Hide symbols that shouldn't be part of the ABI
[lttng-ust.git] / src / common / ringbuffer / ring_buffer_frontend.c
1 /*
2 * SPDX-License-Identifier: LGPL-2.1-only
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
7 * recorder (overwrite) modes. See thesis:
8 *
9 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
10 * dissertation, Ecole Polytechnique de Montreal.
11 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
12 *
13 * - Algorithm presentation in Chapter 5:
14 * "Lockless Multi-Core High-Throughput Buffering".
15 * - Algorithm formal verification in Section 8.6:
16 * "Formal verification of LTTng"
17 *
18 * Author:
19 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
20 *
21 * Inspired from LTT and RelayFS:
22 * Karim Yaghmour <karim@opersys.com>
23 * Tom Zanussi <zanussi@us.ibm.com>
24 * Bob Wisniewski <bob@watson.ibm.com>
25 * And from K42 :
26 * Bob Wisniewski <bob@watson.ibm.com>
27 *
28 * Buffer reader semantic :
29 *
30 * - get_subbuf_size
31 * while buffer is not finalized and empty
32 * - get_subbuf
33 * - if return value != 0, continue
34 * - splice one subbuffer worth of data to a pipe
35 * - splice the data from pipe to disk/network
36 * - put_subbuf
37 */
38
39 #define _LGPL_SOURCE
40 #include <sys/types.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <unistd.h>
44 #include <fcntl.h>
45 #include <signal.h>
46 #include <time.h>
47 #include <stdbool.h>
48 #include <stdint.h>
49 #include <urcu/compiler.h>
50 #include <urcu/ref.h>
51 #include <urcu/tls-compat.h>
52 #include <poll.h>
53 #include "common/macros.h"
54
55 #include <lttng/ust-utils.h>
56 #include <lttng/ust-ringbuffer-context.h>
57
58 #include "common/smp.h"
59 #include "ringbuffer-config.h"
60 #include "vatomic.h"
61 #include "backend.h"
62 #include "frontend.h"
63 #include "shm.h"
64 #include "rb-init.h"
65 #include "common/compat/errno.h" /* For ENODATA */
66
67 /* Print DBG() messages about events lost only every 1048576 hits */
68 #define DBG_PRINT_NR_LOST (1UL << 20)
69
70 #define LTTNG_UST_RB_SIG_FLUSH SIGRTMIN
71 #define LTTNG_UST_RB_SIG_READ SIGRTMIN + 1
72 #define LTTNG_UST_RB_SIG_TEARDOWN SIGRTMIN + 2
73 #define CLOCKID CLOCK_MONOTONIC
74 #define LTTNG_UST_RING_BUFFER_GET_RETRY 10
75 #define LTTNG_UST_RING_BUFFER_RETRY_DELAY_MS 10
76 #define RETRY_DELAY_MS 100 /* 100 ms. */
77
78 /*
79 * Non-static to ensure the compiler does not optimize away the xor.
80 */
81 uint8_t lttng_crash_magic_xor[]
82 __attribute__((visibility("hidden")));
83 uint8_t lttng_crash_magic_xor[] = RB_CRASH_DUMP_ABI_MAGIC_XOR;
84
85 /*
86 * Use POSIX SHM: shm_open(3) and shm_unlink(3).
87 * close(2) to close the fd returned by shm_open.
88 * shm_unlink releases the shared memory object name.
89 * ftruncate(2) sets the size of the memory object.
90 * mmap/munmap maps the shared memory obj to a virtual address in the
91 * calling proceess (should be done both in libust and consumer).
92 * See shm_overview(7) for details.
93 * Pass file descriptor returned by shm_open(3) to ltt-sessiond through
94 * a UNIX socket.
95 *
96 * Since we don't need to access the object using its name, we can
97 * immediately shm_unlink(3) it, and only keep the handle with its file
98 * descriptor.
99 */
100
101 /*
102 * Internal structure representing offsets to use at a sub-buffer switch.
103 */
104 struct switch_offsets {
105 unsigned long begin, end, old;
106 size_t pre_header_padding, size;
107 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
108 switch_old_end:1;
109 };
110
111 DEFINE_URCU_TLS(unsigned int, lib_ring_buffer_nesting);
112
113 /*
114 * wakeup_fd_mutex protects wakeup fd use by timer from concurrent
115 * close.
116 */
117 static pthread_mutex_t wakeup_fd_mutex = PTHREAD_MUTEX_INITIALIZER;
118
119 static
120 void lib_ring_buffer_print_errors(struct lttng_ust_ring_buffer_channel *chan,
121 struct lttng_ust_ring_buffer *buf, int cpu,
122 struct lttng_ust_shm_handle *handle);
123
124 /*
125 * Handle timer teardown race wrt memory free of private data by
126 * ring buffer signals are handled by a single thread, which permits
127 * a synchronization point between handling of each signal.
128 * Protected by the lock within the structure.
129 */
130 struct timer_signal_data {
131 pthread_t tid; /* thread id managing signals */
132 int setup_done;
133 int qs_done;
134 pthread_mutex_t lock;
135 };
136
137 static struct timer_signal_data timer_signal = {
138 .tid = 0,
139 .setup_done = 0,
140 .qs_done = 0,
141 .lock = PTHREAD_MUTEX_INITIALIZER,
142 };
143
144 static bool lttng_ust_allow_blocking;
145
146 void lttng_ust_ringbuffer_set_allow_blocking(void)
147 {
148 lttng_ust_allow_blocking = true;
149 }
150
151 /* Get blocking timeout, in ms */
152 static int lttng_ust_ringbuffer_get_timeout(struct lttng_ust_ring_buffer_channel *chan)
153 {
154 if (!lttng_ust_allow_blocking)
155 return 0;
156 return chan->u.s.blocking_timeout_ms;
157 }
158
159 /**
160 * lib_ring_buffer_reset - Reset ring buffer to initial values.
161 * @buf: Ring buffer.
162 *
163 * Effectively empty the ring buffer. Should be called when the buffer is not
164 * used for writing. The ring buffer can be opened for reading, but the reader
165 * should not be using the iterator concurrently with reset. The previous
166 * current iterator record is reset.
167 */
168 void lib_ring_buffer_reset(struct lttng_ust_ring_buffer *buf,
169 struct lttng_ust_shm_handle *handle)
170 {
171 struct lttng_ust_ring_buffer_channel *chan;
172 const struct lttng_ust_ring_buffer_config *config;
173 unsigned int i;
174
175 chan = shmp(handle, buf->backend.chan);
176 if (!chan)
177 return;
178 config = &chan->backend.config;
179 /*
180 * Reset iterator first. It will put the subbuffer if it currently holds
181 * it.
182 */
183 v_set(config, &buf->offset, 0);
184 for (i = 0; i < chan->backend.num_subbuf; i++) {
185 struct commit_counters_hot *cc_hot;
186 struct commit_counters_cold *cc_cold;
187 uint64_t *ts_end;
188
189 cc_hot = shmp_index(handle, buf->commit_hot, i);
190 if (!cc_hot)
191 return;
192 cc_cold = shmp_index(handle, buf->commit_cold, i);
193 if (!cc_cold)
194 return;
195 ts_end = shmp_index(handle, buf->ts_end, i);
196 if (!ts_end)
197 return;
198 v_set(config, &cc_hot->cc, 0);
199 v_set(config, &cc_hot->seq, 0);
200 v_set(config, &cc_cold->cc_sb, 0);
201 *ts_end = 0;
202 }
203 uatomic_set(&buf->consumed, 0);
204 uatomic_set(&buf->record_disabled, 0);
205 v_set(config, &buf->last_tsc, 0);
206 lib_ring_buffer_backend_reset(&buf->backend, handle);
207 /* Don't reset number of active readers */
208 v_set(config, &buf->records_lost_full, 0);
209 v_set(config, &buf->records_lost_wrap, 0);
210 v_set(config, &buf->records_lost_big, 0);
211 v_set(config, &buf->records_count, 0);
212 v_set(config, &buf->records_overrun, 0);
213 buf->finalized = 0;
214 }
215
216 /**
217 * channel_reset - Reset channel to initial values.
218 * @chan: Channel.
219 *
220 * Effectively empty the channel. Should be called when the channel is not used
221 * for writing. The channel can be opened for reading, but the reader should not
222 * be using the iterator concurrently with reset. The previous current iterator
223 * record is reset.
224 */
225 void channel_reset(struct lttng_ust_ring_buffer_channel *chan)
226 {
227 /*
228 * Reset iterators first. Will put the subbuffer if held for reading.
229 */
230 uatomic_set(&chan->record_disabled, 0);
231 /* Don't reset commit_count_mask, still valid */
232 channel_backend_reset(&chan->backend);
233 /* Don't reset switch/read timer interval */
234 /* Don't reset notifiers and notifier enable bits */
235 /* Don't reset reader reference count */
236 }
237
238 static
239 void init_crash_abi(const struct lttng_ust_ring_buffer_config *config,
240 struct lttng_crash_abi *crash_abi,
241 struct lttng_ust_ring_buffer *buf,
242 struct channel_backend *chanb,
243 struct shm_object *shmobj,
244 struct lttng_ust_shm_handle *handle)
245 {
246 int i;
247
248 for (i = 0; i < RB_CRASH_DUMP_ABI_MAGIC_LEN; i++)
249 crash_abi->magic[i] = lttng_crash_magic_xor[i] ^ 0xFF;
250 crash_abi->mmap_length = shmobj->memory_map_size;
251 crash_abi->endian = RB_CRASH_ENDIAN;
252 crash_abi->major = RB_CRASH_DUMP_ABI_MAJOR;
253 crash_abi->minor = RB_CRASH_DUMP_ABI_MINOR;
254 crash_abi->word_size = sizeof(unsigned long);
255 crash_abi->layout_type = LTTNG_CRASH_TYPE_UST;
256
257 /* Offset of fields */
258 crash_abi->offset.prod_offset =
259 (uint32_t) ((char *) &buf->offset - (char *) buf);
260 crash_abi->offset.consumed_offset =
261 (uint32_t) ((char *) &buf->consumed - (char *) buf);
262 crash_abi->offset.commit_hot_array =
263 (uint32_t) ((char *) shmp(handle, buf->commit_hot) - (char *) buf);
264 crash_abi->offset.commit_hot_seq =
265 offsetof(struct commit_counters_hot, seq);
266 crash_abi->offset.buf_wsb_array =
267 (uint32_t) ((char *) shmp(handle, buf->backend.buf_wsb) - (char *) buf);
268 crash_abi->offset.buf_wsb_id =
269 offsetof(struct lttng_ust_ring_buffer_backend_subbuffer, id);
270 crash_abi->offset.sb_array =
271 (uint32_t) ((char *) shmp(handle, buf->backend.array) - (char *) buf);
272 crash_abi->offset.sb_array_shmp_offset =
273 offsetof(struct lttng_ust_ring_buffer_backend_pages_shmp,
274 shmp._ref.offset);
275 crash_abi->offset.sb_backend_p_offset =
276 offsetof(struct lttng_ust_ring_buffer_backend_pages,
277 p._ref.offset);
278
279 /* Field length */
280 crash_abi->length.prod_offset = sizeof(buf->offset);
281 crash_abi->length.consumed_offset = sizeof(buf->consumed);
282 crash_abi->length.commit_hot_seq =
283 sizeof(((struct commit_counters_hot *) NULL)->seq);
284 crash_abi->length.buf_wsb_id =
285 sizeof(((struct lttng_ust_ring_buffer_backend_subbuffer *) NULL)->id);
286 crash_abi->length.sb_array_shmp_offset =
287 sizeof(((struct lttng_ust_ring_buffer_backend_pages_shmp *) NULL)->shmp._ref.offset);
288 crash_abi->length.sb_backend_p_offset =
289 sizeof(((struct lttng_ust_ring_buffer_backend_pages *) NULL)->p._ref.offset);
290
291 /* Array stride */
292 crash_abi->stride.commit_hot_array =
293 sizeof(struct commit_counters_hot);
294 crash_abi->stride.buf_wsb_array =
295 sizeof(struct lttng_ust_ring_buffer_backend_subbuffer);
296 crash_abi->stride.sb_array =
297 sizeof(struct lttng_ust_ring_buffer_backend_pages_shmp);
298
299 /* Buffer constants */
300 crash_abi->buf_size = chanb->buf_size;
301 crash_abi->subbuf_size = chanb->subbuf_size;
302 crash_abi->num_subbuf = chanb->num_subbuf;
303 crash_abi->mode = (uint32_t) chanb->config.mode;
304
305 if (config->cb.content_size_field) {
306 size_t offset, length;
307
308 config->cb.content_size_field(config, &offset, &length);
309 crash_abi->offset.content_size = offset;
310 crash_abi->length.content_size = length;
311 } else {
312 crash_abi->offset.content_size = 0;
313 crash_abi->length.content_size = 0;
314 }
315 if (config->cb.packet_size_field) {
316 size_t offset, length;
317
318 config->cb.packet_size_field(config, &offset, &length);
319 crash_abi->offset.packet_size = offset;
320 crash_abi->length.packet_size = length;
321 } else {
322 crash_abi->offset.packet_size = 0;
323 crash_abi->length.packet_size = 0;
324 }
325 }
326
327 /*
328 * Must be called under cpu hotplug protection.
329 */
330 int lib_ring_buffer_create(struct lttng_ust_ring_buffer *buf,
331 struct channel_backend *chanb, int cpu,
332 struct lttng_ust_shm_handle *handle,
333 struct shm_object *shmobj)
334 {
335 const struct lttng_ust_ring_buffer_config *config = &chanb->config;
336 struct lttng_ust_ring_buffer_channel *chan = caa_container_of(chanb,
337 struct lttng_ust_ring_buffer_channel, backend);
338 struct lttng_ust_ring_buffer_backend_subbuffer *wsb;
339 struct lttng_ust_ring_buffer_channel *shmp_chan;
340 struct commit_counters_hot *cc_hot;
341 void *priv = channel_get_private_config(chan);
342 size_t subbuf_header_size;
343 uint64_t tsc;
344 int ret;
345
346 /* Test for cpu hotplug */
347 if (buf->backend.allocated)
348 return 0;
349
350 align_shm(shmobj, __alignof__(struct commit_counters_hot));
351 set_shmp(buf->commit_hot,
352 zalloc_shm(shmobj,
353 sizeof(struct commit_counters_hot) * chan->backend.num_subbuf));
354 if (!shmp(handle, buf->commit_hot)) {
355 return -ENOMEM;
356 }
357
358 align_shm(shmobj, __alignof__(struct commit_counters_cold));
359 set_shmp(buf->commit_cold,
360 zalloc_shm(shmobj,
361 sizeof(struct commit_counters_cold) * chan->backend.num_subbuf));
362 if (!shmp(handle, buf->commit_cold)) {
363 ret = -ENOMEM;
364 goto free_commit;
365 }
366
367 align_shm(shmobj, __alignof__(uint64_t));
368 set_shmp(buf->ts_end,
369 zalloc_shm(shmobj,
370 sizeof(uint64_t) * chan->backend.num_subbuf));
371 if (!shmp(handle, buf->ts_end)) {
372 ret = -ENOMEM;
373 goto free_commit_cold;
374 }
375
376
377 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend,
378 cpu, handle, shmobj);
379 if (ret) {
380 goto free_init;
381 }
382
383 /*
384 * Write the subbuffer header for first subbuffer so we know the total
385 * duration of data gathering.
386 */
387 subbuf_header_size = config->cb.subbuffer_header_size();
388 v_set(config, &buf->offset, subbuf_header_size);
389 wsb = shmp_index(handle, buf->backend.buf_wsb, 0);
390 if (!wsb) {
391 ret = -EPERM;
392 goto free_chanbuf;
393 }
394 subbuffer_id_clear_noref(config, &wsb->id);
395 shmp_chan = shmp(handle, buf->backend.chan);
396 if (!shmp_chan) {
397 ret = -EPERM;
398 goto free_chanbuf;
399 }
400 tsc = config->cb.ring_buffer_clock_read(shmp_chan);
401 config->cb.buffer_begin(buf, tsc, 0, handle);
402 cc_hot = shmp_index(handle, buf->commit_hot, 0);
403 if (!cc_hot) {
404 ret = -EPERM;
405 goto free_chanbuf;
406 }
407 v_add(config, subbuf_header_size, &cc_hot->cc);
408 v_add(config, subbuf_header_size, &cc_hot->seq);
409
410 if (config->cb.buffer_create) {
411 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name, handle);
412 if (ret)
413 goto free_chanbuf;
414 }
415
416 init_crash_abi(config, &buf->crash_abi, buf, chanb, shmobj, handle);
417
418 buf->backend.allocated = 1;
419 return 0;
420
421 /* Error handling */
422 free_init:
423 /* ts_end will be freed by shm teardown */
424 free_commit_cold:
425 /* commit_cold will be freed by shm teardown */
426 free_commit:
427 /* commit_hot will be freed by shm teardown */
428 free_chanbuf:
429 return ret;
430 }
431
432 static
433 void lib_ring_buffer_channel_switch_timer(int sig __attribute__((unused)),
434 siginfo_t *si, void *uc __attribute__((unused)))
435 {
436 const struct lttng_ust_ring_buffer_config *config;
437 struct lttng_ust_shm_handle *handle;
438 struct lttng_ust_ring_buffer_channel *chan;
439 int cpu;
440
441 assert(CMM_LOAD_SHARED(timer_signal.tid) == pthread_self());
442
443 chan = si->si_value.sival_ptr;
444 handle = chan->handle;
445 config = &chan->backend.config;
446
447 DBG("Switch timer for channel %p\n", chan);
448
449 /*
450 * Only flush buffers periodically if readers are active.
451 */
452 pthread_mutex_lock(&wakeup_fd_mutex);
453 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
454 for_each_possible_cpu(cpu) {
455 struct lttng_ust_ring_buffer *buf =
456 shmp(handle, chan->backend.buf[cpu].shmp);
457
458 if (!buf)
459 goto end;
460 if (uatomic_read(&buf->active_readers))
461 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE,
462 chan->handle);
463 }
464 } else {
465 struct lttng_ust_ring_buffer *buf =
466 shmp(handle, chan->backend.buf[0].shmp);
467
468 if (!buf)
469 goto end;
470 if (uatomic_read(&buf->active_readers))
471 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE,
472 chan->handle);
473 }
474 end:
475 pthread_mutex_unlock(&wakeup_fd_mutex);
476 return;
477 }
478
479 static
480 int lib_ring_buffer_poll_deliver(const struct lttng_ust_ring_buffer_config *config,
481 struct lttng_ust_ring_buffer *buf,
482 struct lttng_ust_ring_buffer_channel *chan,
483 struct lttng_ust_shm_handle *handle)
484 {
485 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
486 struct commit_counters_cold *cc_cold;
487
488 consumed_old = uatomic_read(&buf->consumed);
489 consumed_idx = subbuf_index(consumed_old, chan);
490 cc_cold = shmp_index(handle, buf->commit_cold, consumed_idx);
491 if (!cc_cold)
492 return 0;
493 commit_count = v_read(config, &cc_cold->cc_sb);
494 /*
495 * No memory barrier here, since we are only interested
496 * in a statistically correct polling result. The next poll will
497 * get the data is we are racing. The mb() that ensures correct
498 * memory order is in get_subbuf.
499 */
500 write_offset = v_read(config, &buf->offset);
501
502 /*
503 * Check that the subbuffer we are trying to consume has been
504 * already fully committed.
505 */
506
507 if (((commit_count - chan->backend.subbuf_size)
508 & chan->commit_count_mask)
509 - (buf_trunc(consumed_old, chan)
510 >> chan->backend.num_subbuf_order)
511 != 0)
512 return 0;
513
514 /*
515 * Check that we are not about to read the same subbuffer in
516 * which the writer head is.
517 */
518 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
519 == 0)
520 return 0;
521
522 return 1;
523 }
524
525 static
526 void lib_ring_buffer_wakeup(struct lttng_ust_ring_buffer *buf,
527 struct lttng_ust_shm_handle *handle)
528 {
529 int wakeup_fd = shm_get_wakeup_fd(handle, &buf->self._ref);
530 sigset_t sigpipe_set, pending_set, old_set;
531 int ret, sigpipe_was_pending = 0;
532
533 if (wakeup_fd < 0)
534 return;
535
536 /*
537 * Wake-up the other end by writing a null byte in the pipe
538 * (non-blocking). Important note: Because writing into the
539 * pipe is non-blocking (and therefore we allow dropping wakeup
540 * data, as long as there is wakeup data present in the pipe
541 * buffer to wake up the consumer), the consumer should perform
542 * the following sequence for waiting:
543 * 1) empty the pipe (reads).
544 * 2) check if there is data in the buffer.
545 * 3) wait on the pipe (poll).
546 *
547 * Discard the SIGPIPE from write(), not disturbing any SIGPIPE
548 * that might be already pending. If a bogus SIGPIPE is sent to
549 * the entire process concurrently by a malicious user, it may
550 * be simply discarded.
551 */
552 ret = sigemptyset(&pending_set);
553 assert(!ret);
554 /*
555 * sigpending returns the mask of signals that are _both_
556 * blocked for the thread _and_ pending for either the thread or
557 * the entire process.
558 */
559 ret = sigpending(&pending_set);
560 assert(!ret);
561 sigpipe_was_pending = sigismember(&pending_set, SIGPIPE);
562 /*
563 * If sigpipe was pending, it means it was already blocked, so
564 * no need to block it.
565 */
566 if (!sigpipe_was_pending) {
567 ret = sigemptyset(&sigpipe_set);
568 assert(!ret);
569 ret = sigaddset(&sigpipe_set, SIGPIPE);
570 assert(!ret);
571 ret = pthread_sigmask(SIG_BLOCK, &sigpipe_set, &old_set);
572 assert(!ret);
573 }
574 do {
575 ret = write(wakeup_fd, "", 1);
576 } while (ret == -1L && errno == EINTR);
577 if (ret == -1L && errno == EPIPE && !sigpipe_was_pending) {
578 struct timespec timeout = { 0, 0 };
579 do {
580 ret = sigtimedwait(&sigpipe_set, NULL,
581 &timeout);
582 } while (ret == -1L && errno == EINTR);
583 }
584 if (!sigpipe_was_pending) {
585 ret = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
586 assert(!ret);
587 }
588 }
589
590 static
591 void lib_ring_buffer_channel_do_read(struct lttng_ust_ring_buffer_channel *chan)
592 {
593 const struct lttng_ust_ring_buffer_config *config;
594 struct lttng_ust_shm_handle *handle;
595 int cpu;
596
597 handle = chan->handle;
598 config = &chan->backend.config;
599
600 /*
601 * Only flush buffers periodically if readers are active.
602 */
603 pthread_mutex_lock(&wakeup_fd_mutex);
604 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
605 for_each_possible_cpu(cpu) {
606 struct lttng_ust_ring_buffer *buf =
607 shmp(handle, chan->backend.buf[cpu].shmp);
608
609 if (!buf)
610 goto end;
611 if (uatomic_read(&buf->active_readers)
612 && lib_ring_buffer_poll_deliver(config, buf,
613 chan, handle)) {
614 lib_ring_buffer_wakeup(buf, handle);
615 }
616 }
617 } else {
618 struct lttng_ust_ring_buffer *buf =
619 shmp(handle, chan->backend.buf[0].shmp);
620
621 if (!buf)
622 goto end;
623 if (uatomic_read(&buf->active_readers)
624 && lib_ring_buffer_poll_deliver(config, buf,
625 chan, handle)) {
626 lib_ring_buffer_wakeup(buf, handle);
627 }
628 }
629 end:
630 pthread_mutex_unlock(&wakeup_fd_mutex);
631 }
632
633 static
634 void lib_ring_buffer_channel_read_timer(int sig __attribute__((unused)),
635 siginfo_t *si, void *uc __attribute__((unused)))
636 {
637 struct lttng_ust_ring_buffer_channel *chan;
638
639 assert(CMM_LOAD_SHARED(timer_signal.tid) == pthread_self());
640 chan = si->si_value.sival_ptr;
641 DBG("Read timer for channel %p\n", chan);
642 lib_ring_buffer_channel_do_read(chan);
643 return;
644 }
645
646 static
647 void rb_setmask(sigset_t *mask)
648 {
649 int ret;
650
651 ret = sigemptyset(mask);
652 if (ret) {
653 PERROR("sigemptyset");
654 }
655 ret = sigaddset(mask, LTTNG_UST_RB_SIG_FLUSH);
656 if (ret) {
657 PERROR("sigaddset");
658 }
659 ret = sigaddset(mask, LTTNG_UST_RB_SIG_READ);
660 if (ret) {
661 PERROR("sigaddset");
662 }
663 ret = sigaddset(mask, LTTNG_UST_RB_SIG_TEARDOWN);
664 if (ret) {
665 PERROR("sigaddset");
666 }
667 }
668
669 static
670 void *sig_thread(void *arg __attribute__((unused)))
671 {
672 sigset_t mask;
673 siginfo_t info;
674 int signr;
675
676 /* Only self thread will receive signal mask. */
677 rb_setmask(&mask);
678 CMM_STORE_SHARED(timer_signal.tid, pthread_self());
679
680 for (;;) {
681 signr = sigwaitinfo(&mask, &info);
682 if (signr == -1) {
683 if (errno != EINTR)
684 PERROR("sigwaitinfo");
685 continue;
686 }
687 if (signr == LTTNG_UST_RB_SIG_FLUSH) {
688 lib_ring_buffer_channel_switch_timer(info.si_signo,
689 &info, NULL);
690 } else if (signr == LTTNG_UST_RB_SIG_READ) {
691 lib_ring_buffer_channel_read_timer(info.si_signo,
692 &info, NULL);
693 } else if (signr == LTTNG_UST_RB_SIG_TEARDOWN) {
694 cmm_smp_mb();
695 CMM_STORE_SHARED(timer_signal.qs_done, 1);
696 cmm_smp_mb();
697 } else {
698 ERR("Unexptected signal %d\n", info.si_signo);
699 }
700 }
701 return NULL;
702 }
703
704 /*
705 * Ensure only a single thread listens on the timer signal.
706 */
707 static
708 void lib_ring_buffer_setup_timer_thread(void)
709 {
710 pthread_t thread;
711 int ret;
712
713 pthread_mutex_lock(&timer_signal.lock);
714 if (timer_signal.setup_done)
715 goto end;
716
717 ret = pthread_create(&thread, NULL, &sig_thread, NULL);
718 if (ret) {
719 errno = ret;
720 PERROR("pthread_create");
721 }
722 ret = pthread_detach(thread);
723 if (ret) {
724 errno = ret;
725 PERROR("pthread_detach");
726 }
727 timer_signal.setup_done = 1;
728 end:
729 pthread_mutex_unlock(&timer_signal.lock);
730 }
731
732 /*
733 * Wait for signal-handling thread quiescent state.
734 */
735 static
736 void lib_ring_buffer_wait_signal_thread_qs(unsigned int signr)
737 {
738 sigset_t pending_set;
739 int ret;
740
741 /*
742 * We need to be the only thread interacting with the thread
743 * that manages signals for teardown synchronization.
744 */
745 pthread_mutex_lock(&timer_signal.lock);
746
747 /*
748 * Ensure we don't have any signal queued for this channel.
749 */
750 for (;;) {
751 ret = sigemptyset(&pending_set);
752 if (ret == -1) {
753 PERROR("sigemptyset");
754 }
755 ret = sigpending(&pending_set);
756 if (ret == -1) {
757 PERROR("sigpending");
758 }
759 if (!sigismember(&pending_set, signr))
760 break;
761 caa_cpu_relax();
762 }
763
764 /*
765 * From this point, no new signal handler will be fired that
766 * would try to access "chan". However, we still need to wait
767 * for any currently executing handler to complete.
768 */
769 cmm_smp_mb();
770 CMM_STORE_SHARED(timer_signal.qs_done, 0);
771 cmm_smp_mb();
772
773 /*
774 * Kill with LTTNG_UST_RB_SIG_TEARDOWN, so signal management
775 * thread wakes up.
776 */
777 kill(getpid(), LTTNG_UST_RB_SIG_TEARDOWN);
778
779 while (!CMM_LOAD_SHARED(timer_signal.qs_done))
780 caa_cpu_relax();
781 cmm_smp_mb();
782
783 pthread_mutex_unlock(&timer_signal.lock);
784 }
785
786 static
787 void lib_ring_buffer_channel_switch_timer_start(struct lttng_ust_ring_buffer_channel *chan)
788 {
789 struct sigevent sev;
790 struct itimerspec its;
791 int ret;
792
793 if (!chan->switch_timer_interval || chan->switch_timer_enabled)
794 return;
795
796 chan->switch_timer_enabled = 1;
797
798 lib_ring_buffer_setup_timer_thread();
799
800 memset(&sev, 0, sizeof(sev));
801 sev.sigev_notify = SIGEV_SIGNAL;
802 sev.sigev_signo = LTTNG_UST_RB_SIG_FLUSH;
803 sev.sigev_value.sival_ptr = chan;
804 ret = timer_create(CLOCKID, &sev, &chan->switch_timer);
805 if (ret == -1) {
806 PERROR("timer_create");
807 }
808
809 its.it_value.tv_sec = chan->switch_timer_interval / 1000000;
810 its.it_value.tv_nsec = (chan->switch_timer_interval % 1000000) * 1000;
811 its.it_interval.tv_sec = its.it_value.tv_sec;
812 its.it_interval.tv_nsec = its.it_value.tv_nsec;
813
814 ret = timer_settime(chan->switch_timer, 0, &its, NULL);
815 if (ret == -1) {
816 PERROR("timer_settime");
817 }
818 }
819
820 static
821 void lib_ring_buffer_channel_switch_timer_stop(struct lttng_ust_ring_buffer_channel *chan)
822 {
823 int ret;
824
825 if (!chan->switch_timer_interval || !chan->switch_timer_enabled)
826 return;
827
828 ret = timer_delete(chan->switch_timer);
829 if (ret == -1) {
830 PERROR("timer_delete");
831 }
832
833 lib_ring_buffer_wait_signal_thread_qs(LTTNG_UST_RB_SIG_FLUSH);
834
835 chan->switch_timer = 0;
836 chan->switch_timer_enabled = 0;
837 }
838
839 static
840 void lib_ring_buffer_channel_read_timer_start(struct lttng_ust_ring_buffer_channel *chan)
841 {
842 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
843 struct sigevent sev;
844 struct itimerspec its;
845 int ret;
846
847 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
848 || !chan->read_timer_interval || chan->read_timer_enabled)
849 return;
850
851 chan->read_timer_enabled = 1;
852
853 lib_ring_buffer_setup_timer_thread();
854
855 sev.sigev_notify = SIGEV_SIGNAL;
856 sev.sigev_signo = LTTNG_UST_RB_SIG_READ;
857 sev.sigev_value.sival_ptr = chan;
858 ret = timer_create(CLOCKID, &sev, &chan->read_timer);
859 if (ret == -1) {
860 PERROR("timer_create");
861 }
862
863 its.it_value.tv_sec = chan->read_timer_interval / 1000000;
864 its.it_value.tv_nsec = (chan->read_timer_interval % 1000000) * 1000;
865 its.it_interval.tv_sec = its.it_value.tv_sec;
866 its.it_interval.tv_nsec = its.it_value.tv_nsec;
867
868 ret = timer_settime(chan->read_timer, 0, &its, NULL);
869 if (ret == -1) {
870 PERROR("timer_settime");
871 }
872 }
873
874 static
875 void lib_ring_buffer_channel_read_timer_stop(struct lttng_ust_ring_buffer_channel *chan)
876 {
877 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
878 int ret;
879
880 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
881 || !chan->read_timer_interval || !chan->read_timer_enabled)
882 return;
883
884 ret = timer_delete(chan->read_timer);
885 if (ret == -1) {
886 PERROR("timer_delete");
887 }
888
889 /*
890 * do one more check to catch data that has been written in the last
891 * timer period.
892 */
893 lib_ring_buffer_channel_do_read(chan);
894
895 lib_ring_buffer_wait_signal_thread_qs(LTTNG_UST_RB_SIG_READ);
896
897 chan->read_timer = 0;
898 chan->read_timer_enabled = 0;
899 }
900
901 static void channel_unregister_notifiers(struct lttng_ust_ring_buffer_channel *chan,
902 struct lttng_ust_shm_handle *handle __attribute__((unused)))
903 {
904 lib_ring_buffer_channel_switch_timer_stop(chan);
905 lib_ring_buffer_channel_read_timer_stop(chan);
906 }
907
908 static void channel_print_errors(struct lttng_ust_ring_buffer_channel *chan,
909 struct lttng_ust_shm_handle *handle)
910 {
911 const struct lttng_ust_ring_buffer_config *config =
912 &chan->backend.config;
913 int cpu;
914
915 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
916 for_each_possible_cpu(cpu) {
917 struct lttng_ust_ring_buffer *buf =
918 shmp(handle, chan->backend.buf[cpu].shmp);
919 if (buf)
920 lib_ring_buffer_print_errors(chan, buf, cpu, handle);
921 }
922 } else {
923 struct lttng_ust_ring_buffer *buf =
924 shmp(handle, chan->backend.buf[0].shmp);
925
926 if (buf)
927 lib_ring_buffer_print_errors(chan, buf, -1, handle);
928 }
929 }
930
931 static void channel_free(struct lttng_ust_ring_buffer_channel *chan,
932 struct lttng_ust_shm_handle *handle,
933 int consumer)
934 {
935 channel_backend_free(&chan->backend, handle);
936 /* chan is freed by shm teardown */
937 shm_object_table_destroy(handle->table, consumer);
938 free(handle);
939 }
940
941 /**
942 * channel_create - Create channel.
943 * @config: ring buffer instance configuration
944 * @name: name of the channel
945 * @priv_data_align: alignment, in bytes, of the private data area. (config)
946 * @priv_data_size: length, in bytes, of the private data area. (config)
947 * @priv_data_init: initialization data for private data. (config)
948 * @priv: local private data (memory owner by caller)
949 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
950 * address mapping. It is used only by RING_BUFFER_STATIC
951 * configuration. It can be set to NULL for other backends.
952 * @subbuf_size: subbuffer size
953 * @num_subbuf: number of subbuffers
954 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
955 * padding to let readers get those sub-buffers.
956 * Used for live streaming.
957 * @read_timer_interval: Time interval (in us) to wake up pending readers.
958 * @stream_fds: array of stream file descriptors.
959 * @nr_stream_fds: number of file descriptors in array.
960 *
961 * Holds cpu hotplug.
962 * Returns NULL on failure.
963 */
964 struct lttng_ust_shm_handle *channel_create(const struct lttng_ust_ring_buffer_config *config,
965 const char *name,
966 size_t priv_data_align,
967 size_t priv_data_size,
968 void *priv_data_init,
969 void *priv,
970 void *buf_addr __attribute__((unused)), size_t subbuf_size,
971 size_t num_subbuf, unsigned int switch_timer_interval,
972 unsigned int read_timer_interval,
973 const int *stream_fds, int nr_stream_fds,
974 int64_t blocking_timeout)
975 {
976 int ret;
977 size_t shmsize, chansize;
978 struct lttng_ust_ring_buffer_channel *chan;
979 struct lttng_ust_shm_handle *handle;
980 struct shm_object *shmobj;
981 unsigned int nr_streams;
982 int64_t blocking_timeout_ms;
983
984 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
985 nr_streams = num_possible_cpus();
986 else
987 nr_streams = 1;
988
989 if (nr_stream_fds != nr_streams)
990 return NULL;
991
992 if (blocking_timeout < -1) {
993 return NULL;
994 }
995 /* usec to msec */
996 if (blocking_timeout == -1) {
997 blocking_timeout_ms = -1;
998 } else {
999 blocking_timeout_ms = blocking_timeout / 1000;
1000 if (blocking_timeout_ms != (int32_t) blocking_timeout_ms) {
1001 return NULL;
1002 }
1003 }
1004
1005 if (lib_ring_buffer_check_config(config, switch_timer_interval,
1006 read_timer_interval))
1007 return NULL;
1008
1009 handle = zmalloc(sizeof(struct lttng_ust_shm_handle));
1010 if (!handle)
1011 return NULL;
1012
1013 /* Allocate table for channel + per-cpu buffers */
1014 handle->table = shm_object_table_create(1 + num_possible_cpus());
1015 if (!handle->table)
1016 goto error_table_alloc;
1017
1018 /* Calculate the shm allocation layout */
1019 shmsize = sizeof(struct lttng_ust_ring_buffer_channel);
1020 shmsize += lttng_ust_offset_align(shmsize, __alignof__(struct lttng_ust_ring_buffer_shmp));
1021 shmsize += sizeof(struct lttng_ust_ring_buffer_shmp) * nr_streams;
1022 chansize = shmsize;
1023 if (priv_data_align)
1024 shmsize += lttng_ust_offset_align(shmsize, priv_data_align);
1025 shmsize += priv_data_size;
1026
1027 /* Allocate normal memory for channel (not shared) */
1028 shmobj = shm_object_table_alloc(handle->table, shmsize, SHM_OBJECT_MEM,
1029 -1, -1);
1030 if (!shmobj)
1031 goto error_append;
1032 /* struct lttng_ust_ring_buffer_channel is at object 0, offset 0 (hardcoded) */
1033 set_shmp(handle->chan, zalloc_shm(shmobj, chansize));
1034 assert(handle->chan._ref.index == 0);
1035 assert(handle->chan._ref.offset == 0);
1036 chan = shmp(handle, handle->chan);
1037 if (!chan)
1038 goto error_append;
1039 chan->nr_streams = nr_streams;
1040
1041 /* space for private data */
1042 if (priv_data_size) {
1043 void *priv_config;
1044
1045 DECLARE_SHMP(void, priv_data_alloc);
1046
1047 align_shm(shmobj, priv_data_align);
1048 chan->priv_data_offset = shmobj->allocated_len;
1049 set_shmp(priv_data_alloc, zalloc_shm(shmobj, priv_data_size));
1050 if (!shmp(handle, priv_data_alloc))
1051 goto error_append;
1052 priv_config = channel_get_private_config(chan);
1053 memcpy(priv_config, priv_data_init, priv_data_size);
1054 } else {
1055 chan->priv_data_offset = -1;
1056 }
1057
1058 chan->u.s.blocking_timeout_ms = (int32_t) blocking_timeout_ms;
1059
1060 channel_set_private(chan, priv);
1061
1062 ret = channel_backend_init(&chan->backend, name, config,
1063 subbuf_size, num_subbuf, handle,
1064 stream_fds);
1065 if (ret)
1066 goto error_backend_init;
1067
1068 chan->handle = handle;
1069 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
1070
1071 chan->switch_timer_interval = switch_timer_interval;
1072 chan->read_timer_interval = read_timer_interval;
1073 lib_ring_buffer_channel_switch_timer_start(chan);
1074 lib_ring_buffer_channel_read_timer_start(chan);
1075
1076 return handle;
1077
1078 error_backend_init:
1079 error_append:
1080 shm_object_table_destroy(handle->table, 1);
1081 error_table_alloc:
1082 free(handle);
1083 return NULL;
1084 }
1085
1086 struct lttng_ust_shm_handle *channel_handle_create(void *data,
1087 uint64_t memory_map_size,
1088 int wakeup_fd)
1089 {
1090 struct lttng_ust_shm_handle *handle;
1091 struct shm_object *object;
1092
1093 handle = zmalloc(sizeof(struct lttng_ust_shm_handle));
1094 if (!handle)
1095 return NULL;
1096
1097 /* Allocate table for channel + per-cpu buffers */
1098 handle->table = shm_object_table_create(1 + num_possible_cpus());
1099 if (!handle->table)
1100 goto error_table_alloc;
1101 /* Add channel object */
1102 object = shm_object_table_append_mem(handle->table, data,
1103 memory_map_size, wakeup_fd);
1104 if (!object)
1105 goto error_table_object;
1106 /* struct lttng_ust_ring_buffer_channel is at object 0, offset 0 (hardcoded) */
1107 handle->chan._ref.index = 0;
1108 handle->chan._ref.offset = 0;
1109 return handle;
1110
1111 error_table_object:
1112 shm_object_table_destroy(handle->table, 0);
1113 error_table_alloc:
1114 free(handle);
1115 return NULL;
1116 }
1117
1118 int channel_handle_add_stream(struct lttng_ust_shm_handle *handle,
1119 int shm_fd, int wakeup_fd, uint32_t stream_nr,
1120 uint64_t memory_map_size)
1121 {
1122 struct shm_object *object;
1123
1124 /* Add stream object */
1125 object = shm_object_table_append_shm(handle->table,
1126 shm_fd, wakeup_fd, stream_nr,
1127 memory_map_size);
1128 if (!object)
1129 return -EINVAL;
1130 return 0;
1131 }
1132
1133 unsigned int channel_handle_get_nr_streams(struct lttng_ust_shm_handle *handle)
1134 {
1135 assert(handle->table);
1136 return handle->table->allocated_len - 1;
1137 }
1138
1139 static
1140 void channel_release(struct lttng_ust_ring_buffer_channel *chan, struct lttng_ust_shm_handle *handle,
1141 int consumer)
1142 {
1143 channel_free(chan, handle, consumer);
1144 }
1145
1146 /**
1147 * channel_destroy - Finalize, wait for q.s. and destroy channel.
1148 * @chan: channel to destroy
1149 *
1150 * Holds cpu hotplug.
1151 * Call "destroy" callback, finalize channels, decrement the channel
1152 * reference count. Note that when readers have completed data
1153 * consumption of finalized channels, get_subbuf() will return -ENODATA.
1154 * They should release their handle at that point.
1155 */
1156 void channel_destroy(struct lttng_ust_ring_buffer_channel *chan, struct lttng_ust_shm_handle *handle,
1157 int consumer)
1158 {
1159 if (consumer) {
1160 /*
1161 * Note: the consumer takes care of finalizing and
1162 * switching the buffers.
1163 */
1164 channel_unregister_notifiers(chan, handle);
1165 /*
1166 * The consumer prints errors.
1167 */
1168 channel_print_errors(chan, handle);
1169 }
1170
1171 /*
1172 * sessiond/consumer are keeping a reference on the shm file
1173 * descriptor directly. No need to refcount.
1174 */
1175 channel_release(chan, handle, consumer);
1176 return;
1177 }
1178
1179 struct lttng_ust_ring_buffer *channel_get_ring_buffer(
1180 const struct lttng_ust_ring_buffer_config *config,
1181 struct lttng_ust_ring_buffer_channel *chan, int cpu,
1182 struct lttng_ust_shm_handle *handle,
1183 int *shm_fd, int *wait_fd,
1184 int *wakeup_fd,
1185 uint64_t *memory_map_size)
1186 {
1187 struct shm_ref *ref;
1188
1189 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL) {
1190 cpu = 0;
1191 } else {
1192 if (cpu >= num_possible_cpus())
1193 return NULL;
1194 }
1195 ref = &chan->backend.buf[cpu].shmp._ref;
1196 *shm_fd = shm_get_shm_fd(handle, ref);
1197 *wait_fd = shm_get_wait_fd(handle, ref);
1198 *wakeup_fd = shm_get_wakeup_fd(handle, ref);
1199 if (shm_get_shm_size(handle, ref, memory_map_size))
1200 return NULL;
1201 return shmp(handle, chan->backend.buf[cpu].shmp);
1202 }
1203
1204 int ring_buffer_channel_close_wait_fd(
1205 const struct lttng_ust_ring_buffer_config *config __attribute__((unused)),
1206 struct lttng_ust_ring_buffer_channel *chan __attribute__((unused)),
1207 struct lttng_ust_shm_handle *handle)
1208 {
1209 struct shm_ref *ref;
1210
1211 ref = &handle->chan._ref;
1212 return shm_close_wait_fd(handle, ref);
1213 }
1214
1215 int ring_buffer_channel_close_wakeup_fd(
1216 const struct lttng_ust_ring_buffer_config *config __attribute__((unused)),
1217 struct lttng_ust_ring_buffer_channel *chan __attribute__((unused)),
1218 struct lttng_ust_shm_handle *handle)
1219 {
1220 struct shm_ref *ref;
1221
1222 ref = &handle->chan._ref;
1223 return shm_close_wakeup_fd(handle, ref);
1224 }
1225
1226 int ring_buffer_stream_close_wait_fd(const struct lttng_ust_ring_buffer_config *config,
1227 struct lttng_ust_ring_buffer_channel *chan,
1228 struct lttng_ust_shm_handle *handle,
1229 int cpu)
1230 {
1231 struct shm_ref *ref;
1232
1233 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL) {
1234 cpu = 0;
1235 } else {
1236 if (cpu >= num_possible_cpus())
1237 return -EINVAL;
1238 }
1239 ref = &chan->backend.buf[cpu].shmp._ref;
1240 return shm_close_wait_fd(handle, ref);
1241 }
1242
1243 int ring_buffer_stream_close_wakeup_fd(const struct lttng_ust_ring_buffer_config *config,
1244 struct lttng_ust_ring_buffer_channel *chan,
1245 struct lttng_ust_shm_handle *handle,
1246 int cpu)
1247 {
1248 struct shm_ref *ref;
1249 int ret;
1250
1251 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL) {
1252 cpu = 0;
1253 } else {
1254 if (cpu >= num_possible_cpus())
1255 return -EINVAL;
1256 }
1257 ref = &chan->backend.buf[cpu].shmp._ref;
1258 pthread_mutex_lock(&wakeup_fd_mutex);
1259 ret = shm_close_wakeup_fd(handle, ref);
1260 pthread_mutex_unlock(&wakeup_fd_mutex);
1261 return ret;
1262 }
1263
1264 int lib_ring_buffer_open_read(struct lttng_ust_ring_buffer *buf,
1265 struct lttng_ust_shm_handle *handle __attribute__((unused)))
1266 {
1267 if (uatomic_cmpxchg(&buf->active_readers, 0, 1) != 0)
1268 return -EBUSY;
1269 cmm_smp_mb();
1270 return 0;
1271 }
1272
1273 void lib_ring_buffer_release_read(struct lttng_ust_ring_buffer *buf,
1274 struct lttng_ust_shm_handle *handle)
1275 {
1276 struct lttng_ust_ring_buffer_channel *chan = shmp(handle, buf->backend.chan);
1277
1278 if (!chan)
1279 return;
1280 CHAN_WARN_ON(chan, uatomic_read(&buf->active_readers) != 1);
1281 cmm_smp_mb();
1282 uatomic_dec(&buf->active_readers);
1283 }
1284
1285 /**
1286 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1287 * @buf: ring buffer
1288 * @consumed: consumed count indicating the position where to read
1289 * @produced: produced count, indicates position when to stop reading
1290 *
1291 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1292 * data to read at consumed position, or 0 if the get operation succeeds.
1293 */
1294
1295 int lib_ring_buffer_snapshot(struct lttng_ust_ring_buffer *buf,
1296 unsigned long *consumed, unsigned long *produced,
1297 struct lttng_ust_shm_handle *handle)
1298 {
1299 struct lttng_ust_ring_buffer_channel *chan;
1300 const struct lttng_ust_ring_buffer_config *config;
1301 unsigned long consumed_cur, write_offset;
1302 int finalized;
1303
1304 chan = shmp(handle, buf->backend.chan);
1305 if (!chan)
1306 return -EPERM;
1307 config = &chan->backend.config;
1308 finalized = CMM_ACCESS_ONCE(buf->finalized);
1309 /*
1310 * Read finalized before counters.
1311 */
1312 cmm_smp_rmb();
1313 consumed_cur = uatomic_read(&buf->consumed);
1314 /*
1315 * No need to issue a memory barrier between consumed count read and
1316 * write offset read, because consumed count can only change
1317 * concurrently in overwrite mode, and we keep a sequence counter
1318 * identifier derived from the write offset to check we are getting
1319 * the same sub-buffer we are expecting (the sub-buffers are atomically
1320 * "tagged" upon writes, tags are checked upon read).
1321 */
1322 write_offset = v_read(config, &buf->offset);
1323
1324 /*
1325 * Check that we are not about to read the same subbuffer in
1326 * which the writer head is.
1327 */
1328 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1329 == 0)
1330 goto nodata;
1331
1332 *consumed = consumed_cur;
1333 *produced = subbuf_trunc(write_offset, chan);
1334
1335 return 0;
1336
1337 nodata:
1338 /*
1339 * The memory barriers __wait_event()/wake_up_interruptible() take care
1340 * of "raw_spin_is_locked" memory ordering.
1341 */
1342 if (finalized)
1343 return -ENODATA;
1344 else
1345 return -EAGAIN;
1346 }
1347
1348 /**
1349 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1350 * are saved regardless of whether the consumed and produced positions are
1351 * in the same subbuffer.
1352 * @buf: ring buffer
1353 * @consumed: consumed byte count indicating the last position read
1354 * @produced: produced byte count indicating the last position written
1355 *
1356 * This function is meant to provide information on the exact producer and
1357 * consumer positions without regard for the "snapshot" feature.
1358 */
1359 int lib_ring_buffer_snapshot_sample_positions(
1360 struct lttng_ust_ring_buffer *buf,
1361 unsigned long *consumed, unsigned long *produced,
1362 struct lttng_ust_shm_handle *handle)
1363 {
1364 struct lttng_ust_ring_buffer_channel *chan;
1365 const struct lttng_ust_ring_buffer_config *config;
1366
1367 chan = shmp(handle, buf->backend.chan);
1368 if (!chan)
1369 return -EPERM;
1370 config = &chan->backend.config;
1371 cmm_smp_rmb();
1372 *consumed = uatomic_read(&buf->consumed);
1373 /*
1374 * No need to issue a memory barrier between consumed count read and
1375 * write offset read, because consumed count can only change
1376 * concurrently in overwrite mode, and we keep a sequence counter
1377 * identifier derived from the write offset to check we are getting
1378 * the same sub-buffer we are expecting (the sub-buffers are atomically
1379 * "tagged" upon writes, tags are checked upon read).
1380 */
1381 *produced = v_read(config, &buf->offset);
1382 return 0;
1383 }
1384
1385 /**
1386 * lib_ring_buffer_move_consumer - move consumed counter forward
1387 * @buf: ring buffer
1388 * @consumed_new: new consumed count value
1389 */
1390 void lib_ring_buffer_move_consumer(struct lttng_ust_ring_buffer *buf,
1391 unsigned long consumed_new,
1392 struct lttng_ust_shm_handle *handle)
1393 {
1394 struct lttng_ust_ring_buffer_backend *bufb = &buf->backend;
1395 struct lttng_ust_ring_buffer_channel *chan;
1396 unsigned long consumed;
1397
1398 chan = shmp(handle, bufb->chan);
1399 if (!chan)
1400 return;
1401 CHAN_WARN_ON(chan, uatomic_read(&buf->active_readers) != 1);
1402
1403 /*
1404 * Only push the consumed value forward.
1405 * If the consumed cmpxchg fails, this is because we have been pushed by
1406 * the writer in flight recorder mode.
1407 */
1408 consumed = uatomic_read(&buf->consumed);
1409 while ((long) consumed - (long) consumed_new < 0)
1410 consumed = uatomic_cmpxchg(&buf->consumed, consumed,
1411 consumed_new);
1412 }
1413
1414 /**
1415 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1416 * @buf: ring buffer
1417 * @consumed: consumed count indicating the position where to read
1418 *
1419 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1420 * data to read at consumed position, or 0 if the get operation succeeds.
1421 */
1422 int lib_ring_buffer_get_subbuf(struct lttng_ust_ring_buffer *buf,
1423 unsigned long consumed,
1424 struct lttng_ust_shm_handle *handle)
1425 {
1426 struct lttng_ust_ring_buffer_channel *chan;
1427 const struct lttng_ust_ring_buffer_config *config;
1428 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1429 int ret, finalized, nr_retry = LTTNG_UST_RING_BUFFER_GET_RETRY;
1430 struct commit_counters_cold *cc_cold;
1431
1432 chan = shmp(handle, buf->backend.chan);
1433 if (!chan)
1434 return -EPERM;
1435 config = &chan->backend.config;
1436 retry:
1437 finalized = CMM_ACCESS_ONCE(buf->finalized);
1438 /*
1439 * Read finalized before counters.
1440 */
1441 cmm_smp_rmb();
1442 consumed_cur = uatomic_read(&buf->consumed);
1443 consumed_idx = subbuf_index(consumed, chan);
1444 cc_cold = shmp_index(handle, buf->commit_cold, consumed_idx);
1445 if (!cc_cold)
1446 return -EPERM;
1447 commit_count = v_read(config, &cc_cold->cc_sb);
1448 /*
1449 * Make sure we read the commit count before reading the buffer
1450 * data and the write offset. Correct consumed offset ordering
1451 * wrt commit count is insured by the use of cmpxchg to update
1452 * the consumed offset.
1453 */
1454 /*
1455 * Local rmb to match the remote wmb to read the commit count
1456 * before the buffer data and the write offset.
1457 */
1458 cmm_smp_rmb();
1459
1460 write_offset = v_read(config, &buf->offset);
1461
1462 /*
1463 * Check that the buffer we are getting is after or at consumed_cur
1464 * position.
1465 */
1466 if ((long) subbuf_trunc(consumed, chan)
1467 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1468 goto nodata;
1469
1470 /*
1471 * Check that the subbuffer we are trying to consume has been
1472 * already fully committed. There are a few causes that can make
1473 * this unavailability situation occur:
1474 *
1475 * Temporary (short-term) situation:
1476 * - Application is running on a different CPU, between reserve
1477 * and commit ring buffer operations,
1478 * - Application is preempted between reserve and commit ring
1479 * buffer operations,
1480 *
1481 * Long-term situation:
1482 * - Application is stopped (SIGSTOP) between reserve and commit
1483 * ring buffer operations. Could eventually be resumed by
1484 * SIGCONT.
1485 * - Application is killed (SIGTERM, SIGINT, SIGKILL) between
1486 * reserve and commit ring buffer operation.
1487 *
1488 * From a consumer perspective, handling short-term
1489 * unavailability situations is performed by retrying a few
1490 * times after a delay. Handling long-term unavailability
1491 * situations is handled by failing to get the sub-buffer.
1492 *
1493 * In all of those situations, if the application is taking a
1494 * long time to perform its commit after ring buffer space
1495 * reservation, we can end up in a situation where the producer
1496 * will fill the ring buffer and try to write into the same
1497 * sub-buffer again (which has a missing commit). This is
1498 * handled by the producer in the sub-buffer switch handling
1499 * code of the reserve routine by detecting unbalanced
1500 * reserve/commit counters and discarding all further events
1501 * until the situation is resolved in those situations. Two
1502 * scenarios can occur:
1503 *
1504 * 1) The application causing the reserve/commit counters to be
1505 * unbalanced has been terminated. In this situation, all
1506 * further events will be discarded in the buffers, and no
1507 * further buffer data will be readable by the consumer
1508 * daemon. Tearing down the UST tracing session and starting
1509 * anew is a work-around for those situations. Note that this
1510 * only affects per-UID tracing. In per-PID tracing, the
1511 * application vanishes with the termination, and therefore
1512 * no more data needs to be written to the buffers.
1513 * 2) The application causing the unbalance has been delayed for
1514 * a long time, but will eventually try to increment the
1515 * commit counter after eventually writing to the sub-buffer.
1516 * This situation can cause events to be discarded until the
1517 * application resumes its operations.
1518 */
1519 if (((commit_count - chan->backend.subbuf_size)
1520 & chan->commit_count_mask)
1521 - (buf_trunc(consumed, chan)
1522 >> chan->backend.num_subbuf_order)
1523 != 0) {
1524 if (nr_retry-- > 0) {
1525 if (nr_retry <= (LTTNG_UST_RING_BUFFER_GET_RETRY >> 1))
1526 (void) poll(NULL, 0, LTTNG_UST_RING_BUFFER_RETRY_DELAY_MS);
1527 goto retry;
1528 } else {
1529 goto nodata;
1530 }
1531 }
1532
1533 /*
1534 * Check that we are not about to read the same subbuffer in
1535 * which the writer head is.
1536 */
1537 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1538 == 0)
1539 goto nodata;
1540
1541 /*
1542 * Failure to get the subbuffer causes a busy-loop retry without going
1543 * to a wait queue. These are caused by short-lived race windows where
1544 * the writer is getting access to a subbuffer we were trying to get
1545 * access to. Also checks that the "consumed" buffer count we are
1546 * looking for matches the one contained in the subbuffer id.
1547 *
1548 * The short-lived race window described here can be affected by
1549 * application signals and preemption, thus requiring to bound
1550 * the loop to a maximum number of retry.
1551 */
1552 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1553 consumed_idx, buf_trunc_val(consumed, chan),
1554 handle);
1555 if (ret) {
1556 if (nr_retry-- > 0) {
1557 if (nr_retry <= (LTTNG_UST_RING_BUFFER_GET_RETRY >> 1))
1558 (void) poll(NULL, 0, LTTNG_UST_RING_BUFFER_RETRY_DELAY_MS);
1559 goto retry;
1560 } else {
1561 goto nodata;
1562 }
1563 }
1564 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1565
1566 buf->get_subbuf_consumed = consumed;
1567 buf->get_subbuf = 1;
1568
1569 return 0;
1570
1571 nodata:
1572 /*
1573 * The memory barriers __wait_event()/wake_up_interruptible() take care
1574 * of "raw_spin_is_locked" memory ordering.
1575 */
1576 if (finalized)
1577 return -ENODATA;
1578 else
1579 return -EAGAIN;
1580 }
1581
1582 /**
1583 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1584 * @buf: ring buffer
1585 */
1586 void lib_ring_buffer_put_subbuf(struct lttng_ust_ring_buffer *buf,
1587 struct lttng_ust_shm_handle *handle)
1588 {
1589 struct lttng_ust_ring_buffer_backend *bufb = &buf->backend;
1590 struct lttng_ust_ring_buffer_channel *chan;
1591 const struct lttng_ust_ring_buffer_config *config;
1592 unsigned long sb_bindex, consumed_idx, consumed;
1593 struct lttng_ust_ring_buffer_backend_pages_shmp *rpages;
1594 struct lttng_ust_ring_buffer_backend_pages *backend_pages;
1595
1596 chan = shmp(handle, bufb->chan);
1597 if (!chan)
1598 return;
1599 config = &chan->backend.config;
1600 CHAN_WARN_ON(chan, uatomic_read(&buf->active_readers) != 1);
1601
1602 if (!buf->get_subbuf) {
1603 /*
1604 * Reader puts a subbuffer it did not get.
1605 */
1606 CHAN_WARN_ON(chan, 1);
1607 return;
1608 }
1609 consumed = buf->get_subbuf_consumed;
1610 buf->get_subbuf = 0;
1611
1612 /*
1613 * Clear the records_unread counter. (overruns counter)
1614 * Can still be non-zero if a file reader simply grabbed the data
1615 * without using iterators.
1616 * Can be below zero if an iterator is used on a snapshot more than
1617 * once.
1618 */
1619 sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1620 rpages = shmp_index(handle, bufb->array, sb_bindex);
1621 if (!rpages)
1622 return;
1623 backend_pages = shmp(handle, rpages->shmp);
1624 if (!backend_pages)
1625 return;
1626 v_add(config, v_read(config, &backend_pages->records_unread),
1627 &bufb->records_read);
1628 v_set(config, &backend_pages->records_unread, 0);
1629 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1630 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1631 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1632
1633 /*
1634 * Exchange the reader subbuffer with the one we put in its place in the
1635 * writer subbuffer table. Expect the original consumed count. If
1636 * update_read_sb_index fails, this is because the writer updated the
1637 * subbuffer concurrently. We should therefore keep the subbuffer we
1638 * currently have: it has become invalid to try reading this sub-buffer
1639 * consumed count value anyway.
1640 */
1641 consumed_idx = subbuf_index(consumed, chan);
1642 update_read_sb_index(config, &buf->backend, &chan->backend,
1643 consumed_idx, buf_trunc_val(consumed, chan),
1644 handle);
1645 /*
1646 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1647 * if the writer concurrently updated it.
1648 */
1649 }
1650
1651 /*
1652 * cons_offset is an iterator on all subbuffer offsets between the reader
1653 * position and the writer position. (inclusive)
1654 */
1655 static
1656 void lib_ring_buffer_print_subbuffer_errors(struct lttng_ust_ring_buffer *buf,
1657 struct lttng_ust_ring_buffer_channel *chan,
1658 unsigned long cons_offset,
1659 int cpu,
1660 struct lttng_ust_shm_handle *handle)
1661 {
1662 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1663 unsigned long cons_idx, commit_count, commit_count_sb;
1664 struct commit_counters_hot *cc_hot;
1665 struct commit_counters_cold *cc_cold;
1666
1667 cons_idx = subbuf_index(cons_offset, chan);
1668 cc_hot = shmp_index(handle, buf->commit_hot, cons_idx);
1669 if (!cc_hot)
1670 return;
1671 cc_cold = shmp_index(handle, buf->commit_cold, cons_idx);
1672 if (!cc_cold)
1673 return;
1674 commit_count = v_read(config, &cc_hot->cc);
1675 commit_count_sb = v_read(config, &cc_cold->cc_sb);
1676
1677 if (subbuf_offset(commit_count, chan) != 0)
1678 DBG("ring buffer %s, cpu %d: "
1679 "commit count in subbuffer %lu,\n"
1680 "expecting multiples of %lu bytes\n"
1681 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1682 chan->backend.name, cpu, cons_idx,
1683 chan->backend.subbuf_size,
1684 commit_count, commit_count_sb);
1685
1686 DBG("ring buffer: %s, cpu %d: %lu bytes committed\n",
1687 chan->backend.name, cpu, commit_count);
1688 }
1689
1690 static
1691 void lib_ring_buffer_print_buffer_errors(struct lttng_ust_ring_buffer *buf,
1692 struct lttng_ust_ring_buffer_channel *chan,
1693 int cpu, struct lttng_ust_shm_handle *handle)
1694 {
1695 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1696 unsigned long write_offset, cons_offset;
1697
1698 /*
1699 * No need to order commit_count, write_offset and cons_offset reads
1700 * because we execute at teardown when no more writer nor reader
1701 * references are left.
1702 */
1703 write_offset = v_read(config, &buf->offset);
1704 cons_offset = uatomic_read(&buf->consumed);
1705 if (write_offset != cons_offset)
1706 DBG("ring buffer %s, cpu %d: "
1707 "non-consumed data\n"
1708 " [ %lu bytes written, %lu bytes read ]\n",
1709 chan->backend.name, cpu, write_offset, cons_offset);
1710
1711 for (cons_offset = uatomic_read(&buf->consumed);
1712 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1713 chan)
1714 - cons_offset) > 0;
1715 cons_offset = subbuf_align(cons_offset, chan))
1716 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1717 cpu, handle);
1718 }
1719
1720 static
1721 void lib_ring_buffer_print_errors(struct lttng_ust_ring_buffer_channel *chan,
1722 struct lttng_ust_ring_buffer *buf, int cpu,
1723 struct lttng_ust_shm_handle *handle)
1724 {
1725 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1726
1727 if (!strcmp(chan->backend.name, "relay-metadata-mmap")) {
1728 DBG("ring buffer %s: %lu records written, "
1729 "%lu records overrun\n",
1730 chan->backend.name,
1731 v_read(config, &buf->records_count),
1732 v_read(config, &buf->records_overrun));
1733 } else {
1734 DBG("ring buffer %s, cpu %d: %lu records written, "
1735 "%lu records overrun\n",
1736 chan->backend.name, cpu,
1737 v_read(config, &buf->records_count),
1738 v_read(config, &buf->records_overrun));
1739
1740 if (v_read(config, &buf->records_lost_full)
1741 || v_read(config, &buf->records_lost_wrap)
1742 || v_read(config, &buf->records_lost_big))
1743 DBG("ring buffer %s, cpu %d: records were lost. Caused by:\n"
1744 " [ %lu buffer full, %lu nest buffer wrap-around, "
1745 "%lu event too big ]\n",
1746 chan->backend.name, cpu,
1747 v_read(config, &buf->records_lost_full),
1748 v_read(config, &buf->records_lost_wrap),
1749 v_read(config, &buf->records_lost_big));
1750 }
1751 lib_ring_buffer_print_buffer_errors(buf, chan, cpu, handle);
1752 }
1753
1754 /*
1755 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1756 *
1757 * Only executed by SWITCH_FLUSH, which can be issued while tracing is
1758 * active or at buffer finalization (destroy).
1759 */
1760 static
1761 void lib_ring_buffer_switch_old_start(struct lttng_ust_ring_buffer *buf,
1762 struct lttng_ust_ring_buffer_channel *chan,
1763 struct switch_offsets *offsets,
1764 uint64_t tsc,
1765 struct lttng_ust_shm_handle *handle)
1766 {
1767 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1768 unsigned long oldidx = subbuf_index(offsets->old, chan);
1769 unsigned long commit_count;
1770 struct commit_counters_hot *cc_hot;
1771
1772 config->cb.buffer_begin(buf, tsc, oldidx, handle);
1773
1774 /*
1775 * Order all writes to buffer before the commit count update that will
1776 * determine that the subbuffer is full.
1777 */
1778 cmm_smp_wmb();
1779 cc_hot = shmp_index(handle, buf->commit_hot, oldidx);
1780 if (!cc_hot)
1781 return;
1782 v_add(config, config->cb.subbuffer_header_size(),
1783 &cc_hot->cc);
1784 commit_count = v_read(config, &cc_hot->cc);
1785 /* Check if the written buffer has to be delivered */
1786 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1787 commit_count, oldidx, handle, tsc);
1788 lib_ring_buffer_write_commit_counter(config, buf, chan,
1789 offsets->old + config->cb.subbuffer_header_size(),
1790 commit_count, handle, cc_hot);
1791 }
1792
1793 /*
1794 * lib_ring_buffer_switch_old_end: switch old subbuffer
1795 *
1796 * Note : offset_old should never be 0 here. It is ok, because we never perform
1797 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1798 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1799 * subbuffer.
1800 */
1801 static
1802 void lib_ring_buffer_switch_old_end(struct lttng_ust_ring_buffer *buf,
1803 struct lttng_ust_ring_buffer_channel *chan,
1804 struct switch_offsets *offsets,
1805 uint64_t tsc,
1806 struct lttng_ust_shm_handle *handle)
1807 {
1808 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1809 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1810 unsigned long commit_count, padding_size, data_size;
1811 struct commit_counters_hot *cc_hot;
1812 uint64_t *ts_end;
1813
1814 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1815 padding_size = chan->backend.subbuf_size - data_size;
1816 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size,
1817 handle);
1818
1819 ts_end = shmp_index(handle, buf->ts_end, oldidx);
1820 if (!ts_end)
1821 return;
1822 /*
1823 * This is the last space reservation in that sub-buffer before
1824 * it gets delivered. This provides exclusive access to write to
1825 * this sub-buffer's ts_end. There are also no concurrent
1826 * readers of that ts_end because delivery of that sub-buffer is
1827 * postponed until the commit counter is incremented for the
1828 * current space reservation.
1829 */
1830 *ts_end = tsc;
1831
1832 /*
1833 * Order all writes to buffer and store to ts_end before the commit
1834 * count update that will determine that the subbuffer is full.
1835 */
1836 cmm_smp_wmb();
1837 cc_hot = shmp_index(handle, buf->commit_hot, oldidx);
1838 if (!cc_hot)
1839 return;
1840 v_add(config, padding_size, &cc_hot->cc);
1841 commit_count = v_read(config, &cc_hot->cc);
1842 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1843 commit_count, oldidx, handle, tsc);
1844 lib_ring_buffer_write_commit_counter(config, buf, chan,
1845 offsets->old + padding_size, commit_count, handle,
1846 cc_hot);
1847 }
1848
1849 /*
1850 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1851 *
1852 * This code can be executed unordered : writers may already have written to the
1853 * sub-buffer before this code gets executed, caution. The commit makes sure
1854 * that this code is executed before the deliver of this sub-buffer.
1855 */
1856 static
1857 void lib_ring_buffer_switch_new_start(struct lttng_ust_ring_buffer *buf,
1858 struct lttng_ust_ring_buffer_channel *chan,
1859 struct switch_offsets *offsets,
1860 uint64_t tsc,
1861 struct lttng_ust_shm_handle *handle)
1862 {
1863 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1864 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1865 unsigned long commit_count;
1866 struct commit_counters_hot *cc_hot;
1867
1868 config->cb.buffer_begin(buf, tsc, beginidx, handle);
1869
1870 /*
1871 * Order all writes to buffer before the commit count update that will
1872 * determine that the subbuffer is full.
1873 */
1874 cmm_smp_wmb();
1875 cc_hot = shmp_index(handle, buf->commit_hot, beginidx);
1876 if (!cc_hot)
1877 return;
1878 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1879 commit_count = v_read(config, &cc_hot->cc);
1880 /* Check if the written buffer has to be delivered */
1881 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1882 commit_count, beginidx, handle, tsc);
1883 lib_ring_buffer_write_commit_counter(config, buf, chan,
1884 offsets->begin + config->cb.subbuffer_header_size(),
1885 commit_count, handle, cc_hot);
1886 }
1887
1888 /*
1889 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1890 *
1891 * Calls subbuffer_set_data_size() to set the data size of the current
1892 * sub-buffer. We do not need to perform check_deliver nor commit here,
1893 * since this task will be done by the "commit" of the event for which
1894 * we are currently doing the space reservation.
1895 */
1896 static
1897 void lib_ring_buffer_switch_new_end(struct lttng_ust_ring_buffer *buf,
1898 struct lttng_ust_ring_buffer_channel *chan,
1899 struct switch_offsets *offsets,
1900 uint64_t tsc,
1901 struct lttng_ust_shm_handle *handle)
1902 {
1903 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1904 unsigned long endidx, data_size;
1905 uint64_t *ts_end;
1906
1907 endidx = subbuf_index(offsets->end - 1, chan);
1908 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1909 subbuffer_set_data_size(config, &buf->backend, endidx, data_size,
1910 handle);
1911 ts_end = shmp_index(handle, buf->ts_end, endidx);
1912 if (!ts_end)
1913 return;
1914 /*
1915 * This is the last space reservation in that sub-buffer before
1916 * it gets delivered. This provides exclusive access to write to
1917 * this sub-buffer's ts_end. There are also no concurrent
1918 * readers of that ts_end because delivery of that sub-buffer is
1919 * postponed until the commit counter is incremented for the
1920 * current space reservation.
1921 */
1922 *ts_end = tsc;
1923 }
1924
1925 /*
1926 * Returns :
1927 * 0 if ok
1928 * !0 if execution must be aborted.
1929 */
1930 static
1931 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1932 struct lttng_ust_ring_buffer *buf,
1933 struct lttng_ust_ring_buffer_channel *chan,
1934 struct switch_offsets *offsets,
1935 uint64_t *tsc,
1936 struct lttng_ust_shm_handle *handle)
1937 {
1938 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
1939 unsigned long off, reserve_commit_diff;
1940
1941 offsets->begin = v_read(config, &buf->offset);
1942 offsets->old = offsets->begin;
1943 offsets->switch_old_start = 0;
1944 off = subbuf_offset(offsets->begin, chan);
1945
1946 *tsc = config->cb.ring_buffer_clock_read(chan);
1947
1948 /*
1949 * Ensure we flush the header of an empty subbuffer when doing the
1950 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1951 * total data gathering duration even if there were no records saved
1952 * after the last buffer switch.
1953 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1954 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1955 * subbuffer header as appropriate.
1956 * The next record that reserves space will be responsible for
1957 * populating the following subbuffer header. We choose not to populate
1958 * the next subbuffer header here because we want to be able to use
1959 * SWITCH_ACTIVE for periodical buffer flush, which must
1960 * guarantee that all the buffer content (records and header
1961 * timestamps) are visible to the reader. This is required for
1962 * quiescence guarantees for the fusion merge.
1963 */
1964 if (mode != SWITCH_FLUSH && !off)
1965 return -1; /* we do not have to switch : buffer is empty */
1966
1967 if (caa_unlikely(off == 0)) {
1968 unsigned long sb_index, commit_count;
1969 struct commit_counters_cold *cc_cold;
1970
1971 /*
1972 * We are performing a SWITCH_FLUSH. There may be concurrent
1973 * writes into the buffer if e.g. invoked while performing a
1974 * snapshot on an active trace.
1975 *
1976 * If the client does not save any header information
1977 * (sub-buffer header size == 0), don't switch empty subbuffer
1978 * on finalize, because it is invalid to deliver a completely
1979 * empty subbuffer.
1980 */
1981 if (!config->cb.subbuffer_header_size())
1982 return -1;
1983
1984 /* Test new buffer integrity */
1985 sb_index = subbuf_index(offsets->begin, chan);
1986 cc_cold = shmp_index(handle, buf->commit_cold, sb_index);
1987 if (!cc_cold)
1988 return -1;
1989 commit_count = v_read(config, &cc_cold->cc_sb);
1990 reserve_commit_diff =
1991 (buf_trunc(offsets->begin, chan)
1992 >> chan->backend.num_subbuf_order)
1993 - (commit_count & chan->commit_count_mask);
1994 if (caa_likely(reserve_commit_diff == 0)) {
1995 /* Next subbuffer not being written to. */
1996 if (caa_unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1997 subbuf_trunc(offsets->begin, chan)
1998 - subbuf_trunc((unsigned long)
1999 uatomic_read(&buf->consumed), chan)
2000 >= chan->backend.buf_size)) {
2001 /*
2002 * We do not overwrite non consumed buffers
2003 * and we are full : don't switch.
2004 */
2005 return -1;
2006 } else {
2007 /*
2008 * Next subbuffer not being written to, and we
2009 * are either in overwrite mode or the buffer is
2010 * not full. It's safe to write in this new
2011 * subbuffer.
2012 */
2013 }
2014 } else {
2015 /*
2016 * Next subbuffer reserve offset does not match the
2017 * commit offset. Don't perform switch in
2018 * producer-consumer and overwrite mode. Caused by
2019 * either a writer OOPS or too many nested writes over a
2020 * reserve/commit pair.
2021 */
2022 return -1;
2023 }
2024
2025 /*
2026 * Need to write the subbuffer start header on finalize.
2027 */
2028 offsets->switch_old_start = 1;
2029 }
2030 offsets->begin = subbuf_align(offsets->begin, chan);
2031 /* Note: old points to the next subbuf at offset 0 */
2032 offsets->end = offsets->begin;
2033 return 0;
2034 }
2035
2036 /*
2037 * Force a sub-buffer switch. This operation is completely reentrant : can be
2038 * called while tracing is active with absolutely no lock held.
2039 *
2040 * For RING_BUFFER_SYNC_PER_CPU ring buffers, as a v_cmpxchg is used for
2041 * some atomic operations, this function must be called from the CPU
2042 * which owns the buffer for a ACTIVE flush. However, for
2043 * RING_BUFFER_SYNC_GLOBAL ring buffers, this function can be called
2044 * from any CPU.
2045 */
2046 void lib_ring_buffer_switch_slow(struct lttng_ust_ring_buffer *buf, enum switch_mode mode,
2047 struct lttng_ust_shm_handle *handle)
2048 {
2049 struct lttng_ust_ring_buffer_channel *chan;
2050 const struct lttng_ust_ring_buffer_config *config;
2051 struct switch_offsets offsets;
2052 unsigned long oldidx;
2053 uint64_t tsc;
2054
2055 chan = shmp(handle, buf->backend.chan);
2056 if (!chan)
2057 return;
2058 config = &chan->backend.config;
2059
2060 offsets.size = 0;
2061
2062 /*
2063 * Perform retryable operations.
2064 */
2065 do {
2066 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
2067 &tsc, handle))
2068 return; /* Switch not needed */
2069 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
2070 != offsets.old);
2071
2072 /*
2073 * Atomically update last_tsc. This update races against concurrent
2074 * atomic updates, but the race will always cause supplementary full TSC
2075 * records, never the opposite (missing a full TSC record when it would
2076 * be needed).
2077 */
2078 save_last_tsc(config, buf, tsc);
2079
2080 /*
2081 * Push the reader if necessary
2082 */
2083 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
2084
2085 oldidx = subbuf_index(offsets.old, chan);
2086 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx, handle);
2087
2088 /*
2089 * May need to populate header start on SWITCH_FLUSH.
2090 */
2091 if (offsets.switch_old_start) {
2092 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc, handle);
2093 offsets.old += config->cb.subbuffer_header_size();
2094 }
2095
2096 /*
2097 * Switch old subbuffer.
2098 */
2099 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc, handle);
2100 }
2101
2102 static
2103 bool handle_blocking_retry(int *timeout_left_ms)
2104 {
2105 int timeout = *timeout_left_ms, delay;
2106
2107 if (caa_likely(!timeout))
2108 return false; /* Do not retry, discard event. */
2109 if (timeout < 0) /* Wait forever. */
2110 delay = RETRY_DELAY_MS;
2111 else
2112 delay = min_t(int, timeout, RETRY_DELAY_MS);
2113 (void) poll(NULL, 0, delay);
2114 if (timeout > 0)
2115 *timeout_left_ms -= delay;
2116 return true; /* Retry. */
2117 }
2118
2119 /*
2120 * Returns :
2121 * 0 if ok
2122 * -ENOSPC if event size is too large for packet.
2123 * -ENOBUFS if there is currently not enough space in buffer for the event.
2124 * -EIO if data cannot be written into the buffer for any other reason.
2125 */
2126 static
2127 int lib_ring_buffer_try_reserve_slow(struct lttng_ust_ring_buffer *buf,
2128 struct lttng_ust_ring_buffer_channel *chan,
2129 struct switch_offsets *offsets,
2130 struct lttng_ust_ring_buffer_ctx *ctx,
2131 void *client_ctx)
2132 {
2133 struct lttng_ust_ring_buffer_ctx_private *ctx_private = ctx->priv;
2134 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
2135 struct lttng_ust_shm_handle *handle = chan->handle;
2136 unsigned long reserve_commit_diff, offset_cmp;
2137 int timeout_left_ms = lttng_ust_ringbuffer_get_timeout(chan);
2138
2139 retry:
2140 offsets->begin = offset_cmp = v_read(config, &buf->offset);
2141 offsets->old = offsets->begin;
2142 offsets->switch_new_start = 0;
2143 offsets->switch_new_end = 0;
2144 offsets->switch_old_end = 0;
2145 offsets->pre_header_padding = 0;
2146
2147 ctx_private->tsc = config->cb.ring_buffer_clock_read(chan);
2148 if ((int64_t) ctx_private->tsc == -EIO)
2149 return -EIO;
2150
2151 if (last_tsc_overflow(config, buf, ctx_private->tsc))
2152 ctx_private->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
2153
2154 if (caa_unlikely(subbuf_offset(offsets->begin, chan) == 0)) {
2155 offsets->switch_new_start = 1; /* For offsets->begin */
2156 } else {
2157 offsets->size = config->cb.record_header_size(config, chan,
2158 offsets->begin,
2159 &offsets->pre_header_padding,
2160 ctx, client_ctx);
2161 offsets->size +=
2162 lttng_ust_ring_buffer_align(offsets->begin + offsets->size,
2163 ctx->largest_align)
2164 + ctx->data_size;
2165 if (caa_unlikely(subbuf_offset(offsets->begin, chan) +
2166 offsets->size > chan->backend.subbuf_size)) {
2167 offsets->switch_old_end = 1; /* For offsets->old */
2168 offsets->switch_new_start = 1; /* For offsets->begin */
2169 }
2170 }
2171 if (caa_unlikely(offsets->switch_new_start)) {
2172 unsigned long sb_index, commit_count;
2173 struct commit_counters_cold *cc_cold;
2174
2175 /*
2176 * We are typically not filling the previous buffer completely.
2177 */
2178 if (caa_likely(offsets->switch_old_end))
2179 offsets->begin = subbuf_align(offsets->begin, chan);
2180 offsets->begin = offsets->begin
2181 + config->cb.subbuffer_header_size();
2182 /* Test new buffer integrity */
2183 sb_index = subbuf_index(offsets->begin, chan);
2184 /*
2185 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2186 * lib_ring_buffer_check_deliver() has the matching
2187 * memory barriers required around commit_cold cc_sb
2188 * updates to ensure reserve and commit counter updates
2189 * are not seen reordered when updated by another CPU.
2190 */
2191 cmm_smp_rmb();
2192 cc_cold = shmp_index(handle, buf->commit_cold, sb_index);
2193 if (!cc_cold)
2194 return -1;
2195 commit_count = v_read(config, &cc_cold->cc_sb);
2196 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2197 cmm_smp_rmb();
2198 if (caa_unlikely(offset_cmp != v_read(config, &buf->offset))) {
2199 /*
2200 * The reserve counter have been concurrently updated
2201 * while we read the commit counter. This means the
2202 * commit counter we read might not match buf->offset
2203 * due to concurrent update. We therefore need to retry.
2204 */
2205 goto retry;
2206 }
2207 reserve_commit_diff =
2208 (buf_trunc(offsets->begin, chan)
2209 >> chan->backend.num_subbuf_order)
2210 - (commit_count & chan->commit_count_mask);
2211 if (caa_likely(reserve_commit_diff == 0)) {
2212 /* Next subbuffer not being written to. */
2213 if (caa_unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2214 subbuf_trunc(offsets->begin, chan)
2215 - subbuf_trunc((unsigned long)
2216 uatomic_read(&buf->consumed), chan)
2217 >= chan->backend.buf_size)) {
2218 unsigned long nr_lost;
2219
2220 if (handle_blocking_retry(&timeout_left_ms))
2221 goto retry;
2222
2223 /*
2224 * We do not overwrite non consumed buffers
2225 * and we are full : record is lost.
2226 */
2227 nr_lost = v_read(config, &buf->records_lost_full);
2228 v_inc(config, &buf->records_lost_full);
2229 if ((nr_lost & (DBG_PRINT_NR_LOST - 1)) == 0) {
2230 DBG("%lu or more records lost in (%s:%d) (buffer full)\n",
2231 nr_lost + 1, chan->backend.name,
2232 buf->backend.cpu);
2233 }
2234 return -ENOBUFS;
2235 } else {
2236 /*
2237 * Next subbuffer not being written to, and we
2238 * are either in overwrite mode or the buffer is
2239 * not full. It's safe to write in this new
2240 * subbuffer.
2241 */
2242 }
2243 } else {
2244 unsigned long nr_lost;
2245
2246 /*
2247 * Next subbuffer reserve offset does not match the
2248 * commit offset, and this did not involve update to the
2249 * reserve counter. Drop record in producer-consumer and
2250 * overwrite mode. Caused by either a writer OOPS or too
2251 * many nested writes over a reserve/commit pair.
2252 */
2253 nr_lost = v_read(config, &buf->records_lost_wrap);
2254 v_inc(config, &buf->records_lost_wrap);
2255 if ((nr_lost & (DBG_PRINT_NR_LOST - 1)) == 0) {
2256 DBG("%lu or more records lost in (%s:%d) (wrap-around)\n",
2257 nr_lost + 1, chan->backend.name,
2258 buf->backend.cpu);
2259 }
2260 return -EIO;
2261 }
2262 offsets->size =
2263 config->cb.record_header_size(config, chan,
2264 offsets->begin,
2265 &offsets->pre_header_padding,
2266 ctx, client_ctx);
2267 offsets->size +=
2268 lttng_ust_ring_buffer_align(offsets->begin + offsets->size,
2269 ctx->largest_align)
2270 + ctx->data_size;
2271 if (caa_unlikely(subbuf_offset(offsets->begin, chan)
2272 + offsets->size > chan->backend.subbuf_size)) {
2273 unsigned long nr_lost;
2274
2275 /*
2276 * Record too big for subbuffers, report error, don't
2277 * complete the sub-buffer switch.
2278 */
2279 nr_lost = v_read(config, &buf->records_lost_big);
2280 v_inc(config, &buf->records_lost_big);
2281 if ((nr_lost & (DBG_PRINT_NR_LOST - 1)) == 0) {
2282 DBG("%lu or more records lost in (%s:%d) record size "
2283 " of %zu bytes is too large for buffer\n",
2284 nr_lost + 1, chan->backend.name,
2285 buf->backend.cpu, offsets->size);
2286 }
2287 return -ENOSPC;
2288 } else {
2289 /*
2290 * We just made a successful buffer switch and the
2291 * record fits in the new subbuffer. Let's write.
2292 */
2293 }
2294 } else {
2295 /*
2296 * Record fits in the current buffer and we are not on a switch
2297 * boundary. It's safe to write.
2298 */
2299 }
2300 offsets->end = offsets->begin + offsets->size;
2301
2302 if (caa_unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2303 /*
2304 * The offset_end will fall at the very beginning of the next
2305 * subbuffer.
2306 */
2307 offsets->switch_new_end = 1; /* For offsets->begin */
2308 }
2309 return 0;
2310 }
2311
2312 /**
2313 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2314 * @ctx: ring buffer context.
2315 *
2316 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2317 * -EIO for other errors, else returns 0.
2318 * It will take care of sub-buffer switching.
2319 */
2320 int lib_ring_buffer_reserve_slow(struct lttng_ust_ring_buffer_ctx *ctx,
2321 void *client_ctx)
2322 {
2323 struct lttng_ust_ring_buffer_ctx_private *ctx_private = ctx->priv;
2324 struct lttng_ust_ring_buffer_channel *chan = ctx_private->chan;
2325 struct lttng_ust_shm_handle *handle = chan->handle;
2326 const struct lttng_ust_ring_buffer_config *config = &chan->backend.config;
2327 struct lttng_ust_ring_buffer *buf;
2328 struct switch_offsets offsets;
2329 int ret;
2330
2331 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2332 buf = shmp(handle, chan->backend.buf[ctx_private->reserve_cpu].shmp);
2333 else
2334 buf = shmp(handle, chan->backend.buf[0].shmp);
2335 if (!buf)
2336 return -EIO;
2337 ctx_private->buf = buf;
2338
2339 offsets.size = 0;
2340
2341 do {
2342 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2343 ctx, client_ctx);
2344 if (caa_unlikely(ret))
2345 return ret;
2346 } while (caa_unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2347 offsets.end)
2348 != offsets.old));
2349
2350 /*
2351 * Atomically update last_tsc. This update races against concurrent
2352 * atomic updates, but the race will always cause supplementary full TSC
2353 * records, never the opposite (missing a full TSC record when it would
2354 * be needed).
2355 */
2356 save_last_tsc(config, buf, ctx_private->tsc);
2357
2358 /*
2359 * Push the reader if necessary
2360 */
2361 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2362
2363 /*
2364 * Clear noref flag for this subbuffer.
2365 */
2366 lib_ring_buffer_clear_noref(config, &buf->backend,
2367 subbuf_index(offsets.end - 1, chan),
2368 handle);
2369
2370 /*
2371 * Switch old subbuffer if needed.
2372 */
2373 if (caa_unlikely(offsets.switch_old_end)) {
2374 lib_ring_buffer_clear_noref(config, &buf->backend,
2375 subbuf_index(offsets.old - 1, chan),
2376 handle);
2377 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx_private->tsc, handle);
2378 }
2379
2380 /*
2381 * Populate new subbuffer.
2382 */
2383 if (caa_unlikely(offsets.switch_new_start))
2384 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx_private->tsc, handle);
2385
2386 if (caa_unlikely(offsets.switch_new_end))
2387 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx_private->tsc, handle);
2388
2389 ctx_private->slot_size = offsets.size;
2390 ctx_private->pre_offset = offsets.begin;
2391 ctx_private->buf_offset = offsets.begin + offsets.pre_header_padding;
2392 return 0;
2393 }
2394
2395 static
2396 void lib_ring_buffer_vmcore_check_deliver(const struct lttng_ust_ring_buffer_config *config,
2397 struct lttng_ust_ring_buffer *buf,
2398 unsigned long commit_count,
2399 unsigned long idx,
2400 struct lttng_ust_shm_handle *handle)
2401 {
2402 struct commit_counters_hot *cc_hot;
2403
2404 if (config->oops != RING_BUFFER_OOPS_CONSISTENCY)
2405 return;
2406 cc_hot = shmp_index(handle, buf->commit_hot, idx);
2407 if (!cc_hot)
2408 return;
2409 v_set(config, &cc_hot->seq, commit_count);
2410 }
2411
2412 /*
2413 * The ring buffer can count events recorded and overwritten per buffer,
2414 * but it is disabled by default due to its performance overhead.
2415 */
2416 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2417 static
2418 void deliver_count_events(const struct lttng_ust_ring_buffer_config *config,
2419 struct lttng_ust_ring_buffer *buf,
2420 unsigned long idx,
2421 struct lttng_ust_shm_handle *handle)
2422 {
2423 v_add(config, subbuffer_get_records_count(config,
2424 &buf->backend, idx, handle),
2425 &buf->records_count);
2426 v_add(config, subbuffer_count_records_overrun(config,
2427 &buf->backend, idx, handle),
2428 &buf->records_overrun);
2429 }
2430 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2431 static
2432 void deliver_count_events(
2433 const struct lttng_ust_ring_buffer_config *config __attribute__((unused)),
2434 struct lttng_ust_ring_buffer *buf __attribute__((unused)),
2435 unsigned long idx __attribute__((unused)),
2436 struct lttng_ust_shm_handle *handle __attribute__((unused)))
2437 {
2438 }
2439 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2440
2441 void lib_ring_buffer_check_deliver_slow(const struct lttng_ust_ring_buffer_config *config,
2442 struct lttng_ust_ring_buffer *buf,
2443 struct lttng_ust_ring_buffer_channel *chan,
2444 unsigned long offset,
2445 unsigned long commit_count,
2446 unsigned long idx,
2447 struct lttng_ust_shm_handle *handle,
2448 uint64_t tsc __attribute__((unused)))
2449 {
2450 unsigned long old_commit_count = commit_count
2451 - chan->backend.subbuf_size;
2452 struct commit_counters_cold *cc_cold;
2453
2454 /*
2455 * If we succeeded at updating cc_sb below, we are the subbuffer
2456 * writer delivering the subbuffer. Deals with concurrent
2457 * updates of the "cc" value without adding a add_return atomic
2458 * operation to the fast path.
2459 *
2460 * We are doing the delivery in two steps:
2461 * - First, we cmpxchg() cc_sb to the new value
2462 * old_commit_count + 1. This ensures that we are the only
2463 * subbuffer user successfully filling the subbuffer, but we
2464 * do _not_ set the cc_sb value to "commit_count" yet.
2465 * Therefore, other writers that would wrap around the ring
2466 * buffer and try to start writing to our subbuffer would
2467 * have to drop records, because it would appear as
2468 * non-filled.
2469 * We therefore have exclusive access to the subbuffer control
2470 * structures. This mutual exclusion with other writers is
2471 * crucially important to perform record overruns count in
2472 * flight recorder mode locklessly.
2473 * - When we are ready to release the subbuffer (either for
2474 * reading or for overrun by other writers), we simply set the
2475 * cc_sb value to "commit_count" and perform delivery.
2476 *
2477 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2478 * This guarantees that old_commit_count + 1 != commit_count.
2479 */
2480
2481 /*
2482 * Order prior updates to reserve count prior to the
2483 * commit_cold cc_sb update.
2484 */
2485 cmm_smp_wmb();
2486 cc_cold = shmp_index(handle, buf->commit_cold, idx);
2487 if (!cc_cold)
2488 return;
2489 if (caa_likely(v_cmpxchg(config, &cc_cold->cc_sb,
2490 old_commit_count, old_commit_count + 1)
2491 == old_commit_count)) {
2492 uint64_t *ts_end;
2493
2494 /*
2495 * Start of exclusive subbuffer access. We are
2496 * guaranteed to be the last writer in this subbuffer
2497 * and any other writer trying to access this subbuffer
2498 * in this state is required to drop records.
2499 *
2500 * We can read the ts_end for the current sub-buffer
2501 * which has been saved by the very last space
2502 * reservation for the current sub-buffer.
2503 *
2504 * Order increment of commit counter before reading ts_end.
2505 */
2506 cmm_smp_mb();
2507 ts_end = shmp_index(handle, buf->ts_end, idx);
2508 if (!ts_end)
2509 return;
2510 deliver_count_events(config, buf, idx, handle);
2511 config->cb.buffer_end(buf, *ts_end, idx,
2512 lib_ring_buffer_get_data_size(config,
2513 buf,
2514 idx,
2515 handle),
2516 handle);
2517
2518 /*
2519 * Increment the packet counter while we have exclusive
2520 * access.
2521 */
2522 subbuffer_inc_packet_count(config, &buf->backend, idx, handle);
2523
2524 /*
2525 * Set noref flag and offset for this subbuffer id.
2526 * Contains a memory barrier that ensures counter stores
2527 * are ordered before set noref and offset.
2528 */
2529 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2530 buf_trunc_val(offset, chan), handle);
2531
2532 /*
2533 * Order set_noref and record counter updates before the
2534 * end of subbuffer exclusive access. Orders with
2535 * respect to writers coming into the subbuffer after
2536 * wrap around, and also order wrt concurrent readers.
2537 */
2538 cmm_smp_mb();
2539 /* End of exclusive subbuffer access */
2540 v_set(config, &cc_cold->cc_sb, commit_count);
2541 /*
2542 * Order later updates to reserve count after
2543 * the commit cold cc_sb update.
2544 */
2545 cmm_smp_wmb();
2546 lib_ring_buffer_vmcore_check_deliver(config, buf,
2547 commit_count, idx, handle);
2548
2549 /*
2550 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2551 */
2552 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2553 && uatomic_read(&buf->active_readers)
2554 && lib_ring_buffer_poll_deliver(config, buf, chan, handle)) {
2555 lib_ring_buffer_wakeup(buf, handle);
2556 }
2557 }
2558 }
2559
2560 /*
2561 * Force a read (imply TLS fixup for dlopen) of TLS variables.
2562 */
2563 void lttng_fixup_ringbuffer_tls(void)
2564 {
2565 asm volatile ("" : : "m" (URCU_TLS(lib_ring_buffer_nesting)));
2566 }
2567
2568 void lib_ringbuffer_signal_init(void)
2569 {
2570 sigset_t mask;
2571 int ret;
2572
2573 /*
2574 * Block signal for entire process, so only our thread processes
2575 * it.
2576 */
2577 rb_setmask(&mask);
2578 ret = pthread_sigmask(SIG_BLOCK, &mask, NULL);
2579 if (ret) {
2580 errno = ret;
2581 PERROR("pthread_sigmask");
2582 }
2583 }
This page took 0.123042 seconds and 4 git commands to generate.