Introduce "--blocking-timeout" channel parameter
[lttng-tools.git] / src / common / ust-consumer / ust-consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2017 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <lttng/ust-ctl.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <inttypes.h>
32 #include <unistd.h>
33 #include <urcu/list.h>
34 #include <signal.h>
35
36 #include <bin/lttng-consumerd/health-consumerd.h>
37 #include <common/common.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/relayd/relayd.h>
40 #include <common/compat/fcntl.h>
41 #include <common/compat/endian.h>
42 #include <common/consumer/consumer-metadata-cache.h>
43 #include <common/consumer/consumer-stream.h>
44 #include <common/consumer/consumer-timer.h>
45 #include <common/utils.h>
46 #include <common/index/index.h>
47
48 #include "ust-consumer.h"
49
50 #define INT_MAX_STR_LEN 12 /* includes \0 */
51
52 extern struct lttng_consumer_global_data consumer_data;
53 extern int consumer_poll_timeout;
54 extern volatile int consumer_quit;
55
56 /*
57 * Free channel object and all streams associated with it. This MUST be used
58 * only and only if the channel has _NEVER_ been added to the global channel
59 * hash table.
60 */
61 static void destroy_channel(struct lttng_consumer_channel *channel)
62 {
63 struct lttng_consumer_stream *stream, *stmp;
64
65 assert(channel);
66
67 DBG("UST consumer cleaning stream list");
68
69 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
70 send_node) {
71
72 health_code_update();
73
74 cds_list_del(&stream->send_node);
75 ustctl_destroy_stream(stream->ustream);
76 free(stream);
77 }
78
79 /*
80 * If a channel is available meaning that was created before the streams
81 * were, delete it.
82 */
83 if (channel->uchan) {
84 lttng_ustconsumer_del_channel(channel);
85 lttng_ustconsumer_free_channel(channel);
86 }
87 free(channel);
88 }
89
90 /*
91 * Add channel to internal consumer state.
92 *
93 * Returns 0 on success or else a negative value.
94 */
95 static int add_channel(struct lttng_consumer_channel *channel,
96 struct lttng_consumer_local_data *ctx)
97 {
98 int ret = 0;
99
100 assert(channel);
101 assert(ctx);
102
103 if (ctx->on_recv_channel != NULL) {
104 ret = ctx->on_recv_channel(channel);
105 if (ret == 0) {
106 ret = consumer_add_channel(channel, ctx);
107 } else if (ret < 0) {
108 /* Most likely an ENOMEM. */
109 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
110 goto error;
111 }
112 } else {
113 ret = consumer_add_channel(channel, ctx);
114 }
115
116 DBG("UST consumer channel added (key: %" PRIu64 ")", channel->key);
117
118 error:
119 return ret;
120 }
121
122 /*
123 * Allocate and return a consumer channel object.
124 */
125 static struct lttng_consumer_channel *allocate_channel(uint64_t session_id,
126 const char *pathname, const char *name, uid_t uid, gid_t gid,
127 uint64_t relayd_id, uint64_t key, enum lttng_event_output output,
128 uint64_t tracefile_size, uint64_t tracefile_count,
129 uint64_t session_id_per_pid, unsigned int monitor,
130 unsigned int live_timer_interval,
131 const char *root_shm_path, const char *shm_path)
132 {
133 assert(pathname);
134 assert(name);
135
136 return consumer_allocate_channel(key, session_id, pathname, name, uid,
137 gid, relayd_id, output, tracefile_size,
138 tracefile_count, session_id_per_pid, monitor,
139 live_timer_interval, root_shm_path, shm_path);
140 }
141
142 /*
143 * Allocate and return a consumer stream object. If _alloc_ret is not NULL, the
144 * error value if applicable is set in it else it is kept untouched.
145 *
146 * Return NULL on error else the newly allocated stream object.
147 */
148 static struct lttng_consumer_stream *allocate_stream(int cpu, int key,
149 struct lttng_consumer_channel *channel,
150 struct lttng_consumer_local_data *ctx, int *_alloc_ret)
151 {
152 int alloc_ret;
153 struct lttng_consumer_stream *stream = NULL;
154
155 assert(channel);
156 assert(ctx);
157
158 stream = consumer_allocate_stream(channel->key,
159 key,
160 LTTNG_CONSUMER_ACTIVE_STREAM,
161 channel->name,
162 channel->uid,
163 channel->gid,
164 channel->relayd_id,
165 channel->session_id,
166 cpu,
167 &alloc_ret,
168 channel->type,
169 channel->monitor);
170 if (stream == NULL) {
171 switch (alloc_ret) {
172 case -ENOENT:
173 /*
174 * We could not find the channel. Can happen if cpu hotplug
175 * happens while tearing down.
176 */
177 DBG3("Could not find channel");
178 break;
179 case -ENOMEM:
180 case -EINVAL:
181 default:
182 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
183 break;
184 }
185 goto error;
186 }
187
188 stream->chan = channel;
189
190 error:
191 if (_alloc_ret) {
192 *_alloc_ret = alloc_ret;
193 }
194 return stream;
195 }
196
197 /*
198 * Send the given stream pointer to the corresponding thread.
199 *
200 * Returns 0 on success else a negative value.
201 */
202 static int send_stream_to_thread(struct lttng_consumer_stream *stream,
203 struct lttng_consumer_local_data *ctx)
204 {
205 int ret;
206 struct lttng_pipe *stream_pipe;
207
208 /* Get the right pipe where the stream will be sent. */
209 if (stream->metadata_flag) {
210 ret = consumer_add_metadata_stream(stream);
211 if (ret) {
212 ERR("Consumer add metadata stream %" PRIu64 " failed.",
213 stream->key);
214 goto error;
215 }
216 stream_pipe = ctx->consumer_metadata_pipe;
217 } else {
218 ret = consumer_add_data_stream(stream);
219 if (ret) {
220 ERR("Consumer add stream %" PRIu64 " failed.",
221 stream->key);
222 goto error;
223 }
224 stream_pipe = ctx->consumer_data_pipe;
225 }
226
227 /*
228 * From this point on, the stream's ownership has been moved away from
229 * the channel and becomes globally visible.
230 */
231 stream->globally_visible = 1;
232
233 ret = lttng_pipe_write(stream_pipe, &stream, sizeof(stream));
234 if (ret < 0) {
235 ERR("Consumer write %s stream to pipe %d",
236 stream->metadata_flag ? "metadata" : "data",
237 lttng_pipe_get_writefd(stream_pipe));
238 if (stream->metadata_flag) {
239 consumer_del_stream_for_metadata(stream);
240 } else {
241 consumer_del_stream_for_data(stream);
242 }
243 }
244 error:
245 return ret;
246 }
247
248 static
249 int get_stream_shm_path(char *stream_shm_path, const char *shm_path, int cpu)
250 {
251 char cpu_nr[INT_MAX_STR_LEN]; /* int max len */
252 int ret;
253
254 strncpy(stream_shm_path, shm_path, PATH_MAX);
255 stream_shm_path[PATH_MAX - 1] = '\0';
256 ret = snprintf(cpu_nr, INT_MAX_STR_LEN, "%i", cpu);
257 if (ret < 0) {
258 PERROR("snprintf");
259 goto end;
260 }
261 strncat(stream_shm_path, cpu_nr,
262 PATH_MAX - strlen(stream_shm_path) - 1);
263 ret = 0;
264 end:
265 return ret;
266 }
267
268 /*
269 * Create streams for the given channel using liblttng-ust-ctl.
270 *
271 * Return 0 on success else a negative value.
272 */
273 static int create_ust_streams(struct lttng_consumer_channel *channel,
274 struct lttng_consumer_local_data *ctx)
275 {
276 int ret, cpu = 0;
277 struct ustctl_consumer_stream *ustream;
278 struct lttng_consumer_stream *stream;
279
280 assert(channel);
281 assert(ctx);
282
283 /*
284 * While a stream is available from ustctl. When NULL is returned, we've
285 * reached the end of the possible stream for the channel.
286 */
287 while ((ustream = ustctl_create_stream(channel->uchan, cpu))) {
288 int wait_fd;
289 int ust_metadata_pipe[2];
290
291 health_code_update();
292
293 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && channel->monitor) {
294 ret = utils_create_pipe_cloexec_nonblock(ust_metadata_pipe);
295 if (ret < 0) {
296 ERR("Create ust metadata poll pipe");
297 goto error;
298 }
299 wait_fd = ust_metadata_pipe[0];
300 } else {
301 wait_fd = ustctl_stream_get_wait_fd(ustream);
302 }
303
304 /* Allocate consumer stream object. */
305 stream = allocate_stream(cpu, wait_fd, channel, ctx, &ret);
306 if (!stream) {
307 goto error_alloc;
308 }
309 stream->ustream = ustream;
310 /*
311 * Store it so we can save multiple function calls afterwards since
312 * this value is used heavily in the stream threads. This is UST
313 * specific so this is why it's done after allocation.
314 */
315 stream->wait_fd = wait_fd;
316
317 /*
318 * Increment channel refcount since the channel reference has now been
319 * assigned in the allocation process above.
320 */
321 if (stream->chan->monitor) {
322 uatomic_inc(&stream->chan->refcount);
323 }
324
325 /*
326 * Order is important this is why a list is used. On error, the caller
327 * should clean this list.
328 */
329 cds_list_add_tail(&stream->send_node, &channel->streams.head);
330
331 ret = ustctl_get_max_subbuf_size(stream->ustream,
332 &stream->max_sb_size);
333 if (ret < 0) {
334 ERR("ustctl_get_max_subbuf_size failed for stream %s",
335 stream->name);
336 goto error;
337 }
338
339 /* Do actions once stream has been received. */
340 if (ctx->on_recv_stream) {
341 ret = ctx->on_recv_stream(stream);
342 if (ret < 0) {
343 goto error;
344 }
345 }
346
347 DBG("UST consumer add stream %s (key: %" PRIu64 ") with relayd id %" PRIu64,
348 stream->name, stream->key, stream->relayd_stream_id);
349
350 /* Set next CPU stream. */
351 channel->streams.count = ++cpu;
352
353 /* Keep stream reference when creating metadata. */
354 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
355 channel->metadata_stream = stream;
356 if (channel->monitor) {
357 /* Set metadata poll pipe if we created one */
358 memcpy(stream->ust_metadata_poll_pipe,
359 ust_metadata_pipe,
360 sizeof(ust_metadata_pipe));
361 }
362 }
363 }
364
365 return 0;
366
367 error:
368 error_alloc:
369 return ret;
370 }
371
372 /*
373 * create_posix_shm is never called concurrently within a process.
374 */
375 static
376 int create_posix_shm(void)
377 {
378 char tmp_name[NAME_MAX];
379 int shmfd, ret;
380
381 ret = snprintf(tmp_name, NAME_MAX, "/ust-shm-consumer-%d", getpid());
382 if (ret < 0) {
383 PERROR("snprintf");
384 return -1;
385 }
386 /*
387 * Allocate shm, and immediately unlink its shm oject, keeping
388 * only the file descriptor as a reference to the object.
389 * We specifically do _not_ use the / at the beginning of the
390 * pathname so that some OS implementations can keep it local to
391 * the process (POSIX leaves this implementation-defined).
392 */
393 shmfd = shm_open(tmp_name, O_CREAT | O_EXCL | O_RDWR, 0700);
394 if (shmfd < 0) {
395 PERROR("shm_open");
396 goto error_shm_open;
397 }
398 ret = shm_unlink(tmp_name);
399 if (ret < 0 && errno != ENOENT) {
400 PERROR("shm_unlink");
401 goto error_shm_release;
402 }
403 return shmfd;
404
405 error_shm_release:
406 ret = close(shmfd);
407 if (ret) {
408 PERROR("close");
409 }
410 error_shm_open:
411 return -1;
412 }
413
414 static int open_ust_stream_fd(struct lttng_consumer_channel *channel,
415 struct ustctl_consumer_channel_attr *attr,
416 int cpu)
417 {
418 char shm_path[PATH_MAX];
419 int ret;
420
421 if (!channel->shm_path[0]) {
422 return create_posix_shm();
423 }
424 ret = get_stream_shm_path(shm_path, channel->shm_path, cpu);
425 if (ret) {
426 goto error_shm_path;
427 }
428 return run_as_open(shm_path,
429 O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR,
430 channel->uid, channel->gid);
431
432 error_shm_path:
433 return -1;
434 }
435
436 /*
437 * Create an UST channel with the given attributes and send it to the session
438 * daemon using the ust ctl API.
439 *
440 * Return 0 on success or else a negative value.
441 */
442 static int create_ust_channel(struct lttng_consumer_channel *channel,
443 struct ustctl_consumer_channel_attr *attr,
444 struct ustctl_consumer_channel **ust_chanp)
445 {
446 int ret, nr_stream_fds, i, j;
447 int *stream_fds;
448 struct ustctl_consumer_channel *ust_channel;
449
450 assert(channel);
451 assert(attr);
452 assert(ust_chanp);
453
454 DBG3("Creating channel to ustctl with attr: [overwrite: %d, "
455 "subbuf_size: %" PRIu64 ", num_subbuf: %" PRIu64 ", "
456 "switch_timer_interval: %u, read_timer_interval: %u, "
457 "output: %d, type: %d", attr->overwrite, attr->subbuf_size,
458 attr->num_subbuf, attr->switch_timer_interval,
459 attr->read_timer_interval, attr->output, attr->type);
460
461 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA)
462 nr_stream_fds = 1;
463 else
464 nr_stream_fds = ustctl_get_nr_stream_per_channel();
465 stream_fds = zmalloc(nr_stream_fds * sizeof(*stream_fds));
466 if (!stream_fds) {
467 ret = -1;
468 goto error_alloc;
469 }
470 for (i = 0; i < nr_stream_fds; i++) {
471 stream_fds[i] = open_ust_stream_fd(channel, attr, i);
472 if (stream_fds[i] < 0) {
473 ret = -1;
474 goto error_open;
475 }
476 }
477 ust_channel = ustctl_create_channel(attr, stream_fds, nr_stream_fds);
478 if (!ust_channel) {
479 ret = -1;
480 goto error_create;
481 }
482 channel->nr_stream_fds = nr_stream_fds;
483 channel->stream_fds = stream_fds;
484 *ust_chanp = ust_channel;
485
486 return 0;
487
488 error_create:
489 error_open:
490 for (j = i - 1; j >= 0; j--) {
491 int closeret;
492
493 closeret = close(stream_fds[j]);
494 if (closeret) {
495 PERROR("close");
496 }
497 if (channel->shm_path[0]) {
498 char shm_path[PATH_MAX];
499
500 closeret = get_stream_shm_path(shm_path,
501 channel->shm_path, j);
502 if (closeret) {
503 ERR("Cannot get stream shm path");
504 }
505 closeret = run_as_unlink(shm_path,
506 channel->uid, channel->gid);
507 if (closeret) {
508 PERROR("unlink %s", shm_path);
509 }
510 }
511 }
512 /* Try to rmdir all directories under shm_path root. */
513 if (channel->root_shm_path[0]) {
514 (void) run_as_rmdir_recursive(channel->root_shm_path,
515 channel->uid, channel->gid);
516 }
517 free(stream_fds);
518 error_alloc:
519 return ret;
520 }
521
522 /*
523 * Send a single given stream to the session daemon using the sock.
524 *
525 * Return 0 on success else a negative value.
526 */
527 static int send_sessiond_stream(int sock, struct lttng_consumer_stream *stream)
528 {
529 int ret;
530
531 assert(stream);
532 assert(sock >= 0);
533
534 DBG("UST consumer sending stream %" PRIu64 " to sessiond", stream->key);
535
536 /* Send stream to session daemon. */
537 ret = ustctl_send_stream_to_sessiond(sock, stream->ustream);
538 if (ret < 0) {
539 goto error;
540 }
541
542 error:
543 return ret;
544 }
545
546 /*
547 * Send channel to sessiond.
548 *
549 * Return 0 on success or else a negative value.
550 */
551 static int send_sessiond_channel(int sock,
552 struct lttng_consumer_channel *channel,
553 struct lttng_consumer_local_data *ctx, int *relayd_error)
554 {
555 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
556 struct lttng_consumer_stream *stream;
557 uint64_t net_seq_idx = -1ULL;
558
559 assert(channel);
560 assert(ctx);
561 assert(sock >= 0);
562
563 DBG("UST consumer sending channel %s to sessiond", channel->name);
564
565 if (channel->relayd_id != (uint64_t) -1ULL) {
566 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
567
568 health_code_update();
569
570 /* Try to send the stream to the relayd if one is available. */
571 ret = consumer_send_relayd_stream(stream, stream->chan->pathname);
572 if (ret < 0) {
573 /*
574 * Flag that the relayd was the problem here probably due to a
575 * communicaton error on the socket.
576 */
577 if (relayd_error) {
578 *relayd_error = 1;
579 }
580 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
581 }
582 if (net_seq_idx == -1ULL) {
583 net_seq_idx = stream->net_seq_idx;
584 }
585 }
586 }
587
588 /* Inform sessiond that we are about to send channel and streams. */
589 ret = consumer_send_status_msg(sock, ret_code);
590 if (ret < 0 || ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
591 /*
592 * Either the session daemon is not responding or the relayd died so we
593 * stop now.
594 */
595 goto error;
596 }
597
598 /* Send channel to sessiond. */
599 ret = ustctl_send_channel_to_sessiond(sock, channel->uchan);
600 if (ret < 0) {
601 goto error;
602 }
603
604 ret = ustctl_channel_close_wakeup_fd(channel->uchan);
605 if (ret < 0) {
606 goto error;
607 }
608
609 /* The channel was sent successfully to the sessiond at this point. */
610 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
611
612 health_code_update();
613
614 /* Send stream to session daemon. */
615 ret = send_sessiond_stream(sock, stream);
616 if (ret < 0) {
617 goto error;
618 }
619 }
620
621 /* Tell sessiond there is no more stream. */
622 ret = ustctl_send_stream_to_sessiond(sock, NULL);
623 if (ret < 0) {
624 goto error;
625 }
626
627 DBG("UST consumer NULL stream sent to sessiond");
628
629 return 0;
630
631 error:
632 if (ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
633 ret = -1;
634 }
635 return ret;
636 }
637
638 /*
639 * Creates a channel and streams and add the channel it to the channel internal
640 * state. The created stream must ONLY be sent once the GET_CHANNEL command is
641 * received.
642 *
643 * Return 0 on success or else, a negative value is returned and the channel
644 * MUST be destroyed by consumer_del_channel().
645 */
646 static int ask_channel(struct lttng_consumer_local_data *ctx, int sock,
647 struct lttng_consumer_channel *channel,
648 struct ustctl_consumer_channel_attr *attr)
649 {
650 int ret;
651
652 assert(ctx);
653 assert(channel);
654 assert(attr);
655
656 /*
657 * This value is still used by the kernel consumer since for the kernel,
658 * the stream ownership is not IN the consumer so we need to have the
659 * number of left stream that needs to be initialized so we can know when
660 * to delete the channel (see consumer.c).
661 *
662 * As for the user space tracer now, the consumer creates and sends the
663 * stream to the session daemon which only sends them to the application
664 * once every stream of a channel is received making this value useless
665 * because we they will be added to the poll thread before the application
666 * receives them. This ensures that a stream can not hang up during
667 * initilization of a channel.
668 */
669 channel->nb_init_stream_left = 0;
670
671 /* The reply msg status is handled in the following call. */
672 ret = create_ust_channel(channel, attr, &channel->uchan);
673 if (ret < 0) {
674 goto end;
675 }
676
677 channel->wait_fd = ustctl_channel_get_wait_fd(channel->uchan);
678
679 /*
680 * For the snapshots (no monitor), we create the metadata streams
681 * on demand, not during the channel creation.
682 */
683 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && !channel->monitor) {
684 ret = 0;
685 goto end;
686 }
687
688 /* Open all streams for this channel. */
689 ret = create_ust_streams(channel, ctx);
690 if (ret < 0) {
691 goto end;
692 }
693
694 end:
695 return ret;
696 }
697
698 /*
699 * Send all stream of a channel to the right thread handling it.
700 *
701 * On error, return a negative value else 0 on success.
702 */
703 static int send_streams_to_thread(struct lttng_consumer_channel *channel,
704 struct lttng_consumer_local_data *ctx)
705 {
706 int ret = 0;
707 struct lttng_consumer_stream *stream, *stmp;
708
709 assert(channel);
710 assert(ctx);
711
712 /* Send streams to the corresponding thread. */
713 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
714 send_node) {
715
716 health_code_update();
717
718 /* Sending the stream to the thread. */
719 ret = send_stream_to_thread(stream, ctx);
720 if (ret < 0) {
721 /*
722 * If we are unable to send the stream to the thread, there is
723 * a big problem so just stop everything.
724 */
725 /* Remove node from the channel stream list. */
726 cds_list_del(&stream->send_node);
727 goto error;
728 }
729
730 /* Remove node from the channel stream list. */
731 cds_list_del(&stream->send_node);
732
733 }
734
735 error:
736 return ret;
737 }
738
739 /*
740 * Flush channel's streams using the given key to retrieve the channel.
741 *
742 * Return 0 on success else an LTTng error code.
743 */
744 static int flush_channel(uint64_t chan_key)
745 {
746 int ret = 0;
747 struct lttng_consumer_channel *channel;
748 struct lttng_consumer_stream *stream;
749 struct lttng_ht *ht;
750 struct lttng_ht_iter iter;
751
752 DBG("UST consumer flush channel key %" PRIu64, chan_key);
753
754 rcu_read_lock();
755 channel = consumer_find_channel(chan_key);
756 if (!channel) {
757 ERR("UST consumer flush channel %" PRIu64 " not found", chan_key);
758 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
759 goto error;
760 }
761
762 ht = consumer_data.stream_per_chan_id_ht;
763
764 /* For each stream of the channel id, flush it. */
765 cds_lfht_for_each_entry_duplicate(ht->ht,
766 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
767 &channel->key, &iter.iter, stream, node_channel_id.node) {
768
769 health_code_update();
770
771 pthread_mutex_lock(&stream->lock);
772 if (!stream->quiescent) {
773 ustctl_flush_buffer(stream->ustream, 0);
774 stream->quiescent = true;
775 }
776 pthread_mutex_unlock(&stream->lock);
777 }
778 error:
779 rcu_read_unlock();
780 return ret;
781 }
782
783 /*
784 * Clear quiescent state from channel's streams using the given key to
785 * retrieve the channel.
786 *
787 * Return 0 on success else an LTTng error code.
788 */
789 static int clear_quiescent_channel(uint64_t chan_key)
790 {
791 int ret = 0;
792 struct lttng_consumer_channel *channel;
793 struct lttng_consumer_stream *stream;
794 struct lttng_ht *ht;
795 struct lttng_ht_iter iter;
796
797 DBG("UST consumer clear quiescent channel key %" PRIu64, chan_key);
798
799 rcu_read_lock();
800 channel = consumer_find_channel(chan_key);
801 if (!channel) {
802 ERR("UST consumer clear quiescent channel %" PRIu64 " not found", chan_key);
803 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
804 goto error;
805 }
806
807 ht = consumer_data.stream_per_chan_id_ht;
808
809 /* For each stream of the channel id, clear quiescent state. */
810 cds_lfht_for_each_entry_duplicate(ht->ht,
811 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
812 &channel->key, &iter.iter, stream, node_channel_id.node) {
813
814 health_code_update();
815
816 pthread_mutex_lock(&stream->lock);
817 stream->quiescent = false;
818 pthread_mutex_unlock(&stream->lock);
819 }
820 error:
821 rcu_read_unlock();
822 return ret;
823 }
824
825 /*
826 * Close metadata stream wakeup_fd using the given key to retrieve the channel.
827 * RCU read side lock MUST be acquired before calling this function.
828 *
829 * Return 0 on success else an LTTng error code.
830 */
831 static int close_metadata(uint64_t chan_key)
832 {
833 int ret = 0;
834 struct lttng_consumer_channel *channel;
835
836 DBG("UST consumer close metadata key %" PRIu64, chan_key);
837
838 channel = consumer_find_channel(chan_key);
839 if (!channel) {
840 /*
841 * This is possible if the metadata thread has issue a delete because
842 * the endpoint point of the stream hung up. There is no way the
843 * session daemon can know about it thus use a DBG instead of an actual
844 * error.
845 */
846 DBG("UST consumer close metadata %" PRIu64 " not found", chan_key);
847 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
848 goto error;
849 }
850
851 pthread_mutex_lock(&consumer_data.lock);
852 pthread_mutex_lock(&channel->lock);
853
854 if (cds_lfht_is_node_deleted(&channel->node.node)) {
855 goto error_unlock;
856 }
857
858 lttng_ustconsumer_close_metadata(channel);
859
860 error_unlock:
861 pthread_mutex_unlock(&channel->lock);
862 pthread_mutex_unlock(&consumer_data.lock);
863 error:
864 return ret;
865 }
866
867 /*
868 * RCU read side lock MUST be acquired before calling this function.
869 *
870 * Return 0 on success else an LTTng error code.
871 */
872 static int setup_metadata(struct lttng_consumer_local_data *ctx, uint64_t key)
873 {
874 int ret;
875 struct lttng_consumer_channel *metadata;
876
877 DBG("UST consumer setup metadata key %" PRIu64, key);
878
879 metadata = consumer_find_channel(key);
880 if (!metadata) {
881 ERR("UST consumer push metadata %" PRIu64 " not found", key);
882 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
883 goto end;
884 }
885
886 /*
887 * In no monitor mode, the metadata channel has no stream(s) so skip the
888 * ownership transfer to the metadata thread.
889 */
890 if (!metadata->monitor) {
891 DBG("Metadata channel in no monitor");
892 ret = 0;
893 goto end;
894 }
895
896 /*
897 * Send metadata stream to relayd if one available. Availability is
898 * known if the stream is still in the list of the channel.
899 */
900 if (cds_list_empty(&metadata->streams.head)) {
901 ERR("Metadata channel key %" PRIu64 ", no stream available.", key);
902 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
903 goto error_no_stream;
904 }
905
906 /* Send metadata stream to relayd if needed. */
907 if (metadata->metadata_stream->net_seq_idx != (uint64_t) -1ULL) {
908 ret = consumer_send_relayd_stream(metadata->metadata_stream,
909 metadata->pathname);
910 if (ret < 0) {
911 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
912 goto error;
913 }
914 ret = consumer_send_relayd_streams_sent(
915 metadata->metadata_stream->net_seq_idx);
916 if (ret < 0) {
917 ret = LTTCOMM_CONSUMERD_RELAYD_FAIL;
918 goto error;
919 }
920 }
921
922 ret = send_streams_to_thread(metadata, ctx);
923 if (ret < 0) {
924 /*
925 * If we are unable to send the stream to the thread, there is
926 * a big problem so just stop everything.
927 */
928 ret = LTTCOMM_CONSUMERD_FATAL;
929 goto error;
930 }
931 /* List MUST be empty after or else it could be reused. */
932 assert(cds_list_empty(&metadata->streams.head));
933
934 ret = 0;
935 goto end;
936
937 error:
938 /*
939 * Delete metadata channel on error. At this point, the metadata stream can
940 * NOT be monitored by the metadata thread thus having the guarantee that
941 * the stream is still in the local stream list of the channel. This call
942 * will make sure to clean that list.
943 */
944 consumer_stream_destroy(metadata->metadata_stream, NULL);
945 cds_list_del(&metadata->metadata_stream->send_node);
946 metadata->metadata_stream = NULL;
947 error_no_stream:
948 end:
949 return ret;
950 }
951
952 /*
953 * Snapshot the whole metadata.
954 *
955 * Returns 0 on success, < 0 on error
956 */
957 static int snapshot_metadata(uint64_t key, char *path, uint64_t relayd_id,
958 struct lttng_consumer_local_data *ctx)
959 {
960 int ret = 0;
961 struct lttng_consumer_channel *metadata_channel;
962 struct lttng_consumer_stream *metadata_stream;
963
964 assert(path);
965 assert(ctx);
966
967 DBG("UST consumer snapshot metadata with key %" PRIu64 " at path %s",
968 key, path);
969
970 rcu_read_lock();
971
972 metadata_channel = consumer_find_channel(key);
973 if (!metadata_channel) {
974 ERR("UST snapshot metadata channel not found for key %" PRIu64,
975 key);
976 ret = -1;
977 goto error;
978 }
979 assert(!metadata_channel->monitor);
980
981 health_code_update();
982
983 /*
984 * Ask the sessiond if we have new metadata waiting and update the
985 * consumer metadata cache.
986 */
987 ret = lttng_ustconsumer_request_metadata(ctx, metadata_channel, 0, 1);
988 if (ret < 0) {
989 goto error;
990 }
991
992 health_code_update();
993
994 /*
995 * The metadata stream is NOT created in no monitor mode when the channel
996 * is created on a sessiond ask channel command.
997 */
998 ret = create_ust_streams(metadata_channel, ctx);
999 if (ret < 0) {
1000 goto error;
1001 }
1002
1003 metadata_stream = metadata_channel->metadata_stream;
1004 assert(metadata_stream);
1005
1006 if (relayd_id != (uint64_t) -1ULL) {
1007 metadata_stream->net_seq_idx = relayd_id;
1008 ret = consumer_send_relayd_stream(metadata_stream, path);
1009 if (ret < 0) {
1010 goto error_stream;
1011 }
1012 } else {
1013 ret = utils_create_stream_file(path, metadata_stream->name,
1014 metadata_stream->chan->tracefile_size,
1015 metadata_stream->tracefile_count_current,
1016 metadata_stream->uid, metadata_stream->gid, NULL);
1017 if (ret < 0) {
1018 goto error_stream;
1019 }
1020 metadata_stream->out_fd = ret;
1021 metadata_stream->tracefile_size_current = 0;
1022 }
1023
1024 do {
1025 health_code_update();
1026
1027 ret = lttng_consumer_read_subbuffer(metadata_stream, ctx);
1028 if (ret < 0) {
1029 goto error_stream;
1030 }
1031 } while (ret > 0);
1032
1033 error_stream:
1034 /*
1035 * Clean up the stream completly because the next snapshot will use a new
1036 * metadata stream.
1037 */
1038 consumer_stream_destroy(metadata_stream, NULL);
1039 cds_list_del(&metadata_stream->send_node);
1040 metadata_channel->metadata_stream = NULL;
1041
1042 error:
1043 rcu_read_unlock();
1044 return ret;
1045 }
1046
1047 /*
1048 * Take a snapshot of all the stream of a channel.
1049 *
1050 * Returns 0 on success, < 0 on error
1051 */
1052 static int snapshot_channel(uint64_t key, char *path, uint64_t relayd_id,
1053 uint64_t nb_packets_per_stream, struct lttng_consumer_local_data *ctx)
1054 {
1055 int ret;
1056 unsigned use_relayd = 0;
1057 unsigned long consumed_pos, produced_pos;
1058 struct lttng_consumer_channel *channel;
1059 struct lttng_consumer_stream *stream;
1060
1061 assert(path);
1062 assert(ctx);
1063
1064 rcu_read_lock();
1065
1066 if (relayd_id != (uint64_t) -1ULL) {
1067 use_relayd = 1;
1068 }
1069
1070 channel = consumer_find_channel(key);
1071 if (!channel) {
1072 ERR("UST snapshot channel not found for key %" PRIu64, key);
1073 ret = -1;
1074 goto error;
1075 }
1076 assert(!channel->monitor);
1077 DBG("UST consumer snapshot channel %" PRIu64, key);
1078
1079 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
1080 /* Are we at a position _before_ the first available packet ? */
1081 bool before_first_packet = true;
1082
1083 health_code_update();
1084
1085 /* Lock stream because we are about to change its state. */
1086 pthread_mutex_lock(&stream->lock);
1087 stream->net_seq_idx = relayd_id;
1088
1089 if (use_relayd) {
1090 ret = consumer_send_relayd_stream(stream, path);
1091 if (ret < 0) {
1092 goto error_unlock;
1093 }
1094 } else {
1095 ret = utils_create_stream_file(path, stream->name,
1096 stream->chan->tracefile_size,
1097 stream->tracefile_count_current,
1098 stream->uid, stream->gid, NULL);
1099 if (ret < 0) {
1100 goto error_unlock;
1101 }
1102 stream->out_fd = ret;
1103 stream->tracefile_size_current = 0;
1104
1105 DBG("UST consumer snapshot stream %s/%s (%" PRIu64 ")", path,
1106 stream->name, stream->key);
1107 }
1108 if (relayd_id != -1ULL) {
1109 ret = consumer_send_relayd_streams_sent(relayd_id);
1110 if (ret < 0) {
1111 goto error_unlock;
1112 }
1113 }
1114
1115 /*
1116 * If tracing is active, we want to perform a "full" buffer flush.
1117 * Else, if quiescent, it has already been done by the prior stop.
1118 */
1119 if (!stream->quiescent) {
1120 ustctl_flush_buffer(stream->ustream, 0);
1121 }
1122
1123 ret = lttng_ustconsumer_take_snapshot(stream);
1124 if (ret < 0) {
1125 ERR("Taking UST snapshot");
1126 goto error_unlock;
1127 }
1128
1129 ret = lttng_ustconsumer_get_produced_snapshot(stream, &produced_pos);
1130 if (ret < 0) {
1131 ERR("Produced UST snapshot position");
1132 goto error_unlock;
1133 }
1134
1135 ret = lttng_ustconsumer_get_consumed_snapshot(stream, &consumed_pos);
1136 if (ret < 0) {
1137 ERR("Consumerd UST snapshot position");
1138 goto error_unlock;
1139 }
1140
1141 /*
1142 * The original value is sent back if max stream size is larger than
1143 * the possible size of the snapshot. Also, we assume that the session
1144 * daemon should never send a maximum stream size that is lower than
1145 * subbuffer size.
1146 */
1147 consumed_pos = consumer_get_consume_start_pos(consumed_pos,
1148 produced_pos, nb_packets_per_stream,
1149 stream->max_sb_size);
1150
1151 while (consumed_pos < produced_pos) {
1152 ssize_t read_len;
1153 unsigned long len, padded_len;
1154 int lost_packet = 0;
1155
1156 health_code_update();
1157
1158 DBG("UST consumer taking snapshot at pos %lu", consumed_pos);
1159
1160 ret = ustctl_get_subbuf(stream->ustream, &consumed_pos);
1161 if (ret < 0) {
1162 if (ret != -EAGAIN) {
1163 PERROR("ustctl_get_subbuf snapshot");
1164 goto error_close_stream;
1165 }
1166 DBG("UST consumer get subbuf failed. Skipping it.");
1167 consumed_pos += stream->max_sb_size;
1168
1169 /*
1170 * Start accounting lost packets only when we
1171 * already have extracted packets (to match the
1172 * content of the final snapshot).
1173 */
1174 if (!before_first_packet) {
1175 lost_packet = 1;
1176 }
1177 continue;
1178 }
1179
1180 ret = ustctl_get_subbuf_size(stream->ustream, &len);
1181 if (ret < 0) {
1182 ERR("Snapshot ustctl_get_subbuf_size");
1183 goto error_put_subbuf;
1184 }
1185
1186 ret = ustctl_get_padded_subbuf_size(stream->ustream, &padded_len);
1187 if (ret < 0) {
1188 ERR("Snapshot ustctl_get_padded_subbuf_size");
1189 goto error_put_subbuf;
1190 }
1191
1192 read_len = lttng_consumer_on_read_subbuffer_mmap(ctx, stream, len,
1193 padded_len - len, NULL);
1194 if (use_relayd) {
1195 if (read_len != len) {
1196 ret = -EPERM;
1197 goto error_put_subbuf;
1198 }
1199 } else {
1200 if (read_len != padded_len) {
1201 ret = -EPERM;
1202 goto error_put_subbuf;
1203 }
1204 }
1205
1206 ret = ustctl_put_subbuf(stream->ustream);
1207 if (ret < 0) {
1208 ERR("Snapshot ustctl_put_subbuf");
1209 goto error_close_stream;
1210 }
1211 consumed_pos += stream->max_sb_size;
1212
1213 /*
1214 * Only account lost packets located between
1215 * succesfully extracted packets (do not account before
1216 * and after since they are not visible in the
1217 * resulting snapshot).
1218 */
1219 stream->chan->lost_packets += lost_packet;
1220 lost_packet = 0;
1221 before_first_packet = false;
1222 }
1223
1224 /* Simply close the stream so we can use it on the next snapshot. */
1225 consumer_stream_close(stream);
1226 pthread_mutex_unlock(&stream->lock);
1227 }
1228
1229 rcu_read_unlock();
1230 return 0;
1231
1232 error_put_subbuf:
1233 if (ustctl_put_subbuf(stream->ustream) < 0) {
1234 ERR("Snapshot ustctl_put_subbuf");
1235 }
1236 error_close_stream:
1237 consumer_stream_close(stream);
1238 error_unlock:
1239 pthread_mutex_unlock(&stream->lock);
1240 error:
1241 rcu_read_unlock();
1242 return ret;
1243 }
1244
1245 /*
1246 * Receive the metadata updates from the sessiond. Supports receiving
1247 * overlapping metadata, but is needs to always belong to a contiguous
1248 * range starting from 0.
1249 * Be careful about the locks held when calling this function: it needs
1250 * the metadata cache flush to concurrently progress in order to
1251 * complete.
1252 */
1253 int lttng_ustconsumer_recv_metadata(int sock, uint64_t key, uint64_t offset,
1254 uint64_t len, uint64_t version,
1255 struct lttng_consumer_channel *channel, int timer, int wait)
1256 {
1257 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1258 char *metadata_str;
1259
1260 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key, len);
1261
1262 metadata_str = zmalloc(len * sizeof(char));
1263 if (!metadata_str) {
1264 PERROR("zmalloc metadata string");
1265 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
1266 goto end;
1267 }
1268
1269 health_code_update();
1270
1271 /* Receive metadata string. */
1272 ret = lttcomm_recv_unix_sock(sock, metadata_str, len);
1273 if (ret < 0) {
1274 /* Session daemon is dead so return gracefully. */
1275 ret_code = ret;
1276 goto end_free;
1277 }
1278
1279 health_code_update();
1280
1281 pthread_mutex_lock(&channel->metadata_cache->lock);
1282 ret = consumer_metadata_cache_write(channel, offset, len, version,
1283 metadata_str);
1284 if (ret < 0) {
1285 /* Unable to handle metadata. Notify session daemon. */
1286 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1287 /*
1288 * Skip metadata flush on write error since the offset and len might
1289 * not have been updated which could create an infinite loop below when
1290 * waiting for the metadata cache to be flushed.
1291 */
1292 pthread_mutex_unlock(&channel->metadata_cache->lock);
1293 goto end_free;
1294 }
1295 pthread_mutex_unlock(&channel->metadata_cache->lock);
1296
1297 if (!wait) {
1298 goto end_free;
1299 }
1300 while (consumer_metadata_cache_flushed(channel, offset + len, timer)) {
1301 DBG("Waiting for metadata to be flushed");
1302
1303 health_code_update();
1304
1305 usleep(DEFAULT_METADATA_AVAILABILITY_WAIT_TIME);
1306 }
1307
1308 end_free:
1309 free(metadata_str);
1310 end:
1311 return ret_code;
1312 }
1313
1314 /*
1315 * Receive command from session daemon and process it.
1316 *
1317 * Return 1 on success else a negative value or 0.
1318 */
1319 int lttng_ustconsumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1320 int sock, struct pollfd *consumer_sockpoll)
1321 {
1322 ssize_t ret;
1323 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1324 struct lttcomm_consumer_msg msg;
1325 struct lttng_consumer_channel *channel = NULL;
1326
1327 health_code_update();
1328
1329 ret = lttcomm_recv_unix_sock(sock, &msg, sizeof(msg));
1330 if (ret != sizeof(msg)) {
1331 DBG("Consumer received unexpected message size %zd (expects %zu)",
1332 ret, sizeof(msg));
1333 /*
1334 * The ret value might 0 meaning an orderly shutdown but this is ok
1335 * since the caller handles this.
1336 */
1337 if (ret > 0) {
1338 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
1339 ret = -1;
1340 }
1341 return ret;
1342 }
1343
1344 health_code_update();
1345
1346 /* deprecated */
1347 assert(msg.cmd_type != LTTNG_CONSUMER_STOP);
1348
1349 health_code_update();
1350
1351 /* relayd needs RCU read-side lock */
1352 rcu_read_lock();
1353
1354 switch (msg.cmd_type) {
1355 case LTTNG_CONSUMER_ADD_RELAYD_SOCKET:
1356 {
1357 /* Session daemon status message are handled in the following call. */
1358 ret = consumer_add_relayd_socket(msg.u.relayd_sock.net_index,
1359 msg.u.relayd_sock.type, ctx, sock, consumer_sockpoll,
1360 &msg.u.relayd_sock.sock, msg.u.relayd_sock.session_id,
1361 msg.u.relayd_sock.relayd_session_id);
1362 goto end_nosignal;
1363 }
1364 case LTTNG_CONSUMER_DESTROY_RELAYD:
1365 {
1366 uint64_t index = msg.u.destroy_relayd.net_seq_idx;
1367 struct consumer_relayd_sock_pair *relayd;
1368
1369 DBG("UST consumer destroying relayd %" PRIu64, index);
1370
1371 /* Get relayd reference if exists. */
1372 relayd = consumer_find_relayd(index);
1373 if (relayd == NULL) {
1374 DBG("Unable to find relayd %" PRIu64, index);
1375 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
1376 }
1377
1378 /*
1379 * Each relayd socket pair has a refcount of stream attached to it
1380 * which tells if the relayd is still active or not depending on the
1381 * refcount value.
1382 *
1383 * This will set the destroy flag of the relayd object and destroy it
1384 * if the refcount reaches zero when called.
1385 *
1386 * The destroy can happen either here or when a stream fd hangs up.
1387 */
1388 if (relayd) {
1389 consumer_flag_relayd_for_destroy(relayd);
1390 }
1391
1392 goto end_msg_sessiond;
1393 }
1394 case LTTNG_CONSUMER_UPDATE_STREAM:
1395 {
1396 rcu_read_unlock();
1397 return -ENOSYS;
1398 }
1399 case LTTNG_CONSUMER_DATA_PENDING:
1400 {
1401 int ret, is_data_pending;
1402 uint64_t id = msg.u.data_pending.session_id;
1403
1404 DBG("UST consumer data pending command for id %" PRIu64, id);
1405
1406 is_data_pending = consumer_data_pending(id);
1407
1408 /* Send back returned value to session daemon */
1409 ret = lttcomm_send_unix_sock(sock, &is_data_pending,
1410 sizeof(is_data_pending));
1411 if (ret < 0) {
1412 DBG("Error when sending the data pending ret code: %d", ret);
1413 goto error_fatal;
1414 }
1415
1416 /*
1417 * No need to send back a status message since the data pending
1418 * returned value is the response.
1419 */
1420 break;
1421 }
1422 case LTTNG_CONSUMER_ASK_CHANNEL_CREATION:
1423 {
1424 int ret;
1425 struct ustctl_consumer_channel_attr attr;
1426
1427 /* Create a plain object and reserve a channel key. */
1428 channel = allocate_channel(msg.u.ask_channel.session_id,
1429 msg.u.ask_channel.pathname, msg.u.ask_channel.name,
1430 msg.u.ask_channel.uid, msg.u.ask_channel.gid,
1431 msg.u.ask_channel.relayd_id, msg.u.ask_channel.key,
1432 (enum lttng_event_output) msg.u.ask_channel.output,
1433 msg.u.ask_channel.tracefile_size,
1434 msg.u.ask_channel.tracefile_count,
1435 msg.u.ask_channel.session_id_per_pid,
1436 msg.u.ask_channel.monitor,
1437 msg.u.ask_channel.live_timer_interval,
1438 msg.u.ask_channel.root_shm_path,
1439 msg.u.ask_channel.shm_path);
1440 if (!channel) {
1441 goto end_channel_error;
1442 }
1443
1444 /*
1445 * Assign UST application UID to the channel. This value is ignored for
1446 * per PID buffers. This is specific to UST thus setting this after the
1447 * allocation.
1448 */
1449 channel->ust_app_uid = msg.u.ask_channel.ust_app_uid;
1450
1451 /* Build channel attributes from received message. */
1452 attr.subbuf_size = msg.u.ask_channel.subbuf_size;
1453 attr.num_subbuf = msg.u.ask_channel.num_subbuf;
1454 attr.overwrite = msg.u.ask_channel.overwrite;
1455 attr.switch_timer_interval = msg.u.ask_channel.switch_timer_interval;
1456 attr.read_timer_interval = msg.u.ask_channel.read_timer_interval;
1457 attr.chan_id = msg.u.ask_channel.chan_id;
1458 memcpy(attr.uuid, msg.u.ask_channel.uuid, sizeof(attr.uuid));
1459 attr.blocking_timeout= msg.u.ask_channel.blocking_timeout;
1460
1461 /* Match channel buffer type to the UST abi. */
1462 switch (msg.u.ask_channel.output) {
1463 case LTTNG_EVENT_MMAP:
1464 default:
1465 attr.output = LTTNG_UST_MMAP;
1466 break;
1467 }
1468
1469 /* Translate and save channel type. */
1470 switch (msg.u.ask_channel.type) {
1471 case LTTNG_UST_CHAN_PER_CPU:
1472 channel->type = CONSUMER_CHANNEL_TYPE_DATA;
1473 attr.type = LTTNG_UST_CHAN_PER_CPU;
1474 /*
1475 * Set refcount to 1 for owner. Below, we will
1476 * pass ownership to the
1477 * consumer_thread_channel_poll() thread.
1478 */
1479 channel->refcount = 1;
1480 break;
1481 case LTTNG_UST_CHAN_METADATA:
1482 channel->type = CONSUMER_CHANNEL_TYPE_METADATA;
1483 attr.type = LTTNG_UST_CHAN_METADATA;
1484 break;
1485 default:
1486 assert(0);
1487 goto error_fatal;
1488 };
1489
1490 health_code_update();
1491
1492 ret = ask_channel(ctx, sock, channel, &attr);
1493 if (ret < 0) {
1494 goto end_channel_error;
1495 }
1496
1497 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1498 ret = consumer_metadata_cache_allocate(channel);
1499 if (ret < 0) {
1500 ERR("Allocating metadata cache");
1501 goto end_channel_error;
1502 }
1503 consumer_timer_switch_start(channel, attr.switch_timer_interval);
1504 attr.switch_timer_interval = 0;
1505 } else {
1506 int monitor_start_ret;
1507
1508 consumer_timer_live_start(channel,
1509 msg.u.ask_channel.live_timer_interval);
1510 monitor_start_ret = consumer_timer_monitor_start(
1511 channel,
1512 msg.u.ask_channel.monitor_timer_interval);
1513 if (monitor_start_ret < 0) {
1514 ERR("Starting channel monitoring timer failed");
1515 goto end_channel_error;
1516 }
1517 }
1518
1519 health_code_update();
1520
1521 /*
1522 * Add the channel to the internal state AFTER all streams were created
1523 * and successfully sent to session daemon. This way, all streams must
1524 * be ready before this channel is visible to the threads.
1525 * If add_channel succeeds, ownership of the channel is
1526 * passed to consumer_thread_channel_poll().
1527 */
1528 ret = add_channel(channel, ctx);
1529 if (ret < 0) {
1530 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1531 if (channel->switch_timer_enabled == 1) {
1532 consumer_timer_switch_stop(channel);
1533 }
1534 consumer_metadata_cache_destroy(channel);
1535 }
1536 if (channel->live_timer_enabled == 1) {
1537 consumer_timer_live_stop(channel);
1538 }
1539 if (channel->monitor_timer_enabled == 1) {
1540 consumer_timer_monitor_stop(channel);
1541 }
1542 goto end_channel_error;
1543 }
1544
1545 health_code_update();
1546
1547 /*
1548 * Channel and streams are now created. Inform the session daemon that
1549 * everything went well and should wait to receive the channel and
1550 * streams with ustctl API.
1551 */
1552 ret = consumer_send_status_channel(sock, channel);
1553 if (ret < 0) {
1554 /*
1555 * There is probably a problem on the socket.
1556 */
1557 goto error_fatal;
1558 }
1559
1560 break;
1561 }
1562 case LTTNG_CONSUMER_GET_CHANNEL:
1563 {
1564 int ret, relayd_err = 0;
1565 uint64_t key = msg.u.get_channel.key;
1566 struct lttng_consumer_channel *channel;
1567
1568 channel = consumer_find_channel(key);
1569 if (!channel) {
1570 ERR("UST consumer get channel key %" PRIu64 " not found", key);
1571 ret_code = LTTCOMM_CONSUMERD_CHAN_NOT_FOUND;
1572 goto end_msg_sessiond;
1573 }
1574
1575 health_code_update();
1576
1577 /* Send everything to sessiond. */
1578 ret = send_sessiond_channel(sock, channel, ctx, &relayd_err);
1579 if (ret < 0) {
1580 if (relayd_err) {
1581 /*
1582 * We were unable to send to the relayd the stream so avoid
1583 * sending back a fatal error to the thread since this is OK
1584 * and the consumer can continue its work. The above call
1585 * has sent the error status message to the sessiond.
1586 */
1587 goto end_nosignal;
1588 }
1589 /*
1590 * The communicaton was broken hence there is a bad state between
1591 * the consumer and sessiond so stop everything.
1592 */
1593 goto error_fatal;
1594 }
1595
1596 health_code_update();
1597
1598 /*
1599 * In no monitor mode, the streams ownership is kept inside the channel
1600 * so don't send them to the data thread.
1601 */
1602 if (!channel->monitor) {
1603 goto end_msg_sessiond;
1604 }
1605
1606 ret = send_streams_to_thread(channel, ctx);
1607 if (ret < 0) {
1608 /*
1609 * If we are unable to send the stream to the thread, there is
1610 * a big problem so just stop everything.
1611 */
1612 goto error_fatal;
1613 }
1614 /* List MUST be empty after or else it could be reused. */
1615 assert(cds_list_empty(&channel->streams.head));
1616 goto end_msg_sessiond;
1617 }
1618 case LTTNG_CONSUMER_DESTROY_CHANNEL:
1619 {
1620 uint64_t key = msg.u.destroy_channel.key;
1621
1622 /*
1623 * Only called if streams have not been sent to stream
1624 * manager thread. However, channel has been sent to
1625 * channel manager thread.
1626 */
1627 notify_thread_del_channel(ctx, key);
1628 goto end_msg_sessiond;
1629 }
1630 case LTTNG_CONSUMER_CLOSE_METADATA:
1631 {
1632 int ret;
1633
1634 ret = close_metadata(msg.u.close_metadata.key);
1635 if (ret != 0) {
1636 ret_code = ret;
1637 }
1638
1639 goto end_msg_sessiond;
1640 }
1641 case LTTNG_CONSUMER_FLUSH_CHANNEL:
1642 {
1643 int ret;
1644
1645 ret = flush_channel(msg.u.flush_channel.key);
1646 if (ret != 0) {
1647 ret_code = ret;
1648 }
1649
1650 goto end_msg_sessiond;
1651 }
1652 case LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL:
1653 {
1654 int ret;
1655
1656 ret = clear_quiescent_channel(
1657 msg.u.clear_quiescent_channel.key);
1658 if (ret != 0) {
1659 ret_code = ret;
1660 }
1661
1662 goto end_msg_sessiond;
1663 }
1664 case LTTNG_CONSUMER_PUSH_METADATA:
1665 {
1666 int ret;
1667 uint64_t len = msg.u.push_metadata.len;
1668 uint64_t key = msg.u.push_metadata.key;
1669 uint64_t offset = msg.u.push_metadata.target_offset;
1670 uint64_t version = msg.u.push_metadata.version;
1671 struct lttng_consumer_channel *channel;
1672
1673 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key,
1674 len);
1675
1676 channel = consumer_find_channel(key);
1677 if (!channel) {
1678 /*
1679 * This is possible if the metadata creation on the consumer side
1680 * is in flight vis-a-vis a concurrent push metadata from the
1681 * session daemon. Simply return that the channel failed and the
1682 * session daemon will handle that message correctly considering
1683 * that this race is acceptable thus the DBG() statement here.
1684 */
1685 DBG("UST consumer push metadata %" PRIu64 " not found", key);
1686 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1687 goto end_msg_sessiond;
1688 }
1689
1690 health_code_update();
1691
1692 if (!len) {
1693 /*
1694 * There is nothing to receive. We have simply
1695 * checked whether the channel can be found.
1696 */
1697 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1698 goto end_msg_sessiond;
1699 }
1700
1701 /* Tell session daemon we are ready to receive the metadata. */
1702 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
1703 if (ret < 0) {
1704 /* Somehow, the session daemon is not responding anymore. */
1705 goto error_fatal;
1706 }
1707
1708 health_code_update();
1709
1710 /* Wait for more data. */
1711 health_poll_entry();
1712 ret = lttng_consumer_poll_socket(consumer_sockpoll);
1713 health_poll_exit();
1714 if (ret) {
1715 goto error_fatal;
1716 }
1717
1718 health_code_update();
1719
1720 ret = lttng_ustconsumer_recv_metadata(sock, key, offset,
1721 len, version, channel, 0, 1);
1722 if (ret < 0) {
1723 /* error receiving from sessiond */
1724 goto error_fatal;
1725 } else {
1726 ret_code = ret;
1727 goto end_msg_sessiond;
1728 }
1729 }
1730 case LTTNG_CONSUMER_SETUP_METADATA:
1731 {
1732 int ret;
1733
1734 ret = setup_metadata(ctx, msg.u.setup_metadata.key);
1735 if (ret) {
1736 ret_code = ret;
1737 }
1738 goto end_msg_sessiond;
1739 }
1740 case LTTNG_CONSUMER_SNAPSHOT_CHANNEL:
1741 {
1742 if (msg.u.snapshot_channel.metadata) {
1743 ret = snapshot_metadata(msg.u.snapshot_channel.key,
1744 msg.u.snapshot_channel.pathname,
1745 msg.u.snapshot_channel.relayd_id,
1746 ctx);
1747 if (ret < 0) {
1748 ERR("Snapshot metadata failed");
1749 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1750 }
1751 } else {
1752 ret = snapshot_channel(msg.u.snapshot_channel.key,
1753 msg.u.snapshot_channel.pathname,
1754 msg.u.snapshot_channel.relayd_id,
1755 msg.u.snapshot_channel.nb_packets_per_stream,
1756 ctx);
1757 if (ret < 0) {
1758 ERR("Snapshot channel failed");
1759 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1760 }
1761 }
1762
1763 health_code_update();
1764 ret = consumer_send_status_msg(sock, ret_code);
1765 if (ret < 0) {
1766 /* Somehow, the session daemon is not responding anymore. */
1767 goto end_nosignal;
1768 }
1769 health_code_update();
1770 break;
1771 }
1772 case LTTNG_CONSUMER_DISCARDED_EVENTS:
1773 {
1774 int ret = 0;
1775 uint64_t discarded_events;
1776 struct lttng_ht_iter iter;
1777 struct lttng_ht *ht;
1778 struct lttng_consumer_stream *stream;
1779 uint64_t id = msg.u.discarded_events.session_id;
1780 uint64_t key = msg.u.discarded_events.channel_key;
1781
1782 DBG("UST consumer discarded events command for session id %"
1783 PRIu64, id);
1784 rcu_read_lock();
1785 pthread_mutex_lock(&consumer_data.lock);
1786
1787 ht = consumer_data.stream_list_ht;
1788
1789 /*
1790 * We only need a reference to the channel, but they are not
1791 * directly indexed, so we just use the first matching stream
1792 * to extract the information we need, we default to 0 if not
1793 * found (no events are dropped if the channel is not yet in
1794 * use).
1795 */
1796 discarded_events = 0;
1797 cds_lfht_for_each_entry_duplicate(ht->ht,
1798 ht->hash_fct(&id, lttng_ht_seed),
1799 ht->match_fct, &id,
1800 &iter.iter, stream, node_session_id.node) {
1801 if (stream->chan->key == key) {
1802 discarded_events = stream->chan->discarded_events;
1803 break;
1804 }
1805 }
1806 pthread_mutex_unlock(&consumer_data.lock);
1807 rcu_read_unlock();
1808
1809 DBG("UST consumer discarded events command for session id %"
1810 PRIu64 ", channel key %" PRIu64, id, key);
1811
1812 health_code_update();
1813
1814 /* Send back returned value to session daemon */
1815 ret = lttcomm_send_unix_sock(sock, &discarded_events, sizeof(discarded_events));
1816 if (ret < 0) {
1817 PERROR("send discarded events");
1818 goto error_fatal;
1819 }
1820
1821 break;
1822 }
1823 case LTTNG_CONSUMER_LOST_PACKETS:
1824 {
1825 int ret;
1826 uint64_t lost_packets;
1827 struct lttng_ht_iter iter;
1828 struct lttng_ht *ht;
1829 struct lttng_consumer_stream *stream;
1830 uint64_t id = msg.u.lost_packets.session_id;
1831 uint64_t key = msg.u.lost_packets.channel_key;
1832
1833 DBG("UST consumer lost packets command for session id %"
1834 PRIu64, id);
1835 rcu_read_lock();
1836 pthread_mutex_lock(&consumer_data.lock);
1837
1838 ht = consumer_data.stream_list_ht;
1839
1840 /*
1841 * We only need a reference to the channel, but they are not
1842 * directly indexed, so we just use the first matching stream
1843 * to extract the information we need, we default to 0 if not
1844 * found (no packets lost if the channel is not yet in use).
1845 */
1846 lost_packets = 0;
1847 cds_lfht_for_each_entry_duplicate(ht->ht,
1848 ht->hash_fct(&id, lttng_ht_seed),
1849 ht->match_fct, &id,
1850 &iter.iter, stream, node_session_id.node) {
1851 if (stream->chan->key == key) {
1852 lost_packets = stream->chan->lost_packets;
1853 break;
1854 }
1855 }
1856 pthread_mutex_unlock(&consumer_data.lock);
1857 rcu_read_unlock();
1858
1859 DBG("UST consumer lost packets command for session id %"
1860 PRIu64 ", channel key %" PRIu64, id, key);
1861
1862 health_code_update();
1863
1864 /* Send back returned value to session daemon */
1865 ret = lttcomm_send_unix_sock(sock, &lost_packets,
1866 sizeof(lost_packets));
1867 if (ret < 0) {
1868 PERROR("send lost packets");
1869 goto error_fatal;
1870 }
1871
1872 break;
1873 }
1874 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1875 {
1876 int channel_monitor_pipe;
1877
1878 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1879 /* Successfully received the command's type. */
1880 ret = consumer_send_status_msg(sock, ret_code);
1881 if (ret < 0) {
1882 goto error_fatal;
1883 }
1884
1885 ret = lttcomm_recv_fds_unix_sock(sock, &channel_monitor_pipe,
1886 1);
1887 if (ret != sizeof(channel_monitor_pipe)) {
1888 ERR("Failed to receive channel monitor pipe");
1889 goto error_fatal;
1890 }
1891
1892 DBG("Received channel monitor pipe (%d)", channel_monitor_pipe);
1893 ret = consumer_timer_thread_set_channel_monitor_pipe(
1894 channel_monitor_pipe);
1895 if (!ret) {
1896 int flags;
1897
1898 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1899 /* Set the pipe as non-blocking. */
1900 ret = fcntl(channel_monitor_pipe, F_GETFL, 0);
1901 if (ret == -1) {
1902 PERROR("fcntl get flags of the channel monitoring pipe");
1903 goto error_fatal;
1904 }
1905 flags = ret;
1906
1907 ret = fcntl(channel_monitor_pipe, F_SETFL,
1908 flags | O_NONBLOCK);
1909 if (ret == -1) {
1910 PERROR("fcntl set O_NONBLOCK flag of the channel monitoring pipe");
1911 goto error_fatal;
1912 }
1913 DBG("Channel monitor pipe set as non-blocking");
1914 } else {
1915 ret_code = LTTCOMM_CONSUMERD_ALREADY_SET;
1916 }
1917 goto end_msg_sessiond;
1918 }
1919 default:
1920 break;
1921 }
1922
1923 end_nosignal:
1924 rcu_read_unlock();
1925
1926 health_code_update();
1927
1928 /*
1929 * Return 1 to indicate success since the 0 value can be a socket
1930 * shutdown during the recv() or send() call.
1931 */
1932 return 1;
1933
1934 end_msg_sessiond:
1935 /*
1936 * The returned value here is not useful since either way we'll return 1 to
1937 * the caller because the session daemon socket management is done
1938 * elsewhere. Returning a negative code or 0 will shutdown the consumer.
1939 */
1940 ret = consumer_send_status_msg(sock, ret_code);
1941 if (ret < 0) {
1942 goto error_fatal;
1943 }
1944 rcu_read_unlock();
1945
1946 health_code_update();
1947
1948 return 1;
1949 end_channel_error:
1950 if (channel) {
1951 /*
1952 * Free channel here since no one has a reference to it. We don't
1953 * free after that because a stream can store this pointer.
1954 */
1955 destroy_channel(channel);
1956 }
1957 /* We have to send a status channel message indicating an error. */
1958 ret = consumer_send_status_channel(sock, NULL);
1959 if (ret < 0) {
1960 /* Stop everything if session daemon can not be notified. */
1961 goto error_fatal;
1962 }
1963 rcu_read_unlock();
1964
1965 health_code_update();
1966
1967 return 1;
1968 error_fatal:
1969 rcu_read_unlock();
1970 /* This will issue a consumer stop. */
1971 return -1;
1972 }
1973
1974 /*
1975 * Wrapper over the mmap() read offset from ust-ctl library. Since this can be
1976 * compiled out, we isolate it in this library.
1977 */
1978 int lttng_ustctl_get_mmap_read_offset(struct lttng_consumer_stream *stream,
1979 unsigned long *off)
1980 {
1981 assert(stream);
1982 assert(stream->ustream);
1983
1984 return ustctl_get_mmap_read_offset(stream->ustream, off);
1985 }
1986
1987 /*
1988 * Wrapper over the mmap() read offset from ust-ctl library. Since this can be
1989 * compiled out, we isolate it in this library.
1990 */
1991 void *lttng_ustctl_get_mmap_base(struct lttng_consumer_stream *stream)
1992 {
1993 assert(stream);
1994 assert(stream->ustream);
1995
1996 return ustctl_get_mmap_base(stream->ustream);
1997 }
1998
1999 /*
2000 * Take a snapshot for a specific stream.
2001 *
2002 * Returns 0 on success, < 0 on error
2003 */
2004 int lttng_ustconsumer_take_snapshot(struct lttng_consumer_stream *stream)
2005 {
2006 assert(stream);
2007 assert(stream->ustream);
2008
2009 return ustctl_snapshot(stream->ustream);
2010 }
2011
2012 /*
2013 * Sample consumed and produced positions for a specific stream.
2014 *
2015 * Returns 0 on success, < 0 on error.
2016 */
2017 int lttng_ustconsumer_sample_snapshot_positions(
2018 struct lttng_consumer_stream *stream)
2019 {
2020 assert(stream);
2021 assert(stream->ustream);
2022
2023 return ustctl_snapshot_sample_positions(stream->ustream);
2024 }
2025
2026 /*
2027 * Get the produced position
2028 *
2029 * Returns 0 on success, < 0 on error
2030 */
2031 int lttng_ustconsumer_get_produced_snapshot(
2032 struct lttng_consumer_stream *stream, unsigned long *pos)
2033 {
2034 assert(stream);
2035 assert(stream->ustream);
2036 assert(pos);
2037
2038 return ustctl_snapshot_get_produced(stream->ustream, pos);
2039 }
2040
2041 /*
2042 * Get the consumed position
2043 *
2044 * Returns 0 on success, < 0 on error
2045 */
2046 int lttng_ustconsumer_get_consumed_snapshot(
2047 struct lttng_consumer_stream *stream, unsigned long *pos)
2048 {
2049 assert(stream);
2050 assert(stream->ustream);
2051 assert(pos);
2052
2053 return ustctl_snapshot_get_consumed(stream->ustream, pos);
2054 }
2055
2056 void lttng_ustconsumer_flush_buffer(struct lttng_consumer_stream *stream,
2057 int producer)
2058 {
2059 assert(stream);
2060 assert(stream->ustream);
2061
2062 ustctl_flush_buffer(stream->ustream, producer);
2063 }
2064
2065 int lttng_ustconsumer_get_current_timestamp(
2066 struct lttng_consumer_stream *stream, uint64_t *ts)
2067 {
2068 assert(stream);
2069 assert(stream->ustream);
2070 assert(ts);
2071
2072 return ustctl_get_current_timestamp(stream->ustream, ts);
2073 }
2074
2075 int lttng_ustconsumer_get_sequence_number(
2076 struct lttng_consumer_stream *stream, uint64_t *seq)
2077 {
2078 assert(stream);
2079 assert(stream->ustream);
2080 assert(seq);
2081
2082 return ustctl_get_sequence_number(stream->ustream, seq);
2083 }
2084
2085 /*
2086 * Called when the stream signals the consumer that it has hung up.
2087 */
2088 void lttng_ustconsumer_on_stream_hangup(struct lttng_consumer_stream *stream)
2089 {
2090 assert(stream);
2091 assert(stream->ustream);
2092
2093 pthread_mutex_lock(&stream->lock);
2094 if (!stream->quiescent) {
2095 ustctl_flush_buffer(stream->ustream, 0);
2096 stream->quiescent = true;
2097 }
2098 pthread_mutex_unlock(&stream->lock);
2099 stream->hangup_flush_done = 1;
2100 }
2101
2102 void lttng_ustconsumer_del_channel(struct lttng_consumer_channel *chan)
2103 {
2104 int i;
2105
2106 assert(chan);
2107 assert(chan->uchan);
2108
2109 if (chan->switch_timer_enabled == 1) {
2110 consumer_timer_switch_stop(chan);
2111 }
2112 for (i = 0; i < chan->nr_stream_fds; i++) {
2113 int ret;
2114
2115 ret = close(chan->stream_fds[i]);
2116 if (ret) {
2117 PERROR("close");
2118 }
2119 if (chan->shm_path[0]) {
2120 char shm_path[PATH_MAX];
2121
2122 ret = get_stream_shm_path(shm_path, chan->shm_path, i);
2123 if (ret) {
2124 ERR("Cannot get stream shm path");
2125 }
2126 ret = run_as_unlink(shm_path, chan->uid, chan->gid);
2127 if (ret) {
2128 PERROR("unlink %s", shm_path);
2129 }
2130 }
2131 }
2132 }
2133
2134 void lttng_ustconsumer_free_channel(struct lttng_consumer_channel *chan)
2135 {
2136 assert(chan);
2137 assert(chan->uchan);
2138
2139 consumer_metadata_cache_destroy(chan);
2140 ustctl_destroy_channel(chan->uchan);
2141 /* Try to rmdir all directories under shm_path root. */
2142 if (chan->root_shm_path[0]) {
2143 (void) run_as_rmdir_recursive(chan->root_shm_path,
2144 chan->uid, chan->gid);
2145 }
2146 free(chan->stream_fds);
2147 }
2148
2149 void lttng_ustconsumer_del_stream(struct lttng_consumer_stream *stream)
2150 {
2151 assert(stream);
2152 assert(stream->ustream);
2153
2154 if (stream->chan->switch_timer_enabled == 1) {
2155 consumer_timer_switch_stop(stream->chan);
2156 }
2157 ustctl_destroy_stream(stream->ustream);
2158 }
2159
2160 int lttng_ustconsumer_get_wakeup_fd(struct lttng_consumer_stream *stream)
2161 {
2162 assert(stream);
2163 assert(stream->ustream);
2164
2165 return ustctl_stream_get_wakeup_fd(stream->ustream);
2166 }
2167
2168 int lttng_ustconsumer_close_wakeup_fd(struct lttng_consumer_stream *stream)
2169 {
2170 assert(stream);
2171 assert(stream->ustream);
2172
2173 return ustctl_stream_close_wakeup_fd(stream->ustream);
2174 }
2175
2176 /*
2177 * Populate index values of a UST stream. Values are set in big endian order.
2178 *
2179 * Return 0 on success or else a negative value.
2180 */
2181 static int get_index_values(struct ctf_packet_index *index,
2182 struct ustctl_consumer_stream *ustream)
2183 {
2184 int ret;
2185
2186 ret = ustctl_get_timestamp_begin(ustream, &index->timestamp_begin);
2187 if (ret < 0) {
2188 PERROR("ustctl_get_timestamp_begin");
2189 goto error;
2190 }
2191 index->timestamp_begin = htobe64(index->timestamp_begin);
2192
2193 ret = ustctl_get_timestamp_end(ustream, &index->timestamp_end);
2194 if (ret < 0) {
2195 PERROR("ustctl_get_timestamp_end");
2196 goto error;
2197 }
2198 index->timestamp_end = htobe64(index->timestamp_end);
2199
2200 ret = ustctl_get_events_discarded(ustream, &index->events_discarded);
2201 if (ret < 0) {
2202 PERROR("ustctl_get_events_discarded");
2203 goto error;
2204 }
2205 index->events_discarded = htobe64(index->events_discarded);
2206
2207 ret = ustctl_get_content_size(ustream, &index->content_size);
2208 if (ret < 0) {
2209 PERROR("ustctl_get_content_size");
2210 goto error;
2211 }
2212 index->content_size = htobe64(index->content_size);
2213
2214 ret = ustctl_get_packet_size(ustream, &index->packet_size);
2215 if (ret < 0) {
2216 PERROR("ustctl_get_packet_size");
2217 goto error;
2218 }
2219 index->packet_size = htobe64(index->packet_size);
2220
2221 ret = ustctl_get_stream_id(ustream, &index->stream_id);
2222 if (ret < 0) {
2223 PERROR("ustctl_get_stream_id");
2224 goto error;
2225 }
2226 index->stream_id = htobe64(index->stream_id);
2227
2228 ret = ustctl_get_instance_id(ustream, &index->stream_instance_id);
2229 if (ret < 0) {
2230 PERROR("ustctl_get_instance_id");
2231 goto error;
2232 }
2233 index->stream_instance_id = htobe64(index->stream_instance_id);
2234
2235 ret = ustctl_get_sequence_number(ustream, &index->packet_seq_num);
2236 if (ret < 0) {
2237 PERROR("ustctl_get_sequence_number");
2238 goto error;
2239 }
2240 index->packet_seq_num = htobe64(index->packet_seq_num);
2241
2242 error:
2243 return ret;
2244 }
2245
2246 static
2247 void metadata_stream_reset_cache(struct lttng_consumer_stream *stream,
2248 struct consumer_metadata_cache *cache)
2249 {
2250 DBG("Metadata stream update to version %" PRIu64,
2251 cache->version);
2252 stream->ust_metadata_pushed = 0;
2253 stream->metadata_version = cache->version;
2254 stream->reset_metadata_flag = 1;
2255 }
2256
2257 /*
2258 * Check if the version of the metadata stream and metadata cache match.
2259 * If the cache got updated, reset the metadata stream.
2260 * The stream lock and metadata cache lock MUST be held.
2261 * Return 0 on success, a negative value on error.
2262 */
2263 static
2264 int metadata_stream_check_version(struct lttng_consumer_stream *stream)
2265 {
2266 int ret = 0;
2267 struct consumer_metadata_cache *cache = stream->chan->metadata_cache;
2268
2269 if (cache->version == stream->metadata_version) {
2270 goto end;
2271 }
2272 metadata_stream_reset_cache(stream, cache);
2273
2274 end:
2275 return ret;
2276 }
2277
2278 /*
2279 * Write up to one packet from the metadata cache to the channel.
2280 *
2281 * Returns the number of bytes pushed in the cache, or a negative value
2282 * on error.
2283 */
2284 static
2285 int commit_one_metadata_packet(struct lttng_consumer_stream *stream)
2286 {
2287 ssize_t write_len;
2288 int ret;
2289
2290 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2291 ret = metadata_stream_check_version(stream);
2292 if (ret < 0) {
2293 goto end;
2294 }
2295 if (stream->chan->metadata_cache->max_offset
2296 == stream->ust_metadata_pushed) {
2297 ret = 0;
2298 goto end;
2299 }
2300
2301 write_len = ustctl_write_one_packet_to_channel(stream->chan->uchan,
2302 &stream->chan->metadata_cache->data[stream->ust_metadata_pushed],
2303 stream->chan->metadata_cache->max_offset
2304 - stream->ust_metadata_pushed);
2305 assert(write_len != 0);
2306 if (write_len < 0) {
2307 ERR("Writing one metadata packet");
2308 ret = -1;
2309 goto end;
2310 }
2311 stream->ust_metadata_pushed += write_len;
2312
2313 assert(stream->chan->metadata_cache->max_offset >=
2314 stream->ust_metadata_pushed);
2315 ret = write_len;
2316
2317 end:
2318 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2319 return ret;
2320 }
2321
2322
2323 /*
2324 * Sync metadata meaning request them to the session daemon and snapshot to the
2325 * metadata thread can consumer them.
2326 *
2327 * Metadata stream lock is held here, but we need to release it when
2328 * interacting with sessiond, else we cause a deadlock with live
2329 * awaiting on metadata to be pushed out.
2330 *
2331 * Return 0 if new metadatda is available, EAGAIN if the metadata stream
2332 * is empty or a negative value on error.
2333 */
2334 int lttng_ustconsumer_sync_metadata(struct lttng_consumer_local_data *ctx,
2335 struct lttng_consumer_stream *metadata)
2336 {
2337 int ret;
2338 int retry = 0;
2339
2340 assert(ctx);
2341 assert(metadata);
2342
2343 pthread_mutex_unlock(&metadata->lock);
2344 /*
2345 * Request metadata from the sessiond, but don't wait for the flush
2346 * because we locked the metadata thread.
2347 */
2348 ret = lttng_ustconsumer_request_metadata(ctx, metadata->chan, 0, 0);
2349 pthread_mutex_lock(&metadata->lock);
2350 if (ret < 0) {
2351 goto end;
2352 }
2353
2354 ret = commit_one_metadata_packet(metadata);
2355 if (ret <= 0) {
2356 goto end;
2357 } else if (ret > 0) {
2358 retry = 1;
2359 }
2360
2361 ustctl_flush_buffer(metadata->ustream, 1);
2362 ret = ustctl_snapshot(metadata->ustream);
2363 if (ret < 0) {
2364 if (errno != EAGAIN) {
2365 ERR("Sync metadata, taking UST snapshot");
2366 goto end;
2367 }
2368 DBG("No new metadata when syncing them.");
2369 /* No new metadata, exit. */
2370 ret = ENODATA;
2371 goto end;
2372 }
2373
2374 /*
2375 * After this flush, we still need to extract metadata.
2376 */
2377 if (retry) {
2378 ret = EAGAIN;
2379 }
2380
2381 end:
2382 return ret;
2383 }
2384
2385 /*
2386 * Return 0 on success else a negative value.
2387 */
2388 static int notify_if_more_data(struct lttng_consumer_stream *stream,
2389 struct lttng_consumer_local_data *ctx)
2390 {
2391 int ret;
2392 struct ustctl_consumer_stream *ustream;
2393
2394 assert(stream);
2395 assert(ctx);
2396
2397 ustream = stream->ustream;
2398
2399 /*
2400 * First, we are going to check if there is a new subbuffer available
2401 * before reading the stream wait_fd.
2402 */
2403 /* Get the next subbuffer */
2404 ret = ustctl_get_next_subbuf(ustream);
2405 if (ret) {
2406 /* No more data found, flag the stream. */
2407 stream->has_data = 0;
2408 ret = 0;
2409 goto end;
2410 }
2411
2412 ret = ustctl_put_subbuf(ustream);
2413 assert(!ret);
2414
2415 /* This stream still has data. Flag it and wake up the data thread. */
2416 stream->has_data = 1;
2417
2418 if (stream->monitor && !stream->hangup_flush_done && !ctx->has_wakeup) {
2419 ssize_t writelen;
2420
2421 writelen = lttng_pipe_write(ctx->consumer_wakeup_pipe, "!", 1);
2422 if (writelen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2423 ret = writelen;
2424 goto end;
2425 }
2426
2427 /* The wake up pipe has been notified. */
2428 ctx->has_wakeup = 1;
2429 }
2430 ret = 0;
2431
2432 end:
2433 return ret;
2434 }
2435
2436 static
2437 int update_stream_stats(struct lttng_consumer_stream *stream)
2438 {
2439 int ret;
2440 uint64_t seq, discarded;
2441
2442 ret = ustctl_get_sequence_number(stream->ustream, &seq);
2443 if (ret < 0) {
2444 PERROR("ustctl_get_sequence_number");
2445 goto end;
2446 }
2447 /*
2448 * Start the sequence when we extract the first packet in case we don't
2449 * start at 0 (for example if a consumer is not connected to the
2450 * session immediately after the beginning).
2451 */
2452 if (stream->last_sequence_number == -1ULL) {
2453 stream->last_sequence_number = seq;
2454 } else if (seq > stream->last_sequence_number) {
2455 stream->chan->lost_packets += seq -
2456 stream->last_sequence_number - 1;
2457 } else {
2458 /* seq <= last_sequence_number */
2459 ERR("Sequence number inconsistent : prev = %" PRIu64
2460 ", current = %" PRIu64,
2461 stream->last_sequence_number, seq);
2462 ret = -1;
2463 goto end;
2464 }
2465 stream->last_sequence_number = seq;
2466
2467 ret = ustctl_get_events_discarded(stream->ustream, &discarded);
2468 if (ret < 0) {
2469 PERROR("kernctl_get_events_discarded");
2470 goto end;
2471 }
2472 if (discarded < stream->last_discarded_events) {
2473 /*
2474 * Overflow has occurred. We assume only one wrap-around
2475 * has occurred.
2476 */
2477 stream->chan->discarded_events +=
2478 (1ULL << (CAA_BITS_PER_LONG - 1)) -
2479 stream->last_discarded_events + discarded;
2480 } else {
2481 stream->chan->discarded_events += discarded -
2482 stream->last_discarded_events;
2483 }
2484 stream->last_discarded_events = discarded;
2485 ret = 0;
2486
2487 end:
2488 return ret;
2489 }
2490
2491 /*
2492 * Read subbuffer from the given stream.
2493 *
2494 * Stream lock MUST be acquired.
2495 *
2496 * Return 0 on success else a negative value.
2497 */
2498 int lttng_ustconsumer_read_subbuffer(struct lttng_consumer_stream *stream,
2499 struct lttng_consumer_local_data *ctx)
2500 {
2501 unsigned long len, subbuf_size, padding;
2502 int err, write_index = 1;
2503 long ret = 0;
2504 struct ustctl_consumer_stream *ustream;
2505 struct ctf_packet_index index;
2506
2507 assert(stream);
2508 assert(stream->ustream);
2509 assert(ctx);
2510
2511 DBG("In UST read_subbuffer (wait_fd: %d, name: %s)", stream->wait_fd,
2512 stream->name);
2513
2514 /* Ease our life for what's next. */
2515 ustream = stream->ustream;
2516
2517 /*
2518 * We can consume the 1 byte written into the wait_fd by UST. Don't trigger
2519 * error if we cannot read this one byte (read returns 0), or if the error
2520 * is EAGAIN or EWOULDBLOCK.
2521 *
2522 * This is only done when the stream is monitored by a thread, before the
2523 * flush is done after a hangup and if the stream is not flagged with data
2524 * since there might be nothing to consume in the wait fd but still have
2525 * data available flagged by the consumer wake up pipe.
2526 */
2527 if (stream->monitor && !stream->hangup_flush_done && !stream->has_data) {
2528 char dummy;
2529 ssize_t readlen;
2530
2531 readlen = lttng_read(stream->wait_fd, &dummy, 1);
2532 if (readlen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2533 ret = readlen;
2534 goto end;
2535 }
2536 }
2537
2538 retry:
2539 /* Get the next subbuffer */
2540 err = ustctl_get_next_subbuf(ustream);
2541 if (err != 0) {
2542 /*
2543 * Populate metadata info if the existing info has
2544 * already been read.
2545 */
2546 if (stream->metadata_flag) {
2547 ret = commit_one_metadata_packet(stream);
2548 if (ret <= 0) {
2549 goto end;
2550 }
2551 ustctl_flush_buffer(stream->ustream, 1);
2552 goto retry;
2553 }
2554
2555 ret = err; /* ustctl_get_next_subbuf returns negative, caller expect positive. */
2556 /*
2557 * This is a debug message even for single-threaded consumer,
2558 * because poll() have more relaxed criterions than get subbuf,
2559 * so get_subbuf may fail for short race windows where poll()
2560 * would issue wakeups.
2561 */
2562 DBG("Reserving sub buffer failed (everything is normal, "
2563 "it is due to concurrency) [ret: %d]", err);
2564 goto end;
2565 }
2566 assert(stream->chan->output == CONSUMER_CHANNEL_MMAP);
2567
2568 if (!stream->metadata_flag) {
2569 index.offset = htobe64(stream->out_fd_offset);
2570 ret = get_index_values(&index, ustream);
2571 if (ret < 0) {
2572 err = ustctl_put_subbuf(ustream);
2573 assert(err == 0);
2574 goto end;
2575 }
2576
2577 /* Update the stream's sequence and discarded events count. */
2578 ret = update_stream_stats(stream);
2579 if (ret < 0) {
2580 PERROR("kernctl_get_events_discarded");
2581 err = ustctl_put_subbuf(ustream);
2582 assert(err == 0);
2583 goto end;
2584 }
2585 } else {
2586 write_index = 0;
2587 }
2588
2589 /* Get the full padded subbuffer size */
2590 err = ustctl_get_padded_subbuf_size(ustream, &len);
2591 assert(err == 0);
2592
2593 /* Get subbuffer data size (without padding) */
2594 err = ustctl_get_subbuf_size(ustream, &subbuf_size);
2595 assert(err == 0);
2596
2597 /* Make sure we don't get a subbuffer size bigger than the padded */
2598 assert(len >= subbuf_size);
2599
2600 padding = len - subbuf_size;
2601 /* write the subbuffer to the tracefile */
2602 ret = lttng_consumer_on_read_subbuffer_mmap(ctx, stream, subbuf_size, padding, &index);
2603 /*
2604 * The mmap operation should write subbuf_size amount of data when network
2605 * streaming or the full padding (len) size when we are _not_ streaming.
2606 */
2607 if ((ret != subbuf_size && stream->net_seq_idx != (uint64_t) -1ULL) ||
2608 (ret != len && stream->net_seq_idx == (uint64_t) -1ULL)) {
2609 /*
2610 * Display the error but continue processing to try to release the
2611 * subbuffer. This is a DBG statement since any unexpected kill or
2612 * signal, the application gets unregistered, relayd gets closed or
2613 * anything that affects the buffer lifetime will trigger this error.
2614 * So, for the sake of the user, don't print this error since it can
2615 * happen and it is OK with the code flow.
2616 */
2617 DBG("Error writing to tracefile "
2618 "(ret: %ld != len: %lu != subbuf_size: %lu)",
2619 ret, len, subbuf_size);
2620 write_index = 0;
2621 }
2622 err = ustctl_put_next_subbuf(ustream);
2623 assert(err == 0);
2624
2625 /*
2626 * This will consumer the byte on the wait_fd if and only if there is not
2627 * next subbuffer to be acquired.
2628 */
2629 if (!stream->metadata_flag) {
2630 ret = notify_if_more_data(stream, ctx);
2631 if (ret < 0) {
2632 goto end;
2633 }
2634 }
2635
2636 /* Write index if needed. */
2637 if (!write_index) {
2638 goto end;
2639 }
2640
2641 if (stream->chan->live_timer_interval && !stream->metadata_flag) {
2642 /*
2643 * In live, block until all the metadata is sent.
2644 */
2645 pthread_mutex_lock(&stream->metadata_timer_lock);
2646 assert(!stream->missed_metadata_flush);
2647 stream->waiting_on_metadata = true;
2648 pthread_mutex_unlock(&stream->metadata_timer_lock);
2649
2650 err = consumer_stream_sync_metadata(ctx, stream->session_id);
2651
2652 pthread_mutex_lock(&stream->metadata_timer_lock);
2653 stream->waiting_on_metadata = false;
2654 if (stream->missed_metadata_flush) {
2655 stream->missed_metadata_flush = false;
2656 pthread_mutex_unlock(&stream->metadata_timer_lock);
2657 (void) consumer_flush_ust_index(stream);
2658 } else {
2659 pthread_mutex_unlock(&stream->metadata_timer_lock);
2660 }
2661
2662 if (err < 0) {
2663 goto end;
2664 }
2665 }
2666
2667 assert(!stream->metadata_flag);
2668 err = consumer_stream_write_index(stream, &index);
2669 if (err < 0) {
2670 goto end;
2671 }
2672
2673 end:
2674 return ret;
2675 }
2676
2677 /*
2678 * Called when a stream is created.
2679 *
2680 * Return 0 on success or else a negative value.
2681 */
2682 int lttng_ustconsumer_on_recv_stream(struct lttng_consumer_stream *stream)
2683 {
2684 int ret;
2685
2686 assert(stream);
2687
2688 /* Don't create anything if this is set for streaming. */
2689 if (stream->net_seq_idx == (uint64_t) -1ULL && stream->chan->monitor) {
2690 ret = utils_create_stream_file(stream->chan->pathname, stream->name,
2691 stream->chan->tracefile_size, stream->tracefile_count_current,
2692 stream->uid, stream->gid, NULL);
2693 if (ret < 0) {
2694 goto error;
2695 }
2696 stream->out_fd = ret;
2697 stream->tracefile_size_current = 0;
2698
2699 if (!stream->metadata_flag) {
2700 struct lttng_index_file *index_file;
2701
2702 index_file = lttng_index_file_create(stream->chan->pathname,
2703 stream->name, stream->uid, stream->gid,
2704 stream->chan->tracefile_size,
2705 stream->tracefile_count_current,
2706 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
2707 if (!index_file) {
2708 goto error;
2709 }
2710 assert(!stream->index_file);
2711 stream->index_file = index_file;
2712 }
2713 }
2714 ret = 0;
2715
2716 error:
2717 return ret;
2718 }
2719
2720 /*
2721 * Check if data is still being extracted from the buffers for a specific
2722 * stream. Consumer data lock MUST be acquired before calling this function
2723 * and the stream lock.
2724 *
2725 * Return 1 if the traced data are still getting read else 0 meaning that the
2726 * data is available for trace viewer reading.
2727 */
2728 int lttng_ustconsumer_data_pending(struct lttng_consumer_stream *stream)
2729 {
2730 int ret;
2731
2732 assert(stream);
2733 assert(stream->ustream);
2734
2735 DBG("UST consumer checking data pending");
2736
2737 if (stream->endpoint_status != CONSUMER_ENDPOINT_ACTIVE) {
2738 ret = 0;
2739 goto end;
2740 }
2741
2742 if (stream->chan->type == CONSUMER_CHANNEL_TYPE_METADATA) {
2743 uint64_t contiguous, pushed;
2744
2745 /* Ease our life a bit. */
2746 contiguous = stream->chan->metadata_cache->max_offset;
2747 pushed = stream->ust_metadata_pushed;
2748
2749 /*
2750 * We can simply check whether all contiguously available data
2751 * has been pushed to the ring buffer, since the push operation
2752 * is performed within get_next_subbuf(), and because both
2753 * get_next_subbuf() and put_next_subbuf() are issued atomically
2754 * thanks to the stream lock within
2755 * lttng_ustconsumer_read_subbuffer(). This basically means that
2756 * whetnever ust_metadata_pushed is incremented, the associated
2757 * metadata has been consumed from the metadata stream.
2758 */
2759 DBG("UST consumer metadata pending check: contiguous %" PRIu64 " vs pushed %" PRIu64,
2760 contiguous, pushed);
2761 assert(((int64_t) (contiguous - pushed)) >= 0);
2762 if ((contiguous != pushed) ||
2763 (((int64_t) contiguous - pushed) > 0 || contiguous == 0)) {
2764 ret = 1; /* Data is pending */
2765 goto end;
2766 }
2767 } else {
2768 ret = ustctl_get_next_subbuf(stream->ustream);
2769 if (ret == 0) {
2770 /*
2771 * There is still data so let's put back this
2772 * subbuffer.
2773 */
2774 ret = ustctl_put_subbuf(stream->ustream);
2775 assert(ret == 0);
2776 ret = 1; /* Data is pending */
2777 goto end;
2778 }
2779 }
2780
2781 /* Data is NOT pending so ready to be read. */
2782 ret = 0;
2783
2784 end:
2785 return ret;
2786 }
2787
2788 /*
2789 * Stop a given metadata channel timer if enabled and close the wait fd which
2790 * is the poll pipe of the metadata stream.
2791 *
2792 * This MUST be called with the metadata channel acquired.
2793 */
2794 void lttng_ustconsumer_close_metadata(struct lttng_consumer_channel *metadata)
2795 {
2796 int ret;
2797
2798 assert(metadata);
2799 assert(metadata->type == CONSUMER_CHANNEL_TYPE_METADATA);
2800
2801 DBG("Closing metadata channel key %" PRIu64, metadata->key);
2802
2803 if (metadata->switch_timer_enabled == 1) {
2804 consumer_timer_switch_stop(metadata);
2805 }
2806
2807 if (!metadata->metadata_stream) {
2808 goto end;
2809 }
2810
2811 /*
2812 * Closing write side so the thread monitoring the stream wakes up if any
2813 * and clean the metadata stream.
2814 */
2815 if (metadata->metadata_stream->ust_metadata_poll_pipe[1] >= 0) {
2816 ret = close(metadata->metadata_stream->ust_metadata_poll_pipe[1]);
2817 if (ret < 0) {
2818 PERROR("closing metadata pipe write side");
2819 }
2820 metadata->metadata_stream->ust_metadata_poll_pipe[1] = -1;
2821 }
2822
2823 end:
2824 return;
2825 }
2826
2827 /*
2828 * Close every metadata stream wait fd of the metadata hash table. This
2829 * function MUST be used very carefully so not to run into a race between the
2830 * metadata thread handling streams and this function closing their wait fd.
2831 *
2832 * For UST, this is used when the session daemon hangs up. Its the metadata
2833 * producer so calling this is safe because we are assured that no state change
2834 * can occur in the metadata thread for the streams in the hash table.
2835 */
2836 void lttng_ustconsumer_close_all_metadata(struct lttng_ht *metadata_ht)
2837 {
2838 struct lttng_ht_iter iter;
2839 struct lttng_consumer_stream *stream;
2840
2841 assert(metadata_ht);
2842 assert(metadata_ht->ht);
2843
2844 DBG("UST consumer closing all metadata streams");
2845
2846 rcu_read_lock();
2847 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream,
2848 node.node) {
2849
2850 health_code_update();
2851
2852 pthread_mutex_lock(&stream->chan->lock);
2853 lttng_ustconsumer_close_metadata(stream->chan);
2854 pthread_mutex_unlock(&stream->chan->lock);
2855
2856 }
2857 rcu_read_unlock();
2858 }
2859
2860 void lttng_ustconsumer_close_stream_wakeup(struct lttng_consumer_stream *stream)
2861 {
2862 int ret;
2863
2864 ret = ustctl_stream_close_wakeup_fd(stream->ustream);
2865 if (ret < 0) {
2866 ERR("Unable to close wakeup fd");
2867 }
2868 }
2869
2870 /*
2871 * Please refer to consumer-timer.c before adding any lock within this
2872 * function or any of its callees. Timers have a very strict locking
2873 * semantic with respect to teardown. Failure to respect this semantic
2874 * introduces deadlocks.
2875 *
2876 * DON'T hold the metadata lock when calling this function, else this
2877 * can cause deadlock involving consumer awaiting for metadata to be
2878 * pushed out due to concurrent interaction with the session daemon.
2879 */
2880 int lttng_ustconsumer_request_metadata(struct lttng_consumer_local_data *ctx,
2881 struct lttng_consumer_channel *channel, int timer, int wait)
2882 {
2883 struct lttcomm_metadata_request_msg request;
2884 struct lttcomm_consumer_msg msg;
2885 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
2886 uint64_t len, key, offset, version;
2887 int ret;
2888
2889 assert(channel);
2890 assert(channel->metadata_cache);
2891
2892 memset(&request, 0, sizeof(request));
2893
2894 /* send the metadata request to sessiond */
2895 switch (consumer_data.type) {
2896 case LTTNG_CONSUMER64_UST:
2897 request.bits_per_long = 64;
2898 break;
2899 case LTTNG_CONSUMER32_UST:
2900 request.bits_per_long = 32;
2901 break;
2902 default:
2903 request.bits_per_long = 0;
2904 break;
2905 }
2906
2907 request.session_id = channel->session_id;
2908 request.session_id_per_pid = channel->session_id_per_pid;
2909 /*
2910 * Request the application UID here so the metadata of that application can
2911 * be sent back. The channel UID corresponds to the user UID of the session
2912 * used for the rights on the stream file(s).
2913 */
2914 request.uid = channel->ust_app_uid;
2915 request.key = channel->key;
2916
2917 DBG("Sending metadata request to sessiond, session id %" PRIu64
2918 ", per-pid %" PRIu64 ", app UID %u and channek key %" PRIu64,
2919 request.session_id, request.session_id_per_pid, request.uid,
2920 request.key);
2921
2922 pthread_mutex_lock(&ctx->metadata_socket_lock);
2923
2924 health_code_update();
2925
2926 ret = lttcomm_send_unix_sock(ctx->consumer_metadata_socket, &request,
2927 sizeof(request));
2928 if (ret < 0) {
2929 ERR("Asking metadata to sessiond");
2930 goto end;
2931 }
2932
2933 health_code_update();
2934
2935 /* Receive the metadata from sessiond */
2936 ret = lttcomm_recv_unix_sock(ctx->consumer_metadata_socket, &msg,
2937 sizeof(msg));
2938 if (ret != sizeof(msg)) {
2939 DBG("Consumer received unexpected message size %d (expects %zu)",
2940 ret, sizeof(msg));
2941 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
2942 /*
2943 * The ret value might 0 meaning an orderly shutdown but this is ok
2944 * since the caller handles this.
2945 */
2946 goto end;
2947 }
2948
2949 health_code_update();
2950
2951 if (msg.cmd_type == LTTNG_ERR_UND) {
2952 /* No registry found */
2953 (void) consumer_send_status_msg(ctx->consumer_metadata_socket,
2954 ret_code);
2955 ret = 0;
2956 goto end;
2957 } else if (msg.cmd_type != LTTNG_CONSUMER_PUSH_METADATA) {
2958 ERR("Unexpected cmd_type received %d", msg.cmd_type);
2959 ret = -1;
2960 goto end;
2961 }
2962
2963 len = msg.u.push_metadata.len;
2964 key = msg.u.push_metadata.key;
2965 offset = msg.u.push_metadata.target_offset;
2966 version = msg.u.push_metadata.version;
2967
2968 assert(key == channel->key);
2969 if (len == 0) {
2970 DBG("No new metadata to receive for key %" PRIu64, key);
2971 }
2972
2973 health_code_update();
2974
2975 /* Tell session daemon we are ready to receive the metadata. */
2976 ret = consumer_send_status_msg(ctx->consumer_metadata_socket,
2977 LTTCOMM_CONSUMERD_SUCCESS);
2978 if (ret < 0 || len == 0) {
2979 /*
2980 * Somehow, the session daemon is not responding anymore or there is
2981 * nothing to receive.
2982 */
2983 goto end;
2984 }
2985
2986 health_code_update();
2987
2988 ret = lttng_ustconsumer_recv_metadata(ctx->consumer_metadata_socket,
2989 key, offset, len, version, channel, timer, wait);
2990 if (ret >= 0) {
2991 /*
2992 * Only send the status msg if the sessiond is alive meaning a positive
2993 * ret code.
2994 */
2995 (void) consumer_send_status_msg(ctx->consumer_metadata_socket, ret);
2996 }
2997 ret = 0;
2998
2999 end:
3000 health_code_update();
3001
3002 pthread_mutex_unlock(&ctx->metadata_socket_lock);
3003 return ret;
3004 }
3005
3006 /*
3007 * Return the ustctl call for the get stream id.
3008 */
3009 int lttng_ustconsumer_get_stream_id(struct lttng_consumer_stream *stream,
3010 uint64_t *stream_id)
3011 {
3012 assert(stream);
3013 assert(stream_id);
3014
3015 return ustctl_get_stream_id(stream->ustream, stream_id);
3016 }
This page took 0.126568 seconds and 5 git commands to generate.