rculfhash: Relax atomicity guarantees required by removal operation
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152 #define _LGPL_SOURCE
153 #include <stdlib.h>
154 #include <errno.h>
155 #include <assert.h>
156 #include <stdio.h>
157 #include <stdint.h>
158 #include <string.h>
159
160 #include "config.h"
161 #include <urcu.h>
162 #include <urcu-call-rcu.h>
163 #include <urcu-flavor.h>
164 #include <urcu/arch.h>
165 #include <urcu/uatomic.h>
166 #include <urcu/compiler.h>
167 #include <urcu/rculfhash.h>
168 #include <rculfhash-internal.h>
169 #include <stdio.h>
170 #include <pthread.h>
171
172 /*
173 * Split-counters lazily update the global counter each 1024
174 * addition/removal. It automatically keeps track of resize required.
175 * We use the bucket length as indicator for need to expand for small
176 * tables and machines lacking per-cpu data suppport.
177 */
178 #define COUNT_COMMIT_ORDER 10
179 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
180 #define CHAIN_LEN_TARGET 1
181 #define CHAIN_LEN_RESIZE_THRESHOLD 3
182
183 /*
184 * Define the minimum table size.
185 */
186 #define MIN_TABLE_ORDER 0
187 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
188
189 /*
190 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
191 */
192 #define MIN_PARTITION_PER_THREAD_ORDER 12
193 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
194
195 /*
196 * The removed flag needs to be updated atomically with the pointer.
197 * It indicates that no node must attach to the node scheduled for
198 * removal, and that node garbage collection must be performed.
199 * The bucket flag does not require to be updated atomically with the
200 * pointer, but it is added as a pointer low bit flag to save space.
201 */
202 #define REMOVED_FLAG (1UL << 0)
203 #define BUCKET_FLAG (1UL << 1)
204 #define REMOVAL_OWNER_FLAG (1UL << 2)
205 #define FLAGS_MASK ((1UL << 3) - 1)
206
207 /* Value of the end pointer. Should not interact with flags. */
208 #define END_VALUE NULL
209
210 /*
211 * ht_items_count: Split-counters counting the number of node addition
212 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
213 * is set at hash table creation.
214 *
215 * These are free-running counters, never reset to zero. They count the
216 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
217 * operations to update the global counter. We choose a power-of-2 value
218 * for the trigger to deal with 32 or 64-bit overflow of the counter.
219 */
220 struct ht_items_count {
221 unsigned long add, del;
222 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
223
224 /*
225 * rcu_resize_work: Contains arguments passed to RCU worker thread
226 * responsible for performing lazy resize.
227 */
228 struct rcu_resize_work {
229 struct rcu_head head;
230 struct cds_lfht *ht;
231 };
232
233 /*
234 * partition_resize_work: Contains arguments passed to worker threads
235 * executing the hash table resize on partitions of the hash table
236 * assigned to each processor's worker thread.
237 */
238 struct partition_resize_work {
239 pthread_t thread_id;
240 struct cds_lfht *ht;
241 unsigned long i, start, len;
242 void (*fct)(struct cds_lfht *ht, unsigned long i,
243 unsigned long start, unsigned long len);
244 };
245
246 /*
247 * Algorithm to reverse bits in a word by lookup table, extended to
248 * 64-bit words.
249 * Source:
250 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
251 * Originally from Public Domain.
252 */
253
254 static const uint8_t BitReverseTable256[256] =
255 {
256 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
257 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
258 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
259 R6(0), R6(2), R6(1), R6(3)
260 };
261 #undef R2
262 #undef R4
263 #undef R6
264
265 static
266 uint8_t bit_reverse_u8(uint8_t v)
267 {
268 return BitReverseTable256[v];
269 }
270
271 static __attribute__((unused))
272 uint32_t bit_reverse_u32(uint32_t v)
273 {
274 return ((uint32_t) bit_reverse_u8(v) << 24) |
275 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
276 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
277 ((uint32_t) bit_reverse_u8(v >> 24));
278 }
279
280 static __attribute__((unused))
281 uint64_t bit_reverse_u64(uint64_t v)
282 {
283 return ((uint64_t) bit_reverse_u8(v) << 56) |
284 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
285 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
286 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
287 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
288 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
289 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
290 ((uint64_t) bit_reverse_u8(v >> 56));
291 }
292
293 static
294 unsigned long bit_reverse_ulong(unsigned long v)
295 {
296 #if (CAA_BITS_PER_LONG == 32)
297 return bit_reverse_u32(v);
298 #else
299 return bit_reverse_u64(v);
300 #endif
301 }
302
303 /*
304 * fls: returns the position of the most significant bit.
305 * Returns 0 if no bit is set, else returns the position of the most
306 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
307 */
308 #if defined(__i386) || defined(__x86_64)
309 static inline
310 unsigned int fls_u32(uint32_t x)
311 {
312 int r;
313
314 asm("bsrl %1,%0\n\t"
315 "jnz 1f\n\t"
316 "movl $-1,%0\n\t"
317 "1:\n\t"
318 : "=r" (r) : "rm" (x));
319 return r + 1;
320 }
321 #define HAS_FLS_U32
322 #endif
323
324 #if defined(__x86_64)
325 static inline
326 unsigned int fls_u64(uint64_t x)
327 {
328 long r;
329
330 asm("bsrq %1,%0\n\t"
331 "jnz 1f\n\t"
332 "movq $-1,%0\n\t"
333 "1:\n\t"
334 : "=r" (r) : "rm" (x));
335 return r + 1;
336 }
337 #define HAS_FLS_U64
338 #endif
339
340 #ifndef HAS_FLS_U64
341 static __attribute__((unused))
342 unsigned int fls_u64(uint64_t x)
343 {
344 unsigned int r = 64;
345
346 if (!x)
347 return 0;
348
349 if (!(x & 0xFFFFFFFF00000000ULL)) {
350 x <<= 32;
351 r -= 32;
352 }
353 if (!(x & 0xFFFF000000000000ULL)) {
354 x <<= 16;
355 r -= 16;
356 }
357 if (!(x & 0xFF00000000000000ULL)) {
358 x <<= 8;
359 r -= 8;
360 }
361 if (!(x & 0xF000000000000000ULL)) {
362 x <<= 4;
363 r -= 4;
364 }
365 if (!(x & 0xC000000000000000ULL)) {
366 x <<= 2;
367 r -= 2;
368 }
369 if (!(x & 0x8000000000000000ULL)) {
370 x <<= 1;
371 r -= 1;
372 }
373 return r;
374 }
375 #endif
376
377 #ifndef HAS_FLS_U32
378 static __attribute__((unused))
379 unsigned int fls_u32(uint32_t x)
380 {
381 unsigned int r = 32;
382
383 if (!x)
384 return 0;
385 if (!(x & 0xFFFF0000U)) {
386 x <<= 16;
387 r -= 16;
388 }
389 if (!(x & 0xFF000000U)) {
390 x <<= 8;
391 r -= 8;
392 }
393 if (!(x & 0xF0000000U)) {
394 x <<= 4;
395 r -= 4;
396 }
397 if (!(x & 0xC0000000U)) {
398 x <<= 2;
399 r -= 2;
400 }
401 if (!(x & 0x80000000U)) {
402 x <<= 1;
403 r -= 1;
404 }
405 return r;
406 }
407 #endif
408
409 unsigned int cds_lfht_fls_ulong(unsigned long x)
410 {
411 #if (CAA_BITS_PER_LONG == 32)
412 return fls_u32(x);
413 #else
414 return fls_u64(x);
415 #endif
416 }
417
418 /*
419 * Return the minimum order for which x <= (1UL << order).
420 * Return -1 if x is 0.
421 */
422 int cds_lfht_get_count_order_u32(uint32_t x)
423 {
424 if (!x)
425 return -1;
426
427 return fls_u32(x - 1);
428 }
429
430 /*
431 * Return the minimum order for which x <= (1UL << order).
432 * Return -1 if x is 0.
433 */
434 int cds_lfht_get_count_order_ulong(unsigned long x)
435 {
436 if (!x)
437 return -1;
438
439 return cds_lfht_fls_ulong(x - 1);
440 }
441
442 static
443 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
444
445 static
446 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
447 unsigned long count);
448
449 static long nr_cpus_mask = -1;
450 static long split_count_mask = -1;
451
452 #if defined(HAVE_SYSCONF)
453 static void ht_init_nr_cpus_mask(void)
454 {
455 long maxcpus;
456
457 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
458 if (maxcpus <= 0) {
459 nr_cpus_mask = -2;
460 return;
461 }
462 /*
463 * round up number of CPUs to next power of two, so we
464 * can use & for modulo.
465 */
466 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
467 nr_cpus_mask = maxcpus - 1;
468 }
469 #else /* #if defined(HAVE_SYSCONF) */
470 static void ht_init_nr_cpus_mask(void)
471 {
472 nr_cpus_mask = -2;
473 }
474 #endif /* #else #if defined(HAVE_SYSCONF) */
475
476 static
477 void alloc_split_items_count(struct cds_lfht *ht)
478 {
479 struct ht_items_count *count;
480
481 if (nr_cpus_mask == -1) {
482 ht_init_nr_cpus_mask();
483 if (nr_cpus_mask < 0)
484 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
485 else
486 split_count_mask = nr_cpus_mask;
487 }
488
489 assert(split_count_mask >= 0);
490
491 if (ht->flags & CDS_LFHT_ACCOUNTING) {
492 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
493 assert(ht->split_count);
494 } else {
495 ht->split_count = NULL;
496 }
497 }
498
499 static
500 void free_split_items_count(struct cds_lfht *ht)
501 {
502 poison_free(ht->split_count);
503 }
504
505 #if defined(HAVE_SCHED_GETCPU)
506 static
507 int ht_get_split_count_index(unsigned long hash)
508 {
509 int cpu;
510
511 assert(split_count_mask >= 0);
512 cpu = sched_getcpu();
513 if (caa_unlikely(cpu < 0))
514 return hash & split_count_mask;
515 else
516 return cpu & split_count_mask;
517 }
518 #else /* #if defined(HAVE_SCHED_GETCPU) */
519 static
520 int ht_get_split_count_index(unsigned long hash)
521 {
522 return hash & split_count_mask;
523 }
524 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
525
526 static
527 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
528 {
529 unsigned long split_count;
530 int index;
531 long count;
532
533 if (caa_unlikely(!ht->split_count))
534 return;
535 index = ht_get_split_count_index(hash);
536 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
537 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
538 return;
539 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
540
541 dbg_printf("add split count %lu\n", split_count);
542 count = uatomic_add_return(&ht->count,
543 1UL << COUNT_COMMIT_ORDER);
544 if (caa_likely(count & (count - 1)))
545 return;
546 /* Only if global count is power of 2 */
547
548 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
549 return;
550 dbg_printf("add set global %ld\n", count);
551 cds_lfht_resize_lazy_count(ht, size,
552 count >> (CHAIN_LEN_TARGET - 1));
553 }
554
555 static
556 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
557 {
558 unsigned long split_count;
559 int index;
560 long count;
561
562 if (caa_unlikely(!ht->split_count))
563 return;
564 index = ht_get_split_count_index(hash);
565 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
566 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
567 return;
568 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
569
570 dbg_printf("del split count %lu\n", split_count);
571 count = uatomic_add_return(&ht->count,
572 -(1UL << COUNT_COMMIT_ORDER));
573 if (caa_likely(count & (count - 1)))
574 return;
575 /* Only if global count is power of 2 */
576
577 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
578 return;
579 dbg_printf("del set global %ld\n", count);
580 /*
581 * Don't shrink table if the number of nodes is below a
582 * certain threshold.
583 */
584 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
585 return;
586 cds_lfht_resize_lazy_count(ht, size,
587 count >> (CHAIN_LEN_TARGET - 1));
588 }
589
590 static
591 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
592 {
593 unsigned long count;
594
595 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
596 return;
597 count = uatomic_read(&ht->count);
598 /*
599 * Use bucket-local length for small table expand and for
600 * environments lacking per-cpu data support.
601 */
602 if (count >= (1UL << COUNT_COMMIT_ORDER))
603 return;
604 if (chain_len > 100)
605 dbg_printf("WARNING: large chain length: %u.\n",
606 chain_len);
607 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
608 cds_lfht_resize_lazy_grow(ht, size,
609 cds_lfht_get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
610 }
611
612 static
613 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
614 {
615 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
616 }
617
618 static
619 int is_removed(struct cds_lfht_node *node)
620 {
621 return ((unsigned long) node) & REMOVED_FLAG;
622 }
623
624 static
625 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
626 {
627 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
628 }
629
630 static
631 int is_bucket(struct cds_lfht_node *node)
632 {
633 return ((unsigned long) node) & BUCKET_FLAG;
634 }
635
636 static
637 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
638 {
639 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
640 }
641
642 static
643 int is_removal_owner(struct cds_lfht_node *node)
644 {
645 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
646 }
647
648 static
649 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
650 {
651 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
652 }
653
654 static
655 struct cds_lfht_node *get_end(void)
656 {
657 return (struct cds_lfht_node *) END_VALUE;
658 }
659
660 static
661 int is_end(struct cds_lfht_node *node)
662 {
663 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
664 }
665
666 static
667 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
668 unsigned long v)
669 {
670 unsigned long old1, old2;
671
672 old1 = uatomic_read(ptr);
673 do {
674 old2 = old1;
675 if (old2 >= v)
676 return old2;
677 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
678 return old2;
679 }
680
681 static
682 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
683 {
684 return ht->mm->alloc_bucket_table(ht, order);
685 }
686
687 /*
688 * cds_lfht_free_bucket_table() should be called with decreasing order.
689 * When cds_lfht_free_bucket_table(0) is called, it means the whole
690 * lfht is destroyed.
691 */
692 static
693 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
694 {
695 return ht->mm->free_bucket_table(ht, order);
696 }
697
698 static inline
699 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
700 {
701 return ht->bucket_at(ht, index);
702 }
703
704 static inline
705 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
706 unsigned long hash)
707 {
708 assert(size > 0);
709 return bucket_at(ht, hash & (size - 1));
710 }
711
712 /*
713 * Remove all logically deleted nodes from a bucket up to a certain node key.
714 */
715 static
716 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
717 {
718 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
719
720 assert(!is_bucket(bucket));
721 assert(!is_removed(bucket));
722 assert(!is_bucket(node));
723 assert(!is_removed(node));
724 for (;;) {
725 iter_prev = bucket;
726 /* We can always skip the bucket node initially */
727 iter = rcu_dereference(iter_prev->next);
728 assert(!is_removed(iter));
729 assert(iter_prev->reverse_hash <= node->reverse_hash);
730 /*
731 * We should never be called with bucket (start of chain)
732 * and logically removed node (end of path compression
733 * marker) being the actual same node. This would be a
734 * bug in the algorithm implementation.
735 */
736 assert(bucket != node);
737 for (;;) {
738 if (caa_unlikely(is_end(iter)))
739 return;
740 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
741 return;
742 next = rcu_dereference(clear_flag(iter)->next);
743 if (caa_likely(is_removed(next)))
744 break;
745 iter_prev = clear_flag(iter);
746 iter = next;
747 }
748 assert(!is_removed(iter));
749 if (is_bucket(iter))
750 new_next = flag_bucket(clear_flag(next));
751 else
752 new_next = clear_flag(next);
753 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
754 }
755 }
756
757 static
758 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
759 struct cds_lfht_node *old_node,
760 struct cds_lfht_node *old_next,
761 struct cds_lfht_node *new_node)
762 {
763 struct cds_lfht_node *bucket, *ret_next;
764
765 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
766 return -ENOENT;
767
768 assert(!is_removed(old_node));
769 assert(!is_bucket(old_node));
770 assert(!is_removed(new_node));
771 assert(!is_bucket(new_node));
772 assert(new_node != old_node);
773 for (;;) {
774 /* Insert after node to be replaced */
775 if (is_removed(old_next)) {
776 /*
777 * Too late, the old node has been removed under us
778 * between lookup and replace. Fail.
779 */
780 return -ENOENT;
781 }
782 assert(!is_bucket(old_next));
783 assert(new_node != clear_flag(old_next));
784 new_node->next = clear_flag(old_next);
785 /*
786 * Here is the whole trick for lock-free replace: we add
787 * the replacement node _after_ the node we want to
788 * replace by atomically setting its next pointer at the
789 * same time we set its removal flag. Given that
790 * the lookups/get next use an iterator aware of the
791 * next pointer, they will either skip the old node due
792 * to the removal flag and see the new node, or use
793 * the old node, but will not see the new one.
794 * This is a replacement of a node with another node
795 * that has the same value: we are therefore not
796 * removing a value from the hash table.
797 */
798 ret_next = uatomic_cmpxchg(&old_node->next,
799 old_next, flag_removed(new_node));
800 if (ret_next == old_next)
801 break; /* We performed the replacement. */
802 old_next = ret_next;
803 }
804
805 /*
806 * Ensure that the old node is not visible to readers anymore:
807 * lookup for the node, and remove it (along with any other
808 * logically removed node) if found.
809 */
810 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
811 _cds_lfht_gc_bucket(bucket, new_node);
812
813 assert(is_removed(rcu_dereference(old_node->next)));
814 return 0;
815 }
816
817 /*
818 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
819 * mode. A NULL unique_ret allows creation of duplicate keys.
820 */
821 static
822 void _cds_lfht_add(struct cds_lfht *ht,
823 cds_lfht_match_fct match,
824 const void *key,
825 unsigned long size,
826 struct cds_lfht_node *node,
827 struct cds_lfht_iter *unique_ret,
828 int bucket_flag)
829 {
830 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
831 *return_node;
832 struct cds_lfht_node *bucket;
833
834 assert(!is_bucket(node));
835 assert(!is_removed(node));
836 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
837 for (;;) {
838 uint32_t chain_len = 0;
839
840 /*
841 * iter_prev points to the non-removed node prior to the
842 * insert location.
843 */
844 iter_prev = bucket;
845 /* We can always skip the bucket node initially */
846 iter = rcu_dereference(iter_prev->next);
847 assert(iter_prev->reverse_hash <= node->reverse_hash);
848 for (;;) {
849 if (caa_unlikely(is_end(iter)))
850 goto insert;
851 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
852 goto insert;
853
854 /* bucket node is the first node of the identical-hash-value chain */
855 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
856 goto insert;
857
858 next = rcu_dereference(clear_flag(iter)->next);
859 if (caa_unlikely(is_removed(next)))
860 goto gc_node;
861
862 /* uniquely add */
863 if (unique_ret
864 && !is_bucket(next)
865 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
866 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
867
868 /*
869 * uniquely adding inserts the node as the first
870 * node of the identical-hash-value node chain.
871 *
872 * This semantic ensures no duplicated keys
873 * should ever be observable in the table
874 * (including observe one node by one node
875 * by forward iterations)
876 */
877 cds_lfht_next_duplicate(ht, match, key, &d_iter);
878 if (!d_iter.node)
879 goto insert;
880
881 *unique_ret = d_iter;
882 return;
883 }
884
885 /* Only account for identical reverse hash once */
886 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
887 && !is_bucket(next))
888 check_resize(ht, size, ++chain_len);
889 iter_prev = clear_flag(iter);
890 iter = next;
891 }
892
893 insert:
894 assert(node != clear_flag(iter));
895 assert(!is_removed(iter_prev));
896 assert(!is_removed(iter));
897 assert(iter_prev != node);
898 if (!bucket_flag)
899 node->next = clear_flag(iter);
900 else
901 node->next = flag_bucket(clear_flag(iter));
902 if (is_bucket(iter))
903 new_node = flag_bucket(node);
904 else
905 new_node = node;
906 if (uatomic_cmpxchg(&iter_prev->next, iter,
907 new_node) != iter) {
908 continue; /* retry */
909 } else {
910 return_node = node;
911 goto end;
912 }
913
914 gc_node:
915 assert(!is_removed(iter));
916 if (is_bucket(iter))
917 new_next = flag_bucket(clear_flag(next));
918 else
919 new_next = clear_flag(next);
920 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
921 /* retry */
922 }
923 end:
924 if (unique_ret) {
925 unique_ret->node = return_node;
926 /* unique_ret->next left unset, never used. */
927 }
928 }
929
930 static
931 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
932 struct cds_lfht_node *node,
933 int bucket_removal)
934 {
935 struct cds_lfht_node *bucket, *next;
936
937 if (!node) /* Return -ENOENT if asked to delete NULL node */
938 return -ENOENT;
939
940 /* logically delete the node */
941 assert(!is_bucket(node));
942 assert(!is_removed(node));
943 assert(!is_removal_owner(node));
944
945 /*
946 * We are first checking if the node had previously been
947 * logically removed (this check is not atomic with setting the
948 * logical removal flag). Return -ENOENT if the node had
949 * previously been removed.
950 */
951 next = rcu_dereference(node->next);
952 if (caa_unlikely(is_removed(next)))
953 return -ENOENT;
954 if (bucket_removal)
955 assert(is_bucket(next));
956 else
957 assert(!is_bucket(next));
958 /*
959 * We set the REMOVED_FLAG unconditionally. Note that there may
960 * be more than one concurrent thread setting this flag.
961 * Knowing which wins the race will be known after the garbage
962 * collection phase, stay tuned!
963 */
964 uatomic_or(&node->next, REMOVED_FLAG);
965 /* We performed the (logical) deletion. */
966
967 /*
968 * Ensure that the node is not visible to readers anymore: lookup for
969 * the node, and remove it (along with any other logically removed node)
970 * if found.
971 */
972 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
973 _cds_lfht_gc_bucket(bucket, node);
974
975 assert(is_removed(rcu_dereference(node->next)));
976 /*
977 * Last phase: atomically exchange node->next with a version
978 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
979 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
980 * the node and win the removal race.
981 * It is interesting to note that all "add" paths are forbidden
982 * to change the next pointer starting from the point where the
983 * REMOVED_FLAG is set, so here using a read, followed by a
984 * xchg() suffice to guarantee that the xchg() will ever only
985 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
986 * was already set).
987 */
988 if (!is_removal_owner(uatomic_xchg(&node->next,
989 flag_removal_owner(node->next))))
990 return 0;
991 else
992 return -ENOENT;
993 }
994
995 static
996 void *partition_resize_thread(void *arg)
997 {
998 struct partition_resize_work *work = arg;
999
1000 work->ht->flavor->register_thread();
1001 work->fct(work->ht, work->i, work->start, work->len);
1002 work->ht->flavor->unregister_thread();
1003 return NULL;
1004 }
1005
1006 static
1007 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1008 unsigned long len,
1009 void (*fct)(struct cds_lfht *ht, unsigned long i,
1010 unsigned long start, unsigned long len))
1011 {
1012 unsigned long partition_len;
1013 struct partition_resize_work *work;
1014 int thread, ret;
1015 unsigned long nr_threads;
1016
1017 /*
1018 * Note: nr_cpus_mask + 1 is always power of 2.
1019 * We spawn just the number of threads we need to satisfy the minimum
1020 * partition size, up to the number of CPUs in the system.
1021 */
1022 if (nr_cpus_mask > 0) {
1023 nr_threads = min(nr_cpus_mask + 1,
1024 len >> MIN_PARTITION_PER_THREAD_ORDER);
1025 } else {
1026 nr_threads = 1;
1027 }
1028 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1029 work = calloc(nr_threads, sizeof(*work));
1030 assert(work);
1031 for (thread = 0; thread < nr_threads; thread++) {
1032 work[thread].ht = ht;
1033 work[thread].i = i;
1034 work[thread].len = partition_len;
1035 work[thread].start = thread * partition_len;
1036 work[thread].fct = fct;
1037 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1038 partition_resize_thread, &work[thread]);
1039 assert(!ret);
1040 }
1041 for (thread = 0; thread < nr_threads; thread++) {
1042 ret = pthread_join(work[thread].thread_id, NULL);
1043 assert(!ret);
1044 }
1045 free(work);
1046 }
1047
1048 /*
1049 * Holding RCU read lock to protect _cds_lfht_add against memory
1050 * reclaim that could be performed by other call_rcu worker threads (ABA
1051 * problem).
1052 *
1053 * When we reach a certain length, we can split this population phase over
1054 * many worker threads, based on the number of CPUs available in the system.
1055 * This should therefore take care of not having the expand lagging behind too
1056 * many concurrent insertion threads by using the scheduler's ability to
1057 * schedule bucket node population fairly with insertions.
1058 */
1059 static
1060 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1061 unsigned long start, unsigned long len)
1062 {
1063 unsigned long j, size = 1UL << (i - 1);
1064
1065 assert(i > MIN_TABLE_ORDER);
1066 ht->flavor->read_lock();
1067 for (j = size + start; j < size + start + len; j++) {
1068 struct cds_lfht_node *new_node = bucket_at(ht, j);
1069
1070 assert(j >= size && j < (size << 1));
1071 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1072 i, j, j);
1073 new_node->reverse_hash = bit_reverse_ulong(j);
1074 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1075 }
1076 ht->flavor->read_unlock();
1077 }
1078
1079 static
1080 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1081 unsigned long len)
1082 {
1083 assert(nr_cpus_mask != -1);
1084 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1085 ht->flavor->thread_online();
1086 init_table_populate_partition(ht, i, 0, len);
1087 ht->flavor->thread_offline();
1088 return;
1089 }
1090 partition_resize_helper(ht, i, len, init_table_populate_partition);
1091 }
1092
1093 static
1094 void init_table(struct cds_lfht *ht,
1095 unsigned long first_order, unsigned long last_order)
1096 {
1097 unsigned long i;
1098
1099 dbg_printf("init table: first_order %lu last_order %lu\n",
1100 first_order, last_order);
1101 assert(first_order > MIN_TABLE_ORDER);
1102 for (i = first_order; i <= last_order; i++) {
1103 unsigned long len;
1104
1105 len = 1UL << (i - 1);
1106 dbg_printf("init order %lu len: %lu\n", i, len);
1107
1108 /* Stop expand if the resize target changes under us */
1109 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1110 break;
1111
1112 cds_lfht_alloc_bucket_table(ht, i);
1113
1114 /*
1115 * Set all bucket nodes reverse hash values for a level and
1116 * link all bucket nodes into the table.
1117 */
1118 init_table_populate(ht, i, len);
1119
1120 /*
1121 * Update table size.
1122 */
1123 cmm_smp_wmb(); /* populate data before RCU size */
1124 CMM_STORE_SHARED(ht->size, 1UL << i);
1125
1126 dbg_printf("init new size: %lu\n", 1UL << i);
1127 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1128 break;
1129 }
1130 }
1131
1132 /*
1133 * Holding RCU read lock to protect _cds_lfht_remove against memory
1134 * reclaim that could be performed by other call_rcu worker threads (ABA
1135 * problem).
1136 * For a single level, we logically remove and garbage collect each node.
1137 *
1138 * As a design choice, we perform logical removal and garbage collection on a
1139 * node-per-node basis to simplify this algorithm. We also assume keeping good
1140 * cache locality of the operation would overweight possible performance gain
1141 * that could be achieved by batching garbage collection for multiple levels.
1142 * However, this would have to be justified by benchmarks.
1143 *
1144 * Concurrent removal and add operations are helping us perform garbage
1145 * collection of logically removed nodes. We guarantee that all logically
1146 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1147 * invoked to free a hole level of bucket nodes (after a grace period).
1148 *
1149 * Logical removal and garbage collection can therefore be done in batch or on a
1150 * node-per-node basis, as long as the guarantee above holds.
1151 *
1152 * When we reach a certain length, we can split this removal over many worker
1153 * threads, based on the number of CPUs available in the system. This should
1154 * take care of not letting resize process lag behind too many concurrent
1155 * updater threads actively inserting into the hash table.
1156 */
1157 static
1158 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1159 unsigned long start, unsigned long len)
1160 {
1161 unsigned long j, size = 1UL << (i - 1);
1162
1163 assert(i > MIN_TABLE_ORDER);
1164 ht->flavor->read_lock();
1165 for (j = size + start; j < size + start + len; j++) {
1166 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1167 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1168
1169 assert(j >= size && j < (size << 1));
1170 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1171 i, j, j);
1172 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1173 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1174 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1175 }
1176 ht->flavor->read_unlock();
1177 }
1178
1179 static
1180 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1181 {
1182
1183 assert(nr_cpus_mask != -1);
1184 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1185 ht->flavor->thread_online();
1186 remove_table_partition(ht, i, 0, len);
1187 ht->flavor->thread_offline();
1188 return;
1189 }
1190 partition_resize_helper(ht, i, len, remove_table_partition);
1191 }
1192
1193 /*
1194 * fini_table() is never called for first_order == 0, which is why
1195 * free_by_rcu_order == 0 can be used as criterion to know if free must
1196 * be called.
1197 */
1198 static
1199 void fini_table(struct cds_lfht *ht,
1200 unsigned long first_order, unsigned long last_order)
1201 {
1202 long i;
1203 unsigned long free_by_rcu_order = 0;
1204
1205 dbg_printf("fini table: first_order %lu last_order %lu\n",
1206 first_order, last_order);
1207 assert(first_order > MIN_TABLE_ORDER);
1208 for (i = last_order; i >= first_order; i--) {
1209 unsigned long len;
1210
1211 len = 1UL << (i - 1);
1212 dbg_printf("fini order %lu len: %lu\n", i, len);
1213
1214 /* Stop shrink if the resize target changes under us */
1215 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1216 break;
1217
1218 cmm_smp_wmb(); /* populate data before RCU size */
1219 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1220
1221 /*
1222 * We need to wait for all add operations to reach Q.S. (and
1223 * thus use the new table for lookups) before we can start
1224 * releasing the old bucket nodes. Otherwise their lookup will
1225 * return a logically removed node as insert position.
1226 */
1227 ht->flavor->update_synchronize_rcu();
1228 if (free_by_rcu_order)
1229 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1230
1231 /*
1232 * Set "removed" flag in bucket nodes about to be removed.
1233 * Unlink all now-logically-removed bucket node pointers.
1234 * Concurrent add/remove operation are helping us doing
1235 * the gc.
1236 */
1237 remove_table(ht, i, len);
1238
1239 free_by_rcu_order = i;
1240
1241 dbg_printf("fini new size: %lu\n", 1UL << i);
1242 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1243 break;
1244 }
1245
1246 if (free_by_rcu_order) {
1247 ht->flavor->update_synchronize_rcu();
1248 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1249 }
1250 }
1251
1252 static
1253 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1254 {
1255 struct cds_lfht_node *prev, *node;
1256 unsigned long order, len, i;
1257
1258 cds_lfht_alloc_bucket_table(ht, 0);
1259
1260 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1261 node = bucket_at(ht, 0);
1262 node->next = flag_bucket(get_end());
1263 node->reverse_hash = 0;
1264
1265 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1266 len = 1UL << (order - 1);
1267 cds_lfht_alloc_bucket_table(ht, order);
1268
1269 for (i = 0; i < len; i++) {
1270 /*
1271 * Now, we are trying to init the node with the
1272 * hash=(len+i) (which is also a bucket with the
1273 * index=(len+i)) and insert it into the hash table,
1274 * so this node has to be inserted after the bucket
1275 * with the index=(len+i)&(len-1)=i. And because there
1276 * is no other non-bucket node nor bucket node with
1277 * larger index/hash inserted, so the bucket node
1278 * being inserted should be inserted directly linked
1279 * after the bucket node with index=i.
1280 */
1281 prev = bucket_at(ht, i);
1282 node = bucket_at(ht, len + i);
1283
1284 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1285 order, len + i, len + i);
1286 node->reverse_hash = bit_reverse_ulong(len + i);
1287
1288 /* insert after prev */
1289 assert(is_bucket(prev->next));
1290 node->next = prev->next;
1291 prev->next = flag_bucket(node);
1292 }
1293 }
1294 }
1295
1296 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1297 unsigned long min_nr_alloc_buckets,
1298 unsigned long max_nr_buckets,
1299 int flags,
1300 const struct cds_lfht_mm_type *mm,
1301 const struct rcu_flavor_struct *flavor,
1302 pthread_attr_t *attr)
1303 {
1304 struct cds_lfht *ht;
1305 unsigned long order;
1306
1307 /* min_nr_alloc_buckets must be power of two */
1308 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1309 return NULL;
1310
1311 /* init_size must be power of two */
1312 if (!init_size || (init_size & (init_size - 1)))
1313 return NULL;
1314
1315 /*
1316 * Memory management plugin default.
1317 */
1318 if (!mm) {
1319 if (CAA_BITS_PER_LONG > 32
1320 && max_nr_buckets
1321 && max_nr_buckets <= (1ULL << 32)) {
1322 /*
1323 * For 64-bit architectures, with max number of
1324 * buckets small enough not to use the entire
1325 * 64-bit memory mapping space (and allowing a
1326 * fair number of hash table instances), use the
1327 * mmap allocator, which is faster than the
1328 * order allocator.
1329 */
1330 mm = &cds_lfht_mm_mmap;
1331 } else {
1332 /*
1333 * The fallback is to use the order allocator.
1334 */
1335 mm = &cds_lfht_mm_order;
1336 }
1337 }
1338
1339 /* max_nr_buckets == 0 for order based mm means infinite */
1340 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1341 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1342
1343 /* max_nr_buckets must be power of two */
1344 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1345 return NULL;
1346
1347 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1348 init_size = max(init_size, MIN_TABLE_SIZE);
1349 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1350 init_size = min(init_size, max_nr_buckets);
1351
1352 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1353 assert(ht);
1354 assert(ht->mm == mm);
1355 assert(ht->bucket_at == mm->bucket_at);
1356
1357 ht->flags = flags;
1358 ht->flavor = flavor;
1359 ht->resize_attr = attr;
1360 alloc_split_items_count(ht);
1361 /* this mutex should not nest in read-side C.S. */
1362 pthread_mutex_init(&ht->resize_mutex, NULL);
1363 order = cds_lfht_get_count_order_ulong(init_size);
1364 ht->resize_target = 1UL << order;
1365 cds_lfht_create_bucket(ht, 1UL << order);
1366 ht->size = 1UL << order;
1367 return ht;
1368 }
1369
1370 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1371 cds_lfht_match_fct match, const void *key,
1372 struct cds_lfht_iter *iter)
1373 {
1374 struct cds_lfht_node *node, *next, *bucket;
1375 unsigned long reverse_hash, size;
1376
1377 reverse_hash = bit_reverse_ulong(hash);
1378
1379 size = rcu_dereference(ht->size);
1380 bucket = lookup_bucket(ht, size, hash);
1381 /* We can always skip the bucket node initially */
1382 node = rcu_dereference(bucket->next);
1383 node = clear_flag(node);
1384 for (;;) {
1385 if (caa_unlikely(is_end(node))) {
1386 node = next = NULL;
1387 break;
1388 }
1389 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1390 node = next = NULL;
1391 break;
1392 }
1393 next = rcu_dereference(node->next);
1394 assert(node == clear_flag(node));
1395 if (caa_likely(!is_removed(next))
1396 && !is_bucket(next)
1397 && node->reverse_hash == reverse_hash
1398 && caa_likely(match(node, key))) {
1399 break;
1400 }
1401 node = clear_flag(next);
1402 }
1403 assert(!node || !is_bucket(rcu_dereference(node->next)));
1404 iter->node = node;
1405 iter->next = next;
1406 }
1407
1408 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1409 const void *key, struct cds_lfht_iter *iter)
1410 {
1411 struct cds_lfht_node *node, *next;
1412 unsigned long reverse_hash;
1413
1414 node = iter->node;
1415 reverse_hash = node->reverse_hash;
1416 next = iter->next;
1417 node = clear_flag(next);
1418
1419 for (;;) {
1420 if (caa_unlikely(is_end(node))) {
1421 node = next = NULL;
1422 break;
1423 }
1424 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1425 node = next = NULL;
1426 break;
1427 }
1428 next = rcu_dereference(node->next);
1429 if (caa_likely(!is_removed(next))
1430 && !is_bucket(next)
1431 && caa_likely(match(node, key))) {
1432 break;
1433 }
1434 node = clear_flag(next);
1435 }
1436 assert(!node || !is_bucket(rcu_dereference(node->next)));
1437 iter->node = node;
1438 iter->next = next;
1439 }
1440
1441 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1442 {
1443 struct cds_lfht_node *node, *next;
1444
1445 node = clear_flag(iter->next);
1446 for (;;) {
1447 if (caa_unlikely(is_end(node))) {
1448 node = next = NULL;
1449 break;
1450 }
1451 next = rcu_dereference(node->next);
1452 if (caa_likely(!is_removed(next))
1453 && !is_bucket(next)) {
1454 break;
1455 }
1456 node = clear_flag(next);
1457 }
1458 assert(!node || !is_bucket(rcu_dereference(node->next)));
1459 iter->node = node;
1460 iter->next = next;
1461 }
1462
1463 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1464 {
1465 /*
1466 * Get next after first bucket node. The first bucket node is the
1467 * first node of the linked list.
1468 */
1469 iter->next = bucket_at(ht, 0)->next;
1470 cds_lfht_next(ht, iter);
1471 }
1472
1473 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1474 struct cds_lfht_node *node)
1475 {
1476 unsigned long size;
1477
1478 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1479 size = rcu_dereference(ht->size);
1480 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1481 ht_count_add(ht, size, hash);
1482 }
1483
1484 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1485 unsigned long hash,
1486 cds_lfht_match_fct match,
1487 const void *key,
1488 struct cds_lfht_node *node)
1489 {
1490 unsigned long size;
1491 struct cds_lfht_iter iter;
1492
1493 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1494 size = rcu_dereference(ht->size);
1495 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1496 if (iter.node == node)
1497 ht_count_add(ht, size, hash);
1498 return iter.node;
1499 }
1500
1501 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1502 unsigned long hash,
1503 cds_lfht_match_fct match,
1504 const void *key,
1505 struct cds_lfht_node *node)
1506 {
1507 unsigned long size;
1508 struct cds_lfht_iter iter;
1509
1510 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1511 size = rcu_dereference(ht->size);
1512 for (;;) {
1513 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1514 if (iter.node == node) {
1515 ht_count_add(ht, size, hash);
1516 return NULL;
1517 }
1518
1519 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1520 return iter.node;
1521 }
1522 }
1523
1524 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1525 struct cds_lfht_node *new_node)
1526 {
1527 unsigned long size;
1528
1529 size = rcu_dereference(ht->size);
1530 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1531 new_node);
1532 }
1533
1534 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1535 {
1536 unsigned long size, hash;
1537 int ret;
1538
1539 size = rcu_dereference(ht->size);
1540 ret = _cds_lfht_del(ht, size, iter->node, 0);
1541 if (!ret) {
1542 hash = bit_reverse_ulong(iter->node->reverse_hash);
1543 ht_count_del(ht, size, hash);
1544 }
1545 return ret;
1546 }
1547
1548 static
1549 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1550 {
1551 struct cds_lfht_node *node;
1552 unsigned long order, i, size;
1553
1554 /* Check that the table is empty */
1555 node = bucket_at(ht, 0);
1556 do {
1557 node = clear_flag(node)->next;
1558 if (!is_bucket(node))
1559 return -EPERM;
1560 assert(!is_removed(node));
1561 } while (!is_end(node));
1562 /*
1563 * size accessed without rcu_dereference because hash table is
1564 * being destroyed.
1565 */
1566 size = ht->size;
1567 /* Internal sanity check: all nodes left should be bucket */
1568 for (i = 0; i < size; i++) {
1569 node = bucket_at(ht, i);
1570 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1571 i, i, bit_reverse_ulong(node->reverse_hash));
1572 assert(is_bucket(node->next));
1573 }
1574
1575 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1576 cds_lfht_free_bucket_table(ht, order);
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * Should only be called when no more concurrent readers nor writers can
1583 * possibly access the table.
1584 */
1585 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1586 {
1587 int ret;
1588
1589 /* Wait for in-flight resize operations to complete */
1590 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1591 cmm_smp_mb(); /* Store destroy before load resize */
1592 while (uatomic_read(&ht->in_progress_resize))
1593 poll(NULL, 0, 100); /* wait for 100ms */
1594 ret = cds_lfht_delete_bucket(ht);
1595 if (ret)
1596 return ret;
1597 free_split_items_count(ht);
1598 if (attr)
1599 *attr = ht->resize_attr;
1600 poison_free(ht);
1601 return ret;
1602 }
1603
1604 void cds_lfht_count_nodes(struct cds_lfht *ht,
1605 long *approx_before,
1606 unsigned long *count,
1607 unsigned long *removed,
1608 long *approx_after)
1609 {
1610 struct cds_lfht_node *node, *next;
1611 unsigned long nr_bucket = 0;
1612
1613 *approx_before = 0;
1614 if (ht->split_count) {
1615 int i;
1616
1617 for (i = 0; i < split_count_mask + 1; i++) {
1618 *approx_before += uatomic_read(&ht->split_count[i].add);
1619 *approx_before -= uatomic_read(&ht->split_count[i].del);
1620 }
1621 }
1622
1623 *count = 0;
1624 *removed = 0;
1625
1626 /* Count non-bucket nodes in the table */
1627 node = bucket_at(ht, 0);
1628 do {
1629 next = rcu_dereference(node->next);
1630 if (is_removed(next)) {
1631 if (!is_bucket(next))
1632 (*removed)++;
1633 else
1634 (nr_bucket)++;
1635 } else if (!is_bucket(next))
1636 (*count)++;
1637 else
1638 (nr_bucket)++;
1639 node = clear_flag(next);
1640 } while (!is_end(node));
1641 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1642 *approx_after = 0;
1643 if (ht->split_count) {
1644 int i;
1645
1646 for (i = 0; i < split_count_mask + 1; i++) {
1647 *approx_after += uatomic_read(&ht->split_count[i].add);
1648 *approx_after -= uatomic_read(&ht->split_count[i].del);
1649 }
1650 }
1651 }
1652
1653 /* called with resize mutex held */
1654 static
1655 void _do_cds_lfht_grow(struct cds_lfht *ht,
1656 unsigned long old_size, unsigned long new_size)
1657 {
1658 unsigned long old_order, new_order;
1659
1660 old_order = cds_lfht_get_count_order_ulong(old_size);
1661 new_order = cds_lfht_get_count_order_ulong(new_size);
1662 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1663 old_size, old_order, new_size, new_order);
1664 assert(new_size > old_size);
1665 init_table(ht, old_order + 1, new_order);
1666 }
1667
1668 /* called with resize mutex held */
1669 static
1670 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1671 unsigned long old_size, unsigned long new_size)
1672 {
1673 unsigned long old_order, new_order;
1674
1675 new_size = max(new_size, MIN_TABLE_SIZE);
1676 old_order = cds_lfht_get_count_order_ulong(old_size);
1677 new_order = cds_lfht_get_count_order_ulong(new_size);
1678 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1679 old_size, old_order, new_size, new_order);
1680 assert(new_size < old_size);
1681
1682 /* Remove and unlink all bucket nodes to remove. */
1683 fini_table(ht, new_order + 1, old_order);
1684 }
1685
1686
1687 /* called with resize mutex held */
1688 static
1689 void _do_cds_lfht_resize(struct cds_lfht *ht)
1690 {
1691 unsigned long new_size, old_size;
1692
1693 /*
1694 * Resize table, re-do if the target size has changed under us.
1695 */
1696 do {
1697 assert(uatomic_read(&ht->in_progress_resize));
1698 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1699 break;
1700 ht->resize_initiated = 1;
1701 old_size = ht->size;
1702 new_size = CMM_LOAD_SHARED(ht->resize_target);
1703 if (old_size < new_size)
1704 _do_cds_lfht_grow(ht, old_size, new_size);
1705 else if (old_size > new_size)
1706 _do_cds_lfht_shrink(ht, old_size, new_size);
1707 ht->resize_initiated = 0;
1708 /* write resize_initiated before read resize_target */
1709 cmm_smp_mb();
1710 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1711 }
1712
1713 static
1714 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1715 {
1716 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1717 }
1718
1719 static
1720 void resize_target_update_count(struct cds_lfht *ht,
1721 unsigned long count)
1722 {
1723 count = max(count, MIN_TABLE_SIZE);
1724 count = min(count, ht->max_nr_buckets);
1725 uatomic_set(&ht->resize_target, count);
1726 }
1727
1728 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1729 {
1730 resize_target_update_count(ht, new_size);
1731 CMM_STORE_SHARED(ht->resize_initiated, 1);
1732 ht->flavor->thread_offline();
1733 pthread_mutex_lock(&ht->resize_mutex);
1734 _do_cds_lfht_resize(ht);
1735 pthread_mutex_unlock(&ht->resize_mutex);
1736 ht->flavor->thread_online();
1737 }
1738
1739 static
1740 void do_resize_cb(struct rcu_head *head)
1741 {
1742 struct rcu_resize_work *work =
1743 caa_container_of(head, struct rcu_resize_work, head);
1744 struct cds_lfht *ht = work->ht;
1745
1746 ht->flavor->thread_offline();
1747 pthread_mutex_lock(&ht->resize_mutex);
1748 _do_cds_lfht_resize(ht);
1749 pthread_mutex_unlock(&ht->resize_mutex);
1750 ht->flavor->thread_online();
1751 poison_free(work);
1752 cmm_smp_mb(); /* finish resize before decrement */
1753 uatomic_dec(&ht->in_progress_resize);
1754 }
1755
1756 static
1757 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1758 {
1759 struct rcu_resize_work *work;
1760
1761 /* Store resize_target before read resize_initiated */
1762 cmm_smp_mb();
1763 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1764 uatomic_inc(&ht->in_progress_resize);
1765 cmm_smp_mb(); /* increment resize count before load destroy */
1766 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1767 uatomic_dec(&ht->in_progress_resize);
1768 return;
1769 }
1770 work = malloc(sizeof(*work));
1771 work->ht = ht;
1772 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1773 CMM_STORE_SHARED(ht->resize_initiated, 1);
1774 }
1775 }
1776
1777 static
1778 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1779 {
1780 unsigned long target_size = size << growth;
1781
1782 target_size = min(target_size, ht->max_nr_buckets);
1783 if (resize_target_grow(ht, target_size) >= target_size)
1784 return;
1785
1786 __cds_lfht_resize_lazy_launch(ht);
1787 }
1788
1789 /*
1790 * We favor grow operations over shrink. A shrink operation never occurs
1791 * if a grow operation is queued for lazy execution. A grow operation
1792 * cancels any pending shrink lazy execution.
1793 */
1794 static
1795 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1796 unsigned long count)
1797 {
1798 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1799 return;
1800 count = max(count, MIN_TABLE_SIZE);
1801 count = min(count, ht->max_nr_buckets);
1802 if (count == size)
1803 return; /* Already the right size, no resize needed */
1804 if (count > size) { /* lazy grow */
1805 if (resize_target_grow(ht, count) >= count)
1806 return;
1807 } else { /* lazy shrink */
1808 for (;;) {
1809 unsigned long s;
1810
1811 s = uatomic_cmpxchg(&ht->resize_target, size, count);
1812 if (s == size)
1813 break; /* no resize needed */
1814 if (s > size)
1815 return; /* growing is/(was just) in progress */
1816 if (s <= count)
1817 return; /* some other thread do shrink */
1818 size = s;
1819 }
1820 }
1821 __cds_lfht_resize_lazy_launch(ht);
1822 }
This page took 0.109687 seconds and 5 git commands to generate.