uatomic/x86: Remove redundant memory barriers
[urcu.git] / src / rculfhash.c
... / ...
CommitLineData
1// SPDX-FileCopyrightText: 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
2// SPDX-FileCopyrightText: 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
3//
4// SPDX-License-Identifier: LGPL-2.1-or-later
5
6/*
7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
8 */
9
10/*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
19 * Some specificities of this Lock-Free Resizable RCU Hash Table
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
38 * - An index of bucket nodes is kept. These bucket nodes are the hash
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
50 * - Split-counters are used to keep track of the number of
51 * nodes within the hash table for automatic resize triggering.
52 * - Resize operation initiated by long chain detection is executed by a
53 * worker thread, which keeps lock-freedom of add and remove.
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
75 * linked-list (the start node is never removed) and that it does not
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
100 *
101 * Ordering Guarantees:
102 *
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
105 * cds_lfht_first, cds_lfht_next operation, as well as
106 * cds_lfht_add_unique (failure).
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
110 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
111 * (and/or cds_lfht_next, although less common).
112 * - cds_lfht_add_unique (failure) followed by iteration with
113 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
114 * common).
115 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
116 * cds_lfht_next_duplicate, although less common).
117 *
118 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
119 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
120 *
121 * When cds_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A cds_lfht_add_unique failure is a
125 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
192 *
193 * Bucket node tables:
194 *
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
206 * When growing/shrinking, we only focus on the last bucket node table
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
212 *
213 * A bit of ascii art explanation:
214 *
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
217 *
218 * This shows the nodes for a small table ordered by reversed bits:
219 *
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
231 * reversed-bit order.
232 *
233 * order bits reverse
234 * 0 0 000 000
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
237 * | | | 3 011 110 | <- |
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
242 */
243
244#define _LGPL_SOURCE
245#include <stdlib.h>
246#include <errno.h>
247#include <stdio.h>
248#include <stdint.h>
249#include <string.h>
250#include <sched.h>
251#include <unistd.h>
252#include <stdlib.h>
253
254#include "compat-getcpu.h"
255#include <urcu/assert.h>
256#include <urcu/pointer.h>
257#include <urcu/call-rcu.h>
258#include <urcu/flavor.h>
259#include <urcu/arch.h>
260#include <urcu/uatomic.h>
261#include <urcu/compiler.h>
262#include <urcu/rculfhash.h>
263#include <stdio.h>
264#include <pthread.h>
265#include <signal.h>
266#include "rculfhash-internal.h"
267#include "workqueue.h"
268#include "urcu-die.h"
269#include "urcu-utils.h"
270#include "compat-smp.h"
271
272/*
273 * Split-counters lazily update the global counter each 1024
274 * addition/removal. It automatically keeps track of resize required.
275 * We use the bucket length as indicator for need to expand for small
276 * tables and machines lacking per-cpu data support.
277 */
278#define COUNT_COMMIT_ORDER 10
279#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
280#define CHAIN_LEN_TARGET 1
281#define CHAIN_LEN_RESIZE_THRESHOLD 3
282
283/*
284 * Define the minimum table size.
285 */
286#define MIN_TABLE_ORDER 0
287#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
288
289/*
290 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
291 */
292#define MIN_PARTITION_PER_THREAD_ORDER 12
293#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
294
295/*
296 * The removed flag needs to be updated atomically with the pointer.
297 * It indicates that no node must attach to the node scheduled for
298 * removal, and that node garbage collection must be performed.
299 * The bucket flag does not require to be updated atomically with the
300 * pointer, but it is added as a pointer low bit flag to save space.
301 * The "removal owner" flag is used to detect which of the "del"
302 * operation that has set the "removed flag" gets to return the removed
303 * node to its caller. Note that the replace operation does not need to
304 * iteract with the "removal owner" flag, because it validates that
305 * the "removed" flag is not set before performing its cmpxchg.
306 */
307#define REMOVED_FLAG (1UL << 0)
308#define BUCKET_FLAG (1UL << 1)
309#define REMOVAL_OWNER_FLAG (1UL << 2)
310#define FLAGS_MASK ((1UL << 3) - 1)
311
312/* Value of the end pointer. Should not interact with flags. */
313#define END_VALUE NULL
314
315/*
316 * ht_items_count: Split-counters counting the number of node addition
317 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
318 * is set at hash table creation.
319 *
320 * These are free-running counters, never reset to zero. They count the
321 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
322 * operations to update the global counter. We choose a power-of-2 value
323 * for the trigger to deal with 32 or 64-bit overflow of the counter.
324 */
325struct ht_items_count {
326 unsigned long add, del;
327} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
328
329/*
330 * resize_work: Contains arguments passed to worker thread
331 * responsible for performing lazy resize.
332 */
333struct resize_work {
334 struct urcu_work work;
335 struct cds_lfht *ht;
336};
337
338/*
339 * partition_resize_work: Contains arguments passed to worker threads
340 * executing the hash table resize on partitions of the hash table
341 * assigned to each processor's worker thread.
342 */
343struct partition_resize_work {
344 pthread_t thread_id;
345 struct cds_lfht *ht;
346 unsigned long i, start, len;
347 void (*fct)(struct cds_lfht *ht, unsigned long i,
348 unsigned long start, unsigned long len);
349};
350
351enum nr_cpus_mask_state {
352 NR_CPUS_MASK_INIT_FAILED = -2,
353 NR_CPUS_MASK_UNINITIALIZED = -1,
354};
355
356static struct urcu_workqueue *cds_lfht_workqueue;
357
358/*
359 * Mutex ensuring mutual exclusion between workqueue initialization and
360 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
361 */
362static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
363
364static struct urcu_atfork cds_lfht_atfork;
365
366/*
367 * atfork handler nesting counters. Handle being registered to many urcu
368 * flavors, thus being possibly invoked more than once in the
369 * pthread_atfork list of callbacks.
370 */
371static int cds_lfht_workqueue_atfork_nesting;
372
373static void __attribute__((destructor)) cds_lfht_exit(void);
374static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
375
376#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
377
378static
379void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
380{
381 iter->lfht = ht;
382}
383
384#define cds_lfht_iter_debug_assert(...) urcu_posix_assert(__VA_ARGS__)
385
386#else
387
388static
389void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht __attribute__((unused)),
390 struct cds_lfht_iter *iter __attribute__((unused)))
391{
392}
393
394#define cds_lfht_iter_debug_assert(...)
395
396#endif
397
398/*
399 * Algorithm to reverse bits in a word by lookup table, extended to
400 * 64-bit words.
401 * Source:
402 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
403 * Originally from Public Domain.
404 */
405
406static const uint8_t BitReverseTable256[256] =
407{
408#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
409#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
410#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
411 R6(0), R6(2), R6(1), R6(3)
412};
413#undef R2
414#undef R4
415#undef R6
416
417static
418uint8_t bit_reverse_u8(uint8_t v)
419{
420 return BitReverseTable256[v];
421}
422
423#if (CAA_BITS_PER_LONG == 32)
424static
425uint32_t bit_reverse_u32(uint32_t v)
426{
427 return ((uint32_t) bit_reverse_u8(v) << 24) |
428 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
429 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
430 ((uint32_t) bit_reverse_u8(v >> 24));
431}
432#else
433static
434uint64_t bit_reverse_u64(uint64_t v)
435{
436 return ((uint64_t) bit_reverse_u8(v) << 56) |
437 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
438 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
439 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
440 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
441 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
442 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
443 ((uint64_t) bit_reverse_u8(v >> 56));
444}
445#endif
446
447static
448unsigned long bit_reverse_ulong(unsigned long v)
449{
450#if (CAA_BITS_PER_LONG == 32)
451 return bit_reverse_u32(v);
452#else
453 return bit_reverse_u64(v);
454#endif
455}
456
457/*
458 * fls: returns the position of the most significant bit.
459 * Returns 0 if no bit is set, else returns the position of the most
460 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
461 */
462#if defined(URCU_ARCH_X86)
463static inline
464unsigned int fls_u32(uint32_t x)
465{
466 int r;
467
468 __asm__ ("bsrl %1,%0\n\t"
469 "jnz 1f\n\t"
470 "movl $-1,%0\n\t"
471 "1:\n\t"
472 : "=r" (r) : "rm" (x));
473 return r + 1;
474}
475#define HAS_FLS_U32
476#endif
477
478#if defined(URCU_ARCH_AMD64)
479static inline
480unsigned int fls_u64(uint64_t x)
481{
482 long r;
483
484 __asm__ ("bsrq %1,%0\n\t"
485 "jnz 1f\n\t"
486 "movq $-1,%0\n\t"
487 "1:\n\t"
488 : "=r" (r) : "rm" (x));
489 return r + 1;
490}
491#define HAS_FLS_U64
492#endif
493
494#ifndef HAS_FLS_U64
495static __attribute__((unused))
496unsigned int fls_u64(uint64_t x)
497{
498 unsigned int r = 64;
499
500 if (!x)
501 return 0;
502
503 if (!(x & 0xFFFFFFFF00000000ULL)) {
504 x <<= 32;
505 r -= 32;
506 }
507 if (!(x & 0xFFFF000000000000ULL)) {
508 x <<= 16;
509 r -= 16;
510 }
511 if (!(x & 0xFF00000000000000ULL)) {
512 x <<= 8;
513 r -= 8;
514 }
515 if (!(x & 0xF000000000000000ULL)) {
516 x <<= 4;
517 r -= 4;
518 }
519 if (!(x & 0xC000000000000000ULL)) {
520 x <<= 2;
521 r -= 2;
522 }
523 if (!(x & 0x8000000000000000ULL)) {
524 x <<= 1;
525 r -= 1;
526 }
527 return r;
528}
529#endif
530
531#ifndef HAS_FLS_U32
532static __attribute__((unused))
533unsigned int fls_u32(uint32_t x)
534{
535 unsigned int r = 32;
536
537 if (!x)
538 return 0;
539 if (!(x & 0xFFFF0000U)) {
540 x <<= 16;
541 r -= 16;
542 }
543 if (!(x & 0xFF000000U)) {
544 x <<= 8;
545 r -= 8;
546 }
547 if (!(x & 0xF0000000U)) {
548 x <<= 4;
549 r -= 4;
550 }
551 if (!(x & 0xC0000000U)) {
552 x <<= 2;
553 r -= 2;
554 }
555 if (!(x & 0x80000000U)) {
556 x <<= 1;
557 r -= 1;
558 }
559 return r;
560}
561#endif
562
563unsigned int cds_lfht_fls_ulong(unsigned long x)
564{
565#if (CAA_BITS_PER_LONG == 32)
566 return fls_u32(x);
567#else
568 return fls_u64(x);
569#endif
570}
571
572static void *cds_lfht_malloc(void *state __attribute__((unused)),
573 size_t size)
574{
575 return malloc(size);
576}
577
578static void *cds_lfht_calloc(void *state __attribute__((unused)),
579 size_t nmemb, size_t size)
580{
581 return calloc(nmemb, size);
582}
583
584static void *cds_lfht_realloc(void *state __attribute__((unused)),
585 void *ptr, size_t size)
586{
587 return realloc(ptr, size);
588}
589
590static void *cds_lfht_aligned_alloc(void *state __attribute__((unused)),
591 size_t alignment, size_t size)
592{
593 void *ptr;
594
595 if (posix_memalign(&ptr, alignment, size))
596 return NULL;
597 return ptr;
598}
599
600static void cds_lfht_free(void *state __attribute__((unused)), void *ptr)
601{
602 free(ptr);
603}
604
605
606/* Default memory allocator */
607static struct cds_lfht_alloc cds_lfht_default_alloc = {
608 .malloc = cds_lfht_malloc,
609 .calloc = cds_lfht_calloc,
610 .realloc = cds_lfht_realloc,
611 .aligned_alloc = cds_lfht_aligned_alloc,
612 .free = cds_lfht_free,
613 .state = NULL,
614};
615
616/*
617 * Return the minimum order for which x <= (1UL << order).
618 * Return -1 if x is 0.
619 */
620static
621int cds_lfht_get_count_order_u32(uint32_t x)
622{
623 if (!x)
624 return -1;
625
626 return fls_u32(x - 1);
627}
628
629/*
630 * Return the minimum order for which x <= (1UL << order).
631 * Return -1 if x is 0.
632 */
633int cds_lfht_get_count_order_ulong(unsigned long x)
634{
635 if (!x)
636 return -1;
637
638 return cds_lfht_fls_ulong(x - 1);
639}
640
641static
642void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
643
644static
645void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
646 unsigned long count);
647
648static void mutex_lock(pthread_mutex_t *mutex)
649{
650 int ret;
651
652#ifndef DISTRUST_SIGNALS_EXTREME
653 ret = pthread_mutex_lock(mutex);
654 if (ret)
655 urcu_die(ret);
656#else /* #ifndef DISTRUST_SIGNALS_EXTREME */
657 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
658 if (ret != EBUSY && ret != EINTR)
659 urcu_die(ret);
660 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
661 uatomic_store(&URCU_TLS(rcu_reader).need_mb, 0, CMM_SEQ_CST);
662 }
663 (void) poll(NULL, 0, 10);
664 }
665#endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
666}
667
668static void mutex_unlock(pthread_mutex_t *mutex)
669{
670 int ret;
671
672 ret = pthread_mutex_unlock(mutex);
673 if (ret)
674 urcu_die(ret);
675}
676
677static long nr_cpus_mask = NR_CPUS_MASK_UNINITIALIZED;
678static long split_count_mask = -1;
679static int split_count_order = -1;
680
681static void ht_init_nr_cpus_mask(void)
682{
683 long maxcpus;
684
685 maxcpus = get_possible_cpus_array_len();
686 if (maxcpus <= 0) {
687 nr_cpus_mask = NR_CPUS_MASK_INIT_FAILED;
688 return;
689 }
690 /*
691 * round up number of CPUs to next power of two, so we
692 * can use & for modulo.
693 */
694 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
695 nr_cpus_mask = maxcpus - 1;
696}
697
698static
699void alloc_split_items_count(struct cds_lfht *ht)
700{
701 if (nr_cpus_mask == NR_CPUS_MASK_UNINITIALIZED) {
702 ht_init_nr_cpus_mask();
703 if (nr_cpus_mask < 0)
704 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
705 else
706 split_count_mask = nr_cpus_mask;
707 split_count_order =
708 cds_lfht_get_count_order_ulong(split_count_mask + 1);
709 }
710
711 urcu_posix_assert(split_count_mask >= 0);
712
713 if (ht->flags & CDS_LFHT_ACCOUNTING) {
714 ht->split_count = ht->alloc->calloc(ht->alloc->state, split_count_mask + 1,
715 sizeof(struct ht_items_count));
716 urcu_posix_assert(ht->split_count);
717 } else {
718 ht->split_count = NULL;
719 }
720}
721
722static
723void free_split_items_count(struct cds_lfht *ht)
724{
725 poison_free(ht->alloc, ht->split_count);
726}
727
728static
729int ht_get_split_count_index(unsigned long hash)
730{
731 int cpu;
732
733 urcu_posix_assert(split_count_mask >= 0);
734 cpu = urcu_sched_getcpu();
735 if (caa_unlikely(cpu < 0))
736 return hash & split_count_mask;
737 else
738 return cpu & split_count_mask;
739}
740
741static
742void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
743{
744 unsigned long split_count, count;
745 int index;
746
747 if (caa_unlikely(!ht->split_count))
748 return;
749 index = ht_get_split_count_index(hash);
750 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
751 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
752 return;
753 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
754
755 dbg_printf("add split count %lu\n", split_count);
756 count = uatomic_add_return(&ht->count,
757 1UL << COUNT_COMMIT_ORDER);
758 if (caa_likely(count & (count - 1)))
759 return;
760 /* Only if global count is power of 2 */
761
762 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
763 return;
764 dbg_printf("add set global %lu\n", count);
765 cds_lfht_resize_lazy_count(ht, size,
766 count >> (CHAIN_LEN_TARGET - 1));
767}
768
769static
770void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
771{
772 unsigned long split_count, count;
773 int index;
774
775 if (caa_unlikely(!ht->split_count))
776 return;
777 index = ht_get_split_count_index(hash);
778 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
779 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
780 return;
781 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
782
783 dbg_printf("del split count %lu\n", split_count);
784 count = uatomic_add_return(&ht->count,
785 -(1UL << COUNT_COMMIT_ORDER));
786 if (caa_likely(count & (count - 1)))
787 return;
788 /* Only if global count is power of 2 */
789
790 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
791 return;
792 dbg_printf("del set global %lu\n", count);
793 /*
794 * Don't shrink table if the number of nodes is below a
795 * certain threshold.
796 */
797 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
798 return;
799 cds_lfht_resize_lazy_count(ht, size,
800 count >> (CHAIN_LEN_TARGET - 1));
801}
802
803static
804void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
805{
806 unsigned long count;
807
808 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
809 return;
810 count = uatomic_read(&ht->count);
811 /*
812 * Use bucket-local length for small table expand and for
813 * environments lacking per-cpu data support.
814 */
815 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
816 return;
817 if (chain_len > 100)
818 dbg_printf("WARNING: large chain length: %u.\n",
819 chain_len);
820 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
821 int growth;
822
823 /*
824 * Ideal growth calculated based on chain length.
825 */
826 growth = cds_lfht_get_count_order_u32(chain_len
827 - (CHAIN_LEN_TARGET - 1));
828 if ((ht->flags & CDS_LFHT_ACCOUNTING)
829 && (size << growth)
830 >= (1UL << (COUNT_COMMIT_ORDER
831 + split_count_order))) {
832 /*
833 * If ideal growth expands the hash table size
834 * beyond the "small hash table" sizes, use the
835 * maximum small hash table size to attempt
836 * expanding the hash table. This only applies
837 * when node accounting is available, otherwise
838 * the chain length is used to expand the hash
839 * table in every case.
840 */
841 growth = COUNT_COMMIT_ORDER + split_count_order
842 - cds_lfht_get_count_order_ulong(size);
843 if (growth <= 0)
844 return;
845 }
846 cds_lfht_resize_lazy_grow(ht, size, growth);
847 }
848}
849
850static
851struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
852{
853 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
854}
855
856static
857int is_removed(const struct cds_lfht_node *node)
858{
859 return ((unsigned long) node) & REMOVED_FLAG;
860}
861
862static
863int is_bucket(struct cds_lfht_node *node)
864{
865 return ((unsigned long) node) & BUCKET_FLAG;
866}
867
868static
869struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
870{
871 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
872}
873
874static
875int is_removal_owner(struct cds_lfht_node *node)
876{
877 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
878}
879
880static
881struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
882{
883 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
884}
885
886static
887struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
888{
889 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
890}
891
892static
893struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
894{
895 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
896}
897
898static
899struct cds_lfht_node *get_end(void)
900{
901 return (struct cds_lfht_node *) END_VALUE;
902}
903
904static
905int is_end(struct cds_lfht_node *node)
906{
907 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
908}
909
910static
911unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
912 unsigned long v)
913{
914 unsigned long old1, old2;
915
916 old1 = uatomic_read(ptr);
917 do {
918 old2 = old1;
919 if (old2 >= v) {
920 cmm_smp_mb();
921 return old2;
922 }
923 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
924 return old2;
925}
926
927static
928void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
929{
930 return ht->mm->alloc_bucket_table(ht, order);
931}
932
933/*
934 * cds_lfht_free_bucket_table() should be called with decreasing order.
935 * When cds_lfht_free_bucket_table(0) is called, it means the whole
936 * lfht is destroyed.
937 */
938static
939void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
940{
941 return ht->mm->free_bucket_table(ht, order);
942}
943
944static inline
945struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
946{
947 return ht->bucket_at(ht, index);
948}
949
950static inline
951struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
952 unsigned long hash)
953{
954 urcu_posix_assert(size > 0);
955 return bucket_at(ht, hash & (size - 1));
956}
957
958/*
959 * Remove all logically deleted nodes from a bucket up to a certain node key.
960 */
961static
962void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
963{
964 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
965
966 urcu_posix_assert(!is_bucket(bucket));
967 urcu_posix_assert(!is_removed(bucket));
968 urcu_posix_assert(!is_removal_owner(bucket));
969 urcu_posix_assert(!is_bucket(node));
970 urcu_posix_assert(!is_removed(node));
971 urcu_posix_assert(!is_removal_owner(node));
972 for (;;) {
973 iter_prev = bucket;
974 /* We can always skip the bucket node initially */
975 iter = rcu_dereference(iter_prev->next);
976 urcu_posix_assert(!is_removed(iter));
977 urcu_posix_assert(!is_removal_owner(iter));
978 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
979 /*
980 * We should never be called with bucket (start of chain)
981 * and logically removed node (end of path compression
982 * marker) being the actual same node. This would be a
983 * bug in the algorithm implementation.
984 */
985 urcu_posix_assert(bucket != node);
986 for (;;) {
987 if (caa_unlikely(is_end(iter)))
988 return;
989 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
990 return;
991 next = rcu_dereference(clear_flag(iter)->next);
992 if (caa_likely(is_removed(next)))
993 break;
994 iter_prev = clear_flag(iter);
995 iter = next;
996 }
997 urcu_posix_assert(!is_removed(iter));
998 urcu_posix_assert(!is_removal_owner(iter));
999 if (is_bucket(iter))
1000 new_next = flag_bucket(clear_flag(next));
1001 else
1002 new_next = clear_flag(next);
1003 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1004 }
1005}
1006
1007static
1008int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
1009 struct cds_lfht_node *old_node,
1010 struct cds_lfht_node *old_next,
1011 struct cds_lfht_node *new_node)
1012{
1013 struct cds_lfht_node *bucket, *ret_next;
1014
1015 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
1016 return -ENOENT;
1017
1018 urcu_posix_assert(!is_removed(old_node));
1019 urcu_posix_assert(!is_removal_owner(old_node));
1020 urcu_posix_assert(!is_bucket(old_node));
1021 urcu_posix_assert(!is_removed(new_node));
1022 urcu_posix_assert(!is_removal_owner(new_node));
1023 urcu_posix_assert(!is_bucket(new_node));
1024 urcu_posix_assert(new_node != old_node);
1025 for (;;) {
1026 /* Insert after node to be replaced */
1027 if (is_removed(old_next)) {
1028 /*
1029 * Too late, the old node has been removed under us
1030 * between lookup and replace. Fail.
1031 */
1032 return -ENOENT;
1033 }
1034 urcu_posix_assert(old_next == clear_flag(old_next));
1035 urcu_posix_assert(new_node != old_next);
1036 /*
1037 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
1038 * flag. It is either set atomically at the same time
1039 * (replace) or after (del).
1040 */
1041 urcu_posix_assert(!is_removal_owner(old_next));
1042 new_node->next = old_next;
1043 /*
1044 * Here is the whole trick for lock-free replace: we add
1045 * the replacement node _after_ the node we want to
1046 * replace by atomically setting its next pointer at the
1047 * same time we set its removal flag. Given that
1048 * the lookups/get next use an iterator aware of the
1049 * next pointer, they will either skip the old node due
1050 * to the removal flag and see the new node, or use
1051 * the old node, but will not see the new one.
1052 * This is a replacement of a node with another node
1053 * that has the same value: we are therefore not
1054 * removing a value from the hash table. We set both the
1055 * REMOVED and REMOVAL_OWNER flags atomically so we own
1056 * the node after successful cmpxchg.
1057 */
1058 ret_next = uatomic_cmpxchg(&old_node->next,
1059 old_next, flag_removed_or_removal_owner(new_node));
1060 if (ret_next == old_next)
1061 break; /* We performed the replacement. */
1062 old_next = ret_next;
1063 }
1064
1065 /*
1066 * Ensure that the old node is not visible to readers anymore:
1067 * lookup for the node, and remove it (along with any other
1068 * logically removed node) if found.
1069 */
1070 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1071 _cds_lfht_gc_bucket(bucket, new_node);
1072
1073 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
1074 return 0;
1075}
1076
1077/*
1078 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1079 * mode. A NULL unique_ret allows creation of duplicate keys.
1080 */
1081static
1082void _cds_lfht_add(struct cds_lfht *ht,
1083 unsigned long hash,
1084 cds_lfht_match_fct match,
1085 const void *key,
1086 unsigned long size,
1087 struct cds_lfht_node *node,
1088 struct cds_lfht_iter *unique_ret,
1089 int bucket_flag)
1090{
1091 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
1092 *return_node;
1093 struct cds_lfht_node *bucket;
1094
1095 urcu_posix_assert(!is_bucket(node));
1096 urcu_posix_assert(!is_removed(node));
1097 urcu_posix_assert(!is_removal_owner(node));
1098 bucket = lookup_bucket(ht, size, hash);
1099 for (;;) {
1100 uint32_t chain_len = 0;
1101
1102 /*
1103 * iter_prev points to the non-removed node prior to the
1104 * insert location.
1105 */
1106 iter_prev = bucket;
1107 /* We can always skip the bucket node initially */
1108 iter = rcu_dereference(iter_prev->next);
1109 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
1110 for (;;) {
1111 if (caa_unlikely(is_end(iter)))
1112 goto insert;
1113 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1114 goto insert;
1115
1116 /* bucket node is the first node of the identical-hash-value chain */
1117 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1118 goto insert;
1119
1120 next = rcu_dereference(clear_flag(iter)->next);
1121 if (caa_unlikely(is_removed(next)))
1122 goto gc_node;
1123
1124 /* uniquely add */
1125 if (unique_ret
1126 && !is_bucket(next)
1127 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1128 struct cds_lfht_iter d_iter = {
1129 .node = node,
1130 .next = iter,
1131#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1132 .lfht = ht,
1133#endif
1134 };
1135
1136 /*
1137 * uniquely adding inserts the node as the first
1138 * node of the identical-hash-value node chain.
1139 *
1140 * This semantic ensures no duplicated keys
1141 * should ever be observable in the table
1142 * (including traversing the table node by
1143 * node by forward iterations)
1144 */
1145 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1146 if (!d_iter.node)
1147 goto insert;
1148
1149 *unique_ret = d_iter;
1150 return;
1151 }
1152
1153 /* Only account for identical reverse hash once */
1154 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1155 && !is_bucket(next))
1156 check_resize(ht, size, ++chain_len);
1157 iter_prev = clear_flag(iter);
1158 iter = next;
1159 }
1160
1161 insert:
1162 urcu_posix_assert(node != clear_flag(iter));
1163 urcu_posix_assert(!is_removed(iter_prev));
1164 urcu_posix_assert(!is_removal_owner(iter_prev));
1165 urcu_posix_assert(!is_removed(iter));
1166 urcu_posix_assert(!is_removal_owner(iter));
1167 urcu_posix_assert(iter_prev != node);
1168 if (!bucket_flag)
1169 node->next = clear_flag(iter);
1170 else
1171 node->next = flag_bucket(clear_flag(iter));
1172 if (is_bucket(iter))
1173 new_node = flag_bucket(node);
1174 else
1175 new_node = node;
1176 if (uatomic_cmpxchg(&iter_prev->next, iter,
1177 new_node) != iter) {
1178 continue; /* retry */
1179 } else {
1180 return_node = node;
1181 goto end;
1182 }
1183
1184 gc_node:
1185 urcu_posix_assert(!is_removed(iter));
1186 urcu_posix_assert(!is_removal_owner(iter));
1187 if (is_bucket(iter))
1188 new_next = flag_bucket(clear_flag(next));
1189 else
1190 new_next = clear_flag(next);
1191 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1192 /* retry */
1193 }
1194end:
1195 if (unique_ret) {
1196 unique_ret->node = return_node;
1197 /* unique_ret->next left unset, never used. */
1198 }
1199}
1200
1201static
1202int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1203 struct cds_lfht_node *node)
1204{
1205 struct cds_lfht_node *bucket, *next;
1206 uintptr_t *node_next;
1207
1208 if (!node) /* Return -ENOENT if asked to delete NULL node */
1209 return -ENOENT;
1210
1211 /* logically delete the node */
1212 urcu_posix_assert(!is_bucket(node));
1213 urcu_posix_assert(!is_removed(node));
1214 urcu_posix_assert(!is_removal_owner(node));
1215
1216 /*
1217 * We are first checking if the node had previously been
1218 * logically removed (this check is not atomic with setting the
1219 * logical removal flag). Return -ENOENT if the node had
1220 * previously been removed.
1221 */
1222 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1223 if (caa_unlikely(is_removed(next)))
1224 return -ENOENT;
1225 urcu_posix_assert(!is_bucket(next));
1226 /*
1227 * The del operation semantic guarantees a full memory barrier
1228 * before the uatomic_or atomic commit of the deletion flag.
1229 *
1230 * We set the REMOVED_FLAG unconditionally. Note that there may
1231 * be more than one concurrent thread setting this flag.
1232 * Knowing which wins the race will be known after the garbage
1233 * collection phase, stay tuned!
1234 *
1235 * NOTE: The node_next variable is present to avoid breaking
1236 * strict-aliasing rules.
1237 */
1238 node_next = (uintptr_t*)&node->next;
1239 uatomic_or_mo(node_next, REMOVED_FLAG, CMM_RELEASE);
1240
1241 /* We performed the (logical) deletion. */
1242
1243 /*
1244 * Ensure that the node is not visible to readers anymore: lookup for
1245 * the node, and remove it (along with any other logically removed node)
1246 * if found.
1247 */
1248 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1249 _cds_lfht_gc_bucket(bucket, node);
1250
1251 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(node->next)));
1252 /*
1253 * Last phase: atomically exchange node->next with a version
1254 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1255 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1256 * the node and win the removal race.
1257 * It is interesting to note that all "add" paths are forbidden
1258 * to change the next pointer starting from the point where the
1259 * REMOVED_FLAG is set, so here using a read, followed by a
1260 * xchg() suffice to guarantee that the xchg() will ever only
1261 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1262 * was already set).
1263 */
1264 if (!is_removal_owner(uatomic_xchg(&node->next,
1265 flag_removal_owner(uatomic_load(&node->next, CMM_RELAXED)))))
1266 return 0;
1267 else
1268 return -ENOENT;
1269}
1270
1271static
1272void *partition_resize_thread(void *arg)
1273{
1274 struct partition_resize_work *work = arg;
1275
1276 work->ht->flavor->register_thread();
1277 work->fct(work->ht, work->i, work->start, work->len);
1278 work->ht->flavor->unregister_thread();
1279 return NULL;
1280}
1281
1282static
1283void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1284 unsigned long len,
1285 void (*fct)(struct cds_lfht *ht, unsigned long i,
1286 unsigned long start, unsigned long len))
1287{
1288 unsigned long partition_len, start = 0;
1289 struct partition_resize_work *work;
1290 int ret;
1291 unsigned long thread, nr_threads;
1292 sigset_t newmask, oldmask;
1293
1294 urcu_posix_assert(nr_cpus_mask != NR_CPUS_MASK_UNINITIALIZED);
1295 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1296 goto fallback;
1297
1298 /*
1299 * Note: nr_cpus_mask + 1 is always power of 2.
1300 * We spawn just the number of threads we need to satisfy the minimum
1301 * partition size, up to the number of CPUs in the system.
1302 */
1303 if (nr_cpus_mask > 0) {
1304 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
1305 len >> MIN_PARTITION_PER_THREAD_ORDER);
1306 } else {
1307 nr_threads = 1;
1308 }
1309 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1310 work = ht->alloc->calloc(ht->alloc->state, nr_threads, sizeof(*work));
1311 if (!work) {
1312 dbg_printf("error allocating for resize, single-threading\n");
1313 goto fallback;
1314 }
1315
1316 ret = sigfillset(&newmask);
1317 urcu_posix_assert(!ret);
1318 ret = pthread_sigmask(SIG_BLOCK, &newmask, &oldmask);
1319 urcu_posix_assert(!ret);
1320
1321 for (thread = 0; thread < nr_threads; thread++) {
1322 work[thread].ht = ht;
1323 work[thread].i = i;
1324 work[thread].len = partition_len;
1325 work[thread].start = thread * partition_len;
1326 work[thread].fct = fct;
1327 ret = pthread_create(&(work[thread].thread_id),
1328 ht->caller_resize_attr ? &ht->resize_attr : NULL,
1329 partition_resize_thread, &work[thread]);
1330 if (ret == EAGAIN) {
1331 /*
1332 * Out of resources: wait and join the threads
1333 * we've created, then handle leftovers.
1334 */
1335 dbg_printf("error spawning for resize, single-threading\n");
1336 start = work[thread].start;
1337 len -= start;
1338 nr_threads = thread;
1339 break;
1340 }
1341 urcu_posix_assert(!ret);
1342 }
1343
1344 ret = pthread_sigmask(SIG_SETMASK, &oldmask, NULL);
1345 urcu_posix_assert(!ret);
1346
1347 for (thread = 0; thread < nr_threads; thread++) {
1348 ret = pthread_join(work[thread].thread_id, NULL);
1349 urcu_posix_assert(!ret);
1350 }
1351 ht->alloc->free(ht->alloc->state, work);
1352
1353 /*
1354 * A pthread_create failure above will either lead in us having
1355 * no threads to join or starting at a non-zero offset,
1356 * fallback to single thread processing of leftovers.
1357 */
1358 if (start == 0 && nr_threads > 0)
1359 return;
1360fallback:
1361 fct(ht, i, start, len);
1362}
1363
1364/*
1365 * Holding RCU read lock to protect _cds_lfht_add against memory
1366 * reclaim that could be performed by other worker threads (ABA
1367 * problem).
1368 *
1369 * When we reach a certain length, we can split this population phase over
1370 * many worker threads, based on the number of CPUs available in the system.
1371 * This should therefore take care of not having the expand lagging behind too
1372 * many concurrent insertion threads by using the scheduler's ability to
1373 * schedule bucket node population fairly with insertions.
1374 */
1375static
1376void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1377 unsigned long start, unsigned long len)
1378{
1379 unsigned long j, size = 1UL << (i - 1);
1380
1381 urcu_posix_assert(i > MIN_TABLE_ORDER);
1382 ht->flavor->read_lock();
1383 for (j = size + start; j < size + start + len; j++) {
1384 struct cds_lfht_node *new_node = bucket_at(ht, j);
1385
1386 urcu_posix_assert(j >= size && j < (size << 1));
1387 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1388 i, j, j);
1389 new_node->reverse_hash = bit_reverse_ulong(j);
1390 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1391 }
1392 ht->flavor->read_unlock();
1393}
1394
1395static
1396void init_table_populate(struct cds_lfht *ht, unsigned long i,
1397 unsigned long len)
1398{
1399 partition_resize_helper(ht, i, len, init_table_populate_partition);
1400}
1401
1402static
1403void init_table(struct cds_lfht *ht,
1404 unsigned long first_order, unsigned long last_order)
1405{
1406 unsigned long i;
1407
1408 dbg_printf("init table: first_order %lu last_order %lu\n",
1409 first_order, last_order);
1410 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
1411 for (i = first_order; i <= last_order; i++) {
1412 unsigned long len;
1413
1414 len = 1UL << (i - 1);
1415 dbg_printf("init order %lu len: %lu\n", i, len);
1416
1417 /* Stop expand if the resize target changes under us */
1418 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1419 break;
1420
1421 cds_lfht_alloc_bucket_table(ht, i);
1422
1423 /*
1424 * Set all bucket nodes reverse hash values for a level and
1425 * link all bucket nodes into the table.
1426 */
1427 init_table_populate(ht, i, len);
1428
1429 /*
1430 * Update table size.
1431 *
1432 * Populate data before RCU size.
1433 */
1434 uatomic_store(&ht->size, 1UL << i, CMM_RELEASE);
1435
1436 dbg_printf("init new size: %lu\n", 1UL << i);
1437 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1438 break;
1439 }
1440}
1441
1442/*
1443 * Holding RCU read lock to protect _cds_lfht_remove against memory
1444 * reclaim that could be performed by other worker threads (ABA
1445 * problem).
1446 * For a single level, we logically remove and garbage collect each node.
1447 *
1448 * As a design choice, we perform logical removal and garbage collection on a
1449 * node-per-node basis to simplify this algorithm. We also assume keeping good
1450 * cache locality of the operation would overweight possible performance gain
1451 * that could be achieved by batching garbage collection for multiple levels.
1452 * However, this would have to be justified by benchmarks.
1453 *
1454 * Concurrent removal and add operations are helping us perform garbage
1455 * collection of logically removed nodes. We guarantee that all logically
1456 * removed nodes have been garbage-collected (unlinked) before work
1457 * enqueue is invoked to free a hole level of bucket nodes (after a
1458 * grace period).
1459 *
1460 * Logical removal and garbage collection can therefore be done in batch
1461 * or on a node-per-node basis, as long as the guarantee above holds.
1462 *
1463 * When we reach a certain length, we can split this removal over many worker
1464 * threads, based on the number of CPUs available in the system. This should
1465 * take care of not letting resize process lag behind too many concurrent
1466 * updater threads actively inserting into the hash table.
1467 */
1468static
1469void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1470 unsigned long start, unsigned long len)
1471{
1472 unsigned long j, size = 1UL << (i - 1);
1473
1474 urcu_posix_assert(i > MIN_TABLE_ORDER);
1475 ht->flavor->read_lock();
1476 for (j = size + start; j < size + start + len; j++) {
1477 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1478 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1479 uintptr_t *fini_bucket_next;
1480
1481 urcu_posix_assert(j >= size && j < (size << 1));
1482 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1483 i, j, j);
1484 /* Set the REMOVED_FLAG to freeze the ->next for gc.
1485 *
1486 * NOTE: The fini_bucket_next variable is present to
1487 * avoid breaking strict-aliasing rules.
1488 */
1489 fini_bucket_next = (uintptr_t*)&fini_bucket->next;
1490 uatomic_or(fini_bucket_next, REMOVED_FLAG);
1491 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1492 }
1493 ht->flavor->read_unlock();
1494}
1495
1496static
1497void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1498{
1499 partition_resize_helper(ht, i, len, remove_table_partition);
1500}
1501
1502/*
1503 * fini_table() is never called for first_order == 0, which is why
1504 * free_by_rcu_order == 0 can be used as criterion to know if free must
1505 * be called.
1506 */
1507static
1508void fini_table(struct cds_lfht *ht,
1509 unsigned long first_order, unsigned long last_order)
1510{
1511 unsigned long free_by_rcu_order = 0, i;
1512
1513 dbg_printf("fini table: first_order %lu last_order %lu\n",
1514 first_order, last_order);
1515 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
1516 for (i = last_order; i >= first_order; i--) {
1517 unsigned long len;
1518
1519 len = 1UL << (i - 1);
1520 dbg_printf("fini order %ld len: %lu\n", i, len);
1521
1522 /* Stop shrink if the resize target changes under us */
1523 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1524 break;
1525
1526 cmm_smp_wmb(); /* populate data before RCU size */
1527 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1528
1529 /*
1530 * We need to wait for all add operations to reach Q.S. (and
1531 * thus use the new table for lookups) before we can start
1532 * releasing the old bucket nodes. Otherwise their lookup will
1533 * return a logically removed node as insert position.
1534 */
1535 ht->flavor->update_synchronize_rcu();
1536 if (free_by_rcu_order)
1537 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1538
1539 /*
1540 * Set "removed" flag in bucket nodes about to be removed.
1541 * Unlink all now-logically-removed bucket node pointers.
1542 * Concurrent add/remove operation are helping us doing
1543 * the gc.
1544 */
1545 remove_table(ht, i, len);
1546
1547 free_by_rcu_order = i;
1548
1549 dbg_printf("fini new size: %lu\n", 1UL << i);
1550 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1551 break;
1552 }
1553
1554 if (free_by_rcu_order) {
1555 ht->flavor->update_synchronize_rcu();
1556 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1557 }
1558}
1559
1560/*
1561 * Never called with size < 1.
1562 */
1563static
1564void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1565{
1566 struct cds_lfht_node *prev, *node;
1567 unsigned long order, len, i;
1568 int bucket_order;
1569
1570 cds_lfht_alloc_bucket_table(ht, 0);
1571
1572 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1573 node = bucket_at(ht, 0);
1574 node->next = flag_bucket(get_end());
1575 node->reverse_hash = 0;
1576
1577 bucket_order = cds_lfht_get_count_order_ulong(size);
1578 urcu_posix_assert(bucket_order >= 0);
1579
1580 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
1581 len = 1UL << (order - 1);
1582 cds_lfht_alloc_bucket_table(ht, order);
1583
1584 for (i = 0; i < len; i++) {
1585 /*
1586 * Now, we are trying to init the node with the
1587 * hash=(len+i) (which is also a bucket with the
1588 * index=(len+i)) and insert it into the hash table,
1589 * so this node has to be inserted after the bucket
1590 * with the index=(len+i)&(len-1)=i. And because there
1591 * is no other non-bucket node nor bucket node with
1592 * larger index/hash inserted, so the bucket node
1593 * being inserted should be inserted directly linked
1594 * after the bucket node with index=i.
1595 */
1596 prev = bucket_at(ht, i);
1597 node = bucket_at(ht, len + i);
1598
1599 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1600 order, len + i, len + i);
1601 node->reverse_hash = bit_reverse_ulong(len + i);
1602
1603 /* insert after prev */
1604 urcu_posix_assert(is_bucket(prev->next));
1605 node->next = prev->next;
1606 prev->next = flag_bucket(node);
1607 }
1608 }
1609}
1610
1611#if (CAA_BITS_PER_LONG > 32)
1612/*
1613 * For 64-bit architectures, with max number of buckets small enough not to
1614 * use the entire 64-bit memory mapping space (and allowing a fair number of
1615 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1616 * fallback to the order allocator.
1617 */
1618static
1619const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1620{
1621 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1622 return &cds_lfht_mm_mmap;
1623 else
1624 return &cds_lfht_mm_order;
1625}
1626#else
1627/*
1628 * For 32-bit architectures, use the order allocator.
1629 */
1630static
1631const struct cds_lfht_mm_type *get_mm_type(
1632 unsigned long max_nr_buckets __attribute__((unused)))
1633{
1634 return &cds_lfht_mm_order;
1635}
1636#endif
1637
1638void cds_lfht_node_init_deleted(struct cds_lfht_node *node)
1639{
1640 cds_lfht_node_init(node);
1641 node->next = flag_removed(NULL);
1642}
1643
1644struct cds_lfht *_cds_lfht_new_with_alloc(unsigned long init_size,
1645 unsigned long min_nr_alloc_buckets,
1646 unsigned long max_nr_buckets,
1647 int flags,
1648 const struct cds_lfht_mm_type *mm,
1649 const struct rcu_flavor_struct *flavor,
1650 const struct cds_lfht_alloc *alloc,
1651 pthread_attr_t *attr)
1652{
1653 struct cds_lfht *ht;
1654 unsigned long order;
1655
1656 /* min_nr_alloc_buckets must be power of two */
1657 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1658 return NULL;
1659
1660 /* init_size must be power of two */
1661 if (!init_size || (init_size & (init_size - 1)))
1662 return NULL;
1663
1664 /*
1665 * Memory management plugin default.
1666 */
1667 if (!mm)
1668 mm = get_mm_type(max_nr_buckets);
1669
1670 /* max_nr_buckets == 0 for order based mm means infinite */
1671 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1672 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1673
1674 /* max_nr_buckets must be power of two */
1675 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1676 return NULL;
1677
1678 if (flags & CDS_LFHT_AUTO_RESIZE)
1679 cds_lfht_init_worker(flavor);
1680
1681 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1682 init_size = max(init_size, MIN_TABLE_SIZE);
1683 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1684 init_size = min(init_size, max_nr_buckets);
1685
1686 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets, alloc ? : &cds_lfht_default_alloc);
1687
1688 urcu_posix_assert(ht);
1689 urcu_posix_assert(ht->mm == mm);
1690 urcu_posix_assert(ht->bucket_at == mm->bucket_at);
1691
1692 ht->flags = flags;
1693 ht->flavor = flavor;
1694 ht->caller_resize_attr = attr;
1695 if (attr)
1696 ht->resize_attr = *attr;
1697 alloc_split_items_count(ht);
1698 /* this mutex should not nest in read-side C.S. */
1699 pthread_mutex_init(&ht->resize_mutex, NULL);
1700 order = cds_lfht_get_count_order_ulong(init_size);
1701 ht->resize_target = 1UL << order;
1702 cds_lfht_create_bucket(ht, 1UL << order);
1703 ht->size = 1UL << order;
1704 return ht;
1705}
1706
1707struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1708 unsigned long min_nr_alloc_buckets,
1709 unsigned long max_nr_buckets,
1710 int flags,
1711 const struct cds_lfht_mm_type *mm,
1712 const struct rcu_flavor_struct *flavor,
1713 pthread_attr_t *attr)
1714{
1715 return _cds_lfht_new_with_alloc(init_size,
1716 min_nr_alloc_buckets, max_nr_buckets,
1717 flags, mm, flavor, NULL, attr);
1718}
1719
1720void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1721 cds_lfht_match_fct match, const void *key,
1722 struct cds_lfht_iter *iter)
1723{
1724 struct cds_lfht_node *node, *next, *bucket;
1725 unsigned long reverse_hash, size;
1726
1727 cds_lfht_iter_debug_set_ht(ht, iter);
1728
1729 reverse_hash = bit_reverse_ulong(hash);
1730
1731 /*
1732 * Use load acquire instead of rcu_dereference because there is no
1733 * dependency between the table size and the dereference of the bucket
1734 * content.
1735 *
1736 * This acquire is paired with the store release in init_table().
1737 */
1738 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1739 bucket = lookup_bucket(ht, size, hash);
1740 /* We can always skip the bucket node initially */
1741 node = rcu_dereference(bucket->next);
1742 node = clear_flag(node);
1743 for (;;) {
1744 if (caa_unlikely(is_end(node))) {
1745 node = next = NULL;
1746 break;
1747 }
1748 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1749 node = next = NULL;
1750 break;
1751 }
1752 next = rcu_dereference(node->next);
1753 urcu_posix_assert(node == clear_flag(node));
1754 if (caa_likely(!is_removed(next))
1755 && !is_bucket(next)
1756 && node->reverse_hash == reverse_hash
1757 && caa_likely(match(node, key))) {
1758 break;
1759 }
1760 node = clear_flag(next);
1761 }
1762 urcu_posix_assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1763 iter->node = node;
1764 iter->next = next;
1765}
1766
1767void cds_lfht_next_duplicate(struct cds_lfht *ht __attribute__((unused)),
1768 cds_lfht_match_fct match,
1769 const void *key, struct cds_lfht_iter *iter)
1770{
1771 struct cds_lfht_node *node, *next;
1772 unsigned long reverse_hash;
1773
1774 cds_lfht_iter_debug_assert(ht == iter->lfht);
1775 node = iter->node;
1776 reverse_hash = node->reverse_hash;
1777 next = iter->next;
1778 node = clear_flag(next);
1779
1780 for (;;) {
1781 if (caa_unlikely(is_end(node))) {
1782 node = next = NULL;
1783 break;
1784 }
1785 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1786 node = next = NULL;
1787 break;
1788 }
1789 next = rcu_dereference(node->next);
1790 if (caa_likely(!is_removed(next))
1791 && !is_bucket(next)
1792 && caa_likely(match(node, key))) {
1793 break;
1794 }
1795 node = clear_flag(next);
1796 }
1797 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
1798 iter->node = node;
1799 iter->next = next;
1800}
1801
1802void cds_lfht_next(struct cds_lfht *ht __attribute__((unused)),
1803 struct cds_lfht_iter *iter)
1804{
1805 struct cds_lfht_node *node, *next;
1806
1807 cds_lfht_iter_debug_assert(ht == iter->lfht);
1808 node = clear_flag(iter->next);
1809 for (;;) {
1810 if (caa_unlikely(is_end(node))) {
1811 node = next = NULL;
1812 break;
1813 }
1814 next = rcu_dereference(node->next);
1815 if (caa_likely(!is_removed(next))
1816 && !is_bucket(next)) {
1817 break;
1818 }
1819 node = clear_flag(next);
1820 }
1821 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
1822 iter->node = node;
1823 iter->next = next;
1824}
1825
1826void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1827{
1828 cds_lfht_iter_debug_set_ht(ht, iter);
1829 /*
1830 * Get next after first bucket node. The first bucket node is the
1831 * first node of the linked list.
1832 */
1833 iter->next = uatomic_load(&bucket_at(ht, 0)->next, CMM_CONSUME);
1834 cds_lfht_next(ht, iter);
1835}
1836
1837void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1838 struct cds_lfht_node *node)
1839{
1840 unsigned long size;
1841
1842 node->reverse_hash = bit_reverse_ulong(hash);
1843 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1844 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1845 ht_count_add(ht, size, hash);
1846}
1847
1848struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1849 unsigned long hash,
1850 cds_lfht_match_fct match,
1851 const void *key,
1852 struct cds_lfht_node *node)
1853{
1854 unsigned long size;
1855 struct cds_lfht_iter iter;
1856
1857 node->reverse_hash = bit_reverse_ulong(hash);
1858 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1859 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1860 if (iter.node == node)
1861 ht_count_add(ht, size, hash);
1862 return iter.node;
1863}
1864
1865struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1866 unsigned long hash,
1867 cds_lfht_match_fct match,
1868 const void *key,
1869 struct cds_lfht_node *node)
1870{
1871 unsigned long size;
1872 struct cds_lfht_iter iter;
1873
1874 node->reverse_hash = bit_reverse_ulong(hash);
1875 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1876 for (;;) {
1877 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1878 if (iter.node == node) {
1879 ht_count_add(ht, size, hash);
1880 return NULL;
1881 }
1882
1883 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1884 return iter.node;
1885 }
1886}
1887
1888int cds_lfht_replace(struct cds_lfht *ht,
1889 struct cds_lfht_iter *old_iter,
1890 unsigned long hash,
1891 cds_lfht_match_fct match,
1892 const void *key,
1893 struct cds_lfht_node *new_node)
1894{
1895 unsigned long size;
1896
1897 new_node->reverse_hash = bit_reverse_ulong(hash);
1898 if (!old_iter->node)
1899 return -ENOENT;
1900 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1901 return -EINVAL;
1902 if (caa_unlikely(!match(old_iter->node, key)))
1903 return -EINVAL;
1904 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1905 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1906 new_node);
1907}
1908
1909int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1910{
1911 unsigned long size;
1912 int ret;
1913
1914 size = uatomic_load(&ht->size, CMM_ACQUIRE);
1915 ret = _cds_lfht_del(ht, size, node);
1916 if (!ret) {
1917 unsigned long hash;
1918
1919 hash = bit_reverse_ulong(node->reverse_hash);
1920 ht_count_del(ht, size, hash);
1921 }
1922 return ret;
1923}
1924
1925int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
1926{
1927 return is_removed(CMM_LOAD_SHARED(node->next));
1928}
1929
1930static
1931bool cds_lfht_is_empty(struct cds_lfht *ht)
1932{
1933 struct cds_lfht_node *node, *next;
1934 bool empty = true;
1935 bool was_online;
1936
1937 was_online = ht->flavor->read_ongoing();
1938 if (!was_online) {
1939 ht->flavor->thread_online();
1940 ht->flavor->read_lock();
1941 }
1942 /* Check that the table is empty */
1943 node = bucket_at(ht, 0);
1944 do {
1945 next = rcu_dereference(node->next);
1946 if (!is_bucket(next)) {
1947 empty = false;
1948 break;
1949 }
1950 node = clear_flag(next);
1951 } while (!is_end(node));
1952 if (!was_online) {
1953 ht->flavor->read_unlock();
1954 ht->flavor->thread_offline();
1955 }
1956 return empty;
1957}
1958
1959static
1960int cds_lfht_delete_bucket(struct cds_lfht *ht)
1961{
1962 struct cds_lfht_node *node;
1963 unsigned long order, i, size;
1964
1965 /* Check that the table is empty */
1966 node = bucket_at(ht, 0);
1967 do {
1968 node = clear_flag(node)->next;
1969 if (!is_bucket(node))
1970 return -EPERM;
1971 urcu_posix_assert(!is_removed(node));
1972 urcu_posix_assert(!is_removal_owner(node));
1973 } while (!is_end(node));
1974 /*
1975 * size accessed without rcu_dereference because hash table is
1976 * being destroyed.
1977 */
1978 size = ht->size;
1979 /* Internal sanity check: all nodes left should be buckets */
1980 for (i = 0; i < size; i++) {
1981 node = bucket_at(ht, i);
1982 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1983 i, i, bit_reverse_ulong(node->reverse_hash));
1984 urcu_posix_assert(is_bucket(node->next));
1985 }
1986
1987 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1988 cds_lfht_free_bucket_table(ht, order);
1989
1990 return 0;
1991}
1992
1993static
1994void do_auto_resize_destroy_cb(struct urcu_work *work)
1995{
1996 struct cds_lfht *ht = caa_container_of(work, struct cds_lfht, destroy_work);
1997 int ret;
1998
1999 ht->flavor->register_thread();
2000 ret = cds_lfht_delete_bucket(ht);
2001 if (ret)
2002 urcu_die(-ret);
2003 free_split_items_count(ht);
2004 ret = pthread_mutex_destroy(&ht->resize_mutex);
2005 if (ret)
2006 urcu_die(ret);
2007 ht->flavor->unregister_thread();
2008 poison_free(ht->alloc, ht);
2009}
2010
2011/*
2012 * Should only be called when no more concurrent readers nor writers can
2013 * possibly access the table.
2014 */
2015int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
2016{
2017 int ret;
2018
2019 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
2020 /*
2021 * Perform error-checking for emptiness before queuing
2022 * work, so we can return error to the caller. This runs
2023 * concurrently with ongoing resize.
2024 */
2025 if (!cds_lfht_is_empty(ht))
2026 return -EPERM;
2027 /* Cancel ongoing resize operations. */
2028 uatomic_store(&ht->in_progress_destroy, 1, CMM_RELAXED);
2029 if (attr) {
2030 *attr = ht->caller_resize_attr;
2031 ht->caller_resize_attr = NULL;
2032 }
2033 /*
2034 * Queue destroy work after prior queued resize
2035 * operations. Given there are no concurrent writers
2036 * accessing the hash table at this point, no resize
2037 * operations can be queued after this destroy work.
2038 */
2039 urcu_workqueue_queue_work(cds_lfht_workqueue,
2040 &ht->destroy_work, do_auto_resize_destroy_cb);
2041 return 0;
2042 }
2043 ret = cds_lfht_delete_bucket(ht);
2044 if (ret)
2045 return ret;
2046 free_split_items_count(ht);
2047 if (attr)
2048 *attr = ht->caller_resize_attr;
2049 ret = pthread_mutex_destroy(&ht->resize_mutex);
2050 if (ret)
2051 ret = -EBUSY;
2052 poison_free(ht->alloc, ht);
2053 return ret;
2054}
2055
2056void cds_lfht_count_nodes(struct cds_lfht *ht,
2057 long *approx_before,
2058 unsigned long *count,
2059 long *approx_after)
2060{
2061 struct cds_lfht_node *node, *next;
2062 unsigned long nr_bucket = 0, nr_removed = 0;
2063
2064 *approx_before = 0;
2065 if (ht->split_count) {
2066 int i;
2067
2068 for (i = 0; i < split_count_mask + 1; i++) {
2069 *approx_before += uatomic_read(&ht->split_count[i].add);
2070 *approx_before -= uatomic_read(&ht->split_count[i].del);
2071 }
2072 }
2073
2074 *count = 0;
2075
2076 /* Count non-bucket nodes in the table */
2077 node = bucket_at(ht, 0);
2078 do {
2079 next = rcu_dereference(node->next);
2080 if (is_removed(next)) {
2081 if (!is_bucket(next))
2082 (nr_removed)++;
2083 else
2084 (nr_bucket)++;
2085 } else if (!is_bucket(next))
2086 (*count)++;
2087 else
2088 (nr_bucket)++;
2089 node = clear_flag(next);
2090 } while (!is_end(node));
2091 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
2092 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
2093 *approx_after = 0;
2094 if (ht->split_count) {
2095 int i;
2096
2097 for (i = 0; i < split_count_mask + 1; i++) {
2098 *approx_after += uatomic_read(&ht->split_count[i].add);
2099 *approx_after -= uatomic_read(&ht->split_count[i].del);
2100 }
2101 }
2102}
2103
2104/* called with resize mutex held */
2105static
2106void _do_cds_lfht_grow(struct cds_lfht *ht,
2107 unsigned long old_size, unsigned long new_size)
2108{
2109 unsigned long old_order, new_order;
2110
2111 old_order = cds_lfht_get_count_order_ulong(old_size);
2112 new_order = cds_lfht_get_count_order_ulong(new_size);
2113 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2114 old_size, old_order, new_size, new_order);
2115 urcu_posix_assert(new_size > old_size);
2116 init_table(ht, old_order + 1, new_order);
2117}
2118
2119/* called with resize mutex held */
2120static
2121void _do_cds_lfht_shrink(struct cds_lfht *ht,
2122 unsigned long old_size, unsigned long new_size)
2123{
2124 unsigned long old_order, new_order;
2125
2126 new_size = max(new_size, MIN_TABLE_SIZE);
2127 old_order = cds_lfht_get_count_order_ulong(old_size);
2128 new_order = cds_lfht_get_count_order_ulong(new_size);
2129 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2130 old_size, old_order, new_size, new_order);
2131 urcu_posix_assert(new_size < old_size);
2132
2133 /* Remove and unlink all bucket nodes to remove. */
2134 fini_table(ht, new_order + 1, old_order);
2135}
2136
2137
2138/* called with resize mutex held */
2139static
2140void _do_cds_lfht_resize(struct cds_lfht *ht)
2141{
2142 unsigned long new_size, old_size;
2143
2144 /*
2145 * Resize table, re-do if the target size has changed under us.
2146 */
2147 do {
2148 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED))
2149 break;
2150
2151 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2152
2153 old_size = ht->size;
2154 new_size = uatomic_load(&ht->resize_target, CMM_RELAXED);
2155 if (old_size < new_size)
2156 _do_cds_lfht_grow(ht, old_size, new_size);
2157 else if (old_size > new_size)
2158 _do_cds_lfht_shrink(ht, old_size, new_size);
2159
2160 uatomic_store(&ht->resize_initiated, 0, CMM_RELAXED);
2161 /* write resize_initiated before read resize_target */
2162 cmm_smp_mb();
2163 } while (ht->size != uatomic_load(&ht->resize_target, CMM_RELAXED));
2164}
2165
2166static
2167unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
2168{
2169 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
2170}
2171
2172static
2173void resize_target_update_count(struct cds_lfht *ht,
2174 unsigned long count)
2175{
2176 count = max(count, MIN_TABLE_SIZE);
2177 count = min(count, ht->max_nr_buckets);
2178 uatomic_set(&ht->resize_target, count);
2179}
2180
2181void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
2182{
2183 resize_target_update_count(ht, new_size);
2184
2185 /*
2186 * Set flags has early as possible even in contention case.
2187 */
2188 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2189
2190 mutex_lock(&ht->resize_mutex);
2191 _do_cds_lfht_resize(ht);
2192 mutex_unlock(&ht->resize_mutex);
2193}
2194
2195static
2196void do_resize_cb(struct urcu_work *work)
2197{
2198 struct resize_work *resize_work =
2199 caa_container_of(work, struct resize_work, work);
2200 struct cds_lfht *ht = resize_work->ht;
2201
2202 ht->flavor->register_thread();
2203 mutex_lock(&ht->resize_mutex);
2204 _do_cds_lfht_resize(ht);
2205 mutex_unlock(&ht->resize_mutex);
2206 ht->flavor->unregister_thread();
2207 poison_free(ht->alloc, work);
2208}
2209
2210static
2211void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
2212{
2213 struct resize_work *work;
2214
2215 /*
2216 * Store to resize_target is before read resize_initiated as guaranteed
2217 * by either cmpxchg or _uatomic_xchg_monotonic_increase.
2218 */
2219 if (!uatomic_load(&ht->resize_initiated, CMM_RELAXED)) {
2220 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED)) {
2221 return;
2222 }
2223 work = ht->alloc->malloc(ht->alloc->state, sizeof(*work));
2224 if (work == NULL) {
2225 dbg_printf("error allocating resize work, bailing out\n");
2226 return;
2227 }
2228 work->ht = ht;
2229 urcu_workqueue_queue_work(cds_lfht_workqueue,
2230 &work->work, do_resize_cb);
2231 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2232 }
2233}
2234
2235static
2236void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2237{
2238 unsigned long target_size = size << growth;
2239
2240 target_size = min(target_size, ht->max_nr_buckets);
2241 if (resize_target_grow(ht, target_size) >= target_size)
2242 return;
2243
2244 __cds_lfht_resize_lazy_launch(ht);
2245}
2246
2247/*
2248 * We favor grow operations over shrink. A shrink operation never occurs
2249 * if a grow operation is queued for lazy execution. A grow operation
2250 * cancels any pending shrink lazy execution.
2251 */
2252static
2253void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2254 unsigned long count)
2255{
2256 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2257 return;
2258 count = max(count, MIN_TABLE_SIZE);
2259 count = min(count, ht->max_nr_buckets);
2260 if (count == size)
2261 return; /* Already the right size, no resize needed */
2262 if (count > size) { /* lazy grow */
2263 if (resize_target_grow(ht, count) >= count)
2264 return;
2265 } else { /* lazy shrink */
2266 for (;;) {
2267 unsigned long s;
2268
2269 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2270 if (s == size)
2271 break; /* no resize needed */
2272 if (s > size)
2273 return; /* growing is/(was just) in progress */
2274 if (s <= count)
2275 return; /* some other thread do shrink */
2276 size = s;
2277 }
2278 }
2279 __cds_lfht_resize_lazy_launch(ht);
2280}
2281
2282static void cds_lfht_before_fork(void *priv __attribute__((unused)))
2283{
2284 if (cds_lfht_workqueue_atfork_nesting++)
2285 return;
2286 mutex_lock(&cds_lfht_fork_mutex);
2287 if (!cds_lfht_workqueue)
2288 return;
2289 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2290}
2291
2292static void cds_lfht_after_fork_parent(void *priv __attribute__((unused)))
2293{
2294 if (--cds_lfht_workqueue_atfork_nesting)
2295 return;
2296 if (!cds_lfht_workqueue)
2297 goto end;
2298 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2299end:
2300 mutex_unlock(&cds_lfht_fork_mutex);
2301}
2302
2303static void cds_lfht_after_fork_child(void *priv __attribute__((unused)))
2304{
2305 if (--cds_lfht_workqueue_atfork_nesting)
2306 return;
2307 if (!cds_lfht_workqueue)
2308 goto end;
2309 urcu_workqueue_create_worker(cds_lfht_workqueue);
2310end:
2311 mutex_unlock(&cds_lfht_fork_mutex);
2312}
2313
2314static struct urcu_atfork cds_lfht_atfork = {
2315 .before_fork = cds_lfht_before_fork,
2316 .after_fork_parent = cds_lfht_after_fork_parent,
2317 .after_fork_child = cds_lfht_after_fork_child,
2318};
2319
2320static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2321{
2322 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2323
2324 mutex_lock(&cds_lfht_fork_mutex);
2325 if (!cds_lfht_workqueue)
2326 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2327 NULL, NULL, NULL, NULL, NULL, NULL, NULL);
2328 mutex_unlock(&cds_lfht_fork_mutex);
2329}
2330
2331static void cds_lfht_exit(void)
2332{
2333 mutex_lock(&cds_lfht_fork_mutex);
2334 if (cds_lfht_workqueue) {
2335 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
2336 urcu_workqueue_destroy(cds_lfht_workqueue);
2337 cds_lfht_workqueue = NULL;
2338 }
2339 mutex_unlock(&cds_lfht_fork_mutex);
2340}
This page took 0.029891 seconds and 4 git commands to generate.