Fix signal handler installation
[urcu.git] / api_x86.h
1 /* MECHANICALLY GENERATED, DO NOT EDIT!!! */
2
3 #define _INCLUDE_API_H
4
5 /*
6 * common.h: Common Linux kernel-isms.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; but version 2 of the License only due
11 * to code included from the Linux kernel.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * Copyright (c) 2006 Paul E. McKenney, IBM.
23 *
24 * Much code taken from the Linux kernel. For such code, the option
25 * to redistribute under later versions of GPL might not be available.
26 */
27
28 #ifndef __always_inline
29 #define __always_inline inline
30 #endif
31
32 #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
33 #define BUILD_BUG_ON_ZERO(e) (sizeof(char[1 - 2 * !!(e)]) - 1)
34
35 #ifdef __ASSEMBLY__
36 # define stringify_in_c(...) __VA_ARGS__
37 # define ASM_CONST(x) x
38 #else
39 /* This version of stringify will deal with commas... */
40 # define __stringify_in_c(...) #__VA_ARGS__
41 # define stringify_in_c(...) __stringify_in_c(__VA_ARGS__) " "
42 # define __ASM_CONST(x) x##UL
43 # define ASM_CONST(x) __ASM_CONST(x)
44 #endif
45
46
47 /*
48 * arch-i386.h: Expose x86 atomic instructions. 80486 and better only.
49 *
50 * This program is free software; you can redistribute it and/or modify
51 * it under the terms of the GNU General Public License as published by
52 * the Free Software Foundation, but version 2 only due to inclusion
53 * of Linux-kernel code.
54 *
55 * This program is distributed in the hope that it will be useful,
56 * but WITHOUT ANY WARRANTY; without even the implied warranty of
57 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
58 * GNU General Public License for more details.
59 *
60 * You should have received a copy of the GNU General Public License
61 * along with this program; if not, write to the Free Software
62 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
63 *
64 * Copyright (c) 2006 Paul E. McKenney, IBM.
65 *
66 * Much code taken from the Linux kernel. For such code, the option
67 * to redistribute under later versions of GPL might not be available.
68 */
69
70 /*
71 * Machine parameters.
72 */
73
74 #define CONFIG_SMP
75
76 #define CACHE_LINE_SIZE 64
77 #define ____cacheline_internodealigned_in_smp \
78 __attribute__((__aligned__(1 << 6)))
79
80 #define LOCK_PREFIX "lock ; "
81
82 /*
83 * Atomic data structure, initialization, and access.
84 */
85
86 typedef struct { volatile int counter; } atomic_t;
87
88 #define ATOMIC_INIT(i) { (i) }
89
90 #define atomic_read(v) ((v)->counter)
91 #define atomic_set(v, i) (((v)->counter) = (i))
92
93 /*
94 * Atomic operations.
95 */
96
97 /**
98 * atomic_add - add integer to atomic variable
99 * @i: integer value to add
100 * @v: pointer of type atomic_t
101 *
102 * Atomically adds @i to @v.
103 */
104 static __inline__ void atomic_add(int i, atomic_t *v)
105 {
106 __asm__ __volatile__(
107 LOCK_PREFIX "addl %1,%0"
108 :"+m" (v->counter)
109 :"ir" (i));
110 }
111
112 /**
113 * atomic_sub - subtract the atomic variable
114 * @i: integer value to subtract
115 * @v: pointer of type atomic_t
116 *
117 * Atomically subtracts @i from @v.
118 */
119 static __inline__ void atomic_sub(int i, atomic_t *v)
120 {
121 __asm__ __volatile__(
122 LOCK_PREFIX "subl %1,%0"
123 :"+m" (v->counter)
124 :"ir" (i));
125 }
126
127 /**
128 * atomic_sub_and_test - subtract value from variable and test result
129 * @i: integer value to subtract
130 * @v: pointer of type atomic_t
131 *
132 * Atomically subtracts @i from @v and returns
133 * true if the result is zero, or false for all
134 * other cases.
135 */
136 static __inline__ int atomic_sub_and_test(int i, atomic_t *v)
137 {
138 unsigned char c;
139
140 __asm__ __volatile__(
141 LOCK_PREFIX "subl %2,%0; sete %1"
142 :"+m" (v->counter), "=qm" (c)
143 :"ir" (i) : "memory");
144 return c;
145 }
146
147 /**
148 * atomic_inc - increment atomic variable
149 * @v: pointer of type atomic_t
150 *
151 * Atomically increments @v by 1.
152 */
153 static __inline__ void atomic_inc(atomic_t *v)
154 {
155 __asm__ __volatile__(
156 LOCK_PREFIX "incl %0"
157 :"+m" (v->counter));
158 }
159
160 /**
161 * atomic_dec - decrement atomic variable
162 * @v: pointer of type atomic_t
163 *
164 * Atomically decrements @v by 1.
165 */
166 static __inline__ void atomic_dec(atomic_t *v)
167 {
168 __asm__ __volatile__(
169 LOCK_PREFIX "decl %0"
170 :"+m" (v->counter));
171 }
172
173 /**
174 * atomic_dec_and_test - decrement and test
175 * @v: pointer of type atomic_t
176 *
177 * Atomically decrements @v by 1 and
178 * returns true if the result is 0, or false for all other
179 * cases.
180 */
181 static __inline__ int atomic_dec_and_test(atomic_t *v)
182 {
183 unsigned char c;
184
185 __asm__ __volatile__(
186 LOCK_PREFIX "decl %0; sete %1"
187 :"+m" (v->counter), "=qm" (c)
188 : : "memory");
189 return c != 0;
190 }
191
192 /**
193 * atomic_inc_and_test - increment and test
194 * @v: pointer of type atomic_t
195 *
196 * Atomically increments @v by 1
197 * and returns true if the result is zero, or false for all
198 * other cases.
199 */
200 static __inline__ int atomic_inc_and_test(atomic_t *v)
201 {
202 unsigned char c;
203
204 __asm__ __volatile__(
205 LOCK_PREFIX "incl %0; sete %1"
206 :"+m" (v->counter), "=qm" (c)
207 : : "memory");
208 return c != 0;
209 }
210
211 /**
212 * atomic_add_negative - add and test if negative
213 * @v: pointer of type atomic_t
214 * @i: integer value to add
215 *
216 * Atomically adds @i to @v and returns true
217 * if the result is negative, or false when
218 * result is greater than or equal to zero.
219 */
220 static __inline__ int atomic_add_negative(int i, atomic_t *v)
221 {
222 unsigned char c;
223
224 __asm__ __volatile__(
225 LOCK_PREFIX "addl %2,%0; sets %1"
226 :"+m" (v->counter), "=qm" (c)
227 :"ir" (i) : "memory");
228 return c;
229 }
230
231 /**
232 * atomic_add_return - add and return
233 * @v: pointer of type atomic_t
234 * @i: integer value to add
235 *
236 * Atomically adds @i to @v and returns @i + @v
237 */
238 static __inline__ int atomic_add_return(int i, atomic_t *v)
239 {
240 int __i;
241
242 __i = i;
243 __asm__ __volatile__(
244 LOCK_PREFIX "xaddl %0, %1;"
245 :"=r"(i)
246 :"m"(v->counter), "0"(i));
247 return i + __i;
248 }
249
250 static __inline__ int atomic_sub_return(int i, atomic_t *v)
251 {
252 return atomic_add_return(-i,v);
253 }
254
255 static inline unsigned int
256 cmpxchg(volatile long *ptr, long oldval, long newval)
257 {
258 unsigned long retval;
259
260 asm("# cmpxchg\n"
261 "lock; cmpxchgl %4,(%2)\n"
262 "# end atomic_cmpxchg4"
263 : "=a" (retval), "=m" (*ptr)
264 : "r" (ptr), "0" (oldval), "r" (newval), "m" (*ptr)
265 : "cc");
266 return (retval);
267 }
268
269 #define atomic_cmpxchg(v, old, new) ((int)cmpxchg(&((v)->counter), old, new))
270 #define atomic_xchg(v, new) (xchg(&((v)->counter), new))
271
272 /**
273 * atomic_add_unless - add unless the number is a given value
274 * @v: pointer of type atomic_t
275 * @a: the amount to add to v...
276 * @u: ...unless v is equal to u.
277 *
278 * Atomically adds @a to @v, so long as it was not @u.
279 * Returns non-zero if @v was not @u, and zero otherwise.
280 */
281 #define atomic_add_unless(v, a, u) \
282 ({ \
283 int c, old; \
284 c = atomic_read(v); \
285 for (;;) { \
286 if (unlikely(c == (u))) \
287 break; \
288 old = atomic_cmpxchg((v), c, c + (a)); \
289 if (likely(old == c)) \
290 break; \
291 c = old; \
292 } \
293 c != (u); \
294 })
295 #define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0)
296
297 #define atomic_inc_return(v) (atomic_add_return(1,v))
298 #define atomic_dec_return(v) (atomic_sub_return(1,v))
299
300 /* These are x86-specific, used by some header files */
301 #define atomic_clear_mask(mask, addr) \
302 __asm__ __volatile__(LOCK_PREFIX "andl %0,%1" \
303 : : "r" (~(mask)),"m" (*addr) : "memory")
304
305 #define atomic_set_mask(mask, addr) \
306 __asm__ __volatile__(LOCK_PREFIX "orl %0,%1" \
307 : : "r" (mask),"m" (*(addr)) : "memory")
308
309 /* Atomic operations are already serializing on x86 */
310 #define smp_mb__before_atomic_dec() barrier()
311 #define smp_mb__after_atomic_dec() barrier()
312 #define smp_mb__before_atomic_inc() barrier()
313 #define smp_mb__after_atomic_inc() barrier()
314
315 #define smp_mb() \
316 __asm__ __volatile__("mfence" : : : "memory")
317 /* __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory") */
318
319
320 /*
321 * Generate 64-bit timestamp.
322 */
323
324 static unsigned long long get_timestamp(void)
325 {
326 unsigned int __a,__d;
327
328 __asm__ __volatile__("rdtsc" : "=a" (__a), "=d" (__d));
329 return ((long long)__a) | (((long long)__d)<<32);
330 }
331
332 /*
333 * api_pthreads.h: API mapping to pthreads environment.
334 *
335 * This program is free software; you can redistribute it and/or modify
336 * it under the terms of the GNU General Public License as published by
337 * the Free Software Foundation; either version 2 of the License, or
338 * (at your option) any later version. However, please note that much
339 * of the code in this file derives from the Linux kernel, and that such
340 * code may not be available except under GPLv2.
341 *
342 * This program is distributed in the hope that it will be useful,
343 * but WITHOUT ANY WARRANTY; without even the implied warranty of
344 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
345 * GNU General Public License for more details.
346 *
347 * You should have received a copy of the GNU General Public License
348 * along with this program; if not, write to the Free Software
349 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
350 *
351 * Copyright (c) 2006 Paul E. McKenney, IBM.
352 */
353
354 #include <stdio.h>
355 #include <stdlib.h>
356 #include <errno.h>
357 #include <limits.h>
358 #include <sys/types.h>
359 #define __USE_GNU
360 #include <pthread.h>
361 #include <sched.h>
362 #include <sys/param.h>
363 /* #include "atomic.h" */
364
365 /*
366 * Compiler magic.
367 */
368 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
369 #define container_of(ptr, type, member) ({ \
370 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
371 (type *)( (char *)__mptr - offsetof(type,member) );})
372 #define barrier() __asm__ __volatile__("": : :"memory")
373
374 /*
375 * Default machine parameters.
376 */
377
378 #ifndef CACHE_LINE_SIZE
379 #define CACHE_LINE_SIZE 128
380 #endif /* #ifndef CACHE_LINE_SIZE */
381
382 /*
383 * Exclusive locking primitives.
384 */
385
386 typedef pthread_mutex_t spinlock_t;
387
388 #define DEFINE_SPINLOCK(lock) spinlock_t lock = PTHREAD_MUTEX_INITIALIZER;
389 #define __SPIN_LOCK_UNLOCKED(lockp) PTHREAD_MUTEX_INITIALIZER
390
391 static void spin_lock_init(spinlock_t *sp)
392 {
393 if (pthread_mutex_init(sp, NULL) != 0) {
394 perror("spin_lock_init:pthread_mutex_init");
395 exit(-1);
396 }
397 }
398
399 static void spin_lock(spinlock_t *sp)
400 {
401 if (pthread_mutex_lock(sp) != 0) {
402 perror("spin_lock:pthread_mutex_lock");
403 exit(-1);
404 }
405 }
406
407 static int spin_trylock(spinlock_t *sp)
408 {
409 int retval;
410
411 if ((retval = pthread_mutex_trylock(sp)) == 0)
412 return 1;
413 if (retval == EBUSY)
414 return 0;
415 perror("spin_trylock:pthread_mutex_trylock");
416 exit(-1);
417 }
418
419 static void spin_unlock(spinlock_t *sp)
420 {
421 if (pthread_mutex_unlock(sp) != 0) {
422 perror("spin_unlock:pthread_mutex_unlock");
423 exit(-1);
424 }
425 }
426
427 #define spin_lock_irqsave(l, f) do { f = 1; spin_lock(l); } while (0)
428 #define spin_unlock_irqrestore(l, f) do { f = 0; spin_unlock(l); } while (0)
429
430 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
431 #define unlikely(x) x
432 #define likely(x) x
433 #define prefetch(x) x
434
435 /*
436 * Thread creation/destruction primitives.
437 */
438
439 typedef pthread_t thread_id_t;
440
441 #define NR_THREADS 128
442
443 #define __THREAD_ID_MAP_EMPTY 0
444 #define __THREAD_ID_MAP_WAITING 1
445 thread_id_t __thread_id_map[NR_THREADS];
446 spinlock_t __thread_id_map_mutex;
447
448 #define for_each_thread(t) \
449 for (t = 0; t < NR_THREADS; t++)
450
451 #define for_each_running_thread(t) \
452 for (t = 0; t < NR_THREADS; t++) \
453 if ((__thread_id_map[t] != __THREAD_ID_MAP_EMPTY) && \
454 (__thread_id_map[t] != __THREAD_ID_MAP_WAITING))
455
456 pthread_key_t thread_id_key;
457
458 static int __smp_thread_id(void)
459 {
460 int i;
461 thread_id_t tid = pthread_self();
462
463 for (i = 0; i < NR_THREADS; i++) {
464 if (__thread_id_map[i] == tid) {
465 long v = i + 1; /* must be non-NULL. */
466
467 if (pthread_setspecific(thread_id_key, (void *)v) != 0) {
468 perror("pthread_setspecific");
469 exit(-1);
470 }
471 return i;
472 }
473 }
474 spin_lock(&__thread_id_map_mutex);
475 for (i = 0; i < NR_THREADS; i++) {
476 if (__thread_id_map[i] == tid)
477 spin_unlock(&__thread_id_map_mutex);
478 return i;
479 }
480 spin_unlock(&__thread_id_map_mutex);
481 fprintf(stderr, "smp_thread_id: Rogue thread, id: %d(%#x)\n", tid, tid);
482 exit(-1);
483 }
484
485 static int smp_thread_id(void)
486 {
487 void *id;
488
489 id = pthread_getspecific(thread_id_key);
490 if (id == NULL)
491 return __smp_thread_id();
492 return (long)(id - 1);
493 }
494
495 static thread_id_t create_thread(void *(*func)(void *), void *arg)
496 {
497 thread_id_t tid;
498 int i;
499
500 spin_lock(&__thread_id_map_mutex);
501 for (i = 0; i < NR_THREADS; i++) {
502 if (__thread_id_map[i] == __THREAD_ID_MAP_EMPTY)
503 break;
504 }
505 if (i >= NR_THREADS) {
506 spin_unlock(&__thread_id_map_mutex);
507 fprintf(stderr, "Thread limit of %d exceeded!\n", NR_THREADS);
508 exit(-1);
509 }
510 __thread_id_map[i] = __THREAD_ID_MAP_WAITING;
511 spin_unlock(&__thread_id_map_mutex);
512 if (pthread_create(&tid, NULL, func, arg) != 0) {
513 perror("create_thread:pthread_create");
514 exit(-1);
515 }
516 __thread_id_map[i] = tid;
517 return tid;
518 }
519
520 static void *wait_thread(thread_id_t tid)
521 {
522 int i;
523 void *vp;
524
525 for (i = 0; i < NR_THREADS; i++) {
526 if (__thread_id_map[i] == tid)
527 break;
528 }
529 if (i >= NR_THREADS){
530 fprintf(stderr, "wait_thread: bad tid = %d(%#x)\n", tid, tid);
531 exit(-1);
532 }
533 if (pthread_join(tid, &vp) != 0) {
534 perror("wait_thread:pthread_join");
535 exit(-1);
536 }
537 __thread_id_map[i] = __THREAD_ID_MAP_EMPTY;
538 return vp;
539 }
540
541 static void wait_all_threads(void)
542 {
543 int i;
544 thread_id_t tid;
545
546 for (i = 1; i < NR_THREADS; i++) {
547 tid = __thread_id_map[i];
548 if (tid != __THREAD_ID_MAP_EMPTY &&
549 tid != __THREAD_ID_MAP_WAITING)
550 (void)wait_thread(tid);
551 }
552 }
553
554 static void run_on(int cpu)
555 {
556 cpu_set_t mask;
557
558 CPU_ZERO(&mask);
559 CPU_SET(cpu, &mask);
560 sched_setaffinity(0, sizeof(mask), &mask);
561 }
562
563 /*
564 * timekeeping -- very crude -- should use MONOTONIC...
565 */
566
567 long long get_microseconds(void)
568 {
569 struct timeval tv;
570
571 if (gettimeofday(&tv, NULL) != 0)
572 abort();
573 return ((long long)tv.tv_sec) * 1000000LL + (long long)tv.tv_usec;
574 }
575
576 /*
577 * Per-thread variables.
578 */
579
580 #define DEFINE_PER_THREAD(type, name) \
581 struct { \
582 __typeof__(type) v \
583 __attribute__((__aligned__(CACHE_LINE_SIZE))); \
584 } __per_thread_##name[NR_THREADS];
585 #define DECLARE_PER_THREAD(type, name) extern DEFINE_PER_THREAD(type, name)
586
587 #define per_thread(name, thread) __per_thread_##name[thread].v
588 #define __get_thread_var(name) per_thread(name, smp_thread_id())
589
590 #define init_per_thread(name, v) \
591 do { \
592 int __i_p_t_i; \
593 for (__i_p_t_i = 0; __i_p_t_i < NR_THREADS; __i_p_t_i++) \
594 per_thread(name, __i_p_t_i) = v; \
595 } while (0)
596
597 /*
598 * CPU traversal primitives.
599 */
600
601 #ifndef NR_CPUS
602 #define NR_CPUS 16
603 #endif /* #ifndef NR_CPUS */
604
605 #define for_each_possible_cpu(cpu) \
606 for (cpu = 0; cpu < NR_CPUS; cpu++)
607 #define for_each_online_cpu(cpu) \
608 for (cpu = 0; cpu < NR_CPUS; cpu++)
609
610 /*
611 * Per-CPU variables.
612 */
613
614 #define DEFINE_PER_CPU(type, name) \
615 struct { \
616 __typeof__(type) v \
617 __attribute__((__aligned__(CACHE_LINE_SIZE))); \
618 } __per_cpu_##name[NR_CPUS]
619 #define DECLARE_PER_CPU(type, name) extern DEFINE_PER_CPU(type, name)
620
621 DEFINE_PER_THREAD(int, smp_processor_id);
622
623 static int smp_processor_id(void)
624 {
625 return __get_thread_var(smp_processor_id);
626 }
627
628 static void set_smp_processor_id(int cpu)
629 {
630 __get_thread_var(smp_processor_id) = cpu;
631 }
632
633 #define per_cpu(name, thread) __per_cpu_##name[thread].v
634 #define __get_cpu_var(name) per_cpu(name, smp_processor_id())
635
636 #define init_per_cpu(name, v) \
637 do { \
638 int __i_p_c_i; \
639 for (__i_p_c_i = 0; __i_p_c_i < NR_CPUS; __i_p_c_i++) \
640 per_cpu(name, __i_p_c_i) = v; \
641 } while (0)
642
643 /*
644 * CPU state checking (crowbarred).
645 */
646
647 #define idle_cpu(cpu) 0
648 #define in_softirq() 1
649 #define hardirq_count() 0
650 #define PREEMPT_SHIFT 0
651 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
652 #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
653 #define PREEMPT_BITS 8
654 #define SOFTIRQ_BITS 8
655
656 /*
657 * CPU hotplug.
658 */
659
660 struct notifier_block {
661 int (*notifier_call)(struct notifier_block *, unsigned long, void *);
662 struct notifier_block *next;
663 int priority;
664 };
665
666 #define CPU_ONLINE 0x0002 /* CPU (unsigned)v is up */
667 #define CPU_UP_PREPARE 0x0003 /* CPU (unsigned)v coming up */
668 #define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
669 #define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
670 #define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */
671 #define CPU_DEAD 0x0007 /* CPU (unsigned)v dead */
672 #define CPU_DYING 0x0008 /* CPU (unsigned)v not running any task,
673 * not handling interrupts, soon dead */
674 #define CPU_POST_DEAD 0x0009 /* CPU (unsigned)v dead, cpu_hotplug
675 * lock is dropped */
676
677 /* Used for CPU hotplug events occuring while tasks are frozen due to a suspend
678 * operation in progress
679 */
680 #define CPU_TASKS_FROZEN 0x0010
681
682 #define CPU_ONLINE_FROZEN (CPU_ONLINE | CPU_TASKS_FROZEN)
683 #define CPU_UP_PREPARE_FROZEN (CPU_UP_PREPARE | CPU_TASKS_FROZEN)
684 #define CPU_UP_CANCELED_FROZEN (CPU_UP_CANCELED | CPU_TASKS_FROZEN)
685 #define CPU_DOWN_PREPARE_FROZEN (CPU_DOWN_PREPARE | CPU_TASKS_FROZEN)
686 #define CPU_DOWN_FAILED_FROZEN (CPU_DOWN_FAILED | CPU_TASKS_FROZEN)
687 #define CPU_DEAD_FROZEN (CPU_DEAD | CPU_TASKS_FROZEN)
688 #define CPU_DYING_FROZEN (CPU_DYING | CPU_TASKS_FROZEN)
689
690 /* Hibernation and suspend events */
691 #define PM_HIBERNATION_PREPARE 0x0001 /* Going to hibernate */
692 #define PM_POST_HIBERNATION 0x0002 /* Hibernation finished */
693 #define PM_SUSPEND_PREPARE 0x0003 /* Going to suspend the system */
694 #define PM_POST_SUSPEND 0x0004 /* Suspend finished */
695 #define PM_RESTORE_PREPARE 0x0005 /* Going to restore a saved image */
696 #define PM_POST_RESTORE 0x0006 /* Restore failed */
697
698 #define NOTIFY_DONE 0x0000 /* Don't care */
699 #define NOTIFY_OK 0x0001 /* Suits me */
700 #define NOTIFY_STOP_MASK 0x8000 /* Don't call further */
701 #define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002)
702 /* Bad/Veto action */
703 /*
704 * Clean way to return from the notifier and stop further calls.
705 */
706 #define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK)
707
708 /*
709 * Bug checks.
710 */
711
712 #define BUG_ON(c) do { if (!(c)) abort(); } while (0)
713
714 /*
715 * Initialization -- Must be called before calling any primitives.
716 */
717
718 static void smp_init(void)
719 {
720 int i;
721
722 spin_lock_init(&__thread_id_map_mutex);
723 __thread_id_map[0] = pthread_self();
724 for (i = 1; i < NR_THREADS; i++)
725 __thread_id_map[i] = __THREAD_ID_MAP_EMPTY;
726 init_per_thread(smp_processor_id, 0);
727 if (pthread_key_create(&thread_id_key, NULL) != 0) {
728 perror("pthread_key_create");
729 exit(-1);
730 }
731 }
732
733 /* Taken from the Linux kernel source tree, so GPLv2-only!!! */
734
735 #ifndef _LINUX_LIST_H
736 #define _LINUX_LIST_H
737
738 #define LIST_POISON1 ((void *) 0x00100100)
739 #define LIST_POISON2 ((void *) 0x00200200)
740
741 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
742 #define container_of(ptr, type, member) ({ \
743 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
744 (type *)( (char *)__mptr - offsetof(type,member) );})
745
746 /*
747 * Simple doubly linked list implementation.
748 *
749 * Some of the internal functions ("__xxx") are useful when
750 * manipulating whole lists rather than single entries, as
751 * sometimes we already know the next/prev entries and we can
752 * generate better code by using them directly rather than
753 * using the generic single-entry routines.
754 */
755
756 struct list_head {
757 struct list_head *next, *prev;
758 };
759
760 #define LIST_HEAD_INIT(name) { &(name), &(name) }
761
762 #define LIST_HEAD(name) \
763 struct list_head name = LIST_HEAD_INIT(name)
764
765 static inline void INIT_LIST_HEAD(struct list_head *list)
766 {
767 list->next = list;
768 list->prev = list;
769 }
770
771 /*
772 * Insert a new entry between two known consecutive entries.
773 *
774 * This is only for internal list manipulation where we know
775 * the prev/next entries already!
776 */
777 #ifndef CONFIG_DEBUG_LIST
778 static inline void __list_add(struct list_head *new,
779 struct list_head *prev,
780 struct list_head *next)
781 {
782 next->prev = new;
783 new->next = next;
784 new->prev = prev;
785 prev->next = new;
786 }
787 #else
788 extern void __list_add(struct list_head *new,
789 struct list_head *prev,
790 struct list_head *next);
791 #endif
792
793 /**
794 * list_add - add a new entry
795 * @new: new entry to be added
796 * @head: list head to add it after
797 *
798 * Insert a new entry after the specified head.
799 * This is good for implementing stacks.
800 */
801 static inline void list_add(struct list_head *new, struct list_head *head)
802 {
803 __list_add(new, head, head->next);
804 }
805
806
807 /**
808 * list_add_tail - add a new entry
809 * @new: new entry to be added
810 * @head: list head to add it before
811 *
812 * Insert a new entry before the specified head.
813 * This is useful for implementing queues.
814 */
815 static inline void list_add_tail(struct list_head *new, struct list_head *head)
816 {
817 __list_add(new, head->prev, head);
818 }
819
820 /*
821 * Delete a list entry by making the prev/next entries
822 * point to each other.
823 *
824 * This is only for internal list manipulation where we know
825 * the prev/next entries already!
826 */
827 static inline void __list_del(struct list_head * prev, struct list_head * next)
828 {
829 next->prev = prev;
830 prev->next = next;
831 }
832
833 /**
834 * list_del - deletes entry from list.
835 * @entry: the element to delete from the list.
836 * Note: list_empty() on entry does not return true after this, the entry is
837 * in an undefined state.
838 */
839 #ifndef CONFIG_DEBUG_LIST
840 static inline void list_del(struct list_head *entry)
841 {
842 __list_del(entry->prev, entry->next);
843 entry->next = LIST_POISON1;
844 entry->prev = LIST_POISON2;
845 }
846 #else
847 extern void list_del(struct list_head *entry);
848 #endif
849
850 /**
851 * list_replace - replace old entry by new one
852 * @old : the element to be replaced
853 * @new : the new element to insert
854 *
855 * If @old was empty, it will be overwritten.
856 */
857 static inline void list_replace(struct list_head *old,
858 struct list_head *new)
859 {
860 new->next = old->next;
861 new->next->prev = new;
862 new->prev = old->prev;
863 new->prev->next = new;
864 }
865
866 static inline void list_replace_init(struct list_head *old,
867 struct list_head *new)
868 {
869 list_replace(old, new);
870 INIT_LIST_HEAD(old);
871 }
872
873 /**
874 * list_del_init - deletes entry from list and reinitialize it.
875 * @entry: the element to delete from the list.
876 */
877 static inline void list_del_init(struct list_head *entry)
878 {
879 __list_del(entry->prev, entry->next);
880 INIT_LIST_HEAD(entry);
881 }
882
883 /**
884 * list_move - delete from one list and add as another's head
885 * @list: the entry to move
886 * @head: the head that will precede our entry
887 */
888 static inline void list_move(struct list_head *list, struct list_head *head)
889 {
890 __list_del(list->prev, list->next);
891 list_add(list, head);
892 }
893
894 /**
895 * list_move_tail - delete from one list and add as another's tail
896 * @list: the entry to move
897 * @head: the head that will follow our entry
898 */
899 static inline void list_move_tail(struct list_head *list,
900 struct list_head *head)
901 {
902 __list_del(list->prev, list->next);
903 list_add_tail(list, head);
904 }
905
906 /**
907 * list_is_last - tests whether @list is the last entry in list @head
908 * @list: the entry to test
909 * @head: the head of the list
910 */
911 static inline int list_is_last(const struct list_head *list,
912 const struct list_head *head)
913 {
914 return list->next == head;
915 }
916
917 /**
918 * list_empty - tests whether a list is empty
919 * @head: the list to test.
920 */
921 static inline int list_empty(const struct list_head *head)
922 {
923 return head->next == head;
924 }
925
926 /**
927 * list_empty_careful - tests whether a list is empty and not being modified
928 * @head: the list to test
929 *
930 * Description:
931 * tests whether a list is empty _and_ checks that no other CPU might be
932 * in the process of modifying either member (next or prev)
933 *
934 * NOTE: using list_empty_careful() without synchronization
935 * can only be safe if the only activity that can happen
936 * to the list entry is list_del_init(). Eg. it cannot be used
937 * if another CPU could re-list_add() it.
938 */
939 static inline int list_empty_careful(const struct list_head *head)
940 {
941 struct list_head *next = head->next;
942 return (next == head) && (next == head->prev);
943 }
944
945 /**
946 * list_is_singular - tests whether a list has just one entry.
947 * @head: the list to test.
948 */
949 static inline int list_is_singular(const struct list_head *head)
950 {
951 return !list_empty(head) && (head->next == head->prev);
952 }
953
954 static inline void __list_cut_position(struct list_head *list,
955 struct list_head *head, struct list_head *entry)
956 {
957 struct list_head *new_first = entry->next;
958 list->next = head->next;
959 list->next->prev = list;
960 list->prev = entry;
961 entry->next = list;
962 head->next = new_first;
963 new_first->prev = head;
964 }
965
966 /**
967 * list_cut_position - cut a list into two
968 * @list: a new list to add all removed entries
969 * @head: a list with entries
970 * @entry: an entry within head, could be the head itself
971 * and if so we won't cut the list
972 *
973 * This helper moves the initial part of @head, up to and
974 * including @entry, from @head to @list. You should
975 * pass on @entry an element you know is on @head. @list
976 * should be an empty list or a list you do not care about
977 * losing its data.
978 *
979 */
980 static inline void list_cut_position(struct list_head *list,
981 struct list_head *head, struct list_head *entry)
982 {
983 if (list_empty(head))
984 return;
985 if (list_is_singular(head) &&
986 (head->next != entry && head != entry))
987 return;
988 if (entry == head)
989 INIT_LIST_HEAD(list);
990 else
991 __list_cut_position(list, head, entry);
992 }
993
994 static inline void __list_splice(const struct list_head *list,
995 struct list_head *prev,
996 struct list_head *next)
997 {
998 struct list_head *first = list->next;
999 struct list_head *last = list->prev;
1000
1001 first->prev = prev;
1002 prev->next = first;
1003
1004 last->next = next;
1005 next->prev = last;
1006 }
1007
1008 /**
1009 * list_splice - join two lists, this is designed for stacks
1010 * @list: the new list to add.
1011 * @head: the place to add it in the first list.
1012 */
1013 static inline void list_splice(const struct list_head *list,
1014 struct list_head *head)
1015 {
1016 if (!list_empty(list))
1017 __list_splice(list, head, head->next);
1018 }
1019
1020 /**
1021 * list_splice_tail - join two lists, each list being a queue
1022 * @list: the new list to add.
1023 * @head: the place to add it in the first list.
1024 */
1025 static inline void list_splice_tail(struct list_head *list,
1026 struct list_head *head)
1027 {
1028 if (!list_empty(list))
1029 __list_splice(list, head->prev, head);
1030 }
1031
1032 /**
1033 * list_splice_init - join two lists and reinitialise the emptied list.
1034 * @list: the new list to add.
1035 * @head: the place to add it in the first list.
1036 *
1037 * The list at @list is reinitialised
1038 */
1039 static inline void list_splice_init(struct list_head *list,
1040 struct list_head *head)
1041 {
1042 if (!list_empty(list)) {
1043 __list_splice(list, head, head->next);
1044 INIT_LIST_HEAD(list);
1045 }
1046 }
1047
1048 /**
1049 * list_splice_tail_init - join two lists and reinitialise the emptied list
1050 * @list: the new list to add.
1051 * @head: the place to add it in the first list.
1052 *
1053 * Each of the lists is a queue.
1054 * The list at @list is reinitialised
1055 */
1056 static inline void list_splice_tail_init(struct list_head *list,
1057 struct list_head *head)
1058 {
1059 if (!list_empty(list)) {
1060 __list_splice(list, head->prev, head);
1061 INIT_LIST_HEAD(list);
1062 }
1063 }
1064
1065 /**
1066 * list_entry - get the struct for this entry
1067 * @ptr: the &struct list_head pointer.
1068 * @type: the type of the struct this is embedded in.
1069 * @member: the name of the list_struct within the struct.
1070 */
1071 #define list_entry(ptr, type, member) \
1072 container_of(ptr, type, member)
1073
1074 /**
1075 * list_first_entry - get the first element from a list
1076 * @ptr: the list head to take the element from.
1077 * @type: the type of the struct this is embedded in.
1078 * @member: the name of the list_struct within the struct.
1079 *
1080 * Note, that list is expected to be not empty.
1081 */
1082 #define list_first_entry(ptr, type, member) \
1083 list_entry((ptr)->next, type, member)
1084
1085 /**
1086 * list_for_each - iterate over a list
1087 * @pos: the &struct list_head to use as a loop cursor.
1088 * @head: the head for your list.
1089 */
1090 #define list_for_each(pos, head) \
1091 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
1092 pos = pos->next)
1093
1094 /**
1095 * __list_for_each - iterate over a list
1096 * @pos: the &struct list_head to use as a loop cursor.
1097 * @head: the head for your list.
1098 *
1099 * This variant differs from list_for_each() in that it's the
1100 * simplest possible list iteration code, no prefetching is done.
1101 * Use this for code that knows the list to be very short (empty
1102 * or 1 entry) most of the time.
1103 */
1104 #define __list_for_each(pos, head) \
1105 for (pos = (head)->next; pos != (head); pos = pos->next)
1106
1107 /**
1108 * list_for_each_prev - iterate over a list backwards
1109 * @pos: the &struct list_head to use as a loop cursor.
1110 * @head: the head for your list.
1111 */
1112 #define list_for_each_prev(pos, head) \
1113 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
1114 pos = pos->prev)
1115
1116 /**
1117 * list_for_each_safe - iterate over a list safe against removal of list entry
1118 * @pos: the &struct list_head to use as a loop cursor.
1119 * @n: another &struct list_head to use as temporary storage
1120 * @head: the head for your list.
1121 */
1122 #define list_for_each_safe(pos, n, head) \
1123 for (pos = (head)->next, n = pos->next; pos != (head); \
1124 pos = n, n = pos->next)
1125
1126 /**
1127 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
1128 * @pos: the &struct list_head to use as a loop cursor.
1129 * @n: another &struct list_head to use as temporary storage
1130 * @head: the head for your list.
1131 */
1132 #define list_for_each_prev_safe(pos, n, head) \
1133 for (pos = (head)->prev, n = pos->prev; \
1134 prefetch(pos->prev), pos != (head); \
1135 pos = n, n = pos->prev)
1136
1137 /**
1138 * list_for_each_entry - iterate over list of given type
1139 * @pos: the type * to use as a loop cursor.
1140 * @head: the head for your list.
1141 * @member: the name of the list_struct within the struct.
1142 */
1143 #define list_for_each_entry(pos, head, member) \
1144 for (pos = list_entry((head)->next, typeof(*pos), member); \
1145 prefetch(pos->member.next), &pos->member != (head); \
1146 pos = list_entry(pos->member.next, typeof(*pos), member))
1147
1148 /**
1149 * list_for_each_entry_reverse - iterate backwards over list of given type.
1150 * @pos: the type * to use as a loop cursor.
1151 * @head: the head for your list.
1152 * @member: the name of the list_struct within the struct.
1153 */
1154 #define list_for_each_entry_reverse(pos, head, member) \
1155 for (pos = list_entry((head)->prev, typeof(*pos), member); \
1156 prefetch(pos->member.prev), &pos->member != (head); \
1157 pos = list_entry(pos->member.prev, typeof(*pos), member))
1158
1159 /**
1160 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
1161 * @pos: the type * to use as a start point
1162 * @head: the head of the list
1163 * @member: the name of the list_struct within the struct.
1164 *
1165 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
1166 */
1167 #define list_prepare_entry(pos, head, member) \
1168 ((pos) ? : list_entry(head, typeof(*pos), member))
1169
1170 /**
1171 * list_for_each_entry_continue - continue iteration over list of given type
1172 * @pos: the type * to use as a loop cursor.
1173 * @head: the head for your list.
1174 * @member: the name of the list_struct within the struct.
1175 *
1176 * Continue to iterate over list of given type, continuing after
1177 * the current position.
1178 */
1179 #define list_for_each_entry_continue(pos, head, member) \
1180 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
1181 prefetch(pos->member.next), &pos->member != (head); \
1182 pos = list_entry(pos->member.next, typeof(*pos), member))
1183
1184 /**
1185 * list_for_each_entry_continue_reverse - iterate backwards from the given point
1186 * @pos: the type * to use as a loop cursor.
1187 * @head: the head for your list.
1188 * @member: the name of the list_struct within the struct.
1189 *
1190 * Start to iterate over list of given type backwards, continuing after
1191 * the current position.
1192 */
1193 #define list_for_each_entry_continue_reverse(pos, head, member) \
1194 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
1195 prefetch(pos->member.prev), &pos->member != (head); \
1196 pos = list_entry(pos->member.prev, typeof(*pos), member))
1197
1198 /**
1199 * list_for_each_entry_from - iterate over list of given type from the current point
1200 * @pos: the type * to use as a loop cursor.
1201 * @head: the head for your list.
1202 * @member: the name of the list_struct within the struct.
1203 *
1204 * Iterate over list of given type, continuing from current position.
1205 */
1206 #define list_for_each_entry_from(pos, head, member) \
1207 for (; prefetch(pos->member.next), &pos->member != (head); \
1208 pos = list_entry(pos->member.next, typeof(*pos), member))
1209
1210 /**
1211 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1212 * @pos: the type * to use as a loop cursor.
1213 * @n: another type * to use as temporary storage
1214 * @head: the head for your list.
1215 * @member: the name of the list_struct within the struct.
1216 */
1217 #define list_for_each_entry_safe(pos, n, head, member) \
1218 for (pos = list_entry((head)->next, typeof(*pos), member), \
1219 n = list_entry(pos->member.next, typeof(*pos), member); \
1220 &pos->member != (head); \
1221 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1222
1223 /**
1224 * list_for_each_entry_safe_continue
1225 * @pos: the type * to use as a loop cursor.
1226 * @n: another type * to use as temporary storage
1227 * @head: the head for your list.
1228 * @member: the name of the list_struct within the struct.
1229 *
1230 * Iterate over list of given type, continuing after current point,
1231 * safe against removal of list entry.
1232 */
1233 #define list_for_each_entry_safe_continue(pos, n, head, member) \
1234 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
1235 n = list_entry(pos->member.next, typeof(*pos), member); \
1236 &pos->member != (head); \
1237 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1238
1239 /**
1240 * list_for_each_entry_safe_from
1241 * @pos: the type * to use as a loop cursor.
1242 * @n: another type * to use as temporary storage
1243 * @head: the head for your list.
1244 * @member: the name of the list_struct within the struct.
1245 *
1246 * Iterate over list of given type from current point, safe against
1247 * removal of list entry.
1248 */
1249 #define list_for_each_entry_safe_from(pos, n, head, member) \
1250 for (n = list_entry(pos->member.next, typeof(*pos), member); \
1251 &pos->member != (head); \
1252 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1253
1254 /**
1255 * list_for_each_entry_safe_reverse
1256 * @pos: the type * to use as a loop cursor.
1257 * @n: another type * to use as temporary storage
1258 * @head: the head for your list.
1259 * @member: the name of the list_struct within the struct.
1260 *
1261 * Iterate backwards over list of given type, safe against removal
1262 * of list entry.
1263 */
1264 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
1265 for (pos = list_entry((head)->prev, typeof(*pos), member), \
1266 n = list_entry(pos->member.prev, typeof(*pos), member); \
1267 &pos->member != (head); \
1268 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
1269
1270 /*
1271 * Double linked lists with a single pointer list head.
1272 * Mostly useful for hash tables where the two pointer list head is
1273 * too wasteful.
1274 * You lose the ability to access the tail in O(1).
1275 */
1276
1277 struct hlist_head {
1278 struct hlist_node *first;
1279 };
1280
1281 struct hlist_node {
1282 struct hlist_node *next, **pprev;
1283 };
1284
1285 #define HLIST_HEAD_INIT { .first = NULL }
1286 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
1287 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
1288 static inline void INIT_HLIST_NODE(struct hlist_node *h)
1289 {
1290 h->next = NULL;
1291 h->pprev = NULL;
1292 }
1293
1294 static inline int hlist_unhashed(const struct hlist_node *h)
1295 {
1296 return !h->pprev;
1297 }
1298
1299 static inline int hlist_empty(const struct hlist_head *h)
1300 {
1301 return !h->first;
1302 }
1303
1304 static inline void __hlist_del(struct hlist_node *n)
1305 {
1306 struct hlist_node *next = n->next;
1307 struct hlist_node **pprev = n->pprev;
1308 *pprev = next;
1309 if (next)
1310 next->pprev = pprev;
1311 }
1312
1313 static inline void hlist_del(struct hlist_node *n)
1314 {
1315 __hlist_del(n);
1316 n->next = LIST_POISON1;
1317 n->pprev = LIST_POISON2;
1318 }
1319
1320 static inline void hlist_del_init(struct hlist_node *n)
1321 {
1322 if (!hlist_unhashed(n)) {
1323 __hlist_del(n);
1324 INIT_HLIST_NODE(n);
1325 }
1326 }
1327
1328 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1329 {
1330 struct hlist_node *first = h->first;
1331 n->next = first;
1332 if (first)
1333 first->pprev = &n->next;
1334 h->first = n;
1335 n->pprev = &h->first;
1336 }
1337
1338 /* next must be != NULL */
1339 static inline void hlist_add_before(struct hlist_node *n,
1340 struct hlist_node *next)
1341 {
1342 n->pprev = next->pprev;
1343 n->next = next;
1344 next->pprev = &n->next;
1345 *(n->pprev) = n;
1346 }
1347
1348 static inline void hlist_add_after(struct hlist_node *n,
1349 struct hlist_node *next)
1350 {
1351 next->next = n->next;
1352 n->next = next;
1353 next->pprev = &n->next;
1354
1355 if(next->next)
1356 next->next->pprev = &next->next;
1357 }
1358
1359 /*
1360 * Move a list from one list head to another. Fixup the pprev
1361 * reference of the first entry if it exists.
1362 */
1363 static inline void hlist_move_list(struct hlist_head *old,
1364 struct hlist_head *new)
1365 {
1366 new->first = old->first;
1367 if (new->first)
1368 new->first->pprev = &new->first;
1369 old->first = NULL;
1370 }
1371
1372 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1373
1374 #define hlist_for_each(pos, head) \
1375 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
1376 pos = pos->next)
1377
1378 #define hlist_for_each_safe(pos, n, head) \
1379 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1380 pos = n)
1381
1382 /**
1383 * hlist_for_each_entry - iterate over list of given type
1384 * @tpos: the type * to use as a loop cursor.
1385 * @pos: the &struct hlist_node to use as a loop cursor.
1386 * @head: the head for your list.
1387 * @member: the name of the hlist_node within the struct.
1388 */
1389 #define hlist_for_each_entry(tpos, pos, head, member) \
1390 for (pos = (head)->first; \
1391 pos && ({ prefetch(pos->next); 1;}) && \
1392 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1393 pos = pos->next)
1394
1395 /**
1396 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1397 * @tpos: the type * to use as a loop cursor.
1398 * @pos: the &struct hlist_node to use as a loop cursor.
1399 * @member: the name of the hlist_node within the struct.
1400 */
1401 #define hlist_for_each_entry_continue(tpos, pos, member) \
1402 for (pos = (pos)->next; \
1403 pos && ({ prefetch(pos->next); 1;}) && \
1404 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1405 pos = pos->next)
1406
1407 /**
1408 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1409 * @tpos: the type * to use as a loop cursor.
1410 * @pos: the &struct hlist_node to use as a loop cursor.
1411 * @member: the name of the hlist_node within the struct.
1412 */
1413 #define hlist_for_each_entry_from(tpos, pos, member) \
1414 for (; pos && ({ prefetch(pos->next); 1;}) && \
1415 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1416 pos = pos->next)
1417
1418 /**
1419 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1420 * @tpos: the type * to use as a loop cursor.
1421 * @pos: the &struct hlist_node to use as a loop cursor.
1422 * @n: another &struct hlist_node to use as temporary storage
1423 * @head: the head for your list.
1424 * @member: the name of the hlist_node within the struct.
1425 */
1426 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
1427 for (pos = (head)->first; \
1428 pos && ({ n = pos->next; 1; }) && \
1429 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1430 pos = n)
1431
1432 #endif
This page took 0.060501 seconds and 4 git commands to generate.