 }
484
485 #ifdef POISON_FREE
486 #define poison_free(ptr) \
487 do { \
488 memset(ptr, 0x42, sizeof(*(ptr))); \
489 free(ptr); \
490 } while (0)
491 #else
492 #define poison_free(ptr) free(ptr)
493 #endif
494
495 static
496 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
497
498 /*
499 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
500 * available, then we support hash table item accounting.
501 * In the unfortunate event the number of CPUs reported would be
502 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
503 */
504 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
505
506 static
507 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
508 unsigned long count);
509
510 static long nr_cpus_mask = -1;
511
512 static
513 struct ht_items_count *alloc_per_cpu_items_count(void)
514 {
515 struct ht_items_count *count;
516
517 switch (nr_cpus_mask) {
518 case -2:
519 return NULL;
520 case -1:
521 {
522 long maxcpus;
523
524 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
525 if (maxcpus <= 0) {
526 nr_cpus_mask = -2;
527 return NULL;
528 }
529 /*
530 * round up number of CPUs to next power of two, so we
531 * can use & for modulo.
532 */
533 maxcpus = 1UL << get_count_order_ulong(maxcpus);
534 nr_cpus_mask = maxcpus - 1;
535 }
536 /* Fall-through */
537 default:
538 return calloc(nr_cpus_mask + 1, sizeof(*count));
539 }
540 }
541
542 static
543 void free_per_cpu_items_count(struct ht_items_count *count)
544 {
545 poison_free(count);
546 }
547
548 static
549 int ht_get_cpu(void)
550 {
551 int cpu;
552
553 assert(nr_cpus_mask >= 0);
554 cpu = sched_getcpu();
555 if (unlikely(cpu < 0))
556 return cpu;
557 else
558 return cpu & nr_cpus_mask;
559 }
560
561 static
562 void ht_count_add(struct cds_lfht *ht, unsigned long size)
563 {
564 unsigned long percpu_count;
565 int cpu;
566
567 if (unlikely(!ht->percpu_count))
568 return;
569 cpu = ht_get_cpu();
570 if (unlikely(cpu < 0))
571 return;
572 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
573 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
574 long count;
575
576 dbg_printf("add percpu %lu\n", percpu_count);
577 count = uatomic_add_return(&ht->count,
578 1UL << COUNT_COMMIT_ORDER);
579 /* If power of 2 */
580 if (!(count & (count - 1))) {
581 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
582 return;
583 dbg_printf("add set global %ld\n", count);
584 cds_lfht_resize_lazy_count(ht, size,
585 count >> (CHAIN_LEN_TARGET - 1));
586 }
587 }
588 }
589
590 static
591 void ht_count_del(struct cds_lfht *ht, unsigned long size)
592 {
593 unsigned long percpu_count;
594 int cpu;
595
596 if (unlikely(!ht->percpu_count))
597 return;
598 cpu = ht_get_cpu();
599 if (unlikely(cpu < 0))
600 return;
601 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
602 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
603 long count;
604
605 dbg_printf("del percpu %lu\n", percpu_count);
606 count = uatomic_add_return(&ht->count,
607 -(1UL << COUNT_COMMIT_ORDER));
608 /* If power of 2 */
609 if (!(count & (count - 1))) {
610 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
611 return;
612 dbg_printf("del set global %ld\n", count);
613 /*
614 * Don't shrink table if the number of nodes is below a
615 * certain threshold.
616 */
617 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
618 return;
619 cds_lfht_resize_lazy_count(ht, size,
620 count >> (CHAIN_LEN_TARGET - 1));
621 }
622 }
623 }
624
625 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
626
627 static const long nr_cpus_mask = -2;
628
629 static
630 struct ht_items_count *alloc_per_cpu_items_count(void)
631 {
632 return NULL;
633 }
634
635 static
636 void free_per_cpu_items_count(struct ht_items_count *count)
637 {
638 }
639
640 static
641 void ht_count_add(struct cds_lfht *ht, unsigned long size)
642 {
643 }
644
645 static
646 void ht_count_del(struct cds_lfht *ht, unsigned long size)
647 {
648 }
649
650 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
651
652
653 static
654 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
655 {
656 unsigned long count;
657
658 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
659 return;
660 count = uatomic_read(&ht->count);
661 /*
662 * Use bucket-local length for small table expand and for
663 * environments lacking per-cpu data support.
664 */
665 if (count >= (1UL << COUNT_COMMIT_ORDER))
666 return;
667 if (chain_len > 100)
668 dbg_printf("WARNING: large chain length: %u.\n",
669 chain_len);
670 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
671 cds_lfht_resize_lazy(ht, size,
672 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
673 }
674
675 static
676 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
677 {
678 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
679 }
680
681 static
682 int is_removed(struct cds_lfht_node *node)
683 {
684 return ((unsigned long) node) & REMOVED_FLAG;
685 }
686
687 static
688 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
689 {
690 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
691 }
692
693 static
694 int is_dummy(struct cds_lfht_node *node)
695 {
696 return ((unsigned long) node) & DUMMY_FLAG;
697 }
698
699 static
700 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
701 {
702 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
703 }
704
705 static
706 struct cds_lfht_node *get_end(void)
707 {
708 return (struct cds_lfht_node *) END_VALUE;
709 }
710
711 static
712 int is_end(struct cds_lfht_node *node)
713 {
714 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
715 }
716
717 static
718 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
719 {
720 unsigned long old1, old2;
721
722 old1 = uatomic_read(ptr);
723 do {
724 old2 = old1;
725 if (old2 >= v)
726 return old2;
727 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
728 return v;
729 }
730
731 static
732 struct _cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
733 unsigned long hash)
734 {
735 unsigned long index, order;
736
737 assert(size > 0);
738 index = hash & (size - 1);
739 /*
740 * equivalent to get_count_order_ulong(index + 1), but optimizes
741 * away the non-existing 0 special-case for
742 * get_count_order_ulong.
743 */
744 order = fls_ulong(index);
745
746 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
747 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
748
749 return &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
750 }
751
752 /*
753 * Remove all logically deleted nodes from a bucket up to a certain node key.
754 */
755 static
756 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
757 {
758 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
759
760 assert(!is_dummy(dummy));
761 assert(!is_removed(dummy));
762 assert(!is_dummy(node));
763 assert(!is_removed(node));
764 for (;;) {
765 iter_prev = dummy;
766 /* We can always skip the dummy node initially */
767 iter = rcu_dereference(iter_prev->p.next);
768 assert(!is_removed(iter));
769 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
770 /*
771 * We should never be called with dummy (start of chain)
772 * and logically removed node (end of path compression
773 * marker) being the actual same node. This would be a
774 * bug in the algorithm implementation.
775 */
776 assert(dummy != node);
777 for (;;) {
778 if (unlikely(is_end(iter)))
779 return;
780 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
781 return;
782 next = rcu_dereference(clear_flag(iter)->p.next);
783 if (likely(is_removed(next)))
784 break;
785 iter_prev = clear_flag(iter);
786 iter = next;
787 }
788 assert(!is_removed(iter));
789 if (is_dummy(iter))
790 new_next = flag_dummy(clear_flag(next));
791 else
792 new_next = clear_flag(next);
793 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
794 }
795 return;
796 }
797
798 static
799 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
800 struct cds_lfht_node *old_node,
801 struct cds_lfht_node *old_next,
802 struct cds_lfht_node *new_node)
803 {
804 struct cds_lfht_node *dummy, *ret_next;
805 struct _cds_lfht_node *lookup;
806
807 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
808 return -ENOENT;
809
810 assert(!is_removed(old_node));
811 assert(!is_dummy(old_node));
812 assert(!is_removed(new_node));
813 assert(!is_dummy(new_node));
814 assert(new_node != old_node);
815 for (;;) {
816 /* Insert after node to be replaced */
817 if (is_removed(old_next)) {
818 /*
819 * Too late, the old node has been removed under us
820 * between lookup and replace. Fail.
821 */
822 return -ENOENT;
823 }
824 assert(!is_dummy(old_next));
825 assert(new_node != clear_flag(old_next));
826 new_node->p.next = clear_flag(old_next);
827 /*
828 * Here is the whole trick for lock-free replace: we add
829 * the replacement node _after_ the node we want to
830 * replace by atomically setting its next pointer at the
831 * same time we set its removal flag. Given that
832 * the lookups/get next use an iterator aware of the
833 * next pointer, they will either skip the old node due
834 * to the removal flag and see the new node, or use
835 * the old node, but will not see the new one.
836 */
837 ret_next = uatomic_cmpxchg(&old_node->p.next,
838 old_next, flag_removed(new_node));
839 if (ret_next == old_next)
840 break; /* We performed the replacement. */
841 old_next = ret_next;
842 }
843
844 /*
845 * Ensure that the old node is not visible to readers anymore:
846 * lookup for the node, and remove it (along with any other
847 * logically removed node) if found.
848 */
849 lookup = lookup_bucket(ht, size, bit_reverse_ulong(old_node->p.reverse_hash));
850 dummy = (struct cds_lfht_node *) lookup;
851 _cds_lfht_gc_bucket(dummy, new_node);
852
853 assert(is_removed(rcu_dereference(old_node->p.next)));
854 return 0;
855 }
856
857 /*
858 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
859 * mode. A NULL unique_ret allows creation of duplicate keys.
860 */
861 static
862 void _cds_lfht_add(struct cds_lfht *ht,
863 unsigned long size,
864 struct cds_lfht_node *node,
865 struct cds_lfht_iter *unique_ret,
866 int dummy)
867 {
868 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
869 *return_node;
870 struct _cds_lfht_node *lookup;
871
872 assert(!is_dummy(node));
873 assert(!is_removed(node));
874 if (!size) {
875 assert(dummy);
876 assert(!unique_ret);
877 node->p.next = flag_dummy(get_end());
878 return; /* Initial first add (head) */
879 }
880 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
881 for (;;) {
882 uint32_t chain_len = 0;
883
884 /*
885 * iter_prev points to the non-removed node prior to the
886 * insert location.
887 */
888 iter_prev = (struct cds_lfht_node *) lookup;
889 /* We can always skip the dummy node initially */
890 iter = rcu_dereference(iter_prev->p.next);
891 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
892 for (;;) {
893 if (unlikely(is_end(iter)))
894 goto insert;
895 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
896 goto insert;
897
898 /* dummy node is the first node of the identical-hash-value chain */
899 if (dummy && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash)
900 goto insert;
901
902 next = rcu_dereference(clear_flag(iter)->p.next);
903 if (unlikely(is_removed(next)))
904 goto gc_node;
905
906 /* uniquely add */
907 if (unique_ret
908 && !is_dummy(next)
909 && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash) {
910 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
911
912 /*
913 * uniquely adding inserts the node as the first
914 * node of the identical-hash-value node chain.
915 *
916 * This semantic ensures no duplicated keys
917 * should ever be observable in the table
918 * (including observe one node by one node
919 * by forward iterations)
920 */
921 cds_lfht_next_duplicate(ht, &d_iter);
922 if (!d_iter.node)
923 goto insert;
924
925 *unique_ret = d_iter;
926 return;
927 }
928
929 /* Only account for identical reverse hash once */
930 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
931 && !is_dummy(next))
932 check_resize(ht, size, ++chain_len);
933 iter_prev = clear_flag(iter);
934 iter = next;
935 }
936
937 insert:
938 assert(node != clear_flag(iter));
939 assert(!is_removed(iter_prev));
940 assert(!is_removed(iter));
941 assert(iter_prev != node);
942 if (!dummy)
943 node->p.next = clear_flag(iter);
944 else
945 node->p.next = flag_dummy(clear_flag(iter));
946 if (is_dummy(iter))
947 new_node = flag_dummy(node);
948 else
949 new_node = node;
950 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
951 new_node) != iter) {
952 continue; /* retry */
953 } else {
954 return_node = node;
955 goto end;
956 }
957
958 gc_node:
959 assert(!is_removed(iter));
960 if (is_dummy(iter))
961 new_next = flag_dummy(clear_flag(next));
962 else
963 new_next = clear_flag(next);
964 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
965 /* retry */
966 }
967 end:
968 if (unique_ret) {
969 unique_ret->node = return_node;
970 /* unique_ret->next left unset, never used. */
971 }
972 }
973
974 static
975 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
976 struct cds_lfht_node *node,
977 int dummy_removal)
978 {
979 struct cds_lfht_node *dummy, *next, *old;
980 struct _cds_lfht_node *lookup;
981
982 if (!node) /* Return -ENOENT if asked to delete NULL node */
983 return -ENOENT;
984
985 /* logically delete the node */
986 assert(!is_dummy(node));
987 assert(!is_removed(node));
988 old = rcu_dereference(node->p.next);
989 do {
990 struct cds_lfht_node *new_next;
991
992 next = old;
993 if (unlikely(is_removed(next)))
994 return -ENOENT;
995 if (dummy_removal)
996 assert(is_dummy(next));
997 else
998 assert(!is_dummy(next));
999 new_next = flag_removed(next);
1000 old = uatomic_cmpxchg(&node->p.next, next, new_next);
1001 } while (old != next);
1002 /* We performed the (logical) deletion. */
1003
1004 /*
1005 * Ensure that the node is not visible to readers anymore: lookup for
1006 * the node, and remove it (along with any other logically removed node)
1007 * if found.
1008 */
1009 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
1010 dummy = (struct cds_lfht_node *) lookup;
1011 _cds_lfht_gc_bucket(dummy, node);
1012
1013 assert(is_removed(rcu_dereference(node->p.next)));
1014 return 0;
1015 }
1016
1017 static
1018 void *partition_resize_thread(void *arg)
1019 {
1020 struct partition_resize_work *work = arg;
1021
1022 work->ht->cds_lfht_rcu_register_thread();
1023 work->fct(work->ht, work->i, work->start, work->len);
1024 work->ht->cds_lfht_rcu_unregister_thread();
1025 return NULL;
1026 }
1027
1028 static
1029 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1030 unsigned long len,
1031 void (*fct)(struct cds_lfht *ht, unsigned long i,
1032 unsigned long start, unsigned long len))
1033 {
1034 unsigned long partition_len;
1035 struct partition_resize_work *work;
1036 int thread, ret;
1037 unsigned long nr_threads;
1038
1039 /*
1040 * Note: nr_cpus_mask + 1 is always power of 2.
1041 * We spawn just the number of threads we need to satisfy the minimum
1042 * partition size, up to the number of CPUs in the system.
1043 */
1044 if (nr_cpus_mask > 0) {
1045 nr_threads = min(nr_cpus_mask + 1,
1046 len >> MIN_PARTITION_PER_THREAD_ORDER);
1047 } else {
1048 nr_threads = 1;
1049 }
1050 partition_len = len >> get_count_order_ulong(nr_threads);
1051 work = calloc(nr_threads, sizeof(*work));
1052 assert(work);
1053 for (thread = 0; thread < nr_threads; thread++) {
1054 work[thread].ht = ht;
1055 work[thread].i = i;
1056 work[thread].len = partition_len;
1057 work[thread].start = thread * partition_len;
1058 work[thread].fct = fct;
1059 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1060 partition_resize_thread, &work[thread]);
1061 assert(!ret);
1062 }
1063 for (thread = 0; thread < nr_threads; thread++) {
1064 ret = pthread_join(work[thread].thread_id, NULL);
1065 assert(!ret);
1066 }
1067 free(work);
1068 }
1069
1070 /*
1071 * Holding RCU read lock to protect _cds_lfht_add against memory
1072 * reclaim that could be performed by other call_rcu worker threads (ABA
1073 * problem).
1074 *
1075 * When we reach a certain length, we can split this population phase over
1076 * many worker threads, based on the number of CPUs available in the system.
1077 * This should therefore take care of not having the expand lagging behind too
1078 * many concurrent insertion threads by using the scheduler's ability to
1079 * schedule dummy node population fairly with insertions.
1080 */
1081 static
1082 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1083 unsigned long start, unsigned long len)
1084 {
1085 unsigned long j;
1086
1087 ht->cds_lfht_rcu_read_lock();
1088 for (j = start; j < start + len; j++) {
1089 struct cds_lfht_node *new_node =
1090 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1091
1092 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1093 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1094 new_node->p.reverse_hash =
1095 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1096 _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1097 new_node, NULL, 1);
1098 }
1099 ht->cds_lfht_rcu_read_unlock();
1100 }
1101
1102 static
1103 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1104 unsigned long len)
1105 {
1106 assert(nr_cpus_mask != -1);
1107 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1108 ht->cds_lfht_rcu_thread_online();
1109 init_table_populate_partition(ht, i, 0, len);
1110 ht->cds_lfht_rcu_thread_offline();
1111 return;
1112 }
1113 partition_resize_helper(ht, i, len, init_table_populate_partition);
1114 }
1115
1116 static
1117 void init_table(struct cds_lfht *ht,
1118 unsigned long first_order, unsigned long last_order)
1119 {
1120 unsigned long i;
1121
1122 dbg_printf("init table: first_order %lu last_order %lu\n",
1123 first_order, last_order);
1124 for (i = first_order; i <= last_order; i++) {
1125 unsigned long len;
1126
1127 len = !i ? 1 : 1UL << (i - 1);
1128 dbg_printf("init order %lu len: %lu\n", i, len);
1129
1130 /* Stop expand if the resize target changes under us */
1131 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1132 break;
1133
1134 ht->t.tbl[i] = calloc(1, len * sizeof(struct _cds_lfht_node));
1135 assert(ht->t.tbl[i]);
1136
1137 /*
1138 * Set all dummy nodes reverse hash values for a level and
1139 * link all dummy nodes into the table.
1140 */
1141 init_table_populate(ht, i, len);
1142
1143 /*
1144 * Update table size.
1145 */
1146 cmm_smp_wmb(); /* populate data before RCU size */
1147 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1148
1149 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1150 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1151 break;
1152 }
1153 }
1154
1155 /*
1156 * Holding RCU read lock to protect _cds_lfht_remove against memory
1157 * reclaim that could be performed by other call_rcu worker threads (ABA
1158 * problem).
1159 * For a single level, we logically remove and garbage collect each node.
1160 *
1161 * As a design choice, we perform logical removal and garbage collection on a
1162 * node-per-node basis to simplify this algorithm. We also assume keeping good
1163 * cache locality of the operation would overweight possible performance gain
1164 * that could be achieved by batching garbage collection for multiple levels.
1165 * However, this would have to be justified by benchmarks.
1166 *
1167 * Concurrent removal and add operations are helping us perform garbage
1168 * collection of logically removed nodes. We guarantee that all logically
1169 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1170 * invoked to free a hole level of dummy nodes (after a grace period).
1171 *
1172 * Logical removal and garbage collection can therefore be done in batch or on a
1173 * node-per-node basis, as long as the guarantee above holds.
1174 *
1175 * When we reach a certain length, we can split this removal over many worker
1176 * threads, based on the number of CPUs available in the system. This should
1177 * take care of not letting resize process lag behind too many concurrent
1178 * updater threads actively inserting into the hash table.
1179 */
1180 static
1181 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1182 unsigned long start, unsigned long len)
1183 {
1184 unsigned long j;
1185
1186 ht->cds_lfht_rcu_read_lock();
1187 for (j = start; j < start + len; j++) {
1188 struct cds_lfht_node *fini_node =
1189 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1190
1191 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1192 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1193 fini_node->p.reverse_hash =
1194 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1195 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1196 fini_node, 1);
1197 }
1198 ht->cds_lfht_rcu_read_unlock();
1199 }
1200
1201 static
1202 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1203 {
1204
1205 assert(nr_cpus_mask != -1);
1206 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1207 ht->cds_lfht_rcu_thread_online();
1208 remove_table_partition(ht, i, 0, len);
1209 ht->cds_lfht_rcu_thread_offline();
1210 return;
1211 }
1212 partition_resize_helper(ht, i, len, remove_table_partition);
1213 }
1214
1215 static
1216 void fini_table(struct cds_lfht *ht,
1217 unsigned long first_order, unsigned long last_order)
1218 {
1219 long i;
1220 void *free_by_rcu = NULL;
1221
1222 dbg_printf("fini table: first_order %lu last_order %lu\n",
1223 first_order, last_order);
1224 assert(first_order > 0);
1225 for (i = last_order; i >= first_order; i--) {
1226 unsigned long len;
1227
1228 len = !i ? 1 : 1UL << (i - 1);
1229 dbg_printf("fini order %lu len: %lu\n", i, len);
1230
1231 /* Stop shrink if the resize target changes under us */
1232 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1233 break;
1234
1235 cmm_smp_wmb(); /* populate data before RCU size */
1236 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1237
1238 /*
1239 * We need to wait for all add operations to reach Q.S. (and
1240 * thus use the new table for lookups) before we can start
1241 * releasing the old dummy nodes. Otherwise their lookup will
1242 * return a logically removed node as insert position.
1243 */
1244 ht->cds_lfht_synchronize_rcu();
1245 if (free_by_rcu)
1246 free(free_by_rcu);
1247
1248 /*
1249 * Set "removed" flag in dummy nodes about to be removed.
1250 * Unlink all now-logically-removed dummy node pointers.
1251 * Concurrent add/remove operation are helping us doing
1252 * the gc.
1253 */
1254 remove_table(ht, i, len);
1255
1256 free_by_rcu = ht->t.tbl[i];
1257
1258 dbg_printf("fini new size: %lu\n", 1UL << i);
1259 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1260 break;
1261 }
1262
1263 if (free_by_rcu) {
1264 ht->cds_lfht_synchronize_rcu();
1265 free(free_by_rcu);
1266 }
1267 }
1268
1269 static
1270 void cds_lfht_create_dummy(struct cds_lfht *ht, unsigned long size)
1271 {
1272 struct _cds_lfht_node *prev, *node;
1273 unsigned long order, len, i, j;
1274
1275 ht->t.tbl[0] = calloc(1, sizeof(struct _cds_lfht_node));
1276 assert(ht->t.tbl[0]);
1277
1278 dbg_printf("create dummy: order %lu index %lu hash %lu\n", 0, 0, 0);
1279 ht->t.tbl[0]->nodes[0].next = flag_dummy(get_end());
1280 ht->t.tbl[0]->nodes[0].reverse_hash = 0;
1281
1282 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1283 len = 1UL << (order - 1);
1284 ht->t.tbl[order] = calloc(1, len * sizeof(struct _cds_lfht_node));
1285 assert(ht->t.tbl[order]);
1286
1287 i = 0;
1288 prev = ht->t.tbl[i]->nodes;
1289 for (j = 0; j < len; j++) {
1290 if (j & (j - 1)) { /* Between power of 2 */
1291 prev++;
1292 } else if (j) { /* At each power of 2 */
1293 i++;
1294 prev = ht->t.tbl[i]->nodes;
1295 }
1296
1297 node = &ht->t.tbl[order]->nodes[j];
1298 dbg_printf("create dummy: order %lu index %lu hash %lu\n",
1299 order, j, j + len);
1300 node->next = prev->next;
1301 assert(is_dummy(node->next));
1302 node->reverse_hash = bit_reverse_ulong(j + len);
1303 prev->next = flag_dummy((struct cds_lfht_node *)node);
1304 }
1305 }
1306 }
1307
1308 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1309 cds_lfht_compare_fct compare_fct,
1310 unsigned long hash_seed,
1311 unsigned long init_size,
1312 int flags,
1313 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1314 void (*func)(struct rcu_head *head)),
1315 void (*cds_lfht_synchronize_rcu)(void),
1316 void (*cds_lfht_rcu_read_lock)(void),
1317 void (*cds_lfht_rcu_read_unlock)(void),
1318 void (*cds_lfht_rcu_thread_offline)(void),
1319 void (*cds_lfht_rcu_thread_online)(void),
1320 void (*cds_lfht_rcu_register_thread)(void),
1321 void (*cds_lfht_rcu_unregister_thread)(void),
1322 pthread_attr_t *attr)
1323 {
1324 struct cds_lfht *ht;
1325 unsigned long order;
1326
1327 /* init_size must be power of two */
1328 if (init_size && (init_size & (init_size - 1)))
1329 return NULL;
1330 ht = calloc(1, sizeof(struct cds_lfht));
1331 assert(ht);
1332 ht->hash_fct = hash_fct;
1333 ht->compare_fct = compare_fct;
1334 ht->hash_seed = hash_seed;
1335 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1336 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1337 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1338 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1339 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1340 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1341 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1342 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1343 ht->resize_attr = attr;
1344 ht->percpu_count = alloc_per_cpu_items_count();
1345 /* this mutex should not nest in read-side C.S. */
1346 pthread_mutex_init(&ht->resize_mutex, NULL);
1347 ht->flags = flags;
1348 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE));
1349 ht->t.resize_target = 1UL << order;
1350 cds_lfht_create_dummy(ht, 1UL << order);
1351 ht->t.size = 1UL << order;
1352 return ht;
1353 }
1354
1355 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1356 struct cds_lfht_iter *iter)
1357 {
1358 struct cds_lfht_node *node, *next, *dummy_node;
1359 struct _cds_lfht_node *lookup;
1360 unsigned long hash, reverse_hash, size;
1361
1362 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1363 reverse_hash = bit_reverse_ulong(hash);
1364
1365 size = rcu_dereference(ht->t.size);
1366 lookup = lookup_bucket(ht, size, hash);
1367 dummy_node = (struct cds_lfht_node *) lookup;
1368 /* We can always skip the dummy node initially */
1369 node = rcu_dereference(dummy_node->p.next);
1370 node = clear_flag(node);
1371 for (;;) {
1372 if (unlikely(is_end(node))) {
1373 node = next = NULL;
1374 break;
1375 }
1376 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1377 node = next = NULL;
1378 break;
1379 }
1380 next = rcu_dereference(node->p.next);
1381 if (likely(!is_removed(next))
1382 && !is_dummy(next)
1383 && clear_flag(node)->p.reverse_hash == reverse_hash
1384 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1385 break;
1386 }
1387 node = clear_flag(next);
1388 }
1389 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1390 iter->node = node;
1391 iter->next = next;
1392 }
1393
1394 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1395 {
1396 struct cds_lfht_node *node, *next;
1397 unsigned long reverse_hash;
1398 void *key;
1399 size_t key_len;
1400
1401 node = iter->node;
1402 reverse_hash = node->p.reverse_hash;
1403 key = node->key;
1404 key_len = node->key_len;
1405 next = iter->next;
1406 node = clear_flag(next);
1407
1408 for (;;) {
1409 if (unlikely(is_end(node))) {
1410 node = next = NULL;
1411 break;
1412 }
1413 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1414 node = next = NULL;
1415 break;
1416 }
1417 next = rcu_dereference(node->p.next);
1418 if (likely(!is_removed(next))
1419 && !is_dummy(next)
1420 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1421 break;
1422 }
1423 node = clear_flag(next);
1424 }
1425 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1426 iter->node = node;
1427 iter->next = next;
1428 }
1429
1430 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1431 {
1432 struct cds_lfht_node *node, *next;
1433
1434 node = clear_flag(iter->next);
1435 for (;;) {
1436 if (unlikely(is_end(node))) {
1437 node = next = NULL;
1438 break;
1439 }
1440 next = rcu_dereference(node->p.next);
1441 if (likely(!is_removed(next))
1442 && !is_dummy(next)) {
1443 break;
1444 }
1445 node = clear_flag(next);
1446 }
1447 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1448 iter->node = node;
1449 iter->next = next;
1450 }
1451
1452 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1453 {
1454 struct _cds_lfht_node *lookup;
1455
1456 /*
1457 * Get next after first dummy node. The first dummy node is the
1458 * first node of the linked list.
1459 */
1460 lookup = &ht->t.tbl[0]->nodes[0];
1461 iter->next = lookup->next;
1462 cds_lfht_next(ht, iter);
1463 }
1464
1465 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1466 {
1467 unsigned long hash, size;
1468
1469 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1470 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1471
1472 size = rcu_dereference(ht->t.size);
1473 _cds_lfht_add(ht, size, node, NULL, 0);
1474 ht_count_add(ht, size);
1475 }
1476
1477 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1478 struct cds_lfht_node *node)
1479 {
1480 unsigned long hash, size;
1481 struct cds_lfht_iter iter;
1482
1483 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1484 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1485
1486 size = rcu_dereference(ht->t.size);
1487 _cds_lfht_add(ht, size, node, &iter, 0);
1488 if (iter.node == node)
1489 ht_count_add(ht, size);
1490 return iter.node;
1491 }
1492
1493 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1494 struct cds_lfht_node *node)
1495 {
1496 unsigned long hash, size;
1497 struct cds_lfht_iter iter;
1498
1499 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1500 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1501
1502 size = rcu_dereference(ht->t.size);
1503 for (;;) {
1504 _cds_lfht_add(ht, size, node, &iter, 0);
1505 if (iter.node == node) {
1506 ht_count_add(ht, size);
1507 return NULL;
1508 }
1509
1510 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1511 return iter.node;
1512 }
1513 }
1514
1515 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1516 struct cds_lfht_node *new_node)
1517 {
1518 unsigned long size;
1519
1520 size = rcu_dereference(ht->t.size);
1521 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1522 new_node);
1523 }
1524
1525 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1526 {
1527 unsigned long size;
1528 int ret;
1529
1530 size = rcu_dereference(ht->t.size);
1531 ret = _cds_lfht_del(ht, size, iter->node, 0);
1532 if (!ret)
1533 ht_count_del(ht, size);
1534 return ret;
1535 }
1536
1537 static
1538 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1539 {
1540 struct cds_lfht_node *node;
1541 struct _cds_lfht_node *lookup;
1542 unsigned long order, i, size;
1543
1544 /* Check that the table is empty */
1545 lookup = &ht->t.tbl[0]->nodes[0];
1546 node = (struct cds_lfht_node *) lookup;
1547 do {
1548 node = clear_flag(node)->p.next;
1549 if (!is_dummy(node))
1550 return -EPERM;
1551 assert(!is_removed(node));
1552 } while (!is_end(node));
1553 /*
1554 * size accessed without rcu_dereference because hash table is
1555 * being destroyed.
1556 */
1557 size = ht->t.size;
1558 /* Internal sanity check: all nodes left should be dummy */
1559 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1560 unsigned long len;
1561
1562 len = !order ? 1 : 1UL << (order - 1);
1563 for (i = 0; i < len; i++) {
1564 dbg_printf("delete order %lu i %lu hash %lu\n",
1565 order, i,
1566 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1567 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1568 }
1569 poison_free(ht->t.tbl[order]);
1570 }
1571 return 0;
1572 }
1573
1574 /*
1575 * Should only be called when no more concurrent readers nor writers can
1576 * possibly access the table.
1577 */
1578 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1579 {
1580 int ret;
1581
1582 /* Wait for in-flight resize operations to complete */
1583 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1584 cmm_smp_mb(); /* Store destroy before load resize */
1585 while (uatomic_read(&ht->in_progress_resize))
1586 poll(NULL, 0, 100); /* wait for 100ms */
1587 ret = cds_lfht_delete_dummy(ht);
1588 if (ret)
1589 return ret;
1590 free_per_cpu_items_count(ht->percpu_count);
1591 if (attr)
1592 *attr = ht->resize_attr;
1593 poison_free(ht);
1594 return ret;
1595 }
1596
1597 void cds_lfht_count_nodes(struct cds_lfht *ht,
1598 long *approx_before,
1599 unsigned long *count,
1600 unsigned long *removed,
1601 long *approx_after)
1602 {
1603 struct cds_lfht_node *node, *next;
1604 struct _cds_lfht_node *lookup;
1605 unsigned long nr_dummy = 0;
1606
1607 *approx_before = 0;
1608 if (nr_cpus_mask >= 0) {
1609 int i;
1610
1611 for (i = 0; i < nr_cpus_mask + 1; i++) {
1612 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1613 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1614 }
1615 }
1616
1617 *count = 0;
1618 *removed = 0;
1619
1620 /* Count non-dummy nodes in the table */
1621 lookup = &ht->t.tbl[0]->nodes[0];
1622 node = (struct cds_lfht_node *) lookup;
1623 do {
1624 next = rcu_dereference(node->p.next);
1625 if (is_removed(next)) {
1626 if (!is_dummy(next))
1627 (*removed)++;
1628 else
1629 (nr_dummy)++;
1630 } else if (!is_dummy(next))
1631 (*count)++;
1632 else
1633 (nr_dummy)++;
1634 node = clear_flag(next);
1635 } while (!is_end(node));
1636 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1637 *approx_after = 0;
1638 if (nr_cpus_mask >= 0) {
1639 int i;
1640
1641 for (i = 0; i < nr_cpus_mask + 1; i++) {
1642 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1643 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1644 }
1645 }
1646 }
1647
1648 /* called with resize mutex held */
1649 static
1650 void _do_cds_lfht_grow(struct cds_lfht *ht,
1651 unsigned long old_size, unsigned long new_size)
1652 {
1653 unsigned long old_order, new_order;
1654
1655 old_order = get_count_order_ulong(old_size);
1656 new_order = get_count_order_ulong(new_size);
1657 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1658 old_size, old_order, new_size, new_order);
1659 assert(new_size > old_size);
1660 init_table(ht, old_order + 1, new_order);
1661 }
1662
1663 /* called with resize mutex held */
1664 static
1665 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1666 unsigned long old_size, unsigned long new_size)
1667 {
1668 unsigned long old_order, new_order;
1669
1670 new_size = max(new_size, MIN_TABLE_SIZE);
1671 old_order = get_count_order_ulong(old_size);
1672 new_order = get_count_order_ulong(new_size);
1673 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1674 old_size, old_order, new_size, new_order);
1675 assert(new_size < old_size);
1676
1677 /* Remove and unlink all dummy nodes to remove. */
1678 fini_table(ht, new_order + 1, old_order);
1679 }
1680
1681
1682 /* called with resize mutex held */
1683 static
1684 void _do_cds_lfht_resize(struct cds_lfht *ht)
1685 {
1686 unsigned long new_size, old_size;
1687
1688 /*
1689 * Resize table, re-do if the target size has changed under us.
1690 */
1691 do {
1692 assert(uatomic_read(&ht->in_progress_resize));
1693 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1694 break;
1695 ht->t.resize_initiated = 1;
1696 old_size = ht->t.size;
1697 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1698 if (old_size < new_size)
1699 _do_cds_lfht_grow(ht, old_size, new_size);
1700 else if (old_size > new_size)
1701 _do_cds_lfht_shrink(ht, old_size, new_size);
1702 ht->t.resize_initiated = 0;
1703 /* write resize_initiated before read resize_target */
1704 cmm_smp_mb();
1705 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1706 }
1707
1708 static
1709 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1710 int growth_order)
1711 {
1712 return _uatomic_max(&ht->t.resize_target,
1713 size << growth_order);
1714 }
1715
1716 static
1717 void resize_target_update_count(struct cds_lfht *ht,
1718 unsigned long count)
1719 {
1720 count = max(count, MIN_TABLE_SIZE);
1721 uatomic_set(&ht->t.resize_target, count);
1722 }
1723
1724 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1725 {
1726 resize_target_update_count(ht, new_size);
1727 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1728 ht->cds_lfht_rcu_thread_offline();
1729 pthread_mutex_lock(&ht->resize_mutex);
1730 _do_cds_lfht_resize(ht);
1731 pthread_mutex_unlock(&ht->resize_mutex);
1732 ht->cds_lfht_rcu_thread_online();
1733 }
1734
1735 static
1736 void do_resize_cb(struct rcu_head *head)
1737 {
1738 struct rcu_resize_work *work =
1739 caa_container_of(head, struct rcu_resize_work, head);
1740 struct cds_lfht *ht = work->ht;
1741
1742 ht->cds_lfht_rcu_thread_offline();
1743 pthread_mutex_lock(&ht->resize_mutex);
1744 _do_cds_lfht_resize(ht);
1745 pthread_mutex_unlock(&ht->resize_mutex);
1746 ht->cds_lfht_rcu_thread_online();
1747 poison_free(work);
1748 cmm_smp_mb(); /* finish resize before decrement */
1749 uatomic_dec(&ht->in_progress_resize);
1750 }
1751
1752 static
1753 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1754 {
1755 struct rcu_resize_work *work;
1756 unsigned long target_size;
1757
1758 target_size = resize_target_update(ht, size, growth);
1759 /* Store resize_target before read resize_initiated */
1760 cmm_smp_mb();
1761 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1762 uatomic_inc(&ht->in_progress_resize);
1763 cmm_smp_mb(); /* increment resize count before load destroy */
1764 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1765 uatomic_dec(&ht->in_progress_resize);
1766 return;
1767 }
1768 work = malloc(sizeof(*work));
1769 work->ht = ht;
1770 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1771 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1772 }
1773 }
1774
1775 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1776
1777 static
1778 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1779 unsigned long count)
1780 {
1781 struct rcu_resize_work *work;
1782
1783 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1784 return;
1785 resize_target_update_count(ht, count);
1786 /* Store resize_target before read resize_initiated */
1787 cmm_smp_mb();
1788 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1789 uatomic_inc(&ht->in_progress_resize);
1790 cmm_smp_mb(); /* increment resize count before load destroy */
1791 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1792 uatomic_dec(&ht->in_progress_resize);
1793 return;
1794 }
1795 work = malloc(sizeof(*work));
1796 work->ht = ht;
1797 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1798 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1799 }
1800 }
1801
1802 #endif
This page took 0.080671 seconds and 5 git commands to generate.