Fix: metadata channel leak when using the snapshot tracing mode
[lttng-tools.git] / src / common / ust-consumer / ust-consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2017 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <lttng/ust-ctl.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <inttypes.h>
32 #include <unistd.h>
33 #include <urcu/list.h>
34 #include <signal.h>
35
36 #include <bin/lttng-consumerd/health-consumerd.h>
37 #include <common/common.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/relayd/relayd.h>
40 #include <common/compat/fcntl.h>
41 #include <common/compat/endian.h>
42 #include <common/consumer/consumer-metadata-cache.h>
43 #include <common/consumer/consumer-stream.h>
44 #include <common/consumer/consumer-timer.h>
45 #include <common/utils.h>
46 #include <common/index/index.h>
47
48 #include "ust-consumer.h"
49
50 #define INT_MAX_STR_LEN 12 /* includes \0 */
51
52 extern struct lttng_consumer_global_data consumer_data;
53 extern int consumer_poll_timeout;
54
55 /*
56 * Free channel object and all streams associated with it. This MUST be used
57 * only and only if the channel has _NEVER_ been added to the global channel
58 * hash table.
59 */
60 static void destroy_channel(struct lttng_consumer_channel *channel)
61 {
62 struct lttng_consumer_stream *stream, *stmp;
63
64 assert(channel);
65
66 DBG("UST consumer cleaning stream list");
67
68 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
69 send_node) {
70
71 health_code_update();
72
73 cds_list_del(&stream->send_node);
74 ustctl_destroy_stream(stream->ustream);
75 free(stream);
76 }
77
78 /*
79 * If a channel is available meaning that was created before the streams
80 * were, delete it.
81 */
82 if (channel->uchan) {
83 lttng_ustconsumer_del_channel(channel);
84 lttng_ustconsumer_free_channel(channel);
85 }
86 free(channel);
87 }
88
89 /*
90 * Add channel to internal consumer state.
91 *
92 * Returns 0 on success or else a negative value.
93 */
94 static int add_channel(struct lttng_consumer_channel *channel,
95 struct lttng_consumer_local_data *ctx)
96 {
97 int ret = 0;
98
99 assert(channel);
100 assert(ctx);
101
102 if (ctx->on_recv_channel != NULL) {
103 ret = ctx->on_recv_channel(channel);
104 if (ret == 0) {
105 ret = consumer_add_channel(channel, ctx);
106 } else if (ret < 0) {
107 /* Most likely an ENOMEM. */
108 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
109 goto error;
110 }
111 } else {
112 ret = consumer_add_channel(channel, ctx);
113 }
114
115 DBG("UST consumer channel added (key: %" PRIu64 ")", channel->key);
116
117 error:
118 return ret;
119 }
120
121 /*
122 * Allocate and return a consumer channel object.
123 */
124 static struct lttng_consumer_channel *allocate_channel(uint64_t session_id,
125 const char *pathname, const char *name, uid_t uid, gid_t gid,
126 uint64_t relayd_id, uint64_t key, enum lttng_event_output output,
127 uint64_t tracefile_size, uint64_t tracefile_count,
128 uint64_t session_id_per_pid, unsigned int monitor,
129 unsigned int live_timer_interval,
130 const char *root_shm_path, const char *shm_path)
131 {
132 assert(pathname);
133 assert(name);
134
135 return consumer_allocate_channel(key, session_id, pathname, name, uid,
136 gid, relayd_id, output, tracefile_size,
137 tracefile_count, session_id_per_pid, monitor,
138 live_timer_interval, root_shm_path, shm_path);
139 }
140
141 /*
142 * Allocate and return a consumer stream object. If _alloc_ret is not NULL, the
143 * error value if applicable is set in it else it is kept untouched.
144 *
145 * Return NULL on error else the newly allocated stream object.
146 */
147 static struct lttng_consumer_stream *allocate_stream(int cpu, int key,
148 struct lttng_consumer_channel *channel,
149 struct lttng_consumer_local_data *ctx, int *_alloc_ret)
150 {
151 int alloc_ret;
152 struct lttng_consumer_stream *stream = NULL;
153
154 assert(channel);
155 assert(ctx);
156
157 stream = consumer_allocate_stream(channel->key,
158 key,
159 LTTNG_CONSUMER_ACTIVE_STREAM,
160 channel->name,
161 channel->uid,
162 channel->gid,
163 channel->relayd_id,
164 channel->session_id,
165 cpu,
166 &alloc_ret,
167 channel->type,
168 channel->monitor);
169 if (stream == NULL) {
170 switch (alloc_ret) {
171 case -ENOENT:
172 /*
173 * We could not find the channel. Can happen if cpu hotplug
174 * happens while tearing down.
175 */
176 DBG3("Could not find channel");
177 break;
178 case -ENOMEM:
179 case -EINVAL:
180 default:
181 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
182 break;
183 }
184 goto error;
185 }
186
187 stream->chan = channel;
188
189 error:
190 if (_alloc_ret) {
191 *_alloc_ret = alloc_ret;
192 }
193 return stream;
194 }
195
196 /*
197 * Send the given stream pointer to the corresponding thread.
198 *
199 * Returns 0 on success else a negative value.
200 */
201 static int send_stream_to_thread(struct lttng_consumer_stream *stream,
202 struct lttng_consumer_local_data *ctx)
203 {
204 int ret;
205 struct lttng_pipe *stream_pipe;
206
207 /* Get the right pipe where the stream will be sent. */
208 if (stream->metadata_flag) {
209 consumer_add_metadata_stream(stream);
210 stream_pipe = ctx->consumer_metadata_pipe;
211 } else {
212 consumer_add_data_stream(stream);
213 stream_pipe = ctx->consumer_data_pipe;
214 }
215
216 /*
217 * From this point on, the stream's ownership has been moved away from
218 * the channel and it becomes globally visible. Hence, remove it from
219 * the local stream list to prevent the stream from being both local and
220 * global.
221 */
222 stream->globally_visible = 1;
223 cds_list_del(&stream->send_node);
224
225 ret = lttng_pipe_write(stream_pipe, &stream, sizeof(stream));
226 if (ret < 0) {
227 ERR("Consumer write %s stream to pipe %d",
228 stream->metadata_flag ? "metadata" : "data",
229 lttng_pipe_get_writefd(stream_pipe));
230 if (stream->metadata_flag) {
231 consumer_del_stream_for_metadata(stream);
232 } else {
233 consumer_del_stream_for_data(stream);
234 }
235 goto error;
236 }
237
238 error:
239 return ret;
240 }
241
242 static
243 int get_stream_shm_path(char *stream_shm_path, const char *shm_path, int cpu)
244 {
245 char cpu_nr[INT_MAX_STR_LEN]; /* int max len */
246 int ret;
247
248 strncpy(stream_shm_path, shm_path, PATH_MAX);
249 stream_shm_path[PATH_MAX - 1] = '\0';
250 ret = snprintf(cpu_nr, INT_MAX_STR_LEN, "%i", cpu);
251 if (ret < 0) {
252 PERROR("snprintf");
253 goto end;
254 }
255 strncat(stream_shm_path, cpu_nr,
256 PATH_MAX - strlen(stream_shm_path) - 1);
257 ret = 0;
258 end:
259 return ret;
260 }
261
262 /*
263 * Create streams for the given channel using liblttng-ust-ctl.
264 *
265 * Return 0 on success else a negative value.
266 */
267 static int create_ust_streams(struct lttng_consumer_channel *channel,
268 struct lttng_consumer_local_data *ctx)
269 {
270 int ret, cpu = 0;
271 struct ustctl_consumer_stream *ustream;
272 struct lttng_consumer_stream *stream;
273
274 assert(channel);
275 assert(ctx);
276
277 /*
278 * While a stream is available from ustctl. When NULL is returned, we've
279 * reached the end of the possible stream for the channel.
280 */
281 while ((ustream = ustctl_create_stream(channel->uchan, cpu))) {
282 int wait_fd;
283 int ust_metadata_pipe[2];
284
285 health_code_update();
286
287 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && channel->monitor) {
288 ret = utils_create_pipe_cloexec_nonblock(ust_metadata_pipe);
289 if (ret < 0) {
290 ERR("Create ust metadata poll pipe");
291 goto error;
292 }
293 wait_fd = ust_metadata_pipe[0];
294 } else {
295 wait_fd = ustctl_stream_get_wait_fd(ustream);
296 }
297
298 /* Allocate consumer stream object. */
299 stream = allocate_stream(cpu, wait_fd, channel, ctx, &ret);
300 if (!stream) {
301 goto error_alloc;
302 }
303 stream->ustream = ustream;
304 /*
305 * Store it so we can save multiple function calls afterwards since
306 * this value is used heavily in the stream threads. This is UST
307 * specific so this is why it's done after allocation.
308 */
309 stream->wait_fd = wait_fd;
310
311 /*
312 * Increment channel refcount since the channel reference has now been
313 * assigned in the allocation process above.
314 */
315 if (stream->chan->monitor) {
316 uatomic_inc(&stream->chan->refcount);
317 }
318
319 /*
320 * Order is important this is why a list is used. On error, the caller
321 * should clean this list.
322 */
323 cds_list_add_tail(&stream->send_node, &channel->streams.head);
324
325 ret = ustctl_get_max_subbuf_size(stream->ustream,
326 &stream->max_sb_size);
327 if (ret < 0) {
328 ERR("ustctl_get_max_subbuf_size failed for stream %s",
329 stream->name);
330 goto error;
331 }
332
333 /* Do actions once stream has been received. */
334 if (ctx->on_recv_stream) {
335 ret = ctx->on_recv_stream(stream);
336 if (ret < 0) {
337 goto error;
338 }
339 }
340
341 DBG("UST consumer add stream %s (key: %" PRIu64 ") with relayd id %" PRIu64,
342 stream->name, stream->key, stream->relayd_stream_id);
343
344 /* Set next CPU stream. */
345 channel->streams.count = ++cpu;
346
347 /* Keep stream reference when creating metadata. */
348 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
349 channel->metadata_stream = stream;
350 if (channel->monitor) {
351 /* Set metadata poll pipe if we created one */
352 memcpy(stream->ust_metadata_poll_pipe,
353 ust_metadata_pipe,
354 sizeof(ust_metadata_pipe));
355 }
356 }
357 }
358
359 return 0;
360
361 error:
362 error_alloc:
363 return ret;
364 }
365
366 /*
367 * create_posix_shm is never called concurrently within a process.
368 */
369 static
370 int create_posix_shm(void)
371 {
372 char tmp_name[NAME_MAX];
373 int shmfd, ret;
374
375 ret = snprintf(tmp_name, NAME_MAX, "/ust-shm-consumer-%d", getpid());
376 if (ret < 0) {
377 PERROR("snprintf");
378 return -1;
379 }
380 /*
381 * Allocate shm, and immediately unlink its shm oject, keeping
382 * only the file descriptor as a reference to the object.
383 * We specifically do _not_ use the / at the beginning of the
384 * pathname so that some OS implementations can keep it local to
385 * the process (POSIX leaves this implementation-defined).
386 */
387 shmfd = shm_open(tmp_name, O_CREAT | O_EXCL | O_RDWR, 0700);
388 if (shmfd < 0) {
389 PERROR("shm_open");
390 goto error_shm_open;
391 }
392 ret = shm_unlink(tmp_name);
393 if (ret < 0 && errno != ENOENT) {
394 PERROR("shm_unlink");
395 goto error_shm_release;
396 }
397 return shmfd;
398
399 error_shm_release:
400 ret = close(shmfd);
401 if (ret) {
402 PERROR("close");
403 }
404 error_shm_open:
405 return -1;
406 }
407
408 static int open_ust_stream_fd(struct lttng_consumer_channel *channel,
409 struct ustctl_consumer_channel_attr *attr,
410 int cpu)
411 {
412 char shm_path[PATH_MAX];
413 int ret;
414
415 if (!channel->shm_path[0]) {
416 return create_posix_shm();
417 }
418 ret = get_stream_shm_path(shm_path, channel->shm_path, cpu);
419 if (ret) {
420 goto error_shm_path;
421 }
422 return run_as_open(shm_path,
423 O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR,
424 channel->uid, channel->gid);
425
426 error_shm_path:
427 return -1;
428 }
429
430 /*
431 * Create an UST channel with the given attributes and send it to the session
432 * daemon using the ust ctl API.
433 *
434 * Return 0 on success or else a negative value.
435 */
436 static int create_ust_channel(struct lttng_consumer_channel *channel,
437 struct ustctl_consumer_channel_attr *attr,
438 struct ustctl_consumer_channel **ust_chanp)
439 {
440 int ret, nr_stream_fds, i, j;
441 int *stream_fds;
442 struct ustctl_consumer_channel *ust_channel;
443
444 assert(channel);
445 assert(attr);
446 assert(ust_chanp);
447
448 DBG3("Creating channel to ustctl with attr: [overwrite: %d, "
449 "subbuf_size: %" PRIu64 ", num_subbuf: %" PRIu64 ", "
450 "switch_timer_interval: %u, read_timer_interval: %u, "
451 "output: %d, type: %d", attr->overwrite, attr->subbuf_size,
452 attr->num_subbuf, attr->switch_timer_interval,
453 attr->read_timer_interval, attr->output, attr->type);
454
455 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA)
456 nr_stream_fds = 1;
457 else
458 nr_stream_fds = ustctl_get_nr_stream_per_channel();
459 stream_fds = zmalloc(nr_stream_fds * sizeof(*stream_fds));
460 if (!stream_fds) {
461 ret = -1;
462 goto error_alloc;
463 }
464 for (i = 0; i < nr_stream_fds; i++) {
465 stream_fds[i] = open_ust_stream_fd(channel, attr, i);
466 if (stream_fds[i] < 0) {
467 ret = -1;
468 goto error_open;
469 }
470 }
471 ust_channel = ustctl_create_channel(attr, stream_fds, nr_stream_fds);
472 if (!ust_channel) {
473 ret = -1;
474 goto error_create;
475 }
476 channel->nr_stream_fds = nr_stream_fds;
477 channel->stream_fds = stream_fds;
478 *ust_chanp = ust_channel;
479
480 return 0;
481
482 error_create:
483 error_open:
484 for (j = i - 1; j >= 0; j--) {
485 int closeret;
486
487 closeret = close(stream_fds[j]);
488 if (closeret) {
489 PERROR("close");
490 }
491 if (channel->shm_path[0]) {
492 char shm_path[PATH_MAX];
493
494 closeret = get_stream_shm_path(shm_path,
495 channel->shm_path, j);
496 if (closeret) {
497 ERR("Cannot get stream shm path");
498 }
499 closeret = run_as_unlink(shm_path,
500 channel->uid, channel->gid);
501 if (closeret) {
502 PERROR("unlink %s", shm_path);
503 }
504 }
505 }
506 /* Try to rmdir all directories under shm_path root. */
507 if (channel->root_shm_path[0]) {
508 (void) run_as_rmdir_recursive(channel->root_shm_path,
509 channel->uid, channel->gid);
510 }
511 free(stream_fds);
512 error_alloc:
513 return ret;
514 }
515
516 /*
517 * Send a single given stream to the session daemon using the sock.
518 *
519 * Return 0 on success else a negative value.
520 */
521 static int send_sessiond_stream(int sock, struct lttng_consumer_stream *stream)
522 {
523 int ret;
524
525 assert(stream);
526 assert(sock >= 0);
527
528 DBG("UST consumer sending stream %" PRIu64 " to sessiond", stream->key);
529
530 /* Send stream to session daemon. */
531 ret = ustctl_send_stream_to_sessiond(sock, stream->ustream);
532 if (ret < 0) {
533 goto error;
534 }
535
536 error:
537 return ret;
538 }
539
540 /*
541 * Send channel to sessiond.
542 *
543 * Return 0 on success or else a negative value.
544 */
545 static int send_sessiond_channel(int sock,
546 struct lttng_consumer_channel *channel,
547 struct lttng_consumer_local_data *ctx, int *relayd_error)
548 {
549 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
550 struct lttng_consumer_stream *stream;
551 uint64_t net_seq_idx = -1ULL;
552
553 assert(channel);
554 assert(ctx);
555 assert(sock >= 0);
556
557 DBG("UST consumer sending channel %s to sessiond", channel->name);
558
559 if (channel->relayd_id != (uint64_t) -1ULL) {
560 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
561
562 health_code_update();
563
564 /* Try to send the stream to the relayd if one is available. */
565 ret = consumer_send_relayd_stream(stream, stream->chan->pathname);
566 if (ret < 0) {
567 /*
568 * Flag that the relayd was the problem here probably due to a
569 * communicaton error on the socket.
570 */
571 if (relayd_error) {
572 *relayd_error = 1;
573 }
574 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
575 }
576 if (net_seq_idx == -1ULL) {
577 net_seq_idx = stream->net_seq_idx;
578 }
579 }
580 }
581
582 /* Inform sessiond that we are about to send channel and streams. */
583 ret = consumer_send_status_msg(sock, ret_code);
584 if (ret < 0 || ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
585 /*
586 * Either the session daemon is not responding or the relayd died so we
587 * stop now.
588 */
589 goto error;
590 }
591
592 /* Send channel to sessiond. */
593 ret = ustctl_send_channel_to_sessiond(sock, channel->uchan);
594 if (ret < 0) {
595 goto error;
596 }
597
598 ret = ustctl_channel_close_wakeup_fd(channel->uchan);
599 if (ret < 0) {
600 goto error;
601 }
602
603 /* The channel was sent successfully to the sessiond at this point. */
604 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
605
606 health_code_update();
607
608 /* Send stream to session daemon. */
609 ret = send_sessiond_stream(sock, stream);
610 if (ret < 0) {
611 goto error;
612 }
613 }
614
615 /* Tell sessiond there is no more stream. */
616 ret = ustctl_send_stream_to_sessiond(sock, NULL);
617 if (ret < 0) {
618 goto error;
619 }
620
621 DBG("UST consumer NULL stream sent to sessiond");
622
623 return 0;
624
625 error:
626 if (ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
627 ret = -1;
628 }
629 return ret;
630 }
631
632 /*
633 * Creates a channel and streams and add the channel it to the channel internal
634 * state. The created stream must ONLY be sent once the GET_CHANNEL command is
635 * received.
636 *
637 * Return 0 on success or else, a negative value is returned and the channel
638 * MUST be destroyed by consumer_del_channel().
639 */
640 static int ask_channel(struct lttng_consumer_local_data *ctx, int sock,
641 struct lttng_consumer_channel *channel,
642 struct ustctl_consumer_channel_attr *attr)
643 {
644 int ret;
645
646 assert(ctx);
647 assert(channel);
648 assert(attr);
649
650 /*
651 * This value is still used by the kernel consumer since for the kernel,
652 * the stream ownership is not IN the consumer so we need to have the
653 * number of left stream that needs to be initialized so we can know when
654 * to delete the channel (see consumer.c).
655 *
656 * As for the user space tracer now, the consumer creates and sends the
657 * stream to the session daemon which only sends them to the application
658 * once every stream of a channel is received making this value useless
659 * because we they will be added to the poll thread before the application
660 * receives them. This ensures that a stream can not hang up during
661 * initilization of a channel.
662 */
663 channel->nb_init_stream_left = 0;
664
665 /* The reply msg status is handled in the following call. */
666 ret = create_ust_channel(channel, attr, &channel->uchan);
667 if (ret < 0) {
668 goto end;
669 }
670
671 channel->wait_fd = ustctl_channel_get_wait_fd(channel->uchan);
672
673 /*
674 * For the snapshots (no monitor), we create the metadata streams
675 * on demand, not during the channel creation.
676 */
677 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && !channel->monitor) {
678 ret = 0;
679 goto end;
680 }
681
682 /* Open all streams for this channel. */
683 ret = create_ust_streams(channel, ctx);
684 if (ret < 0) {
685 goto end;
686 }
687
688 end:
689 return ret;
690 }
691
692 /*
693 * Send all stream of a channel to the right thread handling it.
694 *
695 * On error, return a negative value else 0 on success.
696 */
697 static int send_streams_to_thread(struct lttng_consumer_channel *channel,
698 struct lttng_consumer_local_data *ctx)
699 {
700 int ret = 0;
701 struct lttng_consumer_stream *stream, *stmp;
702
703 assert(channel);
704 assert(ctx);
705
706 /* Send streams to the corresponding thread. */
707 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
708 send_node) {
709
710 health_code_update();
711
712 /* Sending the stream to the thread. */
713 ret = send_stream_to_thread(stream, ctx);
714 if (ret < 0) {
715 /*
716 * If we are unable to send the stream to the thread, there is
717 * a big problem so just stop everything.
718 */
719 goto error;
720 }
721 }
722
723 error:
724 return ret;
725 }
726
727 /*
728 * Flush channel's streams using the given key to retrieve the channel.
729 *
730 * Return 0 on success else an LTTng error code.
731 */
732 static int flush_channel(uint64_t chan_key)
733 {
734 int ret = 0;
735 struct lttng_consumer_channel *channel;
736 struct lttng_consumer_stream *stream;
737 struct lttng_ht *ht;
738 struct lttng_ht_iter iter;
739
740 DBG("UST consumer flush channel key %" PRIu64, chan_key);
741
742 rcu_read_lock();
743 channel = consumer_find_channel(chan_key);
744 if (!channel) {
745 ERR("UST consumer flush channel %" PRIu64 " not found", chan_key);
746 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
747 goto error;
748 }
749
750 ht = consumer_data.stream_per_chan_id_ht;
751
752 /* For each stream of the channel id, flush it. */
753 cds_lfht_for_each_entry_duplicate(ht->ht,
754 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
755 &channel->key, &iter.iter, stream, node_channel_id.node) {
756
757 health_code_update();
758
759 pthread_mutex_lock(&stream->lock);
760 if (!stream->quiescent) {
761 ustctl_flush_buffer(stream->ustream, 0);
762 stream->quiescent = true;
763 }
764 pthread_mutex_unlock(&stream->lock);
765 }
766 error:
767 rcu_read_unlock();
768 return ret;
769 }
770
771 /*
772 * Clear quiescent state from channel's streams using the given key to
773 * retrieve the channel.
774 *
775 * Return 0 on success else an LTTng error code.
776 */
777 static int clear_quiescent_channel(uint64_t chan_key)
778 {
779 int ret = 0;
780 struct lttng_consumer_channel *channel;
781 struct lttng_consumer_stream *stream;
782 struct lttng_ht *ht;
783 struct lttng_ht_iter iter;
784
785 DBG("UST consumer clear quiescent channel key %" PRIu64, chan_key);
786
787 rcu_read_lock();
788 channel = consumer_find_channel(chan_key);
789 if (!channel) {
790 ERR("UST consumer clear quiescent channel %" PRIu64 " not found", chan_key);
791 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
792 goto error;
793 }
794
795 ht = consumer_data.stream_per_chan_id_ht;
796
797 /* For each stream of the channel id, clear quiescent state. */
798 cds_lfht_for_each_entry_duplicate(ht->ht,
799 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
800 &channel->key, &iter.iter, stream, node_channel_id.node) {
801
802 health_code_update();
803
804 pthread_mutex_lock(&stream->lock);
805 stream->quiescent = false;
806 pthread_mutex_unlock(&stream->lock);
807 }
808 error:
809 rcu_read_unlock();
810 return ret;
811 }
812
813 /*
814 * Close metadata stream wakeup_fd using the given key to retrieve the channel.
815 * RCU read side lock MUST be acquired before calling this function.
816 *
817 * Return 0 on success else an LTTng error code.
818 */
819 static int close_metadata(uint64_t chan_key)
820 {
821 int ret = 0;
822 struct lttng_consumer_channel *channel;
823 unsigned int channel_monitor;
824
825 DBG("UST consumer close metadata key %" PRIu64, chan_key);
826
827 channel = consumer_find_channel(chan_key);
828 if (!channel) {
829 /*
830 * This is possible if the metadata thread has issue a delete because
831 * the endpoint point of the stream hung up. There is no way the
832 * session daemon can know about it thus use a DBG instead of an actual
833 * error.
834 */
835 DBG("UST consumer close metadata %" PRIu64 " not found", chan_key);
836 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
837 goto error;
838 }
839
840 pthread_mutex_lock(&consumer_data.lock);
841 pthread_mutex_lock(&channel->lock);
842 channel_monitor = channel->monitor;
843 if (cds_lfht_is_node_deleted(&channel->node.node)) {
844 goto error_unlock;
845 }
846
847 lttng_ustconsumer_close_metadata(channel);
848 pthread_mutex_unlock(&channel->lock);
849 pthread_mutex_unlock(&consumer_data.lock);
850
851 /*
852 * The ownership of a metadata channel depends on the type of
853 * session to which it belongs. In effect, the monitor flag is checked
854 * to determine if this metadata channel is in "snapshot" mode or not.
855 *
856 * In the non-snapshot case, the metadata channel is created along with
857 * a single stream which will remain present until the metadata channel
858 * is destroyed (on the destruction of its session). In this case, the
859 * metadata stream in "monitored" by the metadata poll thread and holds
860 * the ownership of its channel.
861 *
862 * Closing the metadata will cause the metadata stream's "metadata poll
863 * pipe" to be closed. Closing this pipe will wake-up the metadata poll
864 * thread which will teardown the metadata stream which, in return,
865 * deletes the metadata channel.
866 *
867 * In the snapshot case, the metadata stream is created and destroyed
868 * on every snapshot record. Since the channel doesn't have an owner
869 * other than the session daemon, it is safe to destroy it immediately
870 * on reception of the CLOSE_METADATA command.
871 */
872 if (!channel_monitor) {
873 /*
874 * The channel and consumer_data locks must be
875 * released before this call since consumer_del_channel
876 * re-acquires the channel and consumer_data locks to teardown
877 * the channel and queue its reclamation by the "call_rcu"
878 * worker thread.
879 */
880 consumer_del_channel(channel);
881 }
882
883 return ret;
884 error_unlock:
885 pthread_mutex_unlock(&channel->lock);
886 pthread_mutex_unlock(&consumer_data.lock);
887 error:
888 return ret;
889 }
890
891 /*
892 * RCU read side lock MUST be acquired before calling this function.
893 *
894 * Return 0 on success else an LTTng error code.
895 */
896 static int setup_metadata(struct lttng_consumer_local_data *ctx, uint64_t key)
897 {
898 int ret;
899 struct lttng_consumer_channel *metadata;
900
901 DBG("UST consumer setup metadata key %" PRIu64, key);
902
903 metadata = consumer_find_channel(key);
904 if (!metadata) {
905 ERR("UST consumer push metadata %" PRIu64 " not found", key);
906 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
907 goto end;
908 }
909
910 /*
911 * In no monitor mode, the metadata channel has no stream(s) so skip the
912 * ownership transfer to the metadata thread.
913 */
914 if (!metadata->monitor) {
915 DBG("Metadata channel in no monitor");
916 ret = 0;
917 goto end;
918 }
919
920 /*
921 * Send metadata stream to relayd if one available. Availability is
922 * known if the stream is still in the list of the channel.
923 */
924 if (cds_list_empty(&metadata->streams.head)) {
925 ERR("Metadata channel key %" PRIu64 ", no stream available.", key);
926 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
927 goto error_no_stream;
928 }
929
930 /* Send metadata stream to relayd if needed. */
931 if (metadata->metadata_stream->net_seq_idx != (uint64_t) -1ULL) {
932 ret = consumer_send_relayd_stream(metadata->metadata_stream,
933 metadata->pathname);
934 if (ret < 0) {
935 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
936 goto error;
937 }
938 ret = consumer_send_relayd_streams_sent(
939 metadata->metadata_stream->net_seq_idx);
940 if (ret < 0) {
941 ret = LTTCOMM_CONSUMERD_RELAYD_FAIL;
942 goto error;
943 }
944 }
945
946 /*
947 * Ownership of metadata stream is passed along. Freeing is handled by
948 * the callee.
949 */
950 ret = send_streams_to_thread(metadata, ctx);
951 if (ret < 0) {
952 /*
953 * If we are unable to send the stream to the thread, there is
954 * a big problem so just stop everything.
955 */
956 ret = LTTCOMM_CONSUMERD_FATAL;
957 goto send_streams_error;
958 }
959 /* List MUST be empty after or else it could be reused. */
960 assert(cds_list_empty(&metadata->streams.head));
961
962 ret = 0;
963 goto end;
964
965 error:
966 /*
967 * Delete metadata channel on error. At this point, the metadata stream can
968 * NOT be monitored by the metadata thread thus having the guarantee that
969 * the stream is still in the local stream list of the channel. This call
970 * will make sure to clean that list.
971 */
972 consumer_stream_destroy(metadata->metadata_stream, NULL);
973 cds_list_del(&metadata->metadata_stream->send_node);
974 metadata->metadata_stream = NULL;
975 send_streams_error:
976 error_no_stream:
977 end:
978 return ret;
979 }
980
981 /*
982 * Snapshot the whole metadata.
983 *
984 * Returns 0 on success, < 0 on error
985 */
986 static int snapshot_metadata(uint64_t key, char *path, uint64_t relayd_id,
987 struct lttng_consumer_local_data *ctx)
988 {
989 int ret = 0;
990 struct lttng_consumer_channel *metadata_channel;
991 struct lttng_consumer_stream *metadata_stream;
992
993 assert(path);
994 assert(ctx);
995
996 DBG("UST consumer snapshot metadata with key %" PRIu64 " at path %s",
997 key, path);
998
999 rcu_read_lock();
1000
1001 metadata_channel = consumer_find_channel(key);
1002 if (!metadata_channel) {
1003 ERR("UST snapshot metadata channel not found for key %" PRIu64,
1004 key);
1005 ret = -1;
1006 goto error;
1007 }
1008 assert(!metadata_channel->monitor);
1009
1010 health_code_update();
1011
1012 /*
1013 * Ask the sessiond if we have new metadata waiting and update the
1014 * consumer metadata cache.
1015 */
1016 ret = lttng_ustconsumer_request_metadata(ctx, metadata_channel, 0, 1);
1017 if (ret < 0) {
1018 goto error;
1019 }
1020
1021 health_code_update();
1022
1023 /*
1024 * The metadata stream is NOT created in no monitor mode when the channel
1025 * is created on a sessiond ask channel command.
1026 */
1027 ret = create_ust_streams(metadata_channel, ctx);
1028 if (ret < 0) {
1029 goto error;
1030 }
1031
1032 metadata_stream = metadata_channel->metadata_stream;
1033 assert(metadata_stream);
1034
1035 if (relayd_id != (uint64_t) -1ULL) {
1036 metadata_stream->net_seq_idx = relayd_id;
1037 ret = consumer_send_relayd_stream(metadata_stream, path);
1038 if (ret < 0) {
1039 goto error_stream;
1040 }
1041 } else {
1042 ret = utils_create_stream_file(path, metadata_stream->name,
1043 metadata_stream->chan->tracefile_size,
1044 metadata_stream->tracefile_count_current,
1045 metadata_stream->uid, metadata_stream->gid, NULL);
1046 if (ret < 0) {
1047 goto error_stream;
1048 }
1049 metadata_stream->out_fd = ret;
1050 metadata_stream->tracefile_size_current = 0;
1051 }
1052
1053 do {
1054 health_code_update();
1055
1056 ret = lttng_consumer_read_subbuffer(metadata_stream, ctx);
1057 if (ret < 0) {
1058 goto error_stream;
1059 }
1060 } while (ret > 0);
1061
1062 error_stream:
1063 /*
1064 * Clean up the stream completly because the next snapshot will use a new
1065 * metadata stream.
1066 */
1067 consumer_stream_destroy(metadata_stream, NULL);
1068 cds_list_del(&metadata_stream->send_node);
1069 metadata_channel->metadata_stream = NULL;
1070
1071 error:
1072 rcu_read_unlock();
1073 return ret;
1074 }
1075
1076 /*
1077 * Take a snapshot of all the stream of a channel.
1078 *
1079 * Returns 0 on success, < 0 on error
1080 */
1081 static int snapshot_channel(uint64_t key, char *path, uint64_t relayd_id,
1082 uint64_t nb_packets_per_stream, struct lttng_consumer_local_data *ctx)
1083 {
1084 int ret;
1085 unsigned use_relayd = 0;
1086 unsigned long consumed_pos, produced_pos;
1087 struct lttng_consumer_channel *channel;
1088 struct lttng_consumer_stream *stream;
1089
1090 assert(path);
1091 assert(ctx);
1092
1093 rcu_read_lock();
1094
1095 if (relayd_id != (uint64_t) -1ULL) {
1096 use_relayd = 1;
1097 }
1098
1099 channel = consumer_find_channel(key);
1100 if (!channel) {
1101 ERR("UST snapshot channel not found for key %" PRIu64, key);
1102 ret = -1;
1103 goto error;
1104 }
1105 assert(!channel->monitor);
1106 DBG("UST consumer snapshot channel %" PRIu64, key);
1107
1108 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
1109 health_code_update();
1110
1111 /* Lock stream because we are about to change its state. */
1112 pthread_mutex_lock(&stream->lock);
1113 stream->net_seq_idx = relayd_id;
1114
1115 if (use_relayd) {
1116 ret = consumer_send_relayd_stream(stream, path);
1117 if (ret < 0) {
1118 goto error_unlock;
1119 }
1120 } else {
1121 ret = utils_create_stream_file(path, stream->name,
1122 stream->chan->tracefile_size,
1123 stream->tracefile_count_current,
1124 stream->uid, stream->gid, NULL);
1125 if (ret < 0) {
1126 goto error_unlock;
1127 }
1128 stream->out_fd = ret;
1129 stream->tracefile_size_current = 0;
1130
1131 DBG("UST consumer snapshot stream %s/%s (%" PRIu64 ")", path,
1132 stream->name, stream->key);
1133 }
1134
1135 /*
1136 * If tracing is active, we want to perform a "full" buffer flush.
1137 * Else, if quiescent, it has already been done by the prior stop.
1138 */
1139 if (!stream->quiescent) {
1140 ustctl_flush_buffer(stream->ustream, 0);
1141 }
1142
1143 ret = lttng_ustconsumer_take_snapshot(stream);
1144 if (ret < 0) {
1145 ERR("Taking UST snapshot");
1146 goto error_unlock;
1147 }
1148
1149 ret = lttng_ustconsumer_get_produced_snapshot(stream, &produced_pos);
1150 if (ret < 0) {
1151 ERR("Produced UST snapshot position");
1152 goto error_unlock;
1153 }
1154
1155 ret = lttng_ustconsumer_get_consumed_snapshot(stream, &consumed_pos);
1156 if (ret < 0) {
1157 ERR("Consumerd UST snapshot position");
1158 goto error_unlock;
1159 }
1160
1161 /*
1162 * The original value is sent back if max stream size is larger than
1163 * the possible size of the snapshot. Also, we assume that the session
1164 * daemon should never send a maximum stream size that is lower than
1165 * subbuffer size.
1166 */
1167 consumed_pos = consumer_get_consume_start_pos(consumed_pos,
1168 produced_pos, nb_packets_per_stream,
1169 stream->max_sb_size);
1170
1171 while (consumed_pos < produced_pos) {
1172 ssize_t read_len;
1173 unsigned long len, padded_len;
1174
1175 health_code_update();
1176
1177 DBG("UST consumer taking snapshot at pos %lu", consumed_pos);
1178
1179 ret = ustctl_get_subbuf(stream->ustream, &consumed_pos);
1180 if (ret < 0) {
1181 if (ret != -EAGAIN) {
1182 PERROR("ustctl_get_subbuf snapshot");
1183 goto error_close_stream;
1184 }
1185 DBG("UST consumer get subbuf failed. Skipping it.");
1186 consumed_pos += stream->max_sb_size;
1187 stream->chan->lost_packets++;
1188 continue;
1189 }
1190
1191 ret = ustctl_get_subbuf_size(stream->ustream, &len);
1192 if (ret < 0) {
1193 ERR("Snapshot ustctl_get_subbuf_size");
1194 goto error_put_subbuf;
1195 }
1196
1197 ret = ustctl_get_padded_subbuf_size(stream->ustream, &padded_len);
1198 if (ret < 0) {
1199 ERR("Snapshot ustctl_get_padded_subbuf_size");
1200 goto error_put_subbuf;
1201 }
1202
1203 read_len = lttng_consumer_on_read_subbuffer_mmap(ctx, stream, len,
1204 padded_len - len, NULL);
1205 if (use_relayd) {
1206 if (read_len != len) {
1207 ret = -EPERM;
1208 goto error_put_subbuf;
1209 }
1210 } else {
1211 if (read_len != padded_len) {
1212 ret = -EPERM;
1213 goto error_put_subbuf;
1214 }
1215 }
1216
1217 ret = ustctl_put_subbuf(stream->ustream);
1218 if (ret < 0) {
1219 ERR("Snapshot ustctl_put_subbuf");
1220 goto error_close_stream;
1221 }
1222 consumed_pos += stream->max_sb_size;
1223 }
1224
1225 /* Simply close the stream so we can use it on the next snapshot. */
1226 consumer_stream_close(stream);
1227 pthread_mutex_unlock(&stream->lock);
1228 }
1229
1230 rcu_read_unlock();
1231 return 0;
1232
1233 error_put_subbuf:
1234 if (ustctl_put_subbuf(stream->ustream) < 0) {
1235 ERR("Snapshot ustctl_put_subbuf");
1236 }
1237 error_close_stream:
1238 consumer_stream_close(stream);
1239 error_unlock:
1240 pthread_mutex_unlock(&stream->lock);
1241 error:
1242 rcu_read_unlock();
1243 return ret;
1244 }
1245
1246 /*
1247 * Receive the metadata updates from the sessiond. Supports receiving
1248 * overlapping metadata, but is needs to always belong to a contiguous
1249 * range starting from 0.
1250 * Be careful about the locks held when calling this function: it needs
1251 * the metadata cache flush to concurrently progress in order to
1252 * complete.
1253 */
1254 int lttng_ustconsumer_recv_metadata(int sock, uint64_t key, uint64_t offset,
1255 uint64_t len, uint64_t version,
1256 struct lttng_consumer_channel *channel, int timer, int wait)
1257 {
1258 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1259 char *metadata_str;
1260
1261 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key, len);
1262
1263 metadata_str = zmalloc(len * sizeof(char));
1264 if (!metadata_str) {
1265 PERROR("zmalloc metadata string");
1266 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
1267 goto end;
1268 }
1269
1270 health_code_update();
1271
1272 /* Receive metadata string. */
1273 ret = lttcomm_recv_unix_sock(sock, metadata_str, len);
1274 if (ret < 0) {
1275 /* Session daemon is dead so return gracefully. */
1276 ret_code = ret;
1277 goto end_free;
1278 }
1279
1280 health_code_update();
1281
1282 pthread_mutex_lock(&channel->metadata_cache->lock);
1283 ret = consumer_metadata_cache_write(channel, offset, len, version,
1284 metadata_str);
1285 if (ret < 0) {
1286 /* Unable to handle metadata. Notify session daemon. */
1287 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1288 /*
1289 * Skip metadata flush on write error since the offset and len might
1290 * not have been updated which could create an infinite loop below when
1291 * waiting for the metadata cache to be flushed.
1292 */
1293 pthread_mutex_unlock(&channel->metadata_cache->lock);
1294 goto end_free;
1295 }
1296 pthread_mutex_unlock(&channel->metadata_cache->lock);
1297
1298 if (!wait) {
1299 goto end_free;
1300 }
1301 while (consumer_metadata_cache_flushed(channel, offset + len, timer)) {
1302 DBG("Waiting for metadata to be flushed");
1303
1304 health_code_update();
1305
1306 usleep(DEFAULT_METADATA_AVAILABILITY_WAIT_TIME);
1307 }
1308
1309 end_free:
1310 free(metadata_str);
1311 end:
1312 return ret_code;
1313 }
1314
1315 /*
1316 * Receive command from session daemon and process it.
1317 *
1318 * Return 1 on success else a negative value or 0.
1319 */
1320 int lttng_ustconsumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1321 int sock, struct pollfd *consumer_sockpoll)
1322 {
1323 ssize_t ret;
1324 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1325 struct lttcomm_consumer_msg msg;
1326 struct lttng_consumer_channel *channel = NULL;
1327
1328 health_code_update();
1329
1330 ret = lttcomm_recv_unix_sock(sock, &msg, sizeof(msg));
1331 if (ret != sizeof(msg)) {
1332 DBG("Consumer received unexpected message size %zd (expects %zu)",
1333 ret, sizeof(msg));
1334 /*
1335 * The ret value might 0 meaning an orderly shutdown but this is ok
1336 * since the caller handles this.
1337 */
1338 if (ret > 0) {
1339 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
1340 ret = -1;
1341 }
1342 return ret;
1343 }
1344
1345 health_code_update();
1346
1347 /* deprecated */
1348 assert(msg.cmd_type != LTTNG_CONSUMER_STOP);
1349
1350 health_code_update();
1351
1352 /* relayd needs RCU read-side lock */
1353 rcu_read_lock();
1354
1355 switch (msg.cmd_type) {
1356 case LTTNG_CONSUMER_ADD_RELAYD_SOCKET:
1357 {
1358 /* Session daemon status message are handled in the following call. */
1359 consumer_add_relayd_socket(msg.u.relayd_sock.net_index,
1360 msg.u.relayd_sock.type, ctx, sock, consumer_sockpoll,
1361 &msg.u.relayd_sock.sock, msg.u.relayd_sock.session_id,
1362 msg.u.relayd_sock.relayd_session_id);
1363 goto end_nosignal;
1364 }
1365 case LTTNG_CONSUMER_DESTROY_RELAYD:
1366 {
1367 uint64_t index = msg.u.destroy_relayd.net_seq_idx;
1368 struct consumer_relayd_sock_pair *relayd;
1369
1370 DBG("UST consumer destroying relayd %" PRIu64, index);
1371
1372 /* Get relayd reference if exists. */
1373 relayd = consumer_find_relayd(index);
1374 if (relayd == NULL) {
1375 DBG("Unable to find relayd %" PRIu64, index);
1376 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
1377 }
1378
1379 /*
1380 * Each relayd socket pair has a refcount of stream attached to it
1381 * which tells if the relayd is still active or not depending on the
1382 * refcount value.
1383 *
1384 * This will set the destroy flag of the relayd object and destroy it
1385 * if the refcount reaches zero when called.
1386 *
1387 * The destroy can happen either here or when a stream fd hangs up.
1388 */
1389 if (relayd) {
1390 consumer_flag_relayd_for_destroy(relayd);
1391 }
1392
1393 goto end_msg_sessiond;
1394 }
1395 case LTTNG_CONSUMER_UPDATE_STREAM:
1396 {
1397 rcu_read_unlock();
1398 return -ENOSYS;
1399 }
1400 case LTTNG_CONSUMER_DATA_PENDING:
1401 {
1402 int ret, is_data_pending;
1403 uint64_t id = msg.u.data_pending.session_id;
1404
1405 DBG("UST consumer data pending command for id %" PRIu64, id);
1406
1407 is_data_pending = consumer_data_pending(id);
1408
1409 /* Send back returned value to session daemon */
1410 ret = lttcomm_send_unix_sock(sock, &is_data_pending,
1411 sizeof(is_data_pending));
1412 if (ret < 0) {
1413 DBG("Error when sending the data pending ret code: %d", ret);
1414 goto error_fatal;
1415 }
1416
1417 /*
1418 * No need to send back a status message since the data pending
1419 * returned value is the response.
1420 */
1421 break;
1422 }
1423 case LTTNG_CONSUMER_ASK_CHANNEL_CREATION:
1424 {
1425 int ret;
1426 struct ustctl_consumer_channel_attr attr;
1427
1428 /* Create a plain object and reserve a channel key. */
1429 channel = allocate_channel(msg.u.ask_channel.session_id,
1430 msg.u.ask_channel.pathname, msg.u.ask_channel.name,
1431 msg.u.ask_channel.uid, msg.u.ask_channel.gid,
1432 msg.u.ask_channel.relayd_id, msg.u.ask_channel.key,
1433 (enum lttng_event_output) msg.u.ask_channel.output,
1434 msg.u.ask_channel.tracefile_size,
1435 msg.u.ask_channel.tracefile_count,
1436 msg.u.ask_channel.session_id_per_pid,
1437 msg.u.ask_channel.monitor,
1438 msg.u.ask_channel.live_timer_interval,
1439 msg.u.ask_channel.root_shm_path,
1440 msg.u.ask_channel.shm_path);
1441 if (!channel) {
1442 goto end_channel_error;
1443 }
1444
1445 /*
1446 * Assign UST application UID to the channel. This value is ignored for
1447 * per PID buffers. This is specific to UST thus setting this after the
1448 * allocation.
1449 */
1450 channel->ust_app_uid = msg.u.ask_channel.ust_app_uid;
1451
1452 /* Build channel attributes from received message. */
1453 attr.subbuf_size = msg.u.ask_channel.subbuf_size;
1454 attr.num_subbuf = msg.u.ask_channel.num_subbuf;
1455 attr.overwrite = msg.u.ask_channel.overwrite;
1456 attr.switch_timer_interval = msg.u.ask_channel.switch_timer_interval;
1457 attr.read_timer_interval = msg.u.ask_channel.read_timer_interval;
1458 attr.chan_id = msg.u.ask_channel.chan_id;
1459 memcpy(attr.uuid, msg.u.ask_channel.uuid, sizeof(attr.uuid));
1460 attr.blocking_timeout= msg.u.ask_channel.blocking_timeout;
1461
1462 /* Match channel buffer type to the UST abi. */
1463 switch (msg.u.ask_channel.output) {
1464 case LTTNG_EVENT_MMAP:
1465 default:
1466 attr.output = LTTNG_UST_MMAP;
1467 break;
1468 }
1469
1470 /* Translate and save channel type. */
1471 switch (msg.u.ask_channel.type) {
1472 case LTTNG_UST_CHAN_PER_CPU:
1473 channel->type = CONSUMER_CHANNEL_TYPE_DATA;
1474 attr.type = LTTNG_UST_CHAN_PER_CPU;
1475 /*
1476 * Set refcount to 1 for owner. Below, we will
1477 * pass ownership to the
1478 * consumer_thread_channel_poll() thread.
1479 */
1480 channel->refcount = 1;
1481 break;
1482 case LTTNG_UST_CHAN_METADATA:
1483 channel->type = CONSUMER_CHANNEL_TYPE_METADATA;
1484 attr.type = LTTNG_UST_CHAN_METADATA;
1485 break;
1486 default:
1487 assert(0);
1488 goto error_fatal;
1489 };
1490
1491 health_code_update();
1492
1493 ret = ask_channel(ctx, sock, channel, &attr);
1494 if (ret < 0) {
1495 goto end_channel_error;
1496 }
1497
1498 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1499 ret = consumer_metadata_cache_allocate(channel);
1500 if (ret < 0) {
1501 ERR("Allocating metadata cache");
1502 goto end_channel_error;
1503 }
1504 consumer_timer_switch_start(channel, attr.switch_timer_interval);
1505 attr.switch_timer_interval = 0;
1506 } else {
1507 int monitor_start_ret;
1508
1509 consumer_timer_live_start(channel,
1510 msg.u.ask_channel.live_timer_interval);
1511 monitor_start_ret = consumer_timer_monitor_start(
1512 channel,
1513 msg.u.ask_channel.monitor_timer_interval);
1514 if (monitor_start_ret < 0) {
1515 ERR("Starting channel monitoring timer failed");
1516 goto end_channel_error;
1517 }
1518 }
1519
1520 health_code_update();
1521
1522 /*
1523 * Add the channel to the internal state AFTER all streams were created
1524 * and successfully sent to session daemon. This way, all streams must
1525 * be ready before this channel is visible to the threads.
1526 * If add_channel succeeds, ownership of the channel is
1527 * passed to consumer_thread_channel_poll().
1528 */
1529 ret = add_channel(channel, ctx);
1530 if (ret < 0) {
1531 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1532 if (channel->switch_timer_enabled == 1) {
1533 consumer_timer_switch_stop(channel);
1534 }
1535 consumer_metadata_cache_destroy(channel);
1536 }
1537 if (channel->live_timer_enabled == 1) {
1538 consumer_timer_live_stop(channel);
1539 }
1540 if (channel->monitor_timer_enabled == 1) {
1541 consumer_timer_monitor_stop(channel);
1542 }
1543 goto end_channel_error;
1544 }
1545
1546 health_code_update();
1547
1548 /*
1549 * Channel and streams are now created. Inform the session daemon that
1550 * everything went well and should wait to receive the channel and
1551 * streams with ustctl API.
1552 */
1553 ret = consumer_send_status_channel(sock, channel);
1554 if (ret < 0) {
1555 /*
1556 * There is probably a problem on the socket.
1557 */
1558 goto error_fatal;
1559 }
1560
1561 break;
1562 }
1563 case LTTNG_CONSUMER_GET_CHANNEL:
1564 {
1565 int ret, relayd_err = 0;
1566 uint64_t key = msg.u.get_channel.key;
1567 struct lttng_consumer_channel *channel;
1568
1569 channel = consumer_find_channel(key);
1570 if (!channel) {
1571 ERR("UST consumer get channel key %" PRIu64 " not found", key);
1572 ret_code = LTTCOMM_CONSUMERD_CHAN_NOT_FOUND;
1573 goto end_msg_sessiond;
1574 }
1575
1576 health_code_update();
1577
1578 /* Send everything to sessiond. */
1579 ret = send_sessiond_channel(sock, channel, ctx, &relayd_err);
1580 if (ret < 0) {
1581 if (relayd_err) {
1582 /*
1583 * We were unable to send to the relayd the stream so avoid
1584 * sending back a fatal error to the thread since this is OK
1585 * and the consumer can continue its work. The above call
1586 * has sent the error status message to the sessiond.
1587 */
1588 goto end_nosignal;
1589 }
1590 /*
1591 * The communicaton was broken hence there is a bad state between
1592 * the consumer and sessiond so stop everything.
1593 */
1594 goto error_fatal;
1595 }
1596
1597 health_code_update();
1598
1599 /*
1600 * In no monitor mode, the streams ownership is kept inside the channel
1601 * so don't send them to the data thread.
1602 */
1603 if (!channel->monitor) {
1604 goto end_msg_sessiond;
1605 }
1606
1607 ret = send_streams_to_thread(channel, ctx);
1608 if (ret < 0) {
1609 /*
1610 * If we are unable to send the stream to the thread, there is
1611 * a big problem so just stop everything.
1612 */
1613 goto error_fatal;
1614 }
1615 /* List MUST be empty after or else it could be reused. */
1616 assert(cds_list_empty(&channel->streams.head));
1617 goto end_msg_sessiond;
1618 }
1619 case LTTNG_CONSUMER_DESTROY_CHANNEL:
1620 {
1621 uint64_t key = msg.u.destroy_channel.key;
1622
1623 /*
1624 * Only called if streams have not been sent to stream
1625 * manager thread. However, channel has been sent to
1626 * channel manager thread.
1627 */
1628 notify_thread_del_channel(ctx, key);
1629 goto end_msg_sessiond;
1630 }
1631 case LTTNG_CONSUMER_CLOSE_METADATA:
1632 {
1633 int ret;
1634
1635 ret = close_metadata(msg.u.close_metadata.key);
1636 if (ret != 0) {
1637 ret_code = ret;
1638 }
1639
1640 goto end_msg_sessiond;
1641 }
1642 case LTTNG_CONSUMER_FLUSH_CHANNEL:
1643 {
1644 int ret;
1645
1646 ret = flush_channel(msg.u.flush_channel.key);
1647 if (ret != 0) {
1648 ret_code = ret;
1649 }
1650
1651 goto end_msg_sessiond;
1652 }
1653 case LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL:
1654 {
1655 int ret;
1656
1657 ret = clear_quiescent_channel(
1658 msg.u.clear_quiescent_channel.key);
1659 if (ret != 0) {
1660 ret_code = ret;
1661 }
1662
1663 goto end_msg_sessiond;
1664 }
1665 case LTTNG_CONSUMER_PUSH_METADATA:
1666 {
1667 int ret;
1668 uint64_t len = msg.u.push_metadata.len;
1669 uint64_t key = msg.u.push_metadata.key;
1670 uint64_t offset = msg.u.push_metadata.target_offset;
1671 uint64_t version = msg.u.push_metadata.version;
1672 struct lttng_consumer_channel *channel;
1673
1674 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key,
1675 len);
1676
1677 channel = consumer_find_channel(key);
1678 if (!channel) {
1679 /*
1680 * This is possible if the metadata creation on the consumer side
1681 * is in flight vis-a-vis a concurrent push metadata from the
1682 * session daemon. Simply return that the channel failed and the
1683 * session daemon will handle that message correctly considering
1684 * that this race is acceptable thus the DBG() statement here.
1685 */
1686 DBG("UST consumer push metadata %" PRIu64 " not found", key);
1687 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1688 goto end_msg_sessiond;
1689 }
1690
1691 health_code_update();
1692
1693 if (!len) {
1694 /*
1695 * There is nothing to receive. We have simply
1696 * checked whether the channel can be found.
1697 */
1698 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1699 goto end_msg_sessiond;
1700 }
1701
1702 /* Tell session daemon we are ready to receive the metadata. */
1703 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
1704 if (ret < 0) {
1705 /* Somehow, the session daemon is not responding anymore. */
1706 goto error_fatal;
1707 }
1708
1709 health_code_update();
1710
1711 /* Wait for more data. */
1712 health_poll_entry();
1713 ret = lttng_consumer_poll_socket(consumer_sockpoll);
1714 health_poll_exit();
1715 if (ret) {
1716 goto error_fatal;
1717 }
1718
1719 health_code_update();
1720
1721 ret = lttng_ustconsumer_recv_metadata(sock, key, offset,
1722 len, version, channel, 0, 1);
1723 if (ret < 0) {
1724 /* error receiving from sessiond */
1725 goto error_fatal;
1726 } else {
1727 ret_code = ret;
1728 goto end_msg_sessiond;
1729 }
1730 }
1731 case LTTNG_CONSUMER_SETUP_METADATA:
1732 {
1733 int ret;
1734
1735 ret = setup_metadata(ctx, msg.u.setup_metadata.key);
1736 if (ret) {
1737 ret_code = ret;
1738 }
1739 goto end_msg_sessiond;
1740 }
1741 case LTTNG_CONSUMER_SNAPSHOT_CHANNEL:
1742 {
1743 if (msg.u.snapshot_channel.metadata) {
1744 ret = snapshot_metadata(msg.u.snapshot_channel.key,
1745 msg.u.snapshot_channel.pathname,
1746 msg.u.snapshot_channel.relayd_id,
1747 ctx);
1748 if (ret < 0) {
1749 ERR("Snapshot metadata failed");
1750 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1751 }
1752 } else {
1753 ret = snapshot_channel(msg.u.snapshot_channel.key,
1754 msg.u.snapshot_channel.pathname,
1755 msg.u.snapshot_channel.relayd_id,
1756 msg.u.snapshot_channel.nb_packets_per_stream,
1757 ctx);
1758 if (ret < 0) {
1759 ERR("Snapshot channel failed");
1760 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1761 }
1762 }
1763
1764 health_code_update();
1765 ret = consumer_send_status_msg(sock, ret_code);
1766 if (ret < 0) {
1767 /* Somehow, the session daemon is not responding anymore. */
1768 goto end_nosignal;
1769 }
1770 health_code_update();
1771 break;
1772 }
1773 case LTTNG_CONSUMER_DISCARDED_EVENTS:
1774 {
1775 int ret = 0;
1776 uint64_t discarded_events;
1777 struct lttng_ht_iter iter;
1778 struct lttng_ht *ht;
1779 struct lttng_consumer_stream *stream;
1780 uint64_t id = msg.u.discarded_events.session_id;
1781 uint64_t key = msg.u.discarded_events.channel_key;
1782
1783 DBG("UST consumer discarded events command for session id %"
1784 PRIu64, id);
1785 rcu_read_lock();
1786 pthread_mutex_lock(&consumer_data.lock);
1787
1788 ht = consumer_data.stream_list_ht;
1789
1790 /*
1791 * We only need a reference to the channel, but they are not
1792 * directly indexed, so we just use the first matching stream
1793 * to extract the information we need, we default to 0 if not
1794 * found (no events are dropped if the channel is not yet in
1795 * use).
1796 */
1797 discarded_events = 0;
1798 cds_lfht_for_each_entry_duplicate(ht->ht,
1799 ht->hash_fct(&id, lttng_ht_seed),
1800 ht->match_fct, &id,
1801 &iter.iter, stream, node_session_id.node) {
1802 if (stream->chan->key == key) {
1803 discarded_events = stream->chan->discarded_events;
1804 break;
1805 }
1806 }
1807 pthread_mutex_unlock(&consumer_data.lock);
1808 rcu_read_unlock();
1809
1810 DBG("UST consumer discarded events command for session id %"
1811 PRIu64 ", channel key %" PRIu64, id, key);
1812
1813 health_code_update();
1814
1815 /* Send back returned value to session daemon */
1816 ret = lttcomm_send_unix_sock(sock, &discarded_events, sizeof(discarded_events));
1817 if (ret < 0) {
1818 PERROR("send discarded events");
1819 goto error_fatal;
1820 }
1821
1822 break;
1823 }
1824 case LTTNG_CONSUMER_LOST_PACKETS:
1825 {
1826 int ret;
1827 uint64_t lost_packets;
1828 struct lttng_ht_iter iter;
1829 struct lttng_ht *ht;
1830 struct lttng_consumer_stream *stream;
1831 uint64_t id = msg.u.lost_packets.session_id;
1832 uint64_t key = msg.u.lost_packets.channel_key;
1833
1834 DBG("UST consumer lost packets command for session id %"
1835 PRIu64, id);
1836 rcu_read_lock();
1837 pthread_mutex_lock(&consumer_data.lock);
1838
1839 ht = consumer_data.stream_list_ht;
1840
1841 /*
1842 * We only need a reference to the channel, but they are not
1843 * directly indexed, so we just use the first matching stream
1844 * to extract the information we need, we default to 0 if not
1845 * found (no packets lost if the channel is not yet in use).
1846 */
1847 lost_packets = 0;
1848 cds_lfht_for_each_entry_duplicate(ht->ht,
1849 ht->hash_fct(&id, lttng_ht_seed),
1850 ht->match_fct, &id,
1851 &iter.iter, stream, node_session_id.node) {
1852 if (stream->chan->key == key) {
1853 lost_packets = stream->chan->lost_packets;
1854 break;
1855 }
1856 }
1857 pthread_mutex_unlock(&consumer_data.lock);
1858 rcu_read_unlock();
1859
1860 DBG("UST consumer lost packets command for session id %"
1861 PRIu64 ", channel key %" PRIu64, id, key);
1862
1863 health_code_update();
1864
1865 /* Send back returned value to session daemon */
1866 ret = lttcomm_send_unix_sock(sock, &lost_packets,
1867 sizeof(lost_packets));
1868 if (ret < 0) {
1869 PERROR("send lost packets");
1870 goto error_fatal;
1871 }
1872
1873 break;
1874 }
1875 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1876 {
1877 int channel_monitor_pipe;
1878
1879 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1880 /* Successfully received the command's type. */
1881 ret = consumer_send_status_msg(sock, ret_code);
1882 if (ret < 0) {
1883 goto error_fatal;
1884 }
1885
1886 ret = lttcomm_recv_fds_unix_sock(sock, &channel_monitor_pipe,
1887 1);
1888 if (ret != sizeof(channel_monitor_pipe)) {
1889 ERR("Failed to receive channel monitor pipe");
1890 goto error_fatal;
1891 }
1892
1893 DBG("Received channel monitor pipe (%d)", channel_monitor_pipe);
1894 ret = consumer_timer_thread_set_channel_monitor_pipe(
1895 channel_monitor_pipe);
1896 if (!ret) {
1897 int flags;
1898
1899 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1900 /* Set the pipe as non-blocking. */
1901 ret = fcntl(channel_monitor_pipe, F_GETFL, 0);
1902 if (ret == -1) {
1903 PERROR("fcntl get flags of the channel monitoring pipe");
1904 goto error_fatal;
1905 }
1906 flags = ret;
1907
1908 ret = fcntl(channel_monitor_pipe, F_SETFL,
1909 flags | O_NONBLOCK);
1910 if (ret == -1) {
1911 PERROR("fcntl set O_NONBLOCK flag of the channel monitoring pipe");
1912 goto error_fatal;
1913 }
1914 DBG("Channel monitor pipe set as non-blocking");
1915 } else {
1916 ret_code = LTTCOMM_CONSUMERD_ALREADY_SET;
1917 }
1918 goto end_msg_sessiond;
1919 }
1920 default:
1921 break;
1922 }
1923
1924 end_nosignal:
1925 rcu_read_unlock();
1926
1927 health_code_update();
1928
1929 /*
1930 * Return 1 to indicate success since the 0 value can be a socket
1931 * shutdown during the recv() or send() call.
1932 */
1933 return 1;
1934
1935 end_msg_sessiond:
1936 /*
1937 * The returned value here is not useful since either way we'll return 1 to
1938 * the caller because the session daemon socket management is done
1939 * elsewhere. Returning a negative code or 0 will shutdown the consumer.
1940 */
1941 ret = consumer_send_status_msg(sock, ret_code);
1942 if (ret < 0) {
1943 goto error_fatal;
1944 }
1945 rcu_read_unlock();
1946
1947 health_code_update();
1948
1949 return 1;
1950 end_channel_error:
1951 if (channel) {
1952 /*
1953 * Free channel here since no one has a reference to it. We don't
1954 * free after that because a stream can store this pointer.
1955 */
1956 destroy_channel(channel);
1957 }
1958 /* We have to send a status channel message indicating an error. */
1959 ret = consumer_send_status_channel(sock, NULL);
1960 if (ret < 0) {
1961 /* Stop everything if session daemon can not be notified. */
1962 goto error_fatal;
1963 }
1964 rcu_read_unlock();
1965
1966 health_code_update();
1967
1968 return 1;
1969 error_fatal:
1970 rcu_read_unlock();
1971 /* This will issue a consumer stop. */
1972 return -1;
1973 }
1974
1975 /*
1976 * Wrapper over the mmap() read offset from ust-ctl library. Since this can be
1977 * compiled out, we isolate it in this library.
1978 */
1979 int lttng_ustctl_get_mmap_read_offset(struct lttng_consumer_stream *stream,
1980 unsigned long *off)
1981 {
1982 assert(stream);
1983 assert(stream->ustream);
1984
1985 return ustctl_get_mmap_read_offset(stream->ustream, off);
1986 }
1987
1988 /*
1989 * Wrapper over the mmap() read offset from ust-ctl library. Since this can be
1990 * compiled out, we isolate it in this library.
1991 */
1992 void *lttng_ustctl_get_mmap_base(struct lttng_consumer_stream *stream)
1993 {
1994 assert(stream);
1995 assert(stream->ustream);
1996
1997 return ustctl_get_mmap_base(stream->ustream);
1998 }
1999
2000 /*
2001 * Take a snapshot for a specific stream.
2002 *
2003 * Returns 0 on success, < 0 on error
2004 */
2005 int lttng_ustconsumer_take_snapshot(struct lttng_consumer_stream *stream)
2006 {
2007 assert(stream);
2008 assert(stream->ustream);
2009
2010 return ustctl_snapshot(stream->ustream);
2011 }
2012
2013 /*
2014 * Sample consumed and produced positions for a specific stream.
2015 *
2016 * Returns 0 on success, < 0 on error.
2017 */
2018 int lttng_ustconsumer_sample_snapshot_positions(
2019 struct lttng_consumer_stream *stream)
2020 {
2021 assert(stream);
2022 assert(stream->ustream);
2023
2024 return ustctl_snapshot_sample_positions(stream->ustream);
2025 }
2026
2027 /*
2028 * Get the produced position
2029 *
2030 * Returns 0 on success, < 0 on error
2031 */
2032 int lttng_ustconsumer_get_produced_snapshot(
2033 struct lttng_consumer_stream *stream, unsigned long *pos)
2034 {
2035 assert(stream);
2036 assert(stream->ustream);
2037 assert(pos);
2038
2039 return ustctl_snapshot_get_produced(stream->ustream, pos);
2040 }
2041
2042 /*
2043 * Get the consumed position
2044 *
2045 * Returns 0 on success, < 0 on error
2046 */
2047 int lttng_ustconsumer_get_consumed_snapshot(
2048 struct lttng_consumer_stream *stream, unsigned long *pos)
2049 {
2050 assert(stream);
2051 assert(stream->ustream);
2052 assert(pos);
2053
2054 return ustctl_snapshot_get_consumed(stream->ustream, pos);
2055 }
2056
2057 void lttng_ustconsumer_flush_buffer(struct lttng_consumer_stream *stream,
2058 int producer)
2059 {
2060 assert(stream);
2061 assert(stream->ustream);
2062
2063 ustctl_flush_buffer(stream->ustream, producer);
2064 }
2065
2066 int lttng_ustconsumer_get_current_timestamp(
2067 struct lttng_consumer_stream *stream, uint64_t *ts)
2068 {
2069 assert(stream);
2070 assert(stream->ustream);
2071 assert(ts);
2072
2073 return ustctl_get_current_timestamp(stream->ustream, ts);
2074 }
2075
2076 int lttng_ustconsumer_get_sequence_number(
2077 struct lttng_consumer_stream *stream, uint64_t *seq)
2078 {
2079 assert(stream);
2080 assert(stream->ustream);
2081 assert(seq);
2082
2083 return ustctl_get_sequence_number(stream->ustream, seq);
2084 }
2085
2086 /*
2087 * Called when the stream signals the consumer that it has hung up.
2088 */
2089 void lttng_ustconsumer_on_stream_hangup(struct lttng_consumer_stream *stream)
2090 {
2091 assert(stream);
2092 assert(stream->ustream);
2093
2094 pthread_mutex_lock(&stream->lock);
2095 if (!stream->quiescent) {
2096 ustctl_flush_buffer(stream->ustream, 0);
2097 stream->quiescent = true;
2098 }
2099 pthread_mutex_unlock(&stream->lock);
2100 stream->hangup_flush_done = 1;
2101 }
2102
2103 void lttng_ustconsumer_del_channel(struct lttng_consumer_channel *chan)
2104 {
2105 int i;
2106
2107 assert(chan);
2108 assert(chan->uchan);
2109
2110 if (chan->switch_timer_enabled == 1) {
2111 consumer_timer_switch_stop(chan);
2112 }
2113 for (i = 0; i < chan->nr_stream_fds; i++) {
2114 int ret;
2115
2116 ret = close(chan->stream_fds[i]);
2117 if (ret) {
2118 PERROR("close");
2119 }
2120 if (chan->shm_path[0]) {
2121 char shm_path[PATH_MAX];
2122
2123 ret = get_stream_shm_path(shm_path, chan->shm_path, i);
2124 if (ret) {
2125 ERR("Cannot get stream shm path");
2126 }
2127 ret = run_as_unlink(shm_path, chan->uid, chan->gid);
2128 if (ret) {
2129 PERROR("unlink %s", shm_path);
2130 }
2131 }
2132 }
2133 }
2134
2135 void lttng_ustconsumer_free_channel(struct lttng_consumer_channel *chan)
2136 {
2137 assert(chan);
2138 assert(chan->uchan);
2139
2140 consumer_metadata_cache_destroy(chan);
2141 ustctl_destroy_channel(chan->uchan);
2142 /* Try to rmdir all directories under shm_path root. */
2143 if (chan->root_shm_path[0]) {
2144 (void) run_as_rmdir_recursive(chan->root_shm_path,
2145 chan->uid, chan->gid);
2146 }
2147 free(chan->stream_fds);
2148 }
2149
2150 void lttng_ustconsumer_del_stream(struct lttng_consumer_stream *stream)
2151 {
2152 assert(stream);
2153 assert(stream->ustream);
2154
2155 if (stream->chan->switch_timer_enabled == 1) {
2156 consumer_timer_switch_stop(stream->chan);
2157 }
2158 ustctl_destroy_stream(stream->ustream);
2159 }
2160
2161 int lttng_ustconsumer_get_wakeup_fd(struct lttng_consumer_stream *stream)
2162 {
2163 assert(stream);
2164 assert(stream->ustream);
2165
2166 return ustctl_stream_get_wakeup_fd(stream->ustream);
2167 }
2168
2169 int lttng_ustconsumer_close_wakeup_fd(struct lttng_consumer_stream *stream)
2170 {
2171 assert(stream);
2172 assert(stream->ustream);
2173
2174 return ustctl_stream_close_wakeup_fd(stream->ustream);
2175 }
2176
2177 /*
2178 * Populate index values of a UST stream. Values are set in big endian order.
2179 *
2180 * Return 0 on success or else a negative value.
2181 */
2182 static int get_index_values(struct ctf_packet_index *index,
2183 struct ustctl_consumer_stream *ustream)
2184 {
2185 int ret;
2186
2187 ret = ustctl_get_timestamp_begin(ustream, &index->timestamp_begin);
2188 if (ret < 0) {
2189 PERROR("ustctl_get_timestamp_begin");
2190 goto error;
2191 }
2192 index->timestamp_begin = htobe64(index->timestamp_begin);
2193
2194 ret = ustctl_get_timestamp_end(ustream, &index->timestamp_end);
2195 if (ret < 0) {
2196 PERROR("ustctl_get_timestamp_end");
2197 goto error;
2198 }
2199 index->timestamp_end = htobe64(index->timestamp_end);
2200
2201 ret = ustctl_get_events_discarded(ustream, &index->events_discarded);
2202 if (ret < 0) {
2203 PERROR("ustctl_get_events_discarded");
2204 goto error;
2205 }
2206 index->events_discarded = htobe64(index->events_discarded);
2207
2208 ret = ustctl_get_content_size(ustream, &index->content_size);
2209 if (ret < 0) {
2210 PERROR("ustctl_get_content_size");
2211 goto error;
2212 }
2213 index->content_size = htobe64(index->content_size);
2214
2215 ret = ustctl_get_packet_size(ustream, &index->packet_size);
2216 if (ret < 0) {
2217 PERROR("ustctl_get_packet_size");
2218 goto error;
2219 }
2220 index->packet_size = htobe64(index->packet_size);
2221
2222 ret = ustctl_get_stream_id(ustream, &index->stream_id);
2223 if (ret < 0) {
2224 PERROR("ustctl_get_stream_id");
2225 goto error;
2226 }
2227 index->stream_id = htobe64(index->stream_id);
2228
2229 ret = ustctl_get_instance_id(ustream, &index->stream_instance_id);
2230 if (ret < 0) {
2231 PERROR("ustctl_get_instance_id");
2232 goto error;
2233 }
2234 index->stream_instance_id = htobe64(index->stream_instance_id);
2235
2236 ret = ustctl_get_sequence_number(ustream, &index->packet_seq_num);
2237 if (ret < 0) {
2238 PERROR("ustctl_get_sequence_number");
2239 goto error;
2240 }
2241 index->packet_seq_num = htobe64(index->packet_seq_num);
2242
2243 error:
2244 return ret;
2245 }
2246
2247 static
2248 void metadata_stream_reset_cache(struct lttng_consumer_stream *stream,
2249 struct consumer_metadata_cache *cache)
2250 {
2251 DBG("Metadata stream update to version %" PRIu64,
2252 cache->version);
2253 stream->ust_metadata_pushed = 0;
2254 stream->metadata_version = cache->version;
2255 stream->reset_metadata_flag = 1;
2256 }
2257
2258 /*
2259 * Check if the version of the metadata stream and metadata cache match.
2260 * If the cache got updated, reset the metadata stream.
2261 * The stream lock and metadata cache lock MUST be held.
2262 * Return 0 on success, a negative value on error.
2263 */
2264 static
2265 int metadata_stream_check_version(struct lttng_consumer_stream *stream)
2266 {
2267 int ret = 0;
2268 struct consumer_metadata_cache *cache = stream->chan->metadata_cache;
2269
2270 if (cache->version == stream->metadata_version) {
2271 goto end;
2272 }
2273 metadata_stream_reset_cache(stream, cache);
2274
2275 end:
2276 return ret;
2277 }
2278
2279 /*
2280 * Write up to one packet from the metadata cache to the channel.
2281 *
2282 * Returns the number of bytes pushed in the cache, or a negative value
2283 * on error.
2284 */
2285 static
2286 int commit_one_metadata_packet(struct lttng_consumer_stream *stream)
2287 {
2288 ssize_t write_len;
2289 int ret;
2290
2291 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2292 ret = metadata_stream_check_version(stream);
2293 if (ret < 0) {
2294 goto end;
2295 }
2296 if (stream->chan->metadata_cache->max_offset
2297 == stream->ust_metadata_pushed) {
2298 ret = 0;
2299 goto end;
2300 }
2301
2302 write_len = ustctl_write_one_packet_to_channel(stream->chan->uchan,
2303 &stream->chan->metadata_cache->data[stream->ust_metadata_pushed],
2304 stream->chan->metadata_cache->max_offset
2305 - stream->ust_metadata_pushed);
2306 assert(write_len != 0);
2307 if (write_len < 0) {
2308 ERR("Writing one metadata packet");
2309 ret = -1;
2310 goto end;
2311 }
2312 stream->ust_metadata_pushed += write_len;
2313
2314 assert(stream->chan->metadata_cache->max_offset >=
2315 stream->ust_metadata_pushed);
2316 ret = write_len;
2317
2318 end:
2319 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2320 return ret;
2321 }
2322
2323
2324 /*
2325 * Sync metadata meaning request them to the session daemon and snapshot to the
2326 * metadata thread can consumer them.
2327 *
2328 * Metadata stream lock is held here, but we need to release it when
2329 * interacting with sessiond, else we cause a deadlock with live
2330 * awaiting on metadata to be pushed out.
2331 *
2332 * Return 0 if new metadatda is available, EAGAIN if the metadata stream
2333 * is empty or a negative value on error.
2334 */
2335 int lttng_ustconsumer_sync_metadata(struct lttng_consumer_local_data *ctx,
2336 struct lttng_consumer_stream *metadata)
2337 {
2338 int ret;
2339 int retry = 0;
2340
2341 assert(ctx);
2342 assert(metadata);
2343
2344 pthread_mutex_unlock(&metadata->lock);
2345 /*
2346 * Request metadata from the sessiond, but don't wait for the flush
2347 * because we locked the metadata thread.
2348 */
2349 ret = lttng_ustconsumer_request_metadata(ctx, metadata->chan, 0, 0);
2350 pthread_mutex_lock(&metadata->lock);
2351 if (ret < 0) {
2352 goto end;
2353 }
2354
2355 ret = commit_one_metadata_packet(metadata);
2356 if (ret <= 0) {
2357 goto end;
2358 } else if (ret > 0) {
2359 retry = 1;
2360 }
2361
2362 ustctl_flush_buffer(metadata->ustream, 1);
2363 ret = ustctl_snapshot(metadata->ustream);
2364 if (ret < 0) {
2365 if (errno != EAGAIN) {
2366 ERR("Sync metadata, taking UST snapshot");
2367 goto end;
2368 }
2369 DBG("No new metadata when syncing them.");
2370 /* No new metadata, exit. */
2371 ret = ENODATA;
2372 goto end;
2373 }
2374
2375 /*
2376 * After this flush, we still need to extract metadata.
2377 */
2378 if (retry) {
2379 ret = EAGAIN;
2380 }
2381
2382 end:
2383 return ret;
2384 }
2385
2386 /*
2387 * Return 0 on success else a negative value.
2388 */
2389 static int notify_if_more_data(struct lttng_consumer_stream *stream,
2390 struct lttng_consumer_local_data *ctx)
2391 {
2392 int ret;
2393 struct ustctl_consumer_stream *ustream;
2394
2395 assert(stream);
2396 assert(ctx);
2397
2398 ustream = stream->ustream;
2399
2400 /*
2401 * First, we are going to check if there is a new subbuffer available
2402 * before reading the stream wait_fd.
2403 */
2404 /* Get the next subbuffer */
2405 ret = ustctl_get_next_subbuf(ustream);
2406 if (ret) {
2407 /* No more data found, flag the stream. */
2408 stream->has_data = 0;
2409 ret = 0;
2410 goto end;
2411 }
2412
2413 ret = ustctl_put_subbuf(ustream);
2414 assert(!ret);
2415
2416 /* This stream still has data. Flag it and wake up the data thread. */
2417 stream->has_data = 1;
2418
2419 if (stream->monitor && !stream->hangup_flush_done && !ctx->has_wakeup) {
2420 ssize_t writelen;
2421
2422 writelen = lttng_pipe_write(ctx->consumer_wakeup_pipe, "!", 1);
2423 if (writelen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2424 ret = writelen;
2425 goto end;
2426 }
2427
2428 /* The wake up pipe has been notified. */
2429 ctx->has_wakeup = 1;
2430 }
2431 ret = 0;
2432
2433 end:
2434 return ret;
2435 }
2436
2437 static
2438 int update_stream_stats(struct lttng_consumer_stream *stream)
2439 {
2440 int ret;
2441 uint64_t seq, discarded;
2442
2443 ret = ustctl_get_sequence_number(stream->ustream, &seq);
2444 if (ret < 0) {
2445 PERROR("ustctl_get_sequence_number");
2446 goto end;
2447 }
2448 /*
2449 * Start the sequence when we extract the first packet in case we don't
2450 * start at 0 (for example if a consumer is not connected to the
2451 * session immediately after the beginning).
2452 */
2453 if (stream->last_sequence_number == -1ULL) {
2454 stream->last_sequence_number = seq;
2455 } else if (seq > stream->last_sequence_number) {
2456 stream->chan->lost_packets += seq -
2457 stream->last_sequence_number - 1;
2458 } else {
2459 /* seq <= last_sequence_number */
2460 ERR("Sequence number inconsistent : prev = %" PRIu64
2461 ", current = %" PRIu64,
2462 stream->last_sequence_number, seq);
2463 ret = -1;
2464 goto end;
2465 }
2466 stream->last_sequence_number = seq;
2467
2468 ret = ustctl_get_events_discarded(stream->ustream, &discarded);
2469 if (ret < 0) {
2470 PERROR("kernctl_get_events_discarded");
2471 goto end;
2472 }
2473 if (discarded < stream->last_discarded_events) {
2474 /*
2475 * Overflow has occurred. We assume only one wrap-around
2476 * has occurred.
2477 */
2478 stream->chan->discarded_events +=
2479 (1ULL << (CAA_BITS_PER_LONG - 1)) -
2480 stream->last_discarded_events + discarded;
2481 } else {
2482 stream->chan->discarded_events += discarded -
2483 stream->last_discarded_events;
2484 }
2485 stream->last_discarded_events = discarded;
2486 ret = 0;
2487
2488 end:
2489 return ret;
2490 }
2491
2492 /*
2493 * Read subbuffer from the given stream.
2494 *
2495 * Stream lock MUST be acquired.
2496 *
2497 * Return 0 on success else a negative value.
2498 */
2499 int lttng_ustconsumer_read_subbuffer(struct lttng_consumer_stream *stream,
2500 struct lttng_consumer_local_data *ctx)
2501 {
2502 unsigned long len, subbuf_size, padding;
2503 int err, write_index = 1;
2504 long ret = 0;
2505 struct ustctl_consumer_stream *ustream;
2506 struct ctf_packet_index index;
2507
2508 assert(stream);
2509 assert(stream->ustream);
2510 assert(ctx);
2511
2512 DBG("In UST read_subbuffer (wait_fd: %d, name: %s)", stream->wait_fd,
2513 stream->name);
2514
2515 /* Ease our life for what's next. */
2516 ustream = stream->ustream;
2517
2518 /*
2519 * We can consume the 1 byte written into the wait_fd by UST. Don't trigger
2520 * error if we cannot read this one byte (read returns 0), or if the error
2521 * is EAGAIN or EWOULDBLOCK.
2522 *
2523 * This is only done when the stream is monitored by a thread, before the
2524 * flush is done after a hangup and if the stream is not flagged with data
2525 * since there might be nothing to consume in the wait fd but still have
2526 * data available flagged by the consumer wake up pipe.
2527 */
2528 if (stream->monitor && !stream->hangup_flush_done && !stream->has_data) {
2529 char dummy;
2530 ssize_t readlen;
2531
2532 readlen = lttng_read(stream->wait_fd, &dummy, 1);
2533 if (readlen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2534 ret = readlen;
2535 goto end;
2536 }
2537 }
2538
2539 retry:
2540 /* Get the next subbuffer */
2541 err = ustctl_get_next_subbuf(ustream);
2542 if (err != 0) {
2543 /*
2544 * Populate metadata info if the existing info has
2545 * already been read.
2546 */
2547 if (stream->metadata_flag) {
2548 ret = commit_one_metadata_packet(stream);
2549 if (ret <= 0) {
2550 goto end;
2551 }
2552 ustctl_flush_buffer(stream->ustream, 1);
2553 goto retry;
2554 }
2555
2556 ret = err; /* ustctl_get_next_subbuf returns negative, caller expect positive. */
2557 /*
2558 * This is a debug message even for single-threaded consumer,
2559 * because poll() have more relaxed criterions than get subbuf,
2560 * so get_subbuf may fail for short race windows where poll()
2561 * would issue wakeups.
2562 */
2563 DBG("Reserving sub buffer failed (everything is normal, "
2564 "it is due to concurrency) [ret: %d]", err);
2565 goto end;
2566 }
2567 assert(stream->chan->output == CONSUMER_CHANNEL_MMAP);
2568
2569 if (!stream->metadata_flag) {
2570 index.offset = htobe64(stream->out_fd_offset);
2571 ret = get_index_values(&index, ustream);
2572 if (ret < 0) {
2573 err = ustctl_put_subbuf(ustream);
2574 assert(err == 0);
2575 goto end;
2576 }
2577
2578 /* Update the stream's sequence and discarded events count. */
2579 ret = update_stream_stats(stream);
2580 if (ret < 0) {
2581 PERROR("kernctl_get_events_discarded");
2582 err = ustctl_put_subbuf(ustream);
2583 assert(err == 0);
2584 goto end;
2585 }
2586 } else {
2587 write_index = 0;
2588 }
2589
2590 /* Get the full padded subbuffer size */
2591 err = ustctl_get_padded_subbuf_size(ustream, &len);
2592 assert(err == 0);
2593
2594 /* Get subbuffer data size (without padding) */
2595 err = ustctl_get_subbuf_size(ustream, &subbuf_size);
2596 assert(err == 0);
2597
2598 /* Make sure we don't get a subbuffer size bigger than the padded */
2599 assert(len >= subbuf_size);
2600
2601 padding = len - subbuf_size;
2602 /* write the subbuffer to the tracefile */
2603 ret = lttng_consumer_on_read_subbuffer_mmap(ctx, stream, subbuf_size, padding, &index);
2604 /*
2605 * The mmap operation should write subbuf_size amount of data when network
2606 * streaming or the full padding (len) size when we are _not_ streaming.
2607 */
2608 if ((ret != subbuf_size && stream->net_seq_idx != (uint64_t) -1ULL) ||
2609 (ret != len && stream->net_seq_idx == (uint64_t) -1ULL)) {
2610 /*
2611 * Display the error but continue processing to try to release the
2612 * subbuffer. This is a DBG statement since any unexpected kill or
2613 * signal, the application gets unregistered, relayd gets closed or
2614 * anything that affects the buffer lifetime will trigger this error.
2615 * So, for the sake of the user, don't print this error since it can
2616 * happen and it is OK with the code flow.
2617 */
2618 DBG("Error writing to tracefile "
2619 "(ret: %ld != len: %lu != subbuf_size: %lu)",
2620 ret, len, subbuf_size);
2621 write_index = 0;
2622 }
2623 err = ustctl_put_next_subbuf(ustream);
2624 assert(err == 0);
2625
2626 /*
2627 * This will consumer the byte on the wait_fd if and only if there is not
2628 * next subbuffer to be acquired.
2629 */
2630 if (!stream->metadata_flag) {
2631 ret = notify_if_more_data(stream, ctx);
2632 if (ret < 0) {
2633 goto end;
2634 }
2635 }
2636
2637 /* Write index if needed. */
2638 if (!write_index) {
2639 goto end;
2640 }
2641
2642 if (stream->chan->live_timer_interval && !stream->metadata_flag) {
2643 /*
2644 * In live, block until all the metadata is sent.
2645 */
2646 pthread_mutex_lock(&stream->metadata_timer_lock);
2647 assert(!stream->missed_metadata_flush);
2648 stream->waiting_on_metadata = true;
2649 pthread_mutex_unlock(&stream->metadata_timer_lock);
2650
2651 err = consumer_stream_sync_metadata(ctx, stream->session_id);
2652
2653 pthread_mutex_lock(&stream->metadata_timer_lock);
2654 stream->waiting_on_metadata = false;
2655 if (stream->missed_metadata_flush) {
2656 stream->missed_metadata_flush = false;
2657 pthread_mutex_unlock(&stream->metadata_timer_lock);
2658 (void) consumer_flush_ust_index(stream);
2659 } else {
2660 pthread_mutex_unlock(&stream->metadata_timer_lock);
2661 }
2662
2663 if (err < 0) {
2664 goto end;
2665 }
2666 }
2667
2668 assert(!stream->metadata_flag);
2669 err = consumer_stream_write_index(stream, &index);
2670 if (err < 0) {
2671 goto end;
2672 }
2673
2674 end:
2675 return ret;
2676 }
2677
2678 /*
2679 * Called when a stream is created.
2680 *
2681 * Return 0 on success or else a negative value.
2682 */
2683 int lttng_ustconsumer_on_recv_stream(struct lttng_consumer_stream *stream)
2684 {
2685 int ret;
2686
2687 assert(stream);
2688
2689 /* Don't create anything if this is set for streaming. */
2690 if (stream->net_seq_idx == (uint64_t) -1ULL && stream->chan->monitor) {
2691 ret = utils_create_stream_file(stream->chan->pathname, stream->name,
2692 stream->chan->tracefile_size, stream->tracefile_count_current,
2693 stream->uid, stream->gid, NULL);
2694 if (ret < 0) {
2695 goto error;
2696 }
2697 stream->out_fd = ret;
2698 stream->tracefile_size_current = 0;
2699
2700 if (!stream->metadata_flag) {
2701 struct lttng_index_file *index_file;
2702
2703 index_file = lttng_index_file_create(stream->chan->pathname,
2704 stream->name, stream->uid, stream->gid,
2705 stream->chan->tracefile_size,
2706 stream->tracefile_count_current,
2707 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
2708 if (!index_file) {
2709 goto error;
2710 }
2711 assert(!stream->index_file);
2712 stream->index_file = index_file;
2713 }
2714 }
2715 ret = 0;
2716
2717 error:
2718 return ret;
2719 }
2720
2721 /*
2722 * Check if data is still being extracted from the buffers for a specific
2723 * stream. Consumer data lock MUST be acquired before calling this function
2724 * and the stream lock.
2725 *
2726 * Return 1 if the traced data are still getting read else 0 meaning that the
2727 * data is available for trace viewer reading.
2728 */
2729 int lttng_ustconsumer_data_pending(struct lttng_consumer_stream *stream)
2730 {
2731 int ret;
2732
2733 assert(stream);
2734 assert(stream->ustream);
2735
2736 DBG("UST consumer checking data pending");
2737
2738 if (stream->endpoint_status != CONSUMER_ENDPOINT_ACTIVE) {
2739 ret = 0;
2740 goto end;
2741 }
2742
2743 if (stream->chan->type == CONSUMER_CHANNEL_TYPE_METADATA) {
2744 uint64_t contiguous, pushed;
2745
2746 /* Ease our life a bit. */
2747 contiguous = stream->chan->metadata_cache->max_offset;
2748 pushed = stream->ust_metadata_pushed;
2749
2750 /*
2751 * We can simply check whether all contiguously available data
2752 * has been pushed to the ring buffer, since the push operation
2753 * is performed within get_next_subbuf(), and because both
2754 * get_next_subbuf() and put_next_subbuf() are issued atomically
2755 * thanks to the stream lock within
2756 * lttng_ustconsumer_read_subbuffer(). This basically means that
2757 * whetnever ust_metadata_pushed is incremented, the associated
2758 * metadata has been consumed from the metadata stream.
2759 */
2760 DBG("UST consumer metadata pending check: contiguous %" PRIu64 " vs pushed %" PRIu64,
2761 contiguous, pushed);
2762 assert(((int64_t) (contiguous - pushed)) >= 0);
2763 if ((contiguous != pushed) ||
2764 (((int64_t) contiguous - pushed) > 0 || contiguous == 0)) {
2765 ret = 1; /* Data is pending */
2766 goto end;
2767 }
2768 } else {
2769 ret = ustctl_get_next_subbuf(stream->ustream);
2770 if (ret == 0) {
2771 /*
2772 * There is still data so let's put back this
2773 * subbuffer.
2774 */
2775 ret = ustctl_put_subbuf(stream->ustream);
2776 assert(ret == 0);
2777 ret = 1; /* Data is pending */
2778 goto end;
2779 }
2780 }
2781
2782 /* Data is NOT pending so ready to be read. */
2783 ret = 0;
2784
2785 end:
2786 return ret;
2787 }
2788
2789 /*
2790 * Stop a given metadata channel timer if enabled and close the wait fd which
2791 * is the poll pipe of the metadata stream.
2792 *
2793 * This MUST be called with the metadata channel acquired.
2794 */
2795 void lttng_ustconsumer_close_metadata(struct lttng_consumer_channel *metadata)
2796 {
2797 int ret;
2798
2799 assert(metadata);
2800 assert(metadata->type == CONSUMER_CHANNEL_TYPE_METADATA);
2801
2802 DBG("Closing metadata channel key %" PRIu64, metadata->key);
2803
2804 if (metadata->switch_timer_enabled == 1) {
2805 consumer_timer_switch_stop(metadata);
2806 }
2807
2808 if (!metadata->metadata_stream) {
2809 goto end;
2810 }
2811
2812 /*
2813 * Closing write side so the thread monitoring the stream wakes up if any
2814 * and clean the metadata stream.
2815 */
2816 if (metadata->metadata_stream->ust_metadata_poll_pipe[1] >= 0) {
2817 ret = close(metadata->metadata_stream->ust_metadata_poll_pipe[1]);
2818 if (ret < 0) {
2819 PERROR("closing metadata pipe write side");
2820 }
2821 metadata->metadata_stream->ust_metadata_poll_pipe[1] = -1;
2822 }
2823
2824 end:
2825 return;
2826 }
2827
2828 /*
2829 * Close every metadata stream wait fd of the metadata hash table. This
2830 * function MUST be used very carefully so not to run into a race between the
2831 * metadata thread handling streams and this function closing their wait fd.
2832 *
2833 * For UST, this is used when the session daemon hangs up. Its the metadata
2834 * producer so calling this is safe because we are assured that no state change
2835 * can occur in the metadata thread for the streams in the hash table.
2836 */
2837 void lttng_ustconsumer_close_all_metadata(struct lttng_ht *metadata_ht)
2838 {
2839 struct lttng_ht_iter iter;
2840 struct lttng_consumer_stream *stream;
2841
2842 assert(metadata_ht);
2843 assert(metadata_ht->ht);
2844
2845 DBG("UST consumer closing all metadata streams");
2846
2847 rcu_read_lock();
2848 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream,
2849 node.node) {
2850
2851 health_code_update();
2852
2853 pthread_mutex_lock(&stream->chan->lock);
2854 lttng_ustconsumer_close_metadata(stream->chan);
2855 pthread_mutex_unlock(&stream->chan->lock);
2856
2857 }
2858 rcu_read_unlock();
2859 }
2860
2861 void lttng_ustconsumer_close_stream_wakeup(struct lttng_consumer_stream *stream)
2862 {
2863 int ret;
2864
2865 ret = ustctl_stream_close_wakeup_fd(stream->ustream);
2866 if (ret < 0) {
2867 ERR("Unable to close wakeup fd");
2868 }
2869 }
2870
2871 /*
2872 * Please refer to consumer-timer.c before adding any lock within this
2873 * function or any of its callees. Timers have a very strict locking
2874 * semantic with respect to teardown. Failure to respect this semantic
2875 * introduces deadlocks.
2876 *
2877 * DON'T hold the metadata lock when calling this function, else this
2878 * can cause deadlock involving consumer awaiting for metadata to be
2879 * pushed out due to concurrent interaction with the session daemon.
2880 */
2881 int lttng_ustconsumer_request_metadata(struct lttng_consumer_local_data *ctx,
2882 struct lttng_consumer_channel *channel, int timer, int wait)
2883 {
2884 struct lttcomm_metadata_request_msg request;
2885 struct lttcomm_consumer_msg msg;
2886 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
2887 uint64_t len, key, offset, version;
2888 int ret;
2889
2890 assert(channel);
2891 assert(channel->metadata_cache);
2892
2893 memset(&request, 0, sizeof(request));
2894
2895 /* send the metadata request to sessiond */
2896 switch (consumer_data.type) {
2897 case LTTNG_CONSUMER64_UST:
2898 request.bits_per_long = 64;
2899 break;
2900 case LTTNG_CONSUMER32_UST:
2901 request.bits_per_long = 32;
2902 break;
2903 default:
2904 request.bits_per_long = 0;
2905 break;
2906 }
2907
2908 request.session_id = channel->session_id;
2909 request.session_id_per_pid = channel->session_id_per_pid;
2910 /*
2911 * Request the application UID here so the metadata of that application can
2912 * be sent back. The channel UID corresponds to the user UID of the session
2913 * used for the rights on the stream file(s).
2914 */
2915 request.uid = channel->ust_app_uid;
2916 request.key = channel->key;
2917
2918 DBG("Sending metadata request to sessiond, session id %" PRIu64
2919 ", per-pid %" PRIu64 ", app UID %u and channek key %" PRIu64,
2920 request.session_id, request.session_id_per_pid, request.uid,
2921 request.key);
2922
2923 pthread_mutex_lock(&ctx->metadata_socket_lock);
2924
2925 health_code_update();
2926
2927 ret = lttcomm_send_unix_sock(ctx->consumer_metadata_socket, &request,
2928 sizeof(request));
2929 if (ret < 0) {
2930 ERR("Asking metadata to sessiond");
2931 goto end;
2932 }
2933
2934 health_code_update();
2935
2936 /* Receive the metadata from sessiond */
2937 ret = lttcomm_recv_unix_sock(ctx->consumer_metadata_socket, &msg,
2938 sizeof(msg));
2939 if (ret != sizeof(msg)) {
2940 DBG("Consumer received unexpected message size %d (expects %zu)",
2941 ret, sizeof(msg));
2942 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
2943 /*
2944 * The ret value might 0 meaning an orderly shutdown but this is ok
2945 * since the caller handles this.
2946 */
2947 goto end;
2948 }
2949
2950 health_code_update();
2951
2952 if (msg.cmd_type == LTTNG_ERR_UND) {
2953 /* No registry found */
2954 (void) consumer_send_status_msg(ctx->consumer_metadata_socket,
2955 ret_code);
2956 ret = 0;
2957 goto end;
2958 } else if (msg.cmd_type != LTTNG_CONSUMER_PUSH_METADATA) {
2959 ERR("Unexpected cmd_type received %d", msg.cmd_type);
2960 ret = -1;
2961 goto end;
2962 }
2963
2964 len = msg.u.push_metadata.len;
2965 key = msg.u.push_metadata.key;
2966 offset = msg.u.push_metadata.target_offset;
2967 version = msg.u.push_metadata.version;
2968
2969 assert(key == channel->key);
2970 if (len == 0) {
2971 DBG("No new metadata to receive for key %" PRIu64, key);
2972 }
2973
2974 health_code_update();
2975
2976 /* Tell session daemon we are ready to receive the metadata. */
2977 ret = consumer_send_status_msg(ctx->consumer_metadata_socket,
2978 LTTCOMM_CONSUMERD_SUCCESS);
2979 if (ret < 0 || len == 0) {
2980 /*
2981 * Somehow, the session daemon is not responding anymore or there is
2982 * nothing to receive.
2983 */
2984 goto end;
2985 }
2986
2987 health_code_update();
2988
2989 ret = lttng_ustconsumer_recv_metadata(ctx->consumer_metadata_socket,
2990 key, offset, len, version, channel, timer, wait);
2991 if (ret >= 0) {
2992 /*
2993 * Only send the status msg if the sessiond is alive meaning a positive
2994 * ret code.
2995 */
2996 (void) consumer_send_status_msg(ctx->consumer_metadata_socket, ret);
2997 }
2998 ret = 0;
2999
3000 end:
3001 health_code_update();
3002
3003 pthread_mutex_unlock(&ctx->metadata_socket_lock);
3004 return ret;
3005 }
3006
3007 /*
3008 * Return the ustctl call for the get stream id.
3009 */
3010 int lttng_ustconsumer_get_stream_id(struct lttng_consumer_stream *stream,
3011 uint64_t *stream_id)
3012 {
3013 assert(stream);
3014 assert(stream_id);
3015
3016 return ustctl_get_stream_id(stream->ustream, stream_id);
3017 }
This page took 0.12871 seconds and 5 git commands to generate.