
Tutorial: Writing a Linux Trace Toolkit Viewer extension

By Peter Ho

Linux Trace Toolkit Viewer (LTTV) is a free, open source trace visualizer that is used

to read, analyze and display traces produced by LTTng. LTTV is extensible via plug-

ins. A plug-in is a software tool that accomplishes a specific task in LTTV; for example,

the lttvwindow plug-in acts as a manager for other plug-ins in LTTV. LTTV consists of

several components as shown in Figure 1:

• The main program, defined in the file main.c, is responsible for the creation of the

global attributes tree and the parsing of command line options. LTTV has a global

attributes tree where hooks are stored; these hooks are used to register callback

functions allowing plug-ins to be called at different points during the execution.

• The lttvwindow plug-in is a manager that supplies a menu entry and a toolbar for

other plug-ins. It also provides library functions upon which graphical plug-ins

use to interface with the main window.

• The event viewer displays the detailed information about each event for a given

trace.

• The control flow viewer shows the detailed graphical information about each

event.

• The statistics viewer displays the statistics for the current traceset.

Figure 1 shows the relationship between the different layers of LTTV.

Figure 1: Overview of LTTV

Section 1 and Section 2 provide steps of getting and installing LTTV from the sources.

Section 3 explains the process of developing a LTTV graphical plug-in. We start by

developing an interrupt plug-in with simple functionalities, the number of interrupts and

the total duration. Then we add more complex functionalities such as the standard

deviation, the longest and shortest IRQ handlers, the average period, the period and

frequency standard deviations. Section 4 shows how to add new instrumentation points

with the tool Genevent.

1 Getting Started

In this tutorial, we assume that you have LTTng installed in the kernel. If you haven’t

done so, see the following resources for some Linux information:

� The Linux Kernel Howto is a good start on how to compile the Linux kernel from

the source (http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html)

� LTTV & LTTng Quick start guide:

http://ltt.polymtl.ca/svn/ltt/branches/poly/QUICKSTART

� Learning Red Hat Linux, Bill McCarty. O'Reilly. Third Edition

� Linux kernel development Robert Love. Novell Press. 2005

This tutorial uses the Linux Fedora distribution. However, other distributions will work

as well.

1.1 Getting LTTV

If you have already installed LTTV, you can skip Section 1 and Section 2. If you don't,

The LTTV framework is available for download at http://ltt.polymtl.ca/packages/. You

need to download the LTTV package that is compatible with the installed LTTng. To see

the list of compatibilities between LTTV and LTTng, please refer to http://ltt.polymtl.ca

> LTTng+LTTV versions compatibility.

In the LTTV package, you will find the source code for this tutorial. The simple interrupt

plug-in is under lttv/modules/gui/tutorial, the interrupt plug-in is under

lttv/modules/gui/interrupt, and the disk plug-in is under

lttv/modules/gui/diskperformance.

To configure and compile LTTV, you must obtain the correct compiler, tools and

libraries:

� gcc 3.2 or better

� glib 2.4 or better development libraries

� gtk 2.4 or better development libraries

1.1.1 The GLib

GLib or “GNU Library” provides functions such as linked lists, strings, threads, or

memory allocation to facilitate the work of the programmer. GLib also provides

portability wrappers to allow an application to be more portable on different platforms,

such as 16 bits, 32 bits, and big endian or little endian. GLib is not a graphical library

and does not require the GTK+ library. You can use it pretty much in any C language

program.

To verify which version of GLib is currently installed on your machine:

glibconfig --version

2.4.1

This means version 2.4.1 is installed on the machine. If you don't have GLib 2.4 orbetter

development libraries, you need to download it from http://rpmfind.net/. The latest

version of GLib for program development at time of writing is package

glibdevel2.6.12.i386.rpm

To install this package, use command:

rpm -iv glibdevel2.6.12.i386.rpm

1.1.2 The GTK+

GTK+ is a toolkit designed for the development of applications for the X window

System. GTK+ includes GDK which is the acronym for Gimp Drawing Kit. GDK

contains functions that encapsulate the functions of Xlib, which is the low-level library of

the X window protocol. The GTK+ toolkit proposes a set of widgets that you can use to

create graphical user interfaces. In this tutorial, we will use the GTK+ toolkit to create a

graphical plug-in for the LTTV framework.

To verify which version of GTK+ is currently installed on your machine:

gtk-config --version

If you don’t have version 2.4 or higher, you need to download a free copy of GTK+ from

http://rpmfind.net. The latest version of GTK+ in rpm format is

gtk2devel2.4.139.i386.rpm. To install this package, use command:

rpm -iv gtk2devel2.4.139.9.i386.rpm

2 Installing and Running LTTV

Now that you have the GLib library and the GTK+ toolkit in place, you can install a

LTTV package taken from http://ltt.polymtl.ca/. Unzip the file with the command:

tar xvfz LinuxTraceToolkitViewer-0.x.xx-xxxx2006.tar.gz
mv LinuxTraceToolkitViewer-0.x.xx-xxxx2006 lttv

Go to the lttv directory and use the following commands to compile and install LTTV on

your machine:

./configure

make

Now you need to become root and use the command:

make install

The LTTV is now installed on your system! Note that LTTV is built with the GNU

autotools package. Under UNIX platforms, the GNU autotools package is used to build

portable C and C++ applications. The GNU autotools package is composed of autoconf,

automake and libtools programs. The autoconf program permits automatic configuration

of software installation, it probes the system for portability related information, which is

required to customize makefiles, configuration header files, and other application specific

files. The output of autoconf is a “configure” shell script. The automake program

examines source files, determines how they depend on each other, and generates a

Makefile so the files can be compiled in the correct order.

If you want to add a new plug-in to LTTV, you need to add the name of the plug-in

directory in the Makefile.am file of the parent directory and in the configure.in file. The

GNU autotools will automatically generate the make files for the new plug-in when you

run the autogen.sh script.

3 LTTV Plug-ins:

Up until now, we have explained the default LTTV configuration. Now we will write a

plug-in to augment the LTTV functionality. There are two types of plug-ins: text and

graphical. A text plug-in generates text on the standard output or in a text file, a graphical

plug-in is loaded when LTTV starts and contributes to the lttvwindow graphical user

interface. In this tutorial, we will concentrate on developing a graphical plug-in.

3.1 Text Plug-in:

LTTV text plug-ins are located in lttv/modules/text directory. The textdump plug-in

comes with LTTV, it converts the input trace into a formatted text file, and it can be

invoked with other plug-ins such as batchAnalysis or textFilter. Refer to the “Linux

Trace Toolkit Viewer Developer Guide” on how to develop a text plug-in.

3.2 Simple Graphical Plug-in:

Let's develop an interrupt plug-in to display statistics related to interrupts on the system.

An interrupt is an electrical signal that I/O devices use to communicate with the CPU.

For example, when you type a key on the keyboard, the keyboard controller will raise an

interrupt to signal that a key has been pressed. Watching the frequency and the total

duration for each interrupt can give us a rough idea of how a system is performing.

We start by developing a simple version of the interrupt plug-in. This first version will

have the frequency of interrupts in Hz and the total duration for each interrupt. The user

interface of this version is shown in Figure 2. The first column is the CPU ID, to identify

the processor. For example, for a two-processor system, the CPU ID will be 0 or 1. The

second column is the IRQ ID; with the i386 PC architecture, there are 16 possible IRQs .

Table 1 shows some common IRQs. The third column is the frequency in Hz which is

the number of interrupts occurs per second. The fourth column is the total duration in

nanosecond which is the sum of all the interrupt time intervals.

In Section 3.3, we will enhance the plug-in by adding the duration standard deviation,

the longest and shortest interrupt handlers, the average period, the period and frequency

standard deviations.

Figure 2: LTTV with the interrupt plug-in located below the toolbar.

Table 1: PC interrupt

The source code of the plug-in is available in the directory lttv/modules/gui/tutorial of the

LTTV main branch. You might want to download the file tutorial.c and have a look at it

before we start.

IRQ Purpose
0 Timer
1 Keyboard
2 cascade to IRQ 9
3 COM2 and COM4
4 COM1 and COM3
5 Free
6 Floppy
7 LPT1
8 real-time clock
9 cascade from IRQ2
14 Hard Drive

Inner Data Structure:

First, we need a data structure to hold the plug-in information. Usually, this data structure

must contain fields for the following information: the GTK widgets for the graphical

interface, the event hooks registered with the main program, and internal data specific to

the information to display. This structure will have to be passed as hook_data to each

function registered by the plug-in.

The data structure of our plug-in is along the lines of the following code snippet:

1. typedef struct _InterruptEventData {

2. /*Graphical Widgets */

3. GtkWidget * ScrollWindow;

4. GtkListStore *ListStore;

5. GtkWidget *Hbox;

6. GtkWidget *TreeView;

7. GtkTreeSelection *SelectionTree;

8. Tab * tab; /* tab that contains this plug-in*/

9. LttvHooks * event_hooks;

10. LttvHooks * hooks_trace_after;

11. LttvHooks * hooks_trace_before;

12. TimeWindow time_window;

13. LttvHooksById * event_by_id_hooks;

14. GArray *IrqExit;

15. GArray *IrqEntry;

16. } InterruptEventData ;

The graphical user interface should contain a table within a scrolled window. It starts

with the top-level window, where we create a ScrollWindow. The ScrollWindow is a

place within which other widgets will be placed. This top-level window is actually a

container for the Hbox and the Treeview. The Hbox is a container that organizes child

widgets into a single row, we want the child widgets to horizontally align. A Treeview

widget can display both trees and tabular lists, in our case, we use it to display lists. A

ListStore object is a list model for use with a GtkTreeView widget. Figure 3 illustrates

this.

Figure 3: Widget Instance Hierarchy

Figure 3 illustrates the widget hierarchy for our user interface. The Scrollwindow at

the top of the hierarchy is the parent to widgets residing lower in the hierarchy.

Entry point init()

Basically, the entry point of a LTTV plug-in is the init() function, which is called when

the plug-in is initialized. Then it calls lttvwindow_register_constructor():

void lttvwindow_register_constructor(

char * name,
char * menu_path,
char * menu_text,
char ** pixmap,
char * tooltip,
lttvwindow_viewer_constructor view_constructor);

This function is defined in lttwindow.c and is responsible to register the plug-in’s

constructor, add the pixmap file to the toolbar of the main window and create a menu

item for the extension on the menu bar of the main window. The name argument is the

ScrollWindow

HBox

TreeView

TreeSelection

ListStore

name of the plug-in. The menu_text argument is the text of the menu item. The pixmap

is the .xpm pixmap on the toolbar item. The view_constructor is a pointer to the callback

function that you want called. This provides everything needed to make the new viewer

provided by the extension available.

Our callback function InterruptEventData *system_info(Tab *tab) is responsible for the

allocation and initialization of the data structure InterruptEventData, initialization of

GTK widgets, and register hook functions to event hooks. It is called when an Interrupt

plug-in is requested from the menu. It also calls

lttvwindow_register_time_window_notify() to register a hook function that will be called

by the main window when the main window’s time interval is updated. The function is

defined in lttvwindow.c as follows:

void lttvwindow_register_time_window_notify(Tab *tab,

 LttvHook hook,

 gpointer hook_data);

 The tab argument is a pointer to the tab folder where the extension belongs. The hook

argument points to a hook function. In our case, we register the

interrupt_update_time_window() function, so it will be called by the main window

whenever the user changes the time interval with the time scrollbar at the bottom of the

LTTV window. This synchronizes the time intervals for all the viewers within the same

window.

Request events

A plug-in can request events by passing an EventsRequest structure to the main window.

To do this, the plug-in must pass an initialized EventsRequest structure to the function

lttvwindow_events_request(). This function is responsible to request data in a specific

time interval to the main window and is defined in lttwindow.c as follows:

void lttvwindow_events_request(Tab *tab,

 EventsRequest *events_request);

The tab argument is the tab folder where the plug-in belongs to. The events_request

argument is the pointer to an EventsRequest structure . This structure must be initialized

with the start time or the start position, the end time or the end position, and the hooks

associated with the event request.

Here is the EventsRequest structure:

typedef struct _EventsRequest
{
 gpointer owner; /* Owner of the request */
 gpointer viewer_data; /* Unset : NULL */
 gboolean servicing; /* service in progress: TRUE*/
 LttTime start_time; /* Unset : ltt_time_infinite */
 LttvTracesetContextPosition *start_position; /* Unset : NULL */
 gboolean stop_flag; /* Continue:TRUE Stop:FALSE */
 LttTime end_time; /* Unset : ltt_time_infinite */
 guint num_events; /* Unset : G_MAXUINT */
 LttvTracesetContextPosition *end_position; /* Unset : NULL */
 gint trace; /* unset : -1 */
 GArray *hooks; /* Unset : NULL */
 LttvHooks *before_chunk_traceset; /* Unset : NULL */
 LttvHooks *before_chunk_trace; /* Unset : NULL */
 LttvHooks *before_chunk_tracefile;/* Unset : NULL */
 LttvHooks *event; /* Unset : NULL */
 LttvHooksById *event_by_id; /* Unset : NULL */
 LttvHooks *after_chunk_tracefile; /* Unset : NULL */
 LttvHooks *after_chunk_trace; /* Unset : NULL */
 LttvHooks *after_chunk_traceset; /* Unset : NULL */
 LttvHooks *before_request; /* Unset : NULL */
 LttvHooks *after_request; /* Unset : NULL */
} EventsRequest;

Some relevant fields are:

The owner field is a pointer to the extension's data structure; in our case, it's the

InterruptEventData structure. The start_time field is a pointer the start time interval of the

main window. The end_time field is a pointer the end time interval of the main window

The before_chunk_traceset, before_chunk_trace, before_chunk_tracefile, event,

after_chunk_tracefile, after_chunk_trace and after_chunk_traceset fields are hook

pointers for traceset, trace and tracefile. In LTTV, a traceset is a set of traces; this means

you can have many traces in one traceset. One trace can contain many tracefiles. The

before means that the hooks will be called before the beginning of a trace, traceset or

tracefile and the after is the opposite. The event field is a hook pointer for an event in a

trace. The event_by_id field is a hook pointer for the event ID.

With this in mind, we look at the request_event () function of our plug-in. This function

gets a traceset from the traceset context. Since there are many traces in a traceset, we

need to iterate through the traceset. For each trace, we create a hook for each hook

function, we use two hook functions: trace_header(), and interrupt_display(). The

trace_header() function is called at the beginning of the trace but it does nothing, the

interrupt_display () function displays the result on the viewer.

Use event ID

To calculate the number of interrupts and the total duration for each interrupt, we need

catch the events “irq_entry” and “irq_exit” from the trace. There are two ways to do this.

The easy way is to register a hook function to an event hook, and assigns the hook to the

event field of EventsRequest structure. The pseudo code should look like this:

static void request_event(InterruptEventData *event_data)
{
 .
 .
 .
 // Create an event_hooks
 event_data->event_hooks = lttv_hooks_new();
 // Register parse_event() callback function to the event_hooks
 lttv_hooks_add(event_data->event_hooks, parse_event, event_data, LTTV_PRIO_DEFAULT);
 .
 .
 EventsRequest *events_request = g_new(EventsRequest, 1);
 events_request->event = event_data->event_hooks;
 .
 .
 lttvwindow_events_request(event_data->tab, events_request);

}

gboolean parse_event(void *hook_data, void *call_data)
{
 extract an event from call_data
 if the event is an “irq_entry” or “irq_exit” event
 then calculate the duration of each interrupt
}

Whenever an event occurs in the trace, the function parse_event () is called. Then it

filters for the “irq_entry” and “irq_exit” events, which are used to calculate the duration

of each interrupt and to count the interrupt.

The more elegant way is to use the event ID. With the event ID approach, the registered

hook function is called only whenever the registered event occurs. We use this method

for the implementation of our interrupt plug-in. The following pseudo code of our

request_event() illustrates the event ID concept:

static void request_event(InterruptEventData *event_data)
{
 .
 .
 .
 //Create an array of LttvTraceHook
 GArray *hooks = g_array_new(FALSE, FALSE, sizeof(LttvTraceHook));

 EventsRequest * events_request = g_new(EventsRequest, 1);

 hooks = g_array_set_size(hooks, 2)

 LttvTraceState *ts = = (LttvTraceState *)tsc->traces[i];

 event_data->event_by_id_hooks = lttv_hooks_by_id_new();

 lttv_trace_find_hook(ts->parent.t,
 LTT_FACILITY_KERNEL, LTT_EVENT_IRQ_ENTRY,
 LTT_FIELD_IRQ_ID, 0, 0,
 irq_entry_callback,
 events_request,
 &g_array_index(hooks, LttvTraceHook, 0));

 lttv_trace_find_hook(ts->parent.t,
 LTT_FACILITY_KERNEL, LTT_EVENT_IRQ_EXIT,
 LTT_FIELD_IRQ_ID, 0, 0,
 irq_exit_callback,
 events_request,
 &g_array_index(hooks, LttvTraceHook, 1));

 // Iterate through the facility list
 for(k = 0 ; k < hooks->len; k++)
 {
 hook = &g_array_index(hooks, LttvTraceHook, k);
 for(l=0; l<hook->fac_list->len; l++)
 {
 thf = g_array_index(hook->fac_list, LttvTraceHookByFacility*, l);
 lttv_hooks_add(lttv_hooks_by_id_find(event_data->event_by_id_hooks, thf->id),
 thf->h,
 event_data,
 LTTV_PRIO_DEFAULT);

 }
 }
 .
 .
 .

 events_request->hooks = hooks;

 events_request->event_by_id = event_data->event_by_id_hooks;
 .
 .
 .
 lttvwindow_events_request(event_data->tab, events_request);
}

static gboolean irq_entry_callback(void *hook_data, void *call_data)

{

}

static gboolean irq_exit_callback(void *hook_data, void *call_data)
{

}

We start by creating an array of LttvTraceHook with the size of 2 for the “irq_entry” and

“irq_exit” events. Each item of this array is used to store information returned by the

lttv_trace_find_hook() function, which is defined as follows:

gint lttv_trace_find_hook(LttTrace *t,

 GQuark facility,

GQuark event_type,

 GQuark field1, GQuark field2, GQuark field3,

LttvHook h,

 gpointer hook_data,

 LttvTraceHook *th);

This function searches in the trace for the id of the named event type within the named

facility. Then, find the three (if non null) named fields. All that information is then used

to fill the LttvTraceHook structure.

The default facilities and events quarks, such as LTT_FACILITY_KERNEL,

LTT_EVENT_IRQ_EXIT, and LTT_EVENT_IRQ_ENTRY , are defined and initialized in state.c.

If you are to create new facilities or events, you define them directly in your plug-in as

was done in the disk plug-in (diskperformance.c).

For each item of the LttvTraceHook array, we need to iterate through its facility list. This

is because we may have more than one facility associated with a facility name in a trace.

For example, LTTV registers the facility “myfacility” with an ID 10, then unregisters

the same facility “myfacility” a moment later. The ID 10 will be unused for the rest of

the trace. Then it registers the facility “myfacility” again with a new ID 11. When you

register your event for “myfacility”, you must connect the event ID to the facility IDs 10

and 11. This is why we iterate through the facility array and call lttv_hooks_by_id_find()

to obtain the hooks for a given ID.

events_request->hooks = hooks;

Here, we need to set the LttvTraceHook array to the hooks field of the EventsRequest

structure. This allows the main window to free the memory allocated for the hooks.

Otherwise, we will create a memory leak.

3.3 Improved Plug-in

We can enhance the interrupt plug-in by adding the duration standard deviation, the

longest and shortest interrupt handlers, the average period, the period and frequency

standard deviations.

The source code of the interrupt plug-in is available in directory

lttv/modules/gui/interrupt of the LTTV main branch. You might want to download the

interrupt.c file and have a look at it before we start.

To make the explanation simple, we will concentrate only on the duration standard

deviation calculation. The standard deviation measures the average distance of the data

values from their mean (average). If the data points are all close to the mean, then the

standard deviation will be low. We can use this to determine whether an interrupt is

periodic or not, if its standard deviation is low or zero, then we can conclude that the

interrupt is periodic.

 The standard deviation is defined as:

where is the average duration and is the individual interrupt duration. This

formula is taken from the Wikipedia encyclopedia.

To calculate the standard deviation, we need to iterate through the event trace twice. In

the first iteration, we need to calculate the average . In the second iteration, we use the

average to compute the standard deviation S. To translate this into programming code,

we need to pass the EventsRequest structure twice to the main window. In the first

request, we setup a hook function to count the number of interrupts, which we use to

calculate the average . In the second request, which is called immediately after the first

request is done, we have a function hook to calculate standard deviation S. If you look at

the file interrupt.c, I call the two requests: FirstRequest() and SecondRequest(),

respectively. For both requests, I use the event ID concept explained previously.

The result of the new plug-in is shown in Figure 4. The fifth column is the duration

standard deviation. The sixth and seventh columns represent maximum and minimum

IRQ handler durations. The eighth column is the average period.

Figure 4: LTTV with the interrupt plug-in located below the toolbar.

4 Adding new instrumentation events

Sometimes you may need to add new instrumentation events to the instrumented kernel.

The LTT Next Generation (LTTng) provides a simple mechanism to do this with a tool

called genevent. Genevent is a XML parser that takes as input a XML event description

file and from this creates C language files, that LTTng uses for instrumentation.

Basically, you create a XML event description file, the genevent tool will generate

appropriate headers from this XML file to use for tracing.

For example, we want to create a XML event description for the block facility contains

two events, read and write, as shown in Figure 5. The read event counts the number of

bytes read in a block operation and has three fields: major, minor, and bytes. The major

and minor fields identify the block device, and the bytes field identifies the number of

bytes transferred. The same reasoning applies to the write event.

Figure 5: XML event description file: block.xml

 I save the block.xml file in lttv/modules/gui/diskperformance of the LTTV main branch.

The process of adding new instrumentations is as follows:

• Install genevent. Make sure you check the compatibility list for the appropriate

version.

• Create a facility XML file

• Generate appropriate source code from the XML file with genevent

• Copy the source code to /usr/src/linux-2.6.x-lttng-x.x.x/include/linux/ltt and

 /usr/src/linux-2.6.x-lttng-x.x.x/ltt

• Edit the kernel config file /usr/src/linux-2.6.x-lttng-x.x.x/ltt/Kconfig by adding

 <facility name=block>

 <description>block facility has events related to block read and block written.</description>

 <event name=read>

 <description>block read event</description>

 <field name="major"> <description>major number of the device</description> <int/> </field>

 <field name="minor"> <description>minor number of the device</description> <int/> </field>

 <field name="bytes"> <description>number of bytes read</description> <size_t/> </field>

 </event>

 <event name=write>

 <description>Block write event </description>

 <field name="major"> <description>major number of the device</description> <int/> </field>

 <field name="minor"> <description>minor number of the device</description> <int/> </field>

 <field name="bytes"> <description>number of bytes written</description> <size_t/> </field>

 </event>

 </facility>

 your config flag

• Edit the make file /usr/src/linux-2.6.x-lttng-x.x.x/ltt/Makefile by adding your

loader name

• Edit the kernel file you want to instrument:

- Add #include <linux/ltt/ltt-facility-xxx.h> at the beginning of the file.

- Add a call to the tracing functions. See their names and parameters in

 /usr/src/linux-2.6.x-lttng-x.x.x/include/linux/ltt/ltt-facility-xxx.h

Follow this process, copy the block.xml file to

/usr/local/share/LinuxTraceToolkitViewer/facilities. Use genevent to generate LTTng

files for the kernel:

cd /tmp

genevent /usr/local/share/LinuxTraceToolkitViewer/facilities/block.xml

This command generates the following files: ltt-facility-block.h, ltt-facility-id-block.h, ltt-

facility-loader-block.h, ltt-facility-loader-block.c. Copy the first two files to the kernel-

2.6.x/include/linux/ltt directory and the last two files to kernel-2.6.x/ltt directory of the

instrumented kernel.

You need to add the LTT_FACILITY_BLOCK flag in the kernel-2.6.x/ltt/Kconfig file

and the CONFIG_LTT_FACILITY_BLOCK flag in the kernel-2.6.x/ltt/Makefile. This

step is necessary for the new facility to be compiled with LTTng in the kernel.

Now, we need to place the read and write events at the block I/O layer of the kernel to

get the number of bytes transferred. Let's look at the read operation in the Linux kernel.

Whenever a block device is opened, the kernel calls the blk_open() function, defined in

fs/block_dev.c, this is where we get the minor and major numbers of the device. All read

operations from a block device would have eventually called the

__generic_file_aio_read() function, defined in mm/filemap.c. In turn, this function

calls do_generic_file_read() to perform the read operation from the disk and it returns a

read_descriptor_t structure. The trace_block_read() function, generated by genevent

tool, should be placed after the do_generic_file_read() as shown in the following code

snippet:

ssize_t __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t
*ppos)
{
.
.
.

do_generic_file_read(filp,ppos,&desc,file_read_actor);
 retval += desc.written;
 trace_block_read(_major,_first_minor, retval);
 if (desc.error) {
 retval = retval ?: desc.error;
 break;
 }
}

The same reasoning applies for the written operation. Place the trace_block_write()

function in the function __generic_file_aio_write_nolock () of the file mm/filemap.c as

shown in the following code snippet:
static ssize_t __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
 unsigned long nr_segs, loff_t *ppos)
{
.
.
.

written = generic_file_buffered_write(iocb, iov, nr_segs, pos, ppos, count,
 written);

 trace_block_write(_major, _first_minor, written);
out:
 current->backing_dev_info = NULL;
 return written ? written : err;
}

After we recompile the instrumented kernel and get a new trace with LTTV, we should

be able to view the new instrumentation events with the disk performance viewer.

The LTTV disk performance plug-in is used to analyze traces containing the block

facility with the read and written events. It displays statistics on the IDE, SCSI and USB

disk devices. The statistics included the total bytes read and written, the number of read

and write operations, and the rate of transferred. Analyzing these statistics can show us

uneven load of multiple disks, and show the balance of read versus write operations.

The disk performance plug-in source code is located in the directory

lttv/modules/gui/diskperformance of the LTTV main branch. The source code of this

plug-in is self-explained, as it used the event ID concept explained previously.

Download source code:

Linux Trace Toolkit Viewer (LTTV) packages: http://ltt.polymtl.ca/packages/

LTT Next Generation (LTTng): http://ltt.polymtl.ca/lttng/

Acknowledgments:

I like to thank Mathieu Desnoyers for his technical expertise and reviews.

Bibliography:

[1] Mathieu Desnoyers, “Linux Trace Toolkit Viewer Developer Guide”

[2] Mathieu Desnoyers, “Linux Trace Toolkit Viewer User Guide”

[3] Mathieu Desnoyers, “LTTng & LTTV QuickStart Guide”

