Avoid alloc small memory pieces
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order (except for order 0).
95 * - synchronzie_rcu is used to garbage-collect the old dummy node table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * Dummy node tables:
101 *
102 * hash table hash table the last all dummy node tables
103 * order size dummy node 0 1 2 3 4 5 6(index)
104 * table size
105 * 0 1 1 1
106 * 1 2 1 1 1
107 * 2 4 2 1 1 2
108 * 3 8 4 1 1 2 4
109 * 4 16 8 1 1 2 4 8
110 * 5 32 16 1 1 2 4 8 16
111 * 6 64 32 1 1 2 4 8 16 32
112 *
113 * When growing/shrinking, we only focus on the last dummy node table
114 * which size is (!order ? 1 : (1 << (order -1))).
115 *
116 * Example for growing/shrinking:
117 * grow hash table from order 5 to 6: init the index=6 dummy node table
118 * shrink hash table from order 6 to 5: fini the index=6 dummy node table
119 *
120 * A bit of ascii art explanation:
121 *
122 * Order index is the off-by-one compare to the actual power of 2 because
123 * we use index 0 to deal with the 0 special-case.
124 *
125 * This shows the nodes for a small table ordered by reversed bits:
126 *
127 * bits reverse
128 * 0 000 000
129 * 4 100 001
130 * 2 010 010
131 * 6 110 011
132 * 1 001 100
133 * 5 101 101
134 * 3 011 110
135 * 7 111 111
136 *
137 * This shows the nodes in order of non-reversed bits, linked by
138 * reversed-bit order.
139 *
140 * order bits reverse
141 * 0 0 000 000
142 * 1 | 1 001 100 <-
143 * 2 | | 2 010 010 <- |
144 * | | | 3 011 110 | <- |
145 * 3 -> | | | 4 100 001 | |
146 * -> | | 5 101 101 |
147 * -> | 6 110 011
148 * -> 7 111 111
149 */
150
151 #define _LGPL_SOURCE
152 #include <stdlib.h>
153 #include <errno.h>
154 #include <assert.h>
155 #include <stdio.h>
156 #include <stdint.h>
157 #include <string.h>
158
159 #include "config.h"
160 #include <urcu.h>
161 #include <urcu-call-rcu.h>
162 #include <urcu/arch.h>
163 #include <urcu/uatomic.h>
164 #include <urcu/compiler.h>
165 #include <urcu/rculfhash.h>
166 #include <stdio.h>
167 #include <pthread.h>
168
169 #ifdef DEBUG
170 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
171 #else
172 #define dbg_printf(fmt, args...)
173 #endif
174
175 /*
176 * Per-CPU split-counters lazily update the global counter each 1024
177 * addition/removal. It automatically keeps track of resize required.
178 * We use the bucket length as indicator for need to expand for small
179 * tables and machines lacking per-cpu data suppport.
180 */
181 #define COUNT_COMMIT_ORDER 10
182 #define CHAIN_LEN_TARGET 1
183 #define CHAIN_LEN_RESIZE_THRESHOLD 3
184
185 /*
186 * Define the minimum table size.
187 */
188 #define MIN_TABLE_SIZE 1
189
190 #if (CAA_BITS_PER_LONG == 32)
191 #define MAX_TABLE_ORDER 32
192 #else
193 #define MAX_TABLE_ORDER 64
194 #endif
195
196 /*
197 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
198 */
199 #define MIN_PARTITION_PER_THREAD_ORDER 12
200 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
201
202 #ifndef min
203 #define min(a, b) ((a) < (b) ? (a) : (b))
204 #endif
205
206 #ifndef max
207 #define max(a, b) ((a) > (b) ? (a) : (b))
208 #endif
209
210 /*
211 * The removed flag needs to be updated atomically with the pointer.
212 * It indicates that no node must attach to the node scheduled for
213 * removal, and that node garbage collection must be performed.
214 * The dummy flag does not require to be updated atomically with the
215 * pointer, but it is added as a pointer low bit flag to save space.
216 */
217 #define REMOVED_FLAG (1UL << 0)
218 #define DUMMY_FLAG (1UL << 1)
219 #define FLAGS_MASK ((1UL << 2) - 1)
220
221 /* Value of the end pointer. Should not interact with flags. */
222 #define END_VALUE NULL
223
224 struct ht_items_count {
225 unsigned long add, del;
226 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
227
228 struct rcu_level {
229 /* Note: manually update allocation length when adding a field */
230 struct _cds_lfht_node nodes[0];
231 };
232
233 struct rcu_table {
234 unsigned long size; /* always a power of 2, shared (RCU) */
235 unsigned long resize_target;
236 int resize_initiated;
237 struct rcu_level *tbl[MAX_TABLE_ORDER];
238 };
239
240 struct cds_lfht {
241 struct rcu_table t;
242 cds_lfht_hash_fct hash_fct;
243 cds_lfht_compare_fct compare_fct;
244 unsigned long min_alloc_order;
245 unsigned long min_alloc_size;
246 unsigned long hash_seed;
247 int flags;
248 /*
249 * We need to put the work threads offline (QSBR) when taking this
250 * mutex, because we use synchronize_rcu within this mutex critical
251 * section, which waits on read-side critical sections, and could
252 * therefore cause grace-period deadlock if we hold off RCU G.P.
253 * completion.
254 */
255 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
256 unsigned int in_progress_resize, in_progress_destroy;
257 void (*cds_lfht_call_rcu)(struct rcu_head *head,
258 void (*func)(struct rcu_head *head));
259 void (*cds_lfht_synchronize_rcu)(void);
260 void (*cds_lfht_rcu_read_lock)(void);
261 void (*cds_lfht_rcu_read_unlock)(void);
262 void (*cds_lfht_rcu_thread_offline)(void);
263 void (*cds_lfht_rcu_thread_online)(void);
264 void (*cds_lfht_rcu_register_thread)(void);
265 void (*cds_lfht_rcu_unregister_thread)(void);
266 pthread_attr_t *resize_attr; /* Resize threads attributes */
267 long count; /* global approximate item count */
268 struct ht_items_count *percpu_count; /* per-cpu item count */
269 };
270
271 struct rcu_resize_work {
272 struct rcu_head head;
273 struct cds_lfht *ht;
274 };
275
276 struct partition_resize_work {
277 pthread_t thread_id;
278 struct cds_lfht *ht;
279 unsigned long i, start, len;
280 void (*fct)(struct cds_lfht *ht, unsigned long i,
281 unsigned long start, unsigned long len);
282 };
283
284 static
285 void _cds_lfht_add(struct cds_lfht *ht,
286 unsigned long size,
287 struct cds_lfht_node *node,
288 struct cds_lfht_iter *unique_ret,
289 int dummy);
290
291 /*
292 * Algorithm to reverse bits in a word by lookup table, extended to
293 * 64-bit words.
294 * Source:
295 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
296 * Originally from Public Domain.
297 */
298
299 static const uint8_t BitReverseTable256[256] =
300 {
301 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
302 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
303 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
304 R6(0), R6(2), R6(1), R6(3)
305 };
306 #undef R2
307 #undef R4
308 #undef R6
309
310 static
311 uint8_t bit_reverse_u8(uint8_t v)
312 {
313 return BitReverseTable256[v];
314 }
315
316 static __attribute__((unused))
317 uint32_t bit_reverse_u32(uint32_t v)
318 {
319 return ((uint32_t) bit_reverse_u8(v) << 24) |
320 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
321 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
322 ((uint32_t) bit_reverse_u8(v >> 24));
323 }
324
325 static __attribute__((unused))
326 uint64_t bit_reverse_u64(uint64_t v)
327 {
328 return ((uint64_t) bit_reverse_u8(v) << 56) |
329 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
330 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
331 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
332 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
333 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
334 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
335 ((uint64_t) bit_reverse_u8(v >> 56));
336 }
337
338 static
339 unsigned long bit_reverse_ulong(unsigned long v)
340 {
341 #if (CAA_BITS_PER_LONG == 32)
342 return bit_reverse_u32(v);
343 #else
344 return bit_reverse_u64(v);
345 #endif
346 }
347
348 /*
349 * fls: returns the position of the most significant bit.
350 * Returns 0 if no bit is set, else returns the position of the most
351 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
352 */
353 #if defined(__i386) || defined(__x86_64)
354 static inline
355 unsigned int fls_u32(uint32_t x)
356 {
357 int r;
358
359 asm("bsrl %1,%0\n\t"
360 "jnz 1f\n\t"
361 "movl $-1,%0\n\t"
362 "1:\n\t"
363 : "=r" (r) : "rm" (x));
364 return r + 1;
365 }
366 #define HAS_FLS_U32
367 #endif
368
369 #if defined(__x86_64)
370 static inline
371 unsigned int fls_u64(uint64_t x)
372 {
373 long r;
374
375 asm("bsrq %1,%0\n\t"
376 "jnz 1f\n\t"
377 "movq $-1,%0\n\t"
378 "1:\n\t"
379 : "=r" (r) : "rm" (x));
380 return r + 1;
381 }
382 #define HAS_FLS_U64
383 #endif
384
385 #ifndef HAS_FLS_U64
386 static __attribute__((unused))
387 unsigned int fls_u64(uint64_t x)
388 {
389 unsigned int r = 64;
390
391 if (!x)
392 return 0;
393
394 if (!(x & 0xFFFFFFFF00000000ULL)) {
395 x <<= 32;
396 r -= 32;
397 }
398 if (!(x & 0xFFFF000000000000ULL)) {
399 x <<= 16;
400 r -= 16;
401 }
402 if (!(x & 0xFF00000000000000ULL)) {
403 x <<= 8;
404 r -= 8;
405 }
406 if (!(x & 0xF000000000000000ULL)) {
407 x <<= 4;
408 r -= 4;
409 }
410 if (!(x & 0xC000000000000000ULL)) {
411 x <<= 2;
412 r -= 2;
413 }
414 if (!(x & 0x8000000000000000ULL)) {
415 x <<= 1;
416 r -= 1;
417 }
418 return r;
419 }
420 #endif
421
422 #ifndef HAS_FLS_U32
423 static __attribute__((unused))
424 unsigned int fls_u32(uint32_t x)
425 {
426 unsigned int r = 32;
427
428 if (!x)
429 return 0;
430 if (!(x & 0xFFFF0000U)) {
431 x <<= 16;
432 r -= 16;
433 }
434 if (!(x & 0xFF000000U)) {
435 x <<= 8;
436 r -= 8;
437 }
438 if (!(x & 0xF0000000U)) {
439 x <<= 4;
440 r -= 4;
441 }
442 if (!(x & 0xC0000000U)) {
443 x <<= 2;
444 r -= 2;
445 }
446 if (!(x & 0x80000000U)) {
447 x <<= 1;
448 r -= 1;
449 }
450 return r;
451 }
452 #endif
453
454 unsigned int fls_ulong(unsigned long x)
455 {
456 #if (CAA_BITS_PER_lONG == 32)
457 return fls_u32(x);
458 #else
459 return fls_u64(x);
460 #endif
461 }
462
463 /*
464 * Return the minimum order for which x <= (1UL << order).
465 * Return -1 if x is 0.
466 */
467 int get_count_order_u32(uint32_t x)
468 {
469 if (!x)
470 return -1;
471
472 return fls_u32(x - 1);
473 }
474
475 /*
476 * Return the minimum order for which x <= (1UL << order).
477 * Return -1 if x is 0.
478 */
479 int get_count_order_ulong(unsigned long x)
480 {
481 if (!x)
482 return -1;
483
484 return fls_ulong(x - 1);
485 }
486
487 #ifdef POISON_FREE
488 #define poison_free(ptr) \
489 do { \
490 memset(ptr, 0x42, sizeof(*(ptr))); \
491 free(ptr); \
492 } while (0)
493 #else
494 #define poison_free(ptr) free(ptr)
495 #endif
496
497 static
498 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
499
500 /*
501 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
502 * available, then we support hash table item accounting.
503 * In the unfortunate event the number of CPUs reported would be
504 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
505 */
506 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
507
508 static
509 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
510 unsigned long count);
511
512 static long nr_cpus_mask = -1;
513
514 static
515 struct ht_items_count *alloc_per_cpu_items_count(void)
516 {
517 struct ht_items_count *count;
518
519 switch (nr_cpus_mask) {
520 case -2:
521 return NULL;
522 case -1:
523 {
524 long maxcpus;
525
526 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
527 if (maxcpus <= 0) {
528 nr_cpus_mask = -2;
529 return NULL;
530 }
531 /*
532 * round up number of CPUs to next power of two, so we
533 * can use & for modulo.
534 */
535 maxcpus = 1UL << get_count_order_ulong(maxcpus);
536 nr_cpus_mask = maxcpus - 1;
537 }
538 /* Fall-through */
539 default:
540 return calloc(nr_cpus_mask + 1, sizeof(*count));
541 }
542 }
543
544 static
545 void free_per_cpu_items_count(struct ht_items_count *count)
546 {
547 poison_free(count);
548 }
549
550 static
551 int ht_get_cpu(void)
552 {
553 int cpu;
554
555 assert(nr_cpus_mask >= 0);
556 cpu = sched_getcpu();
557 if (unlikely(cpu < 0))
558 return cpu;
559 else
560 return cpu & nr_cpus_mask;
561 }
562
563 static
564 void ht_count_add(struct cds_lfht *ht, unsigned long size)
565 {
566 unsigned long percpu_count;
567 int cpu;
568
569 if (unlikely(!ht->percpu_count))
570 return;
571 cpu = ht_get_cpu();
572 if (unlikely(cpu < 0))
573 return;
574 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
575 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
576 long count;
577
578 dbg_printf("add percpu %lu\n", percpu_count);
579 count = uatomic_add_return(&ht->count,
580 1UL << COUNT_COMMIT_ORDER);
581 /* If power of 2 */
582 if (!(count & (count - 1))) {
583 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
584 return;
585 dbg_printf("add set global %ld\n", count);
586 cds_lfht_resize_lazy_count(ht, size,
587 count >> (CHAIN_LEN_TARGET - 1));
588 }
589 }
590 }
591
592 static
593 void ht_count_del(struct cds_lfht *ht, unsigned long size)
594 {
595 unsigned long percpu_count;
596 int cpu;
597
598 if (unlikely(!ht->percpu_count))
599 return;
600 cpu = ht_get_cpu();
601 if (unlikely(cpu < 0))
602 return;
603 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
604 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
605 long count;
606
607 dbg_printf("del percpu %lu\n", percpu_count);
608 count = uatomic_add_return(&ht->count,
609 -(1UL << COUNT_COMMIT_ORDER));
610 /* If power of 2 */
611 if (!(count & (count - 1))) {
612 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
613 return;
614 dbg_printf("del set global %ld\n", count);
615 /*
616 * Don't shrink table if the number of nodes is below a
617 * certain threshold.
618 */
619 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
620 return;
621 cds_lfht_resize_lazy_count(ht, size,
622 count >> (CHAIN_LEN_TARGET - 1));
623 }
624 }
625 }
626
627 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
628
629 static const long nr_cpus_mask = -2;
630
631 static
632 struct ht_items_count *alloc_per_cpu_items_count(void)
633 {
634 return NULL;
635 }
636
637 static
638 void free_per_cpu_items_count(struct ht_items_count *count)
639 {
640 }
641
642 static
643 void ht_count_add(struct cds_lfht *ht, unsigned long size)
644 {
645 }
646
647 static
648 void ht_count_del(struct cds_lfht *ht, unsigned long size)
649 {
650 }
651
652 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
653
654
655 static
656 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
657 {
658 unsigned long count;
659
660 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
661 return;
662 count = uatomic_read(&ht->count);
663 /*
664 * Use bucket-local length for small table expand and for
665 * environments lacking per-cpu data support.
666 */
667 if (count >= (1UL << COUNT_COMMIT_ORDER))
668 return;
669 if (chain_len > 100)
670 dbg_printf("WARNING: large chain length: %u.\n",
671 chain_len);
672 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
673 cds_lfht_resize_lazy(ht, size,
674 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
675 }
676
677 static
678 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
679 {
680 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
681 }
682
683 static
684 int is_removed(struct cds_lfht_node *node)
685 {
686 return ((unsigned long) node) & REMOVED_FLAG;
687 }
688
689 static
690 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
691 {
692 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
693 }
694
695 static
696 int is_dummy(struct cds_lfht_node *node)
697 {
698 return ((unsigned long) node) & DUMMY_FLAG;
699 }
700
701 static
702 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
703 {
704 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
705 }
706
707 static
708 struct cds_lfht_node *get_end(void)
709 {
710 return (struct cds_lfht_node *) END_VALUE;
711 }
712
713 static
714 int is_end(struct cds_lfht_node *node)
715 {
716 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
717 }
718
719 static
720 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
721 {
722 unsigned long old1, old2;
723
724 old1 = uatomic_read(ptr);
725 do {
726 old2 = old1;
727 if (old2 >= v)
728 return old2;
729 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
730 return v;
731 }
732
733 static
734 struct _cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
735 unsigned long hash)
736 {
737 unsigned long index, order;
738
739 assert(size > 0);
740 index = hash & (size - 1);
741 /*
742 * equivalent to get_count_order_ulong(index + 1), but optimizes
743 * away the non-existing 0 special-case for
744 * get_count_order_ulong.
745 */
746 order = fls_ulong(index);
747
748 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
749 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
750
751 return &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
752 }
753
754 /*
755 * Remove all logically deleted nodes from a bucket up to a certain node key.
756 */
757 static
758 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
759 {
760 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
761
762 assert(!is_dummy(dummy));
763 assert(!is_removed(dummy));
764 assert(!is_dummy(node));
765 assert(!is_removed(node));
766 for (;;) {
767 iter_prev = dummy;
768 /* We can always skip the dummy node initially */
769 iter = rcu_dereference(iter_prev->p.next);
770 assert(!is_removed(iter));
771 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
772 /*
773 * We should never be called with dummy (start of chain)
774 * and logically removed node (end of path compression
775 * marker) being the actual same node. This would be a
776 * bug in the algorithm implementation.
777 */
778 assert(dummy != node);
779 for (;;) {
780 if (unlikely(is_end(iter)))
781 return;
782 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
783 return;
784 next = rcu_dereference(clear_flag(iter)->p.next);
785 if (likely(is_removed(next)))
786 break;
787 iter_prev = clear_flag(iter);
788 iter = next;
789 }
790 assert(!is_removed(iter));
791 if (is_dummy(iter))
792 new_next = flag_dummy(clear_flag(next));
793 else
794 new_next = clear_flag(next);
795 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
796 }
797 return;
798 }
799
800 static
801 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
802 struct cds_lfht_node *old_node,
803 struct cds_lfht_node *old_next,
804 struct cds_lfht_node *new_node)
805 {
806 struct cds_lfht_node *dummy, *ret_next;
807 struct _cds_lfht_node *lookup;
808
809 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
810 return -ENOENT;
811
812 assert(!is_removed(old_node));
813 assert(!is_dummy(old_node));
814 assert(!is_removed(new_node));
815 assert(!is_dummy(new_node));
816 assert(new_node != old_node);
817 for (;;) {
818 /* Insert after node to be replaced */
819 if (is_removed(old_next)) {
820 /*
821 * Too late, the old node has been removed under us
822 * between lookup and replace. Fail.
823 */
824 return -ENOENT;
825 }
826 assert(!is_dummy(old_next));
827 assert(new_node != clear_flag(old_next));
828 new_node->p.next = clear_flag(old_next);
829 /*
830 * Here is the whole trick for lock-free replace: we add
831 * the replacement node _after_ the node we want to
832 * replace by atomically setting its next pointer at the
833 * same time we set its removal flag. Given that
834 * the lookups/get next use an iterator aware of the
835 * next pointer, they will either skip the old node due
836 * to the removal flag and see the new node, or use
837 * the old node, but will not see the new one.
838 */
839 ret_next = uatomic_cmpxchg(&old_node->p.next,
840 old_next, flag_removed(new_node));
841 if (ret_next == old_next)
842 break; /* We performed the replacement. */
843 old_next = ret_next;
844 }
845
846 /*
847 * Ensure that the old node is not visible to readers anymore:
848 * lookup for the node, and remove it (along with any other
849 * logically removed node) if found.
850 */
851 lookup = lookup_bucket(ht, size, bit_reverse_ulong(old_node->p.reverse_hash));
852 dummy = (struct cds_lfht_node *) lookup;
853 _cds_lfht_gc_bucket(dummy, new_node);
854
855 assert(is_removed(rcu_dereference(old_node->p.next)));
856 return 0;
857 }
858
859 /*
860 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
861 * mode. A NULL unique_ret allows creation of duplicate keys.
862 */
863 static
864 void _cds_lfht_add(struct cds_lfht *ht,
865 unsigned long size,
866 struct cds_lfht_node *node,
867 struct cds_lfht_iter *unique_ret,
868 int dummy)
869 {
870 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
871 *return_node;
872 struct _cds_lfht_node *lookup;
873
874 assert(!is_dummy(node));
875 assert(!is_removed(node));
876 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
877 for (;;) {
878 uint32_t chain_len = 0;
879
880 /*
881 * iter_prev points to the non-removed node prior to the
882 * insert location.
883 */
884 iter_prev = (struct cds_lfht_node *) lookup;
885 /* We can always skip the dummy node initially */
886 iter = rcu_dereference(iter_prev->p.next);
887 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
888 for (;;) {
889 if (unlikely(is_end(iter)))
890 goto insert;
891 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
892 goto insert;
893
894 /* dummy node is the first node of the identical-hash-value chain */
895 if (dummy && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash)
896 goto insert;
897
898 next = rcu_dereference(clear_flag(iter)->p.next);
899 if (unlikely(is_removed(next)))
900 goto gc_node;
901
902 /* uniquely add */
903 if (unique_ret
904 && !is_dummy(next)
905 && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash) {
906 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
907
908 /*
909 * uniquely adding inserts the node as the first
910 * node of the identical-hash-value node chain.
911 *
912 * This semantic ensures no duplicated keys
913 * should ever be observable in the table
914 * (including observe one node by one node
915 * by forward iterations)
916 */
917 cds_lfht_next_duplicate(ht, &d_iter);
918 if (!d_iter.node)
919 goto insert;
920
921 *unique_ret = d_iter;
922 return;
923 }
924
925 /* Only account for identical reverse hash once */
926 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
927 && !is_dummy(next))
928 check_resize(ht, size, ++chain_len);
929 iter_prev = clear_flag(iter);
930 iter = next;
931 }
932
933 insert:
934 assert(node != clear_flag(iter));
935 assert(!is_removed(iter_prev));
936 assert(!is_removed(iter));
937 assert(iter_prev != node);
938 if (!dummy)
939 node->p.next = clear_flag(iter);
940 else
941 node->p.next = flag_dummy(clear_flag(iter));
942 if (is_dummy(iter))
943 new_node = flag_dummy(node);
944 else
945 new_node = node;
946 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
947 new_node) != iter) {
948 continue; /* retry */
949 } else {
950 return_node = node;
951 goto end;
952 }
953
954 gc_node:
955 assert(!is_removed(iter));
956 if (is_dummy(iter))
957 new_next = flag_dummy(clear_flag(next));
958 else
959 new_next = clear_flag(next);
960 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
961 /* retry */
962 }
963 end:
964 if (unique_ret) {
965 unique_ret->node = return_node;
966 /* unique_ret->next left unset, never used. */
967 }
968 }
969
970 static
971 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
972 struct cds_lfht_node *node,
973 int dummy_removal)
974 {
975 struct cds_lfht_node *dummy, *next, *old;
976 struct _cds_lfht_node *lookup;
977
978 if (!node) /* Return -ENOENT if asked to delete NULL node */
979 return -ENOENT;
980
981 /* logically delete the node */
982 assert(!is_dummy(node));
983 assert(!is_removed(node));
984 old = rcu_dereference(node->p.next);
985 do {
986 struct cds_lfht_node *new_next;
987
988 next = old;
989 if (unlikely(is_removed(next)))
990 return -ENOENT;
991 if (dummy_removal)
992 assert(is_dummy(next));
993 else
994 assert(!is_dummy(next));
995 new_next = flag_removed(next);
996 old = uatomic_cmpxchg(&node->p.next, next, new_next);
997 } while (old != next);
998 /* We performed the (logical) deletion. */
999
1000 /*
1001 * Ensure that the node is not visible to readers anymore: lookup for
1002 * the node, and remove it (along with any other logically removed node)
1003 * if found.
1004 */
1005 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
1006 dummy = (struct cds_lfht_node *) lookup;
1007 _cds_lfht_gc_bucket(dummy, node);
1008
1009 assert(is_removed(rcu_dereference(node->p.next)));
1010 return 0;
1011 }
1012
1013 static
1014 void *partition_resize_thread(void *arg)
1015 {
1016 struct partition_resize_work *work = arg;
1017
1018 work->ht->cds_lfht_rcu_register_thread();
1019 work->fct(work->ht, work->i, work->start, work->len);
1020 work->ht->cds_lfht_rcu_unregister_thread();
1021 return NULL;
1022 }
1023
1024 static
1025 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1026 unsigned long len,
1027 void (*fct)(struct cds_lfht *ht, unsigned long i,
1028 unsigned long start, unsigned long len))
1029 {
1030 unsigned long partition_len;
1031 struct partition_resize_work *work;
1032 int thread, ret;
1033 unsigned long nr_threads;
1034
1035 /*
1036 * Note: nr_cpus_mask + 1 is always power of 2.
1037 * We spawn just the number of threads we need to satisfy the minimum
1038 * partition size, up to the number of CPUs in the system.
1039 */
1040 if (nr_cpus_mask > 0) {
1041 nr_threads = min(nr_cpus_mask + 1,
1042 len >> MIN_PARTITION_PER_THREAD_ORDER);
1043 } else {
1044 nr_threads = 1;
1045 }
1046 partition_len = len >> get_count_order_ulong(nr_threads);
1047 work = calloc(nr_threads, sizeof(*work));
1048 assert(work);
1049 for (thread = 0; thread < nr_threads; thread++) {
1050 work[thread].ht = ht;
1051 work[thread].i = i;
1052 work[thread].len = partition_len;
1053 work[thread].start = thread * partition_len;
1054 work[thread].fct = fct;
1055 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1056 partition_resize_thread, &work[thread]);
1057 assert(!ret);
1058 }
1059 for (thread = 0; thread < nr_threads; thread++) {
1060 ret = pthread_join(work[thread].thread_id, NULL);
1061 assert(!ret);
1062 }
1063 free(work);
1064 }
1065
1066 /*
1067 * Holding RCU read lock to protect _cds_lfht_add against memory
1068 * reclaim that could be performed by other call_rcu worker threads (ABA
1069 * problem).
1070 *
1071 * When we reach a certain length, we can split this population phase over
1072 * many worker threads, based on the number of CPUs available in the system.
1073 * This should therefore take care of not having the expand lagging behind too
1074 * many concurrent insertion threads by using the scheduler's ability to
1075 * schedule dummy node population fairly with insertions.
1076 */
1077 static
1078 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1079 unsigned long start, unsigned long len)
1080 {
1081 unsigned long j;
1082
1083 assert(i > ht->min_alloc_order);
1084 ht->cds_lfht_rcu_read_lock();
1085 for (j = start; j < start + len; j++) {
1086 struct cds_lfht_node *new_node =
1087 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1088
1089 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1090 i, j, (1UL << (i - 1)) + j);
1091 new_node->p.reverse_hash =
1092 bit_reverse_ulong((1UL << (i - 1)) + j);
1093 _cds_lfht_add(ht, 1UL << (i - 1),
1094 new_node, NULL, 1);
1095 }
1096 ht->cds_lfht_rcu_read_unlock();
1097 }
1098
1099 static
1100 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1101 unsigned long len)
1102 {
1103 assert(nr_cpus_mask != -1);
1104 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1105 ht->cds_lfht_rcu_thread_online();
1106 init_table_populate_partition(ht, i, 0, len);
1107 ht->cds_lfht_rcu_thread_offline();
1108 return;
1109 }
1110 partition_resize_helper(ht, i, len, init_table_populate_partition);
1111 }
1112
1113 static
1114 void init_table(struct cds_lfht *ht,
1115 unsigned long first_order, unsigned long last_order)
1116 {
1117 unsigned long i;
1118
1119 dbg_printf("init table: first_order %lu last_order %lu\n",
1120 first_order, last_order);
1121 assert(first_order > ht->min_alloc_order);
1122 for (i = first_order; i <= last_order; i++) {
1123 unsigned long len;
1124
1125 len = 1UL << (i - 1);
1126 dbg_printf("init order %lu len: %lu\n", i, len);
1127
1128 /* Stop expand if the resize target changes under us */
1129 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1130 break;
1131
1132 ht->t.tbl[i] = calloc(1, len * sizeof(struct _cds_lfht_node));
1133 assert(ht->t.tbl[i]);
1134
1135 /*
1136 * Set all dummy nodes reverse hash values for a level and
1137 * link all dummy nodes into the table.
1138 */
1139 init_table_populate(ht, i, len);
1140
1141 /*
1142 * Update table size.
1143 */
1144 cmm_smp_wmb(); /* populate data before RCU size */
1145 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1146
1147 dbg_printf("init new size: %lu\n", 1UL << i);
1148 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1149 break;
1150 }
1151 }
1152
1153 /*
1154 * Holding RCU read lock to protect _cds_lfht_remove against memory
1155 * reclaim that could be performed by other call_rcu worker threads (ABA
1156 * problem).
1157 * For a single level, we logically remove and garbage collect each node.
1158 *
1159 * As a design choice, we perform logical removal and garbage collection on a
1160 * node-per-node basis to simplify this algorithm. We also assume keeping good
1161 * cache locality of the operation would overweight possible performance gain
1162 * that could be achieved by batching garbage collection for multiple levels.
1163 * However, this would have to be justified by benchmarks.
1164 *
1165 * Concurrent removal and add operations are helping us perform garbage
1166 * collection of logically removed nodes. We guarantee that all logically
1167 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1168 * invoked to free a hole level of dummy nodes (after a grace period).
1169 *
1170 * Logical removal and garbage collection can therefore be done in batch or on a
1171 * node-per-node basis, as long as the guarantee above holds.
1172 *
1173 * When we reach a certain length, we can split this removal over many worker
1174 * threads, based on the number of CPUs available in the system. This should
1175 * take care of not letting resize process lag behind too many concurrent
1176 * updater threads actively inserting into the hash table.
1177 */
1178 static
1179 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1180 unsigned long start, unsigned long len)
1181 {
1182 unsigned long j;
1183
1184 assert(i > ht->min_alloc_order);
1185 ht->cds_lfht_rcu_read_lock();
1186 for (j = start; j < start + len; j++) {
1187 struct cds_lfht_node *fini_node =
1188 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1189
1190 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1191 i, j, (1UL << (i - 1)) + j);
1192 fini_node->p.reverse_hash =
1193 bit_reverse_ulong((1UL << (i - 1)) + j);
1194 (void) _cds_lfht_del(ht, 1UL << (i - 1), fini_node, 1);
1195 }
1196 ht->cds_lfht_rcu_read_unlock();
1197 }
1198
1199 static
1200 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1201 {
1202
1203 assert(nr_cpus_mask != -1);
1204 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1205 ht->cds_lfht_rcu_thread_online();
1206 remove_table_partition(ht, i, 0, len);
1207 ht->cds_lfht_rcu_thread_offline();
1208 return;
1209 }
1210 partition_resize_helper(ht, i, len, remove_table_partition);
1211 }
1212
1213 static
1214 void fini_table(struct cds_lfht *ht,
1215 unsigned long first_order, unsigned long last_order)
1216 {
1217 long i;
1218 void *free_by_rcu = NULL;
1219
1220 dbg_printf("fini table: first_order %lu last_order %lu\n",
1221 first_order, last_order);
1222 assert(first_order > ht->min_alloc_order);
1223 for (i = last_order; i >= first_order; i--) {
1224 unsigned long len;
1225
1226 len = 1UL << (i - 1);
1227 dbg_printf("fini order %lu len: %lu\n", i, len);
1228
1229 /* Stop shrink if the resize target changes under us */
1230 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1231 break;
1232
1233 cmm_smp_wmb(); /* populate data before RCU size */
1234 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1235
1236 /*
1237 * We need to wait for all add operations to reach Q.S. (and
1238 * thus use the new table for lookups) before we can start
1239 * releasing the old dummy nodes. Otherwise their lookup will
1240 * return a logically removed node as insert position.
1241 */
1242 ht->cds_lfht_synchronize_rcu();
1243 if (free_by_rcu)
1244 free(free_by_rcu);
1245
1246 /*
1247 * Set "removed" flag in dummy nodes about to be removed.
1248 * Unlink all now-logically-removed dummy node pointers.
1249 * Concurrent add/remove operation are helping us doing
1250 * the gc.
1251 */
1252 remove_table(ht, i, len);
1253
1254 free_by_rcu = ht->t.tbl[i];
1255
1256 dbg_printf("fini new size: %lu\n", 1UL << i);
1257 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1258 break;
1259 }
1260
1261 if (free_by_rcu) {
1262 ht->cds_lfht_synchronize_rcu();
1263 free(free_by_rcu);
1264 }
1265 }
1266
1267 static
1268 void cds_lfht_create_dummy(struct cds_lfht *ht, unsigned long size)
1269 {
1270 struct _cds_lfht_node *prev, *node;
1271 unsigned long order, len, i, j;
1272
1273 ht->t.tbl[0] = calloc(1, ht->min_alloc_size * sizeof(struct _cds_lfht_node));
1274 assert(ht->t.tbl[0]);
1275
1276 dbg_printf("create dummy: order %lu index %lu hash %lu\n", 0, 0, 0);
1277 ht->t.tbl[0]->nodes[0].next = flag_dummy(get_end());
1278 ht->t.tbl[0]->nodes[0].reverse_hash = 0;
1279
1280 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1281 len = 1UL << (order - 1);
1282 if (order <= ht->min_alloc_order) {
1283 ht->t.tbl[order] = (void *)(ht->t.tbl[0]->nodes + len);
1284 } else {
1285 ht->t.tbl[order] = calloc(1, len * sizeof(struct _cds_lfht_node));
1286 assert(ht->t.tbl[order]);
1287 }
1288
1289 i = 0;
1290 prev = ht->t.tbl[i]->nodes;
1291 for (j = 0; j < len; j++) {
1292 if (j & (j - 1)) { /* Between power of 2 */
1293 prev++;
1294 } else if (j) { /* At each power of 2 */
1295 i++;
1296 prev = ht->t.tbl[i]->nodes;
1297 }
1298
1299 node = &ht->t.tbl[order]->nodes[j];
1300 dbg_printf("create dummy: order %lu index %lu hash %lu\n",
1301 order, j, j + len);
1302 node->next = prev->next;
1303 assert(is_dummy(node->next));
1304 node->reverse_hash = bit_reverse_ulong(j + len);
1305 prev->next = flag_dummy((struct cds_lfht_node *)node);
1306 }
1307 }
1308 }
1309
1310 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1311 cds_lfht_compare_fct compare_fct,
1312 unsigned long hash_seed,
1313 unsigned long init_size,
1314 unsigned long min_alloc_size,
1315 int flags,
1316 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1317 void (*func)(struct rcu_head *head)),
1318 void (*cds_lfht_synchronize_rcu)(void),
1319 void (*cds_lfht_rcu_read_lock)(void),
1320 void (*cds_lfht_rcu_read_unlock)(void),
1321 void (*cds_lfht_rcu_thread_offline)(void),
1322 void (*cds_lfht_rcu_thread_online)(void),
1323 void (*cds_lfht_rcu_register_thread)(void),
1324 void (*cds_lfht_rcu_unregister_thread)(void),
1325 pthread_attr_t *attr)
1326 {
1327 struct cds_lfht *ht;
1328 unsigned long order;
1329
1330 /* min_alloc_size must be power of two */
1331 if (!min_alloc_size || (min_alloc_size & (min_alloc_size - 1)))
1332 return NULL;
1333 /* init_size must be power of two */
1334 if (!init_size || (init_size & (init_size - 1)))
1335 return NULL;
1336 min_alloc_size = max(min_alloc_size, MIN_TABLE_SIZE);
1337 init_size = max(init_size, min_alloc_size);
1338 ht = calloc(1, sizeof(struct cds_lfht));
1339 assert(ht);
1340 ht->hash_fct = hash_fct;
1341 ht->compare_fct = compare_fct;
1342 ht->hash_seed = hash_seed;
1343 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1344 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1345 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1346 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1347 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1348 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1349 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1350 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1351 ht->resize_attr = attr;
1352 ht->percpu_count = alloc_per_cpu_items_count();
1353 /* this mutex should not nest in read-side C.S. */
1354 pthread_mutex_init(&ht->resize_mutex, NULL);
1355 ht->flags = flags;
1356 order = get_count_order_ulong(init_size);
1357 ht->t.resize_target = 1UL << order;
1358 cds_lfht_create_dummy(ht, 1UL << order);
1359 ht->t.size = 1UL << order;
1360 ht->min_alloc_size = min_alloc_size;
1361 ht->min_alloc_order = get_count_order_ulong(min_alloc_size);
1362 return ht;
1363 }
1364
1365 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1366 struct cds_lfht_iter *iter)
1367 {
1368 struct cds_lfht_node *node, *next, *dummy_node;
1369 struct _cds_lfht_node *lookup;
1370 unsigned long hash, reverse_hash, size;
1371
1372 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1373 reverse_hash = bit_reverse_ulong(hash);
1374
1375 size = rcu_dereference(ht->t.size);
1376 lookup = lookup_bucket(ht, size, hash);
1377 dummy_node = (struct cds_lfht_node *) lookup;
1378 /* We can always skip the dummy node initially */
1379 node = rcu_dereference(dummy_node->p.next);
1380 node = clear_flag(node);
1381 for (;;) {
1382 if (unlikely(is_end(node))) {
1383 node = next = NULL;
1384 break;
1385 }
1386 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1387 node = next = NULL;
1388 break;
1389 }
1390 next = rcu_dereference(node->p.next);
1391 if (likely(!is_removed(next))
1392 && !is_dummy(next)
1393 && clear_flag(node)->p.reverse_hash == reverse_hash
1394 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1395 break;
1396 }
1397 node = clear_flag(next);
1398 }
1399 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1400 iter->node = node;
1401 iter->next = next;
1402 }
1403
1404 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1405 {
1406 struct cds_lfht_node *node, *next;
1407 unsigned long reverse_hash;
1408 void *key;
1409 size_t key_len;
1410
1411 node = iter->node;
1412 reverse_hash = node->p.reverse_hash;
1413 key = node->key;
1414 key_len = node->key_len;
1415 next = iter->next;
1416 node = clear_flag(next);
1417
1418 for (;;) {
1419 if (unlikely(is_end(node))) {
1420 node = next = NULL;
1421 break;
1422 }
1423 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1424 node = next = NULL;
1425 break;
1426 }
1427 next = rcu_dereference(node->p.next);
1428 if (likely(!is_removed(next))
1429 && !is_dummy(next)
1430 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1431 break;
1432 }
1433 node = clear_flag(next);
1434 }
1435 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1436 iter->node = node;
1437 iter->next = next;
1438 }
1439
1440 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1441 {
1442 struct cds_lfht_node *node, *next;
1443
1444 node = clear_flag(iter->next);
1445 for (;;) {
1446 if (unlikely(is_end(node))) {
1447 node = next = NULL;
1448 break;
1449 }
1450 next = rcu_dereference(node->p.next);
1451 if (likely(!is_removed(next))
1452 && !is_dummy(next)) {
1453 break;
1454 }
1455 node = clear_flag(next);
1456 }
1457 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1458 iter->node = node;
1459 iter->next = next;
1460 }
1461
1462 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1463 {
1464 struct _cds_lfht_node *lookup;
1465
1466 /*
1467 * Get next after first dummy node. The first dummy node is the
1468 * first node of the linked list.
1469 */
1470 lookup = &ht->t.tbl[0]->nodes[0];
1471 iter->next = lookup->next;
1472 cds_lfht_next(ht, iter);
1473 }
1474
1475 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1476 {
1477 unsigned long hash, size;
1478
1479 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1480 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1481
1482 size = rcu_dereference(ht->t.size);
1483 _cds_lfht_add(ht, size, node, NULL, 0);
1484 ht_count_add(ht, size);
1485 }
1486
1487 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1488 struct cds_lfht_node *node)
1489 {
1490 unsigned long hash, size;
1491 struct cds_lfht_iter iter;
1492
1493 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1494 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1495
1496 size = rcu_dereference(ht->t.size);
1497 _cds_lfht_add(ht, size, node, &iter, 0);
1498 if (iter.node == node)
1499 ht_count_add(ht, size);
1500 return iter.node;
1501 }
1502
1503 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1504 struct cds_lfht_node *node)
1505 {
1506 unsigned long hash, size;
1507 struct cds_lfht_iter iter;
1508
1509 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1510 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1511
1512 size = rcu_dereference(ht->t.size);
1513 for (;;) {
1514 _cds_lfht_add(ht, size, node, &iter, 0);
1515 if (iter.node == node) {
1516 ht_count_add(ht, size);
1517 return NULL;
1518 }
1519
1520 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1521 return iter.node;
1522 }
1523 }
1524
1525 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1526 struct cds_lfht_node *new_node)
1527 {
1528 unsigned long size;
1529
1530 size = rcu_dereference(ht->t.size);
1531 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1532 new_node);
1533 }
1534
1535 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1536 {
1537 unsigned long size;
1538 int ret;
1539
1540 size = rcu_dereference(ht->t.size);
1541 ret = _cds_lfht_del(ht, size, iter->node, 0);
1542 if (!ret)
1543 ht_count_del(ht, size);
1544 return ret;
1545 }
1546
1547 static
1548 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1549 {
1550 struct cds_lfht_node *node;
1551 struct _cds_lfht_node *lookup;
1552 unsigned long order, i, size;
1553
1554 /* Check that the table is empty */
1555 lookup = &ht->t.tbl[0]->nodes[0];
1556 node = (struct cds_lfht_node *) lookup;
1557 do {
1558 node = clear_flag(node)->p.next;
1559 if (!is_dummy(node))
1560 return -EPERM;
1561 assert(!is_removed(node));
1562 } while (!is_end(node));
1563 /*
1564 * size accessed without rcu_dereference because hash table is
1565 * being destroyed.
1566 */
1567 size = ht->t.size;
1568 /* Internal sanity check: all nodes left should be dummy */
1569 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1570 unsigned long len;
1571
1572 len = !order ? 1 : 1UL << (order - 1);
1573 for (i = 0; i < len; i++) {
1574 dbg_printf("delete order %lu i %lu hash %lu\n",
1575 order, i,
1576 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1577 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1578 }
1579
1580 if (order == ht->min_alloc_order)
1581 poison_free(ht->t.tbl[0]);
1582 else if (order > ht->min_alloc_order)
1583 poison_free(ht->t.tbl[order]);
1584 /* Nothing to delete for order < ht->min_alloc_order */
1585 }
1586 return 0;
1587 }
1588
1589 /*
1590 * Should only be called when no more concurrent readers nor writers can
1591 * possibly access the table.
1592 */
1593 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1594 {
1595 int ret;
1596
1597 /* Wait for in-flight resize operations to complete */
1598 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1599 cmm_smp_mb(); /* Store destroy before load resize */
1600 while (uatomic_read(&ht->in_progress_resize))
1601 poll(NULL, 0, 100); /* wait for 100ms */
1602 ret = cds_lfht_delete_dummy(ht);
1603 if (ret)
1604 return ret;
1605 free_per_cpu_items_count(ht->percpu_count);
1606 if (attr)
1607 *attr = ht->resize_attr;
1608 poison_free(ht);
1609 return ret;
1610 }
1611
1612 void cds_lfht_count_nodes(struct cds_lfht *ht,
1613 long *approx_before,
1614 unsigned long *count,
1615 unsigned long *removed,
1616 long *approx_after)
1617 {
1618 struct cds_lfht_node *node, *next;
1619 struct _cds_lfht_node *lookup;
1620 unsigned long nr_dummy = 0;
1621
1622 *approx_before = 0;
1623 if (nr_cpus_mask >= 0) {
1624 int i;
1625
1626 for (i = 0; i < nr_cpus_mask + 1; i++) {
1627 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1628 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1629 }
1630 }
1631
1632 *count = 0;
1633 *removed = 0;
1634
1635 /* Count non-dummy nodes in the table */
1636 lookup = &ht->t.tbl[0]->nodes[0];
1637 node = (struct cds_lfht_node *) lookup;
1638 do {
1639 next = rcu_dereference(node->p.next);
1640 if (is_removed(next)) {
1641 if (!is_dummy(next))
1642 (*removed)++;
1643 else
1644 (nr_dummy)++;
1645 } else if (!is_dummy(next))
1646 (*count)++;
1647 else
1648 (nr_dummy)++;
1649 node = clear_flag(next);
1650 } while (!is_end(node));
1651 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1652 *approx_after = 0;
1653 if (nr_cpus_mask >= 0) {
1654 int i;
1655
1656 for (i = 0; i < nr_cpus_mask + 1; i++) {
1657 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1658 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1659 }
1660 }
1661 }
1662
1663 /* called with resize mutex held */
1664 static
1665 void _do_cds_lfht_grow(struct cds_lfht *ht,
1666 unsigned long old_size, unsigned long new_size)
1667 {
1668 unsigned long old_order, new_order;
1669
1670 old_order = get_count_order_ulong(old_size);
1671 new_order = get_count_order_ulong(new_size);
1672 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1673 old_size, old_order, new_size, new_order);
1674 assert(new_size > old_size);
1675 init_table(ht, old_order + 1, new_order);
1676 }
1677
1678 /* called with resize mutex held */
1679 static
1680 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1681 unsigned long old_size, unsigned long new_size)
1682 {
1683 unsigned long old_order, new_order;
1684
1685 new_size = max(new_size, ht->min_alloc_size);
1686 old_order = get_count_order_ulong(old_size);
1687 new_order = get_count_order_ulong(new_size);
1688 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1689 old_size, old_order, new_size, new_order);
1690 assert(new_size < old_size);
1691
1692 /* Remove and unlink all dummy nodes to remove. */
1693 fini_table(ht, new_order + 1, old_order);
1694 }
1695
1696
1697 /* called with resize mutex held */
1698 static
1699 void _do_cds_lfht_resize(struct cds_lfht *ht)
1700 {
1701 unsigned long new_size, old_size;
1702
1703 /*
1704 * Resize table, re-do if the target size has changed under us.
1705 */
1706 do {
1707 assert(uatomic_read(&ht->in_progress_resize));
1708 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1709 break;
1710 ht->t.resize_initiated = 1;
1711 old_size = ht->t.size;
1712 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1713 if (old_size < new_size)
1714 _do_cds_lfht_grow(ht, old_size, new_size);
1715 else if (old_size > new_size)
1716 _do_cds_lfht_shrink(ht, old_size, new_size);
1717 ht->t.resize_initiated = 0;
1718 /* write resize_initiated before read resize_target */
1719 cmm_smp_mb();
1720 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1721 }
1722
1723 static
1724 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1725 int growth_order)
1726 {
1727 return _uatomic_max(&ht->t.resize_target,
1728 size << growth_order);
1729 }
1730
1731 static
1732 void resize_target_update_count(struct cds_lfht *ht,
1733 unsigned long count)
1734 {
1735 count = max(count, ht->min_alloc_size);
1736 uatomic_set(&ht->t.resize_target, count);
1737 }
1738
1739 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1740 {
1741 resize_target_update_count(ht, new_size);
1742 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1743 ht->cds_lfht_rcu_thread_offline();
1744 pthread_mutex_lock(&ht->resize_mutex);
1745 _do_cds_lfht_resize(ht);
1746 pthread_mutex_unlock(&ht->resize_mutex);
1747 ht->cds_lfht_rcu_thread_online();
1748 }
1749
1750 static
1751 void do_resize_cb(struct rcu_head *head)
1752 {
1753 struct rcu_resize_work *work =
1754 caa_container_of(head, struct rcu_resize_work, head);
1755 struct cds_lfht *ht = work->ht;
1756
1757 ht->cds_lfht_rcu_thread_offline();
1758 pthread_mutex_lock(&ht->resize_mutex);
1759 _do_cds_lfht_resize(ht);
1760 pthread_mutex_unlock(&ht->resize_mutex);
1761 ht->cds_lfht_rcu_thread_online();
1762 poison_free(work);
1763 cmm_smp_mb(); /* finish resize before decrement */
1764 uatomic_dec(&ht->in_progress_resize);
1765 }
1766
1767 static
1768 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1769 {
1770 struct rcu_resize_work *work;
1771 unsigned long target_size;
1772
1773 target_size = resize_target_update(ht, size, growth);
1774 /* Store resize_target before read resize_initiated */
1775 cmm_smp_mb();
1776 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1777 uatomic_inc(&ht->in_progress_resize);
1778 cmm_smp_mb(); /* increment resize count before load destroy */
1779 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1780 uatomic_dec(&ht->in_progress_resize);
1781 return;
1782 }
1783 work = malloc(sizeof(*work));
1784 work->ht = ht;
1785 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1786 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1787 }
1788 }
1789
1790 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1791
1792 static
1793 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1794 unsigned long count)
1795 {
1796 struct rcu_resize_work *work;
1797
1798 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1799 return;
1800 resize_target_update_count(ht, count);
1801 /* Store resize_target before read resize_initiated */
1802 cmm_smp_mb();
1803 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1804 uatomic_inc(&ht->in_progress_resize);
1805 cmm_smp_mb(); /* increment resize count before load destroy */
1806 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1807 uatomic_dec(&ht->in_progress_resize);
1808 return;
1809 }
1810 work = malloc(sizeof(*work));
1811 work->ht = ht;
1812 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1813 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1814 }
1815 }
1816
1817 #endif
This page took 0.108067 seconds and 5 git commands to generate.