Cleanup: use CMM accessors for consumer_quit variable
[lttng-tools.git] / src / common / ust-consumer / ust-consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2017 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <lttng/ust-ctl.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <inttypes.h>
32 #include <unistd.h>
33 #include <urcu/list.h>
34 #include <signal.h>
35
36 #include <bin/lttng-consumerd/health-consumerd.h>
37 #include <common/common.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/relayd/relayd.h>
40 #include <common/compat/fcntl.h>
41 #include <common/compat/endian.h>
42 #include <common/consumer/consumer-metadata-cache.h>
43 #include <common/consumer/consumer-stream.h>
44 #include <common/consumer/consumer-timer.h>
45 #include <common/utils.h>
46 #include <common/index/index.h>
47
48 #include "ust-consumer.h"
49
50 #define INT_MAX_STR_LEN 12 /* includes \0 */
51
52 extern struct lttng_consumer_global_data consumer_data;
53 extern int consumer_poll_timeout;
54
55 /*
56 * Free channel object and all streams associated with it. This MUST be used
57 * only and only if the channel has _NEVER_ been added to the global channel
58 * hash table.
59 */
60 static void destroy_channel(struct lttng_consumer_channel *channel)
61 {
62 struct lttng_consumer_stream *stream, *stmp;
63
64 assert(channel);
65
66 DBG("UST consumer cleaning stream list");
67
68 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
69 send_node) {
70
71 health_code_update();
72
73 cds_list_del(&stream->send_node);
74 ustctl_destroy_stream(stream->ustream);
75 free(stream);
76 }
77
78 /*
79 * If a channel is available meaning that was created before the streams
80 * were, delete it.
81 */
82 if (channel->uchan) {
83 lttng_ustconsumer_del_channel(channel);
84 lttng_ustconsumer_free_channel(channel);
85 }
86 free(channel);
87 }
88
89 /*
90 * Add channel to internal consumer state.
91 *
92 * Returns 0 on success or else a negative value.
93 */
94 static int add_channel(struct lttng_consumer_channel *channel,
95 struct lttng_consumer_local_data *ctx)
96 {
97 int ret = 0;
98
99 assert(channel);
100 assert(ctx);
101
102 if (ctx->on_recv_channel != NULL) {
103 ret = ctx->on_recv_channel(channel);
104 if (ret == 0) {
105 ret = consumer_add_channel(channel, ctx);
106 } else if (ret < 0) {
107 /* Most likely an ENOMEM. */
108 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
109 goto error;
110 }
111 } else {
112 ret = consumer_add_channel(channel, ctx);
113 }
114
115 DBG("UST consumer channel added (key: %" PRIu64 ")", channel->key);
116
117 error:
118 return ret;
119 }
120
121 /*
122 * Allocate and return a consumer channel object.
123 */
124 static struct lttng_consumer_channel *allocate_channel(uint64_t session_id,
125 const char *pathname, const char *name, uid_t uid, gid_t gid,
126 uint64_t relayd_id, uint64_t key, enum lttng_event_output output,
127 uint64_t tracefile_size, uint64_t tracefile_count,
128 uint64_t session_id_per_pid, unsigned int monitor,
129 unsigned int live_timer_interval,
130 const char *root_shm_path, const char *shm_path)
131 {
132 assert(pathname);
133 assert(name);
134
135 return consumer_allocate_channel(key, session_id, pathname, name, uid,
136 gid, relayd_id, output, tracefile_size,
137 tracefile_count, session_id_per_pid, monitor,
138 live_timer_interval, root_shm_path, shm_path);
139 }
140
141 /*
142 * Allocate and return a consumer stream object. If _alloc_ret is not NULL, the
143 * error value if applicable is set in it else it is kept untouched.
144 *
145 * Return NULL on error else the newly allocated stream object.
146 */
147 static struct lttng_consumer_stream *allocate_stream(int cpu, int key,
148 struct lttng_consumer_channel *channel,
149 struct lttng_consumer_local_data *ctx, int *_alloc_ret)
150 {
151 int alloc_ret;
152 struct lttng_consumer_stream *stream = NULL;
153
154 assert(channel);
155 assert(ctx);
156
157 stream = consumer_allocate_stream(channel->key,
158 key,
159 LTTNG_CONSUMER_ACTIVE_STREAM,
160 channel->name,
161 channel->uid,
162 channel->gid,
163 channel->relayd_id,
164 channel->session_id,
165 cpu,
166 &alloc_ret,
167 channel->type,
168 channel->monitor);
169 if (stream == NULL) {
170 switch (alloc_ret) {
171 case -ENOENT:
172 /*
173 * We could not find the channel. Can happen if cpu hotplug
174 * happens while tearing down.
175 */
176 DBG3("Could not find channel");
177 break;
178 case -ENOMEM:
179 case -EINVAL:
180 default:
181 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
182 break;
183 }
184 goto error;
185 }
186
187 stream->chan = channel;
188
189 error:
190 if (_alloc_ret) {
191 *_alloc_ret = alloc_ret;
192 }
193 return stream;
194 }
195
196 /*
197 * Send the given stream pointer to the corresponding thread.
198 *
199 * Returns 0 on success else a negative value.
200 */
201 static int send_stream_to_thread(struct lttng_consumer_stream *stream,
202 struct lttng_consumer_local_data *ctx)
203 {
204 int ret;
205 struct lttng_pipe *stream_pipe;
206
207 /* Get the right pipe where the stream will be sent. */
208 if (stream->metadata_flag) {
209 ret = consumer_add_metadata_stream(stream);
210 if (ret) {
211 ERR("Consumer add metadata stream %" PRIu64 " failed.",
212 stream->key);
213 goto error;
214 }
215 stream_pipe = ctx->consumer_metadata_pipe;
216 } else {
217 ret = consumer_add_data_stream(stream);
218 if (ret) {
219 ERR("Consumer add stream %" PRIu64 " failed.",
220 stream->key);
221 goto error;
222 }
223 stream_pipe = ctx->consumer_data_pipe;
224 }
225
226 /*
227 * From this point on, the stream's ownership has been moved away from
228 * the channel and becomes globally visible.
229 */
230 stream->globally_visible = 1;
231
232 ret = lttng_pipe_write(stream_pipe, &stream, sizeof(stream));
233 if (ret < 0) {
234 ERR("Consumer write %s stream to pipe %d",
235 stream->metadata_flag ? "metadata" : "data",
236 lttng_pipe_get_writefd(stream_pipe));
237 if (stream->metadata_flag) {
238 consumer_del_stream_for_metadata(stream);
239 } else {
240 consumer_del_stream_for_data(stream);
241 }
242 }
243 error:
244 return ret;
245 }
246
247 static
248 int get_stream_shm_path(char *stream_shm_path, const char *shm_path, int cpu)
249 {
250 char cpu_nr[INT_MAX_STR_LEN]; /* int max len */
251 int ret;
252
253 strncpy(stream_shm_path, shm_path, PATH_MAX);
254 stream_shm_path[PATH_MAX - 1] = '\0';
255 ret = snprintf(cpu_nr, INT_MAX_STR_LEN, "%i", cpu);
256 if (ret < 0) {
257 PERROR("snprintf");
258 goto end;
259 }
260 strncat(stream_shm_path, cpu_nr,
261 PATH_MAX - strlen(stream_shm_path) - 1);
262 ret = 0;
263 end:
264 return ret;
265 }
266
267 /*
268 * Create streams for the given channel using liblttng-ust-ctl.
269 *
270 * Return 0 on success else a negative value.
271 */
272 static int create_ust_streams(struct lttng_consumer_channel *channel,
273 struct lttng_consumer_local_data *ctx)
274 {
275 int ret, cpu = 0;
276 struct ustctl_consumer_stream *ustream;
277 struct lttng_consumer_stream *stream;
278
279 assert(channel);
280 assert(ctx);
281
282 /*
283 * While a stream is available from ustctl. When NULL is returned, we've
284 * reached the end of the possible stream for the channel.
285 */
286 while ((ustream = ustctl_create_stream(channel->uchan, cpu))) {
287 int wait_fd;
288 int ust_metadata_pipe[2];
289
290 health_code_update();
291
292 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && channel->monitor) {
293 ret = utils_create_pipe_cloexec_nonblock(ust_metadata_pipe);
294 if (ret < 0) {
295 ERR("Create ust metadata poll pipe");
296 goto error;
297 }
298 wait_fd = ust_metadata_pipe[0];
299 } else {
300 wait_fd = ustctl_stream_get_wait_fd(ustream);
301 }
302
303 /* Allocate consumer stream object. */
304 stream = allocate_stream(cpu, wait_fd, channel, ctx, &ret);
305 if (!stream) {
306 goto error_alloc;
307 }
308 stream->ustream = ustream;
309 /*
310 * Store it so we can save multiple function calls afterwards since
311 * this value is used heavily in the stream threads. This is UST
312 * specific so this is why it's done after allocation.
313 */
314 stream->wait_fd = wait_fd;
315
316 /*
317 * Increment channel refcount since the channel reference has now been
318 * assigned in the allocation process above.
319 */
320 if (stream->chan->monitor) {
321 uatomic_inc(&stream->chan->refcount);
322 }
323
324 /*
325 * Order is important this is why a list is used. On error, the caller
326 * should clean this list.
327 */
328 cds_list_add_tail(&stream->send_node, &channel->streams.head);
329
330 ret = ustctl_get_max_subbuf_size(stream->ustream,
331 &stream->max_sb_size);
332 if (ret < 0) {
333 ERR("ustctl_get_max_subbuf_size failed for stream %s",
334 stream->name);
335 goto error;
336 }
337
338 /* Do actions once stream has been received. */
339 if (ctx->on_recv_stream) {
340 ret = ctx->on_recv_stream(stream);
341 if (ret < 0) {
342 goto error;
343 }
344 }
345
346 DBG("UST consumer add stream %s (key: %" PRIu64 ") with relayd id %" PRIu64,
347 stream->name, stream->key, stream->relayd_stream_id);
348
349 /* Set next CPU stream. */
350 channel->streams.count = ++cpu;
351
352 /* Keep stream reference when creating metadata. */
353 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
354 channel->metadata_stream = stream;
355 if (channel->monitor) {
356 /* Set metadata poll pipe if we created one */
357 memcpy(stream->ust_metadata_poll_pipe,
358 ust_metadata_pipe,
359 sizeof(ust_metadata_pipe));
360 }
361 }
362 }
363
364 return 0;
365
366 error:
367 error_alloc:
368 return ret;
369 }
370
371 /*
372 * create_posix_shm is never called concurrently within a process.
373 */
374 static
375 int create_posix_shm(void)
376 {
377 char tmp_name[NAME_MAX];
378 int shmfd, ret;
379
380 ret = snprintf(tmp_name, NAME_MAX, "/ust-shm-consumer-%d", getpid());
381 if (ret < 0) {
382 PERROR("snprintf");
383 return -1;
384 }
385 /*
386 * Allocate shm, and immediately unlink its shm oject, keeping
387 * only the file descriptor as a reference to the object.
388 * We specifically do _not_ use the / at the beginning of the
389 * pathname so that some OS implementations can keep it local to
390 * the process (POSIX leaves this implementation-defined).
391 */
392 shmfd = shm_open(tmp_name, O_CREAT | O_EXCL | O_RDWR, 0700);
393 if (shmfd < 0) {
394 PERROR("shm_open");
395 goto error_shm_open;
396 }
397 ret = shm_unlink(tmp_name);
398 if (ret < 0 && errno != ENOENT) {
399 PERROR("shm_unlink");
400 goto error_shm_release;
401 }
402 return shmfd;
403
404 error_shm_release:
405 ret = close(shmfd);
406 if (ret) {
407 PERROR("close");
408 }
409 error_shm_open:
410 return -1;
411 }
412
413 static int open_ust_stream_fd(struct lttng_consumer_channel *channel,
414 struct ustctl_consumer_channel_attr *attr,
415 int cpu)
416 {
417 char shm_path[PATH_MAX];
418 int ret;
419
420 if (!channel->shm_path[0]) {
421 return create_posix_shm();
422 }
423 ret = get_stream_shm_path(shm_path, channel->shm_path, cpu);
424 if (ret) {
425 goto error_shm_path;
426 }
427 return run_as_open(shm_path,
428 O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR,
429 channel->uid, channel->gid);
430
431 error_shm_path:
432 return -1;
433 }
434
435 /*
436 * Create an UST channel with the given attributes and send it to the session
437 * daemon using the ust ctl API.
438 *
439 * Return 0 on success or else a negative value.
440 */
441 static int create_ust_channel(struct lttng_consumer_channel *channel,
442 struct ustctl_consumer_channel_attr *attr,
443 struct ustctl_consumer_channel **ust_chanp)
444 {
445 int ret, nr_stream_fds, i, j;
446 int *stream_fds;
447 struct ustctl_consumer_channel *ust_channel;
448
449 assert(channel);
450 assert(attr);
451 assert(ust_chanp);
452
453 DBG3("Creating channel to ustctl with attr: [overwrite: %d, "
454 "subbuf_size: %" PRIu64 ", num_subbuf: %" PRIu64 ", "
455 "switch_timer_interval: %u, read_timer_interval: %u, "
456 "output: %d, type: %d", attr->overwrite, attr->subbuf_size,
457 attr->num_subbuf, attr->switch_timer_interval,
458 attr->read_timer_interval, attr->output, attr->type);
459
460 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA)
461 nr_stream_fds = 1;
462 else
463 nr_stream_fds = ustctl_get_nr_stream_per_channel();
464 stream_fds = zmalloc(nr_stream_fds * sizeof(*stream_fds));
465 if (!stream_fds) {
466 ret = -1;
467 goto error_alloc;
468 }
469 for (i = 0; i < nr_stream_fds; i++) {
470 stream_fds[i] = open_ust_stream_fd(channel, attr, i);
471 if (stream_fds[i] < 0) {
472 ret = -1;
473 goto error_open;
474 }
475 }
476 ust_channel = ustctl_create_channel(attr, stream_fds, nr_stream_fds);
477 if (!ust_channel) {
478 ret = -1;
479 goto error_create;
480 }
481 channel->nr_stream_fds = nr_stream_fds;
482 channel->stream_fds = stream_fds;
483 *ust_chanp = ust_channel;
484
485 return 0;
486
487 error_create:
488 error_open:
489 for (j = i - 1; j >= 0; j--) {
490 int closeret;
491
492 closeret = close(stream_fds[j]);
493 if (closeret) {
494 PERROR("close");
495 }
496 if (channel->shm_path[0]) {
497 char shm_path[PATH_MAX];
498
499 closeret = get_stream_shm_path(shm_path,
500 channel->shm_path, j);
501 if (closeret) {
502 ERR("Cannot get stream shm path");
503 }
504 closeret = run_as_unlink(shm_path,
505 channel->uid, channel->gid);
506 if (closeret) {
507 PERROR("unlink %s", shm_path);
508 }
509 }
510 }
511 /* Try to rmdir all directories under shm_path root. */
512 if (channel->root_shm_path[0]) {
513 (void) run_as_rmdir_recursive(channel->root_shm_path,
514 channel->uid, channel->gid);
515 }
516 free(stream_fds);
517 error_alloc:
518 return ret;
519 }
520
521 /*
522 * Send a single given stream to the session daemon using the sock.
523 *
524 * Return 0 on success else a negative value.
525 */
526 static int send_sessiond_stream(int sock, struct lttng_consumer_stream *stream)
527 {
528 int ret;
529
530 assert(stream);
531 assert(sock >= 0);
532
533 DBG("UST consumer sending stream %" PRIu64 " to sessiond", stream->key);
534
535 /* Send stream to session daemon. */
536 ret = ustctl_send_stream_to_sessiond(sock, stream->ustream);
537 if (ret < 0) {
538 goto error;
539 }
540
541 error:
542 return ret;
543 }
544
545 /*
546 * Send channel to sessiond.
547 *
548 * Return 0 on success or else a negative value.
549 */
550 static int send_sessiond_channel(int sock,
551 struct lttng_consumer_channel *channel,
552 struct lttng_consumer_local_data *ctx, int *relayd_error)
553 {
554 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
555 struct lttng_consumer_stream *stream;
556 uint64_t net_seq_idx = -1ULL;
557
558 assert(channel);
559 assert(ctx);
560 assert(sock >= 0);
561
562 DBG("UST consumer sending channel %s to sessiond", channel->name);
563
564 if (channel->relayd_id != (uint64_t) -1ULL) {
565 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
566
567 health_code_update();
568
569 /* Try to send the stream to the relayd if one is available. */
570 ret = consumer_send_relayd_stream(stream, stream->chan->pathname);
571 if (ret < 0) {
572 /*
573 * Flag that the relayd was the problem here probably due to a
574 * communicaton error on the socket.
575 */
576 if (relayd_error) {
577 *relayd_error = 1;
578 }
579 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
580 }
581 if (net_seq_idx == -1ULL) {
582 net_seq_idx = stream->net_seq_idx;
583 }
584 }
585 }
586
587 /* Inform sessiond that we are about to send channel and streams. */
588 ret = consumer_send_status_msg(sock, ret_code);
589 if (ret < 0 || ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
590 /*
591 * Either the session daemon is not responding or the relayd died so we
592 * stop now.
593 */
594 goto error;
595 }
596
597 /* Send channel to sessiond. */
598 ret = ustctl_send_channel_to_sessiond(sock, channel->uchan);
599 if (ret < 0) {
600 goto error;
601 }
602
603 ret = ustctl_channel_close_wakeup_fd(channel->uchan);
604 if (ret < 0) {
605 goto error;
606 }
607
608 /* The channel was sent successfully to the sessiond at this point. */
609 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
610
611 health_code_update();
612
613 /* Send stream to session daemon. */
614 ret = send_sessiond_stream(sock, stream);
615 if (ret < 0) {
616 goto error;
617 }
618 }
619
620 /* Tell sessiond there is no more stream. */
621 ret = ustctl_send_stream_to_sessiond(sock, NULL);
622 if (ret < 0) {
623 goto error;
624 }
625
626 DBG("UST consumer NULL stream sent to sessiond");
627
628 return 0;
629
630 error:
631 if (ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
632 ret = -1;
633 }
634 return ret;
635 }
636
637 /*
638 * Creates a channel and streams and add the channel it to the channel internal
639 * state. The created stream must ONLY be sent once the GET_CHANNEL command is
640 * received.
641 *
642 * Return 0 on success or else, a negative value is returned and the channel
643 * MUST be destroyed by consumer_del_channel().
644 */
645 static int ask_channel(struct lttng_consumer_local_data *ctx, int sock,
646 struct lttng_consumer_channel *channel,
647 struct ustctl_consumer_channel_attr *attr)
648 {
649 int ret;
650
651 assert(ctx);
652 assert(channel);
653 assert(attr);
654
655 /*
656 * This value is still used by the kernel consumer since for the kernel,
657 * the stream ownership is not IN the consumer so we need to have the
658 * number of left stream that needs to be initialized so we can know when
659 * to delete the channel (see consumer.c).
660 *
661 * As for the user space tracer now, the consumer creates and sends the
662 * stream to the session daemon which only sends them to the application
663 * once every stream of a channel is received making this value useless
664 * because we they will be added to the poll thread before the application
665 * receives them. This ensures that a stream can not hang up during
666 * initilization of a channel.
667 */
668 channel->nb_init_stream_left = 0;
669
670 /* The reply msg status is handled in the following call. */
671 ret = create_ust_channel(channel, attr, &channel->uchan);
672 if (ret < 0) {
673 goto end;
674 }
675
676 channel->wait_fd = ustctl_channel_get_wait_fd(channel->uchan);
677
678 /*
679 * For the snapshots (no monitor), we create the metadata streams
680 * on demand, not during the channel creation.
681 */
682 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && !channel->monitor) {
683 ret = 0;
684 goto end;
685 }
686
687 /* Open all streams for this channel. */
688 ret = create_ust_streams(channel, ctx);
689 if (ret < 0) {
690 goto end;
691 }
692
693 end:
694 return ret;
695 }
696
697 /*
698 * Send all stream of a channel to the right thread handling it.
699 *
700 * On error, return a negative value else 0 on success.
701 */
702 static int send_streams_to_thread(struct lttng_consumer_channel *channel,
703 struct lttng_consumer_local_data *ctx)
704 {
705 int ret = 0;
706 struct lttng_consumer_stream *stream, *stmp;
707
708 assert(channel);
709 assert(ctx);
710
711 /* Send streams to the corresponding thread. */
712 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
713 send_node) {
714
715 health_code_update();
716
717 /* Sending the stream to the thread. */
718 ret = send_stream_to_thread(stream, ctx);
719 if (ret < 0) {
720 /*
721 * If we are unable to send the stream to the thread, there is
722 * a big problem so just stop everything.
723 */
724 /* Remove node from the channel stream list. */
725 cds_list_del(&stream->send_node);
726 goto error;
727 }
728
729 /* Remove node from the channel stream list. */
730 cds_list_del(&stream->send_node);
731
732 }
733
734 error:
735 return ret;
736 }
737
738 /*
739 * Flush channel's streams using the given key to retrieve the channel.
740 *
741 * Return 0 on success else an LTTng error code.
742 */
743 static int flush_channel(uint64_t chan_key)
744 {
745 int ret = 0;
746 struct lttng_consumer_channel *channel;
747 struct lttng_consumer_stream *stream;
748 struct lttng_ht *ht;
749 struct lttng_ht_iter iter;
750
751 DBG("UST consumer flush channel key %" PRIu64, chan_key);
752
753 rcu_read_lock();
754 channel = consumer_find_channel(chan_key);
755 if (!channel) {
756 ERR("UST consumer flush channel %" PRIu64 " not found", chan_key);
757 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
758 goto error;
759 }
760
761 ht = consumer_data.stream_per_chan_id_ht;
762
763 /* For each stream of the channel id, flush it. */
764 cds_lfht_for_each_entry_duplicate(ht->ht,
765 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
766 &channel->key, &iter.iter, stream, node_channel_id.node) {
767
768 health_code_update();
769
770 pthread_mutex_lock(&stream->lock);
771 if (!stream->quiescent) {
772 ustctl_flush_buffer(stream->ustream, 0);
773 stream->quiescent = true;
774 }
775 pthread_mutex_unlock(&stream->lock);
776 }
777 error:
778 rcu_read_unlock();
779 return ret;
780 }
781
782 /*
783 * Clear quiescent state from channel's streams using the given key to
784 * retrieve the channel.
785 *
786 * Return 0 on success else an LTTng error code.
787 */
788 static int clear_quiescent_channel(uint64_t chan_key)
789 {
790 int ret = 0;
791 struct lttng_consumer_channel *channel;
792 struct lttng_consumer_stream *stream;
793 struct lttng_ht *ht;
794 struct lttng_ht_iter iter;
795
796 DBG("UST consumer clear quiescent channel key %" PRIu64, chan_key);
797
798 rcu_read_lock();
799 channel = consumer_find_channel(chan_key);
800 if (!channel) {
801 ERR("UST consumer clear quiescent channel %" PRIu64 " not found", chan_key);
802 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
803 goto error;
804 }
805
806 ht = consumer_data.stream_per_chan_id_ht;
807
808 /* For each stream of the channel id, clear quiescent state. */
809 cds_lfht_for_each_entry_duplicate(ht->ht,
810 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
811 &channel->key, &iter.iter, stream, node_channel_id.node) {
812
813 health_code_update();
814
815 pthread_mutex_lock(&stream->lock);
816 stream->quiescent = false;
817 pthread_mutex_unlock(&stream->lock);
818 }
819 error:
820 rcu_read_unlock();
821 return ret;
822 }
823
824 /*
825 * Close metadata stream wakeup_fd using the given key to retrieve the channel.
826 * RCU read side lock MUST be acquired before calling this function.
827 *
828 * Return 0 on success else an LTTng error code.
829 */
830 static int close_metadata(uint64_t chan_key)
831 {
832 int ret = 0;
833 struct lttng_consumer_channel *channel;
834
835 DBG("UST consumer close metadata key %" PRIu64, chan_key);
836
837 channel = consumer_find_channel(chan_key);
838 if (!channel) {
839 /*
840 * This is possible if the metadata thread has issue a delete because
841 * the endpoint point of the stream hung up. There is no way the
842 * session daemon can know about it thus use a DBG instead of an actual
843 * error.
844 */
845 DBG("UST consumer close metadata %" PRIu64 " not found", chan_key);
846 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
847 goto error;
848 }
849
850 pthread_mutex_lock(&consumer_data.lock);
851 pthread_mutex_lock(&channel->lock);
852
853 if (cds_lfht_is_node_deleted(&channel->node.node)) {
854 goto error_unlock;
855 }
856
857 lttng_ustconsumer_close_metadata(channel);
858
859 error_unlock:
860 pthread_mutex_unlock(&channel->lock);
861 pthread_mutex_unlock(&consumer_data.lock);
862 error:
863 return ret;
864 }
865
866 /*
867 * RCU read side lock MUST be acquired before calling this function.
868 *
869 * Return 0 on success else an LTTng error code.
870 */
871 static int setup_metadata(struct lttng_consumer_local_data *ctx, uint64_t key)
872 {
873 int ret;
874 struct lttng_consumer_channel *metadata;
875
876 DBG("UST consumer setup metadata key %" PRIu64, key);
877
878 metadata = consumer_find_channel(key);
879 if (!metadata) {
880 ERR("UST consumer push metadata %" PRIu64 " not found", key);
881 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
882 goto end;
883 }
884
885 /*
886 * In no monitor mode, the metadata channel has no stream(s) so skip the
887 * ownership transfer to the metadata thread.
888 */
889 if (!metadata->monitor) {
890 DBG("Metadata channel in no monitor");
891 ret = 0;
892 goto end;
893 }
894
895 /*
896 * Send metadata stream to relayd if one available. Availability is
897 * known if the stream is still in the list of the channel.
898 */
899 if (cds_list_empty(&metadata->streams.head)) {
900 ERR("Metadata channel key %" PRIu64 ", no stream available.", key);
901 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
902 goto error_no_stream;
903 }
904
905 /* Send metadata stream to relayd if needed. */
906 if (metadata->metadata_stream->net_seq_idx != (uint64_t) -1ULL) {
907 ret = consumer_send_relayd_stream(metadata->metadata_stream,
908 metadata->pathname);
909 if (ret < 0) {
910 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
911 goto error;
912 }
913 ret = consumer_send_relayd_streams_sent(
914 metadata->metadata_stream->net_seq_idx);
915 if (ret < 0) {
916 ret = LTTCOMM_CONSUMERD_RELAYD_FAIL;
917 goto error;
918 }
919 }
920
921 ret = send_streams_to_thread(metadata, ctx);
922 if (ret < 0) {
923 /*
924 * If we are unable to send the stream to the thread, there is
925 * a big problem so just stop everything.
926 */
927 ret = LTTCOMM_CONSUMERD_FATAL;
928 goto error;
929 }
930 /* List MUST be empty after or else it could be reused. */
931 assert(cds_list_empty(&metadata->streams.head));
932
933 ret = 0;
934 goto end;
935
936 error:
937 /*
938 * Delete metadata channel on error. At this point, the metadata stream can
939 * NOT be monitored by the metadata thread thus having the guarantee that
940 * the stream is still in the local stream list of the channel. This call
941 * will make sure to clean that list.
942 */
943 consumer_stream_destroy(metadata->metadata_stream, NULL);
944 cds_list_del(&metadata->metadata_stream->send_node);
945 metadata->metadata_stream = NULL;
946 error_no_stream:
947 end:
948 return ret;
949 }
950
951 /*
952 * Snapshot the whole metadata.
953 *
954 * Returns 0 on success, < 0 on error
955 */
956 static int snapshot_metadata(uint64_t key, char *path, uint64_t relayd_id,
957 struct lttng_consumer_local_data *ctx)
958 {
959 int ret = 0;
960 struct lttng_consumer_channel *metadata_channel;
961 struct lttng_consumer_stream *metadata_stream;
962
963 assert(path);
964 assert(ctx);
965
966 DBG("UST consumer snapshot metadata with key %" PRIu64 " at path %s",
967 key, path);
968
969 rcu_read_lock();
970
971 metadata_channel = consumer_find_channel(key);
972 if (!metadata_channel) {
973 ERR("UST snapshot metadata channel not found for key %" PRIu64,
974 key);
975 ret = -1;
976 goto error;
977 }
978 assert(!metadata_channel->monitor);
979
980 health_code_update();
981
982 /*
983 * Ask the sessiond if we have new metadata waiting and update the
984 * consumer metadata cache.
985 */
986 ret = lttng_ustconsumer_request_metadata(ctx, metadata_channel, 0, 1);
987 if (ret < 0) {
988 goto error;
989 }
990
991 health_code_update();
992
993 /*
994 * The metadata stream is NOT created in no monitor mode when the channel
995 * is created on a sessiond ask channel command.
996 */
997 ret = create_ust_streams(metadata_channel, ctx);
998 if (ret < 0) {
999 goto error;
1000 }
1001
1002 metadata_stream = metadata_channel->metadata_stream;
1003 assert(metadata_stream);
1004
1005 if (relayd_id != (uint64_t) -1ULL) {
1006 metadata_stream->net_seq_idx = relayd_id;
1007 ret = consumer_send_relayd_stream(metadata_stream, path);
1008 if (ret < 0) {
1009 goto error_stream;
1010 }
1011 } else {
1012 ret = utils_create_stream_file(path, metadata_stream->name,
1013 metadata_stream->chan->tracefile_size,
1014 metadata_stream->tracefile_count_current,
1015 metadata_stream->uid, metadata_stream->gid, NULL);
1016 if (ret < 0) {
1017 goto error_stream;
1018 }
1019 metadata_stream->out_fd = ret;
1020 metadata_stream->tracefile_size_current = 0;
1021 }
1022
1023 do {
1024 health_code_update();
1025
1026 ret = lttng_consumer_read_subbuffer(metadata_stream, ctx);
1027 if (ret < 0) {
1028 goto error_stream;
1029 }
1030 } while (ret > 0);
1031
1032 error_stream:
1033 /*
1034 * Clean up the stream completly because the next snapshot will use a new
1035 * metadata stream.
1036 */
1037 consumer_stream_destroy(metadata_stream, NULL);
1038 cds_list_del(&metadata_stream->send_node);
1039 metadata_channel->metadata_stream = NULL;
1040
1041 error:
1042 rcu_read_unlock();
1043 return ret;
1044 }
1045
1046 /*
1047 * Take a snapshot of all the stream of a channel.
1048 *
1049 * Returns 0 on success, < 0 on error
1050 */
1051 static int snapshot_channel(uint64_t key, char *path, uint64_t relayd_id,
1052 uint64_t nb_packets_per_stream, struct lttng_consumer_local_data *ctx)
1053 {
1054 int ret;
1055 unsigned use_relayd = 0;
1056 unsigned long consumed_pos, produced_pos;
1057 struct lttng_consumer_channel *channel;
1058 struct lttng_consumer_stream *stream;
1059
1060 assert(path);
1061 assert(ctx);
1062
1063 rcu_read_lock();
1064
1065 if (relayd_id != (uint64_t) -1ULL) {
1066 use_relayd = 1;
1067 }
1068
1069 channel = consumer_find_channel(key);
1070 if (!channel) {
1071 ERR("UST snapshot channel not found for key %" PRIu64, key);
1072 ret = -1;
1073 goto error;
1074 }
1075 assert(!channel->monitor);
1076 DBG("UST consumer snapshot channel %" PRIu64, key);
1077
1078 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
1079 /* Are we at a position _before_ the first available packet ? */
1080 bool before_first_packet = true;
1081
1082 health_code_update();
1083
1084 /* Lock stream because we are about to change its state. */
1085 pthread_mutex_lock(&stream->lock);
1086 stream->net_seq_idx = relayd_id;
1087
1088 if (use_relayd) {
1089 ret = consumer_send_relayd_stream(stream, path);
1090 if (ret < 0) {
1091 goto error_unlock;
1092 }
1093 } else {
1094 ret = utils_create_stream_file(path, stream->name,
1095 stream->chan->tracefile_size,
1096 stream->tracefile_count_current,
1097 stream->uid, stream->gid, NULL);
1098 if (ret < 0) {
1099 goto error_unlock;
1100 }
1101 stream->out_fd = ret;
1102 stream->tracefile_size_current = 0;
1103
1104 DBG("UST consumer snapshot stream %s/%s (%" PRIu64 ")", path,
1105 stream->name, stream->key);
1106 }
1107 if (relayd_id != -1ULL) {
1108 ret = consumer_send_relayd_streams_sent(relayd_id);
1109 if (ret < 0) {
1110 goto error_unlock;
1111 }
1112 }
1113
1114 /*
1115 * If tracing is active, we want to perform a "full" buffer flush.
1116 * Else, if quiescent, it has already been done by the prior stop.
1117 */
1118 if (!stream->quiescent) {
1119 ustctl_flush_buffer(stream->ustream, 0);
1120 }
1121
1122 ret = lttng_ustconsumer_take_snapshot(stream);
1123 if (ret < 0) {
1124 ERR("Taking UST snapshot");
1125 goto error_unlock;
1126 }
1127
1128 ret = lttng_ustconsumer_get_produced_snapshot(stream, &produced_pos);
1129 if (ret < 0) {
1130 ERR("Produced UST snapshot position");
1131 goto error_unlock;
1132 }
1133
1134 ret = lttng_ustconsumer_get_consumed_snapshot(stream, &consumed_pos);
1135 if (ret < 0) {
1136 ERR("Consumerd UST snapshot position");
1137 goto error_unlock;
1138 }
1139
1140 /*
1141 * The original value is sent back if max stream size is larger than
1142 * the possible size of the snapshot. Also, we assume that the session
1143 * daemon should never send a maximum stream size that is lower than
1144 * subbuffer size.
1145 */
1146 consumed_pos = consumer_get_consume_start_pos(consumed_pos,
1147 produced_pos, nb_packets_per_stream,
1148 stream->max_sb_size);
1149
1150 while (consumed_pos < produced_pos) {
1151 ssize_t read_len;
1152 unsigned long len, padded_len;
1153 int lost_packet = 0;
1154
1155 health_code_update();
1156
1157 DBG("UST consumer taking snapshot at pos %lu", consumed_pos);
1158
1159 ret = ustctl_get_subbuf(stream->ustream, &consumed_pos);
1160 if (ret < 0) {
1161 if (ret != -EAGAIN) {
1162 PERROR("ustctl_get_subbuf snapshot");
1163 goto error_close_stream;
1164 }
1165 DBG("UST consumer get subbuf failed. Skipping it.");
1166 consumed_pos += stream->max_sb_size;
1167
1168 /*
1169 * Start accounting lost packets only when we
1170 * already have extracted packets (to match the
1171 * content of the final snapshot).
1172 */
1173 if (!before_first_packet) {
1174 lost_packet = 1;
1175 }
1176 continue;
1177 }
1178
1179 ret = ustctl_get_subbuf_size(stream->ustream, &len);
1180 if (ret < 0) {
1181 ERR("Snapshot ustctl_get_subbuf_size");
1182 goto error_put_subbuf;
1183 }
1184
1185 ret = ustctl_get_padded_subbuf_size(stream->ustream, &padded_len);
1186 if (ret < 0) {
1187 ERR("Snapshot ustctl_get_padded_subbuf_size");
1188 goto error_put_subbuf;
1189 }
1190
1191 read_len = lttng_consumer_on_read_subbuffer_mmap(ctx, stream, len,
1192 padded_len - len, NULL);
1193 if (use_relayd) {
1194 if (read_len != len) {
1195 ret = -EPERM;
1196 goto error_put_subbuf;
1197 }
1198 } else {
1199 if (read_len != padded_len) {
1200 ret = -EPERM;
1201 goto error_put_subbuf;
1202 }
1203 }
1204
1205 ret = ustctl_put_subbuf(stream->ustream);
1206 if (ret < 0) {
1207 ERR("Snapshot ustctl_put_subbuf");
1208 goto error_close_stream;
1209 }
1210 consumed_pos += stream->max_sb_size;
1211
1212 /*
1213 * Only account lost packets located between
1214 * succesfully extracted packets (do not account before
1215 * and after since they are not visible in the
1216 * resulting snapshot).
1217 */
1218 stream->chan->lost_packets += lost_packet;
1219 lost_packet = 0;
1220 before_first_packet = false;
1221 }
1222
1223 /* Simply close the stream so we can use it on the next snapshot. */
1224 consumer_stream_close(stream);
1225 pthread_mutex_unlock(&stream->lock);
1226 }
1227
1228 rcu_read_unlock();
1229 return 0;
1230
1231 error_put_subbuf:
1232 if (ustctl_put_subbuf(stream->ustream) < 0) {
1233 ERR("Snapshot ustctl_put_subbuf");
1234 }
1235 error_close_stream:
1236 consumer_stream_close(stream);
1237 error_unlock:
1238 pthread_mutex_unlock(&stream->lock);
1239 error:
1240 rcu_read_unlock();
1241 return ret;
1242 }
1243
1244 /*
1245 * Receive the metadata updates from the sessiond. Supports receiving
1246 * overlapping metadata, but is needs to always belong to a contiguous
1247 * range starting from 0.
1248 * Be careful about the locks held when calling this function: it needs
1249 * the metadata cache flush to concurrently progress in order to
1250 * complete.
1251 */
1252 int lttng_ustconsumer_recv_metadata(int sock, uint64_t key, uint64_t offset,
1253 uint64_t len, uint64_t version,
1254 struct lttng_consumer_channel *channel, int timer, int wait)
1255 {
1256 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1257 char *metadata_str;
1258
1259 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key, len);
1260
1261 metadata_str = zmalloc(len * sizeof(char));
1262 if (!metadata_str) {
1263 PERROR("zmalloc metadata string");
1264 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
1265 goto end;
1266 }
1267
1268 health_code_update();
1269
1270 /* Receive metadata string. */
1271 ret = lttcomm_recv_unix_sock(sock, metadata_str, len);
1272 if (ret < 0) {
1273 /* Session daemon is dead so return gracefully. */
1274 ret_code = ret;
1275 goto end_free;
1276 }
1277
1278 health_code_update();
1279
1280 pthread_mutex_lock(&channel->metadata_cache->lock);
1281 ret = consumer_metadata_cache_write(channel, offset, len, version,
1282 metadata_str);
1283 if (ret < 0) {
1284 /* Unable to handle metadata. Notify session daemon. */
1285 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1286 /*
1287 * Skip metadata flush on write error since the offset and len might
1288 * not have been updated which could create an infinite loop below when
1289 * waiting for the metadata cache to be flushed.
1290 */
1291 pthread_mutex_unlock(&channel->metadata_cache->lock);
1292 goto end_free;
1293 }
1294 pthread_mutex_unlock(&channel->metadata_cache->lock);
1295
1296 if (!wait) {
1297 goto end_free;
1298 }
1299 while (consumer_metadata_cache_flushed(channel, offset + len, timer)) {
1300 DBG("Waiting for metadata to be flushed");
1301
1302 health_code_update();
1303
1304 usleep(DEFAULT_METADATA_AVAILABILITY_WAIT_TIME);
1305 }
1306
1307 end_free:
1308 free(metadata_str);
1309 end:
1310 return ret_code;
1311 }
1312
1313 /*
1314 * Receive command from session daemon and process it.
1315 *
1316 * Return 1 on success else a negative value or 0.
1317 */
1318 int lttng_ustconsumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1319 int sock, struct pollfd *consumer_sockpoll)
1320 {
1321 ssize_t ret;
1322 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1323 struct lttcomm_consumer_msg msg;
1324 struct lttng_consumer_channel *channel = NULL;
1325
1326 health_code_update();
1327
1328 ret = lttcomm_recv_unix_sock(sock, &msg, sizeof(msg));
1329 if (ret != sizeof(msg)) {
1330 DBG("Consumer received unexpected message size %zd (expects %zu)",
1331 ret, sizeof(msg));
1332 /*
1333 * The ret value might 0 meaning an orderly shutdown but this is ok
1334 * since the caller handles this.
1335 */
1336 if (ret > 0) {
1337 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
1338 ret = -1;
1339 }
1340 return ret;
1341 }
1342
1343 health_code_update();
1344
1345 /* deprecated */
1346 assert(msg.cmd_type != LTTNG_CONSUMER_STOP);
1347
1348 health_code_update();
1349
1350 /* relayd needs RCU read-side lock */
1351 rcu_read_lock();
1352
1353 switch (msg.cmd_type) {
1354 case LTTNG_CONSUMER_ADD_RELAYD_SOCKET:
1355 {
1356 /* Session daemon status message are handled in the following call. */
1357 ret = consumer_add_relayd_socket(msg.u.relayd_sock.net_index,
1358 msg.u.relayd_sock.type, ctx, sock, consumer_sockpoll,
1359 &msg.u.relayd_sock.sock, msg.u.relayd_sock.session_id,
1360 msg.u.relayd_sock.relayd_session_id);
1361 goto end_nosignal;
1362 }
1363 case LTTNG_CONSUMER_DESTROY_RELAYD:
1364 {
1365 uint64_t index = msg.u.destroy_relayd.net_seq_idx;
1366 struct consumer_relayd_sock_pair *relayd;
1367
1368 DBG("UST consumer destroying relayd %" PRIu64, index);
1369
1370 /* Get relayd reference if exists. */
1371 relayd = consumer_find_relayd(index);
1372 if (relayd == NULL) {
1373 DBG("Unable to find relayd %" PRIu64, index);
1374 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
1375 }
1376
1377 /*
1378 * Each relayd socket pair has a refcount of stream attached to it
1379 * which tells if the relayd is still active or not depending on the
1380 * refcount value.
1381 *
1382 * This will set the destroy flag of the relayd object and destroy it
1383 * if the refcount reaches zero when called.
1384 *
1385 * The destroy can happen either here or when a stream fd hangs up.
1386 */
1387 if (relayd) {
1388 consumer_flag_relayd_for_destroy(relayd);
1389 }
1390
1391 goto end_msg_sessiond;
1392 }
1393 case LTTNG_CONSUMER_UPDATE_STREAM:
1394 {
1395 rcu_read_unlock();
1396 return -ENOSYS;
1397 }
1398 case LTTNG_CONSUMER_DATA_PENDING:
1399 {
1400 int ret, is_data_pending;
1401 uint64_t id = msg.u.data_pending.session_id;
1402
1403 DBG("UST consumer data pending command for id %" PRIu64, id);
1404
1405 is_data_pending = consumer_data_pending(id);
1406
1407 /* Send back returned value to session daemon */
1408 ret = lttcomm_send_unix_sock(sock, &is_data_pending,
1409 sizeof(is_data_pending));
1410 if (ret < 0) {
1411 DBG("Error when sending the data pending ret code: %d", ret);
1412 goto error_fatal;
1413 }
1414
1415 /*
1416 * No need to send back a status message since the data pending
1417 * returned value is the response.
1418 */
1419 break;
1420 }
1421 case LTTNG_CONSUMER_ASK_CHANNEL_CREATION:
1422 {
1423 int ret;
1424 struct ustctl_consumer_channel_attr attr;
1425
1426 /* Create a plain object and reserve a channel key. */
1427 channel = allocate_channel(msg.u.ask_channel.session_id,
1428 msg.u.ask_channel.pathname, msg.u.ask_channel.name,
1429 msg.u.ask_channel.uid, msg.u.ask_channel.gid,
1430 msg.u.ask_channel.relayd_id, msg.u.ask_channel.key,
1431 (enum lttng_event_output) msg.u.ask_channel.output,
1432 msg.u.ask_channel.tracefile_size,
1433 msg.u.ask_channel.tracefile_count,
1434 msg.u.ask_channel.session_id_per_pid,
1435 msg.u.ask_channel.monitor,
1436 msg.u.ask_channel.live_timer_interval,
1437 msg.u.ask_channel.root_shm_path,
1438 msg.u.ask_channel.shm_path);
1439 if (!channel) {
1440 goto end_channel_error;
1441 }
1442
1443 /*
1444 * Assign UST application UID to the channel. This value is ignored for
1445 * per PID buffers. This is specific to UST thus setting this after the
1446 * allocation.
1447 */
1448 channel->ust_app_uid = msg.u.ask_channel.ust_app_uid;
1449
1450 /* Build channel attributes from received message. */
1451 attr.subbuf_size = msg.u.ask_channel.subbuf_size;
1452 attr.num_subbuf = msg.u.ask_channel.num_subbuf;
1453 attr.overwrite = msg.u.ask_channel.overwrite;
1454 attr.switch_timer_interval = msg.u.ask_channel.switch_timer_interval;
1455 attr.read_timer_interval = msg.u.ask_channel.read_timer_interval;
1456 attr.chan_id = msg.u.ask_channel.chan_id;
1457 memcpy(attr.uuid, msg.u.ask_channel.uuid, sizeof(attr.uuid));
1458 attr.blocking_timeout= msg.u.ask_channel.blocking_timeout;
1459
1460 /* Match channel buffer type to the UST abi. */
1461 switch (msg.u.ask_channel.output) {
1462 case LTTNG_EVENT_MMAP:
1463 default:
1464 attr.output = LTTNG_UST_MMAP;
1465 break;
1466 }
1467
1468 /* Translate and save channel type. */
1469 switch (msg.u.ask_channel.type) {
1470 case LTTNG_UST_CHAN_PER_CPU:
1471 channel->type = CONSUMER_CHANNEL_TYPE_DATA;
1472 attr.type = LTTNG_UST_CHAN_PER_CPU;
1473 /*
1474 * Set refcount to 1 for owner. Below, we will
1475 * pass ownership to the
1476 * consumer_thread_channel_poll() thread.
1477 */
1478 channel->refcount = 1;
1479 break;
1480 case LTTNG_UST_CHAN_METADATA:
1481 channel->type = CONSUMER_CHANNEL_TYPE_METADATA;
1482 attr.type = LTTNG_UST_CHAN_METADATA;
1483 break;
1484 default:
1485 assert(0);
1486 goto error_fatal;
1487 };
1488
1489 health_code_update();
1490
1491 ret = ask_channel(ctx, sock, channel, &attr);
1492 if (ret < 0) {
1493 goto end_channel_error;
1494 }
1495
1496 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1497 ret = consumer_metadata_cache_allocate(channel);
1498 if (ret < 0) {
1499 ERR("Allocating metadata cache");
1500 goto end_channel_error;
1501 }
1502 consumer_timer_switch_start(channel, attr.switch_timer_interval);
1503 attr.switch_timer_interval = 0;
1504 } else {
1505 int monitor_start_ret;
1506
1507 consumer_timer_live_start(channel,
1508 msg.u.ask_channel.live_timer_interval);
1509 monitor_start_ret = consumer_timer_monitor_start(
1510 channel,
1511 msg.u.ask_channel.monitor_timer_interval);
1512 if (monitor_start_ret < 0) {
1513 ERR("Starting channel monitoring timer failed");
1514 goto end_channel_error;
1515 }
1516 }
1517
1518 health_code_update();
1519
1520 /*
1521 * Add the channel to the internal state AFTER all streams were created
1522 * and successfully sent to session daemon. This way, all streams must
1523 * be ready before this channel is visible to the threads.
1524 * If add_channel succeeds, ownership of the channel is
1525 * passed to consumer_thread_channel_poll().
1526 */
1527 ret = add_channel(channel, ctx);
1528 if (ret < 0) {
1529 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1530 if (channel->switch_timer_enabled == 1) {
1531 consumer_timer_switch_stop(channel);
1532 }
1533 consumer_metadata_cache_destroy(channel);
1534 }
1535 if (channel->live_timer_enabled == 1) {
1536 consumer_timer_live_stop(channel);
1537 }
1538 if (channel->monitor_timer_enabled == 1) {
1539 consumer_timer_monitor_stop(channel);
1540 }
1541 goto end_channel_error;
1542 }
1543
1544 health_code_update();
1545
1546 /*
1547 * Channel and streams are now created. Inform the session daemon that
1548 * everything went well and should wait to receive the channel and
1549 * streams with ustctl API.
1550 */
1551 ret = consumer_send_status_channel(sock, channel);
1552 if (ret < 0) {
1553 /*
1554 * There is probably a problem on the socket.
1555 */
1556 goto error_fatal;
1557 }
1558
1559 break;
1560 }
1561 case LTTNG_CONSUMER_GET_CHANNEL:
1562 {
1563 int ret, relayd_err = 0;
1564 uint64_t key = msg.u.get_channel.key;
1565 struct lttng_consumer_channel *channel;
1566
1567 channel = consumer_find_channel(key);
1568 if (!channel) {
1569 ERR("UST consumer get channel key %" PRIu64 " not found", key);
1570 ret_code = LTTCOMM_CONSUMERD_CHAN_NOT_FOUND;
1571 goto end_msg_sessiond;
1572 }
1573
1574 health_code_update();
1575
1576 /* Send everything to sessiond. */
1577 ret = send_sessiond_channel(sock, channel, ctx, &relayd_err);
1578 if (ret < 0) {
1579 if (relayd_err) {
1580 /*
1581 * We were unable to send to the relayd the stream so avoid
1582 * sending back a fatal error to the thread since this is OK
1583 * and the consumer can continue its work. The above call
1584 * has sent the error status message to the sessiond.
1585 */
1586 goto end_nosignal;
1587 }
1588 /*
1589 * The communicaton was broken hence there is a bad state between
1590 * the consumer and sessiond so stop everything.
1591 */
1592 goto error_fatal;
1593 }
1594
1595 health_code_update();
1596
1597 /*
1598 * In no monitor mode, the streams ownership is kept inside the channel
1599 * so don't send them to the data thread.
1600 */
1601 if (!channel->monitor) {
1602 goto end_msg_sessiond;
1603 }
1604
1605 ret = send_streams_to_thread(channel, ctx);
1606 if (ret < 0) {
1607 /*
1608 * If we are unable to send the stream to the thread, there is
1609 * a big problem so just stop everything.
1610 */
1611 goto error_fatal;
1612 }
1613 /* List MUST be empty after or else it could be reused. */
1614 assert(cds_list_empty(&channel->streams.head));
1615 goto end_msg_sessiond;
1616 }
1617 case LTTNG_CONSUMER_DESTROY_CHANNEL:
1618 {
1619 uint64_t key = msg.u.destroy_channel.key;
1620
1621 /*
1622 * Only called if streams have not been sent to stream
1623 * manager thread. However, channel has been sent to
1624 * channel manager thread.
1625 */
1626 notify_thread_del_channel(ctx, key);
1627 goto end_msg_sessiond;
1628 }
1629 case LTTNG_CONSUMER_CLOSE_METADATA:
1630 {
1631 int ret;
1632
1633 ret = close_metadata(msg.u.close_metadata.key);
1634 if (ret != 0) {
1635 ret_code = ret;
1636 }
1637
1638 goto end_msg_sessiond;
1639 }
1640 case LTTNG_CONSUMER_FLUSH_CHANNEL:
1641 {
1642 int ret;
1643
1644 ret = flush_channel(msg.u.flush_channel.key);
1645 if (ret != 0) {
1646 ret_code = ret;
1647 }
1648
1649 goto end_msg_sessiond;
1650 }
1651 case LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL:
1652 {
1653 int ret;
1654
1655 ret = clear_quiescent_channel(
1656 msg.u.clear_quiescent_channel.key);
1657 if (ret != 0) {
1658 ret_code = ret;
1659 }
1660
1661 goto end_msg_sessiond;
1662 }
1663 case LTTNG_CONSUMER_PUSH_METADATA:
1664 {
1665 int ret;
1666 uint64_t len = msg.u.push_metadata.len;
1667 uint64_t key = msg.u.push_metadata.key;
1668 uint64_t offset = msg.u.push_metadata.target_offset;
1669 uint64_t version = msg.u.push_metadata.version;
1670 struct lttng_consumer_channel *channel;
1671
1672 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key,
1673 len);
1674
1675 channel = consumer_find_channel(key);
1676 if (!channel) {
1677 /*
1678 * This is possible if the metadata creation on the consumer side
1679 * is in flight vis-a-vis a concurrent push metadata from the
1680 * session daemon. Simply return that the channel failed and the
1681 * session daemon will handle that message correctly considering
1682 * that this race is acceptable thus the DBG() statement here.
1683 */
1684 DBG("UST consumer push metadata %" PRIu64 " not found", key);
1685 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1686 goto end_msg_sessiond;
1687 }
1688
1689 health_code_update();
1690
1691 if (!len) {
1692 /*
1693 * There is nothing to receive. We have simply
1694 * checked whether the channel can be found.
1695 */
1696 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1697 goto end_msg_sessiond;
1698 }
1699
1700 /* Tell session daemon we are ready to receive the metadata. */
1701 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
1702 if (ret < 0) {
1703 /* Somehow, the session daemon is not responding anymore. */
1704 goto error_fatal;
1705 }
1706
1707 health_code_update();
1708
1709 /* Wait for more data. */
1710 health_poll_entry();
1711 ret = lttng_consumer_poll_socket(consumer_sockpoll);
1712 health_poll_exit();
1713 if (ret) {
1714 goto error_fatal;
1715 }
1716
1717 health_code_update();
1718
1719 ret = lttng_ustconsumer_recv_metadata(sock, key, offset,
1720 len, version, channel, 0, 1);
1721 if (ret < 0) {
1722 /* error receiving from sessiond */
1723 goto error_fatal;
1724 } else {
1725 ret_code = ret;
1726 goto end_msg_sessiond;
1727 }
1728 }
1729 case LTTNG_CONSUMER_SETUP_METADATA:
1730 {
1731 int ret;
1732
1733 ret = setup_metadata(ctx, msg.u.setup_metadata.key);
1734 if (ret) {
1735 ret_code = ret;
1736 }
1737 goto end_msg_sessiond;
1738 }
1739 case LTTNG_CONSUMER_SNAPSHOT_CHANNEL:
1740 {
1741 if (msg.u.snapshot_channel.metadata) {
1742 ret = snapshot_metadata(msg.u.snapshot_channel.key,
1743 msg.u.snapshot_channel.pathname,
1744 msg.u.snapshot_channel.relayd_id,
1745 ctx);
1746 if (ret < 0) {
1747 ERR("Snapshot metadata failed");
1748 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1749 }
1750 } else {
1751 ret = snapshot_channel(msg.u.snapshot_channel.key,
1752 msg.u.snapshot_channel.pathname,
1753 msg.u.snapshot_channel.relayd_id,
1754 msg.u.snapshot_channel.nb_packets_per_stream,
1755 ctx);
1756 if (ret < 0) {
1757 ERR("Snapshot channel failed");
1758 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1759 }
1760 }
1761
1762 health_code_update();
1763 ret = consumer_send_status_msg(sock, ret_code);
1764 if (ret < 0) {
1765 /* Somehow, the session daemon is not responding anymore. */
1766 goto end_nosignal;
1767 }
1768 health_code_update();
1769 break;
1770 }
1771 case LTTNG_CONSUMER_DISCARDED_EVENTS:
1772 {
1773 int ret = 0;
1774 uint64_t discarded_events;
1775 struct lttng_ht_iter iter;
1776 struct lttng_ht *ht;
1777 struct lttng_consumer_stream *stream;
1778 uint64_t id = msg.u.discarded_events.session_id;
1779 uint64_t key = msg.u.discarded_events.channel_key;
1780
1781 DBG("UST consumer discarded events command for session id %"
1782 PRIu64, id);
1783 rcu_read_lock();
1784 pthread_mutex_lock(&consumer_data.lock);
1785
1786 ht = consumer_data.stream_list_ht;
1787
1788 /*
1789 * We only need a reference to the channel, but they are not
1790 * directly indexed, so we just use the first matching stream
1791 * to extract the information we need, we default to 0 if not
1792 * found (no events are dropped if the channel is not yet in
1793 * use).
1794 */
1795 discarded_events = 0;
1796 cds_lfht_for_each_entry_duplicate(ht->ht,
1797 ht->hash_fct(&id, lttng_ht_seed),
1798 ht->match_fct, &id,
1799 &iter.iter, stream, node_session_id.node) {
1800 if (stream->chan->key == key) {
1801 discarded_events = stream->chan->discarded_events;
1802 break;
1803 }
1804 }
1805 pthread_mutex_unlock(&consumer_data.lock);
1806 rcu_read_unlock();
1807
1808 DBG("UST consumer discarded events command for session id %"
1809 PRIu64 ", channel key %" PRIu64, id, key);
1810
1811 health_code_update();
1812
1813 /* Send back returned value to session daemon */
1814 ret = lttcomm_send_unix_sock(sock, &discarded_events, sizeof(discarded_events));
1815 if (ret < 0) {
1816 PERROR("send discarded events");
1817 goto error_fatal;
1818 }
1819
1820 break;
1821 }
1822 case LTTNG_CONSUMER_LOST_PACKETS:
1823 {
1824 int ret;
1825 uint64_t lost_packets;
1826 struct lttng_ht_iter iter;
1827 struct lttng_ht *ht;
1828 struct lttng_consumer_stream *stream;
1829 uint64_t id = msg.u.lost_packets.session_id;
1830 uint64_t key = msg.u.lost_packets.channel_key;
1831
1832 DBG("UST consumer lost packets command for session id %"
1833 PRIu64, id);
1834 rcu_read_lock();
1835 pthread_mutex_lock(&consumer_data.lock);
1836
1837 ht = consumer_data.stream_list_ht;
1838
1839 /*
1840 * We only need a reference to the channel, but they are not
1841 * directly indexed, so we just use the first matching stream
1842 * to extract the information we need, we default to 0 if not
1843 * found (no packets lost if the channel is not yet in use).
1844 */
1845 lost_packets = 0;
1846 cds_lfht_for_each_entry_duplicate(ht->ht,
1847 ht->hash_fct(&id, lttng_ht_seed),
1848 ht->match_fct, &id,
1849 &iter.iter, stream, node_session_id.node) {
1850 if (stream->chan->key == key) {
1851 lost_packets = stream->chan->lost_packets;
1852 break;
1853 }
1854 }
1855 pthread_mutex_unlock(&consumer_data.lock);
1856 rcu_read_unlock();
1857
1858 DBG("UST consumer lost packets command for session id %"
1859 PRIu64 ", channel key %" PRIu64, id, key);
1860
1861 health_code_update();
1862
1863 /* Send back returned value to session daemon */
1864 ret = lttcomm_send_unix_sock(sock, &lost_packets,
1865 sizeof(lost_packets));
1866 if (ret < 0) {
1867 PERROR("send lost packets");
1868 goto error_fatal;
1869 }
1870
1871 break;
1872 }
1873 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1874 {
1875 int channel_monitor_pipe;
1876
1877 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1878 /* Successfully received the command's type. */
1879 ret = consumer_send_status_msg(sock, ret_code);
1880 if (ret < 0) {
1881 goto error_fatal;
1882 }
1883
1884 ret = lttcomm_recv_fds_unix_sock(sock, &channel_monitor_pipe,
1885 1);
1886 if (ret != sizeof(channel_monitor_pipe)) {
1887 ERR("Failed to receive channel monitor pipe");
1888 goto error_fatal;
1889 }
1890
1891 DBG("Received channel monitor pipe (%d)", channel_monitor_pipe);
1892 ret = consumer_timer_thread_set_channel_monitor_pipe(
1893 channel_monitor_pipe);
1894 if (!ret) {
1895 int flags;
1896
1897 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1898 /* Set the pipe as non-blocking. */
1899 ret = fcntl(channel_monitor_pipe, F_GETFL, 0);
1900 if (ret == -1) {
1901 PERROR("fcntl get flags of the channel monitoring pipe");
1902 goto error_fatal;
1903 }
1904 flags = ret;
1905
1906 ret = fcntl(channel_monitor_pipe, F_SETFL,
1907 flags | O_NONBLOCK);
1908 if (ret == -1) {
1909 PERROR("fcntl set O_NONBLOCK flag of the channel monitoring pipe");
1910 goto error_fatal;
1911 }
1912 DBG("Channel monitor pipe set as non-blocking");
1913 } else {
1914 ret_code = LTTCOMM_CONSUMERD_ALREADY_SET;
1915 }
1916 goto end_msg_sessiond;
1917 }
1918 default:
1919 break;
1920 }
1921
1922 end_nosignal:
1923 rcu_read_unlock();
1924
1925 health_code_update();
1926
1927 /*
1928 * Return 1 to indicate success since the 0 value can be a socket
1929 * shutdown during the recv() or send() call.
1930 */
1931 return 1;
1932
1933 end_msg_sessiond:
1934 /*
1935 * The returned value here is not useful since either way we'll return 1 to
1936 * the caller because the session daemon socket management is done
1937 * elsewhere. Returning a negative code or 0 will shutdown the consumer.
1938 */
1939 ret = consumer_send_status_msg(sock, ret_code);
1940 if (ret < 0) {
1941 goto error_fatal;
1942 }
1943 rcu_read_unlock();
1944
1945 health_code_update();
1946
1947 return 1;
1948 end_channel_error:
1949 if (channel) {
1950 /*
1951 * Free channel here since no one has a reference to it. We don't
1952 * free after that because a stream can store this pointer.
1953 */
1954 destroy_channel(channel);
1955 }
1956 /* We have to send a status channel message indicating an error. */
1957 ret = consumer_send_status_channel(sock, NULL);
1958 if (ret < 0) {
1959 /* Stop everything if session daemon can not be notified. */
1960 goto error_fatal;
1961 }
1962 rcu_read_unlock();
1963
1964 health_code_update();
1965
1966 return 1;
1967 error_fatal:
1968 rcu_read_unlock();
1969 /* This will issue a consumer stop. */
1970 return -1;
1971 }
1972
1973 /*
1974 * Wrapper over the mmap() read offset from ust-ctl library. Since this can be
1975 * compiled out, we isolate it in this library.
1976 */
1977 int lttng_ustctl_get_mmap_read_offset(struct lttng_consumer_stream *stream,
1978 unsigned long *off)
1979 {
1980 assert(stream);
1981 assert(stream->ustream);
1982
1983 return ustctl_get_mmap_read_offset(stream->ustream, off);
1984 }
1985
1986 /*
1987 * Wrapper over the mmap() read offset from ust-ctl library. Since this can be
1988 * compiled out, we isolate it in this library.
1989 */
1990 void *lttng_ustctl_get_mmap_base(struct lttng_consumer_stream *stream)
1991 {
1992 assert(stream);
1993 assert(stream->ustream);
1994
1995 return ustctl_get_mmap_base(stream->ustream);
1996 }
1997
1998 /*
1999 * Take a snapshot for a specific stream.
2000 *
2001 * Returns 0 on success, < 0 on error
2002 */
2003 int lttng_ustconsumer_take_snapshot(struct lttng_consumer_stream *stream)
2004 {
2005 assert(stream);
2006 assert(stream->ustream);
2007
2008 return ustctl_snapshot(stream->ustream);
2009 }
2010
2011 /*
2012 * Sample consumed and produced positions for a specific stream.
2013 *
2014 * Returns 0 on success, < 0 on error.
2015 */
2016 int lttng_ustconsumer_sample_snapshot_positions(
2017 struct lttng_consumer_stream *stream)
2018 {
2019 assert(stream);
2020 assert(stream->ustream);
2021
2022 return ustctl_snapshot_sample_positions(stream->ustream);
2023 }
2024
2025 /*
2026 * Get the produced position
2027 *
2028 * Returns 0 on success, < 0 on error
2029 */
2030 int lttng_ustconsumer_get_produced_snapshot(
2031 struct lttng_consumer_stream *stream, unsigned long *pos)
2032 {
2033 assert(stream);
2034 assert(stream->ustream);
2035 assert(pos);
2036
2037 return ustctl_snapshot_get_produced(stream->ustream, pos);
2038 }
2039
2040 /*
2041 * Get the consumed position
2042 *
2043 * Returns 0 on success, < 0 on error
2044 */
2045 int lttng_ustconsumer_get_consumed_snapshot(
2046 struct lttng_consumer_stream *stream, unsigned long *pos)
2047 {
2048 assert(stream);
2049 assert(stream->ustream);
2050 assert(pos);
2051
2052 return ustctl_snapshot_get_consumed(stream->ustream, pos);
2053 }
2054
2055 void lttng_ustconsumer_flush_buffer(struct lttng_consumer_stream *stream,
2056 int producer)
2057 {
2058 assert(stream);
2059 assert(stream->ustream);
2060
2061 ustctl_flush_buffer(stream->ustream, producer);
2062 }
2063
2064 int lttng_ustconsumer_get_current_timestamp(
2065 struct lttng_consumer_stream *stream, uint64_t *ts)
2066 {
2067 assert(stream);
2068 assert(stream->ustream);
2069 assert(ts);
2070
2071 return ustctl_get_current_timestamp(stream->ustream, ts);
2072 }
2073
2074 int lttng_ustconsumer_get_sequence_number(
2075 struct lttng_consumer_stream *stream, uint64_t *seq)
2076 {
2077 assert(stream);
2078 assert(stream->ustream);
2079 assert(seq);
2080
2081 return ustctl_get_sequence_number(stream->ustream, seq);
2082 }
2083
2084 /*
2085 * Called when the stream signals the consumer that it has hung up.
2086 */
2087 void lttng_ustconsumer_on_stream_hangup(struct lttng_consumer_stream *stream)
2088 {
2089 assert(stream);
2090 assert(stream->ustream);
2091
2092 pthread_mutex_lock(&stream->lock);
2093 if (!stream->quiescent) {
2094 ustctl_flush_buffer(stream->ustream, 0);
2095 stream->quiescent = true;
2096 }
2097 pthread_mutex_unlock(&stream->lock);
2098 stream->hangup_flush_done = 1;
2099 }
2100
2101 void lttng_ustconsumer_del_channel(struct lttng_consumer_channel *chan)
2102 {
2103 int i;
2104
2105 assert(chan);
2106 assert(chan->uchan);
2107
2108 if (chan->switch_timer_enabled == 1) {
2109 consumer_timer_switch_stop(chan);
2110 }
2111 for (i = 0; i < chan->nr_stream_fds; i++) {
2112 int ret;
2113
2114 ret = close(chan->stream_fds[i]);
2115 if (ret) {
2116 PERROR("close");
2117 }
2118 if (chan->shm_path[0]) {
2119 char shm_path[PATH_MAX];
2120
2121 ret = get_stream_shm_path(shm_path, chan->shm_path, i);
2122 if (ret) {
2123 ERR("Cannot get stream shm path");
2124 }
2125 ret = run_as_unlink(shm_path, chan->uid, chan->gid);
2126 if (ret) {
2127 PERROR("unlink %s", shm_path);
2128 }
2129 }
2130 }
2131 }
2132
2133 void lttng_ustconsumer_free_channel(struct lttng_consumer_channel *chan)
2134 {
2135 assert(chan);
2136 assert(chan->uchan);
2137
2138 consumer_metadata_cache_destroy(chan);
2139 ustctl_destroy_channel(chan->uchan);
2140 /* Try to rmdir all directories under shm_path root. */
2141 if (chan->root_shm_path[0]) {
2142 (void) run_as_rmdir_recursive(chan->root_shm_path,
2143 chan->uid, chan->gid);
2144 }
2145 free(chan->stream_fds);
2146 }
2147
2148 void lttng_ustconsumer_del_stream(struct lttng_consumer_stream *stream)
2149 {
2150 assert(stream);
2151 assert(stream->ustream);
2152
2153 if (stream->chan->switch_timer_enabled == 1) {
2154 consumer_timer_switch_stop(stream->chan);
2155 }
2156 ustctl_destroy_stream(stream->ustream);
2157 }
2158
2159 int lttng_ustconsumer_get_wakeup_fd(struct lttng_consumer_stream *stream)
2160 {
2161 assert(stream);
2162 assert(stream->ustream);
2163
2164 return ustctl_stream_get_wakeup_fd(stream->ustream);
2165 }
2166
2167 int lttng_ustconsumer_close_wakeup_fd(struct lttng_consumer_stream *stream)
2168 {
2169 assert(stream);
2170 assert(stream->ustream);
2171
2172 return ustctl_stream_close_wakeup_fd(stream->ustream);
2173 }
2174
2175 /*
2176 * Populate index values of a UST stream. Values are set in big endian order.
2177 *
2178 * Return 0 on success or else a negative value.
2179 */
2180 static int get_index_values(struct ctf_packet_index *index,
2181 struct ustctl_consumer_stream *ustream)
2182 {
2183 int ret;
2184
2185 ret = ustctl_get_timestamp_begin(ustream, &index->timestamp_begin);
2186 if (ret < 0) {
2187 PERROR("ustctl_get_timestamp_begin");
2188 goto error;
2189 }
2190 index->timestamp_begin = htobe64(index->timestamp_begin);
2191
2192 ret = ustctl_get_timestamp_end(ustream, &index->timestamp_end);
2193 if (ret < 0) {
2194 PERROR("ustctl_get_timestamp_end");
2195 goto error;
2196 }
2197 index->timestamp_end = htobe64(index->timestamp_end);
2198
2199 ret = ustctl_get_events_discarded(ustream, &index->events_discarded);
2200 if (ret < 0) {
2201 PERROR("ustctl_get_events_discarded");
2202 goto error;
2203 }
2204 index->events_discarded = htobe64(index->events_discarded);
2205
2206 ret = ustctl_get_content_size(ustream, &index->content_size);
2207 if (ret < 0) {
2208 PERROR("ustctl_get_content_size");
2209 goto error;
2210 }
2211 index->content_size = htobe64(index->content_size);
2212
2213 ret = ustctl_get_packet_size(ustream, &index->packet_size);
2214 if (ret < 0) {
2215 PERROR("ustctl_get_packet_size");
2216 goto error;
2217 }
2218 index->packet_size = htobe64(index->packet_size);
2219
2220 ret = ustctl_get_stream_id(ustream, &index->stream_id);
2221 if (ret < 0) {
2222 PERROR("ustctl_get_stream_id");
2223 goto error;
2224 }
2225 index->stream_id = htobe64(index->stream_id);
2226
2227 ret = ustctl_get_instance_id(ustream, &index->stream_instance_id);
2228 if (ret < 0) {
2229 PERROR("ustctl_get_instance_id");
2230 goto error;
2231 }
2232 index->stream_instance_id = htobe64(index->stream_instance_id);
2233
2234 ret = ustctl_get_sequence_number(ustream, &index->packet_seq_num);
2235 if (ret < 0) {
2236 PERROR("ustctl_get_sequence_number");
2237 goto error;
2238 }
2239 index->packet_seq_num = htobe64(index->packet_seq_num);
2240
2241 error:
2242 return ret;
2243 }
2244
2245 static
2246 void metadata_stream_reset_cache(struct lttng_consumer_stream *stream,
2247 struct consumer_metadata_cache *cache)
2248 {
2249 DBG("Metadata stream update to version %" PRIu64,
2250 cache->version);
2251 stream->ust_metadata_pushed = 0;
2252 stream->metadata_version = cache->version;
2253 stream->reset_metadata_flag = 1;
2254 }
2255
2256 /*
2257 * Check if the version of the metadata stream and metadata cache match.
2258 * If the cache got updated, reset the metadata stream.
2259 * The stream lock and metadata cache lock MUST be held.
2260 * Return 0 on success, a negative value on error.
2261 */
2262 static
2263 int metadata_stream_check_version(struct lttng_consumer_stream *stream)
2264 {
2265 int ret = 0;
2266 struct consumer_metadata_cache *cache = stream->chan->metadata_cache;
2267
2268 if (cache->version == stream->metadata_version) {
2269 goto end;
2270 }
2271 metadata_stream_reset_cache(stream, cache);
2272
2273 end:
2274 return ret;
2275 }
2276
2277 /*
2278 * Write up to one packet from the metadata cache to the channel.
2279 *
2280 * Returns the number of bytes pushed in the cache, or a negative value
2281 * on error.
2282 */
2283 static
2284 int commit_one_metadata_packet(struct lttng_consumer_stream *stream)
2285 {
2286 ssize_t write_len;
2287 int ret;
2288
2289 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2290 ret = metadata_stream_check_version(stream);
2291 if (ret < 0) {
2292 goto end;
2293 }
2294 if (stream->chan->metadata_cache->max_offset
2295 == stream->ust_metadata_pushed) {
2296 ret = 0;
2297 goto end;
2298 }
2299
2300 write_len = ustctl_write_one_packet_to_channel(stream->chan->uchan,
2301 &stream->chan->metadata_cache->data[stream->ust_metadata_pushed],
2302 stream->chan->metadata_cache->max_offset
2303 - stream->ust_metadata_pushed);
2304 assert(write_len != 0);
2305 if (write_len < 0) {
2306 ERR("Writing one metadata packet");
2307 ret = -1;
2308 goto end;
2309 }
2310 stream->ust_metadata_pushed += write_len;
2311
2312 assert(stream->chan->metadata_cache->max_offset >=
2313 stream->ust_metadata_pushed);
2314 ret = write_len;
2315
2316 end:
2317 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2318 return ret;
2319 }
2320
2321
2322 /*
2323 * Sync metadata meaning request them to the session daemon and snapshot to the
2324 * metadata thread can consumer them.
2325 *
2326 * Metadata stream lock is held here, but we need to release it when
2327 * interacting with sessiond, else we cause a deadlock with live
2328 * awaiting on metadata to be pushed out.
2329 *
2330 * Return 0 if new metadatda is available, EAGAIN if the metadata stream
2331 * is empty or a negative value on error.
2332 */
2333 int lttng_ustconsumer_sync_metadata(struct lttng_consumer_local_data *ctx,
2334 struct lttng_consumer_stream *metadata)
2335 {
2336 int ret;
2337 int retry = 0;
2338
2339 assert(ctx);
2340 assert(metadata);
2341
2342 pthread_mutex_unlock(&metadata->lock);
2343 /*
2344 * Request metadata from the sessiond, but don't wait for the flush
2345 * because we locked the metadata thread.
2346 */
2347 ret = lttng_ustconsumer_request_metadata(ctx, metadata->chan, 0, 0);
2348 pthread_mutex_lock(&metadata->lock);
2349 if (ret < 0) {
2350 goto end;
2351 }
2352
2353 ret = commit_one_metadata_packet(metadata);
2354 if (ret <= 0) {
2355 goto end;
2356 } else if (ret > 0) {
2357 retry = 1;
2358 }
2359
2360 ustctl_flush_buffer(metadata->ustream, 1);
2361 ret = ustctl_snapshot(metadata->ustream);
2362 if (ret < 0) {
2363 if (errno != EAGAIN) {
2364 ERR("Sync metadata, taking UST snapshot");
2365 goto end;
2366 }
2367 DBG("No new metadata when syncing them.");
2368 /* No new metadata, exit. */
2369 ret = ENODATA;
2370 goto end;
2371 }
2372
2373 /*
2374 * After this flush, we still need to extract metadata.
2375 */
2376 if (retry) {
2377 ret = EAGAIN;
2378 }
2379
2380 end:
2381 return ret;
2382 }
2383
2384 /*
2385 * Return 0 on success else a negative value.
2386 */
2387 static int notify_if_more_data(struct lttng_consumer_stream *stream,
2388 struct lttng_consumer_local_data *ctx)
2389 {
2390 int ret;
2391 struct ustctl_consumer_stream *ustream;
2392
2393 assert(stream);
2394 assert(ctx);
2395
2396 ustream = stream->ustream;
2397
2398 /*
2399 * First, we are going to check if there is a new subbuffer available
2400 * before reading the stream wait_fd.
2401 */
2402 /* Get the next subbuffer */
2403 ret = ustctl_get_next_subbuf(ustream);
2404 if (ret) {
2405 /* No more data found, flag the stream. */
2406 stream->has_data = 0;
2407 ret = 0;
2408 goto end;
2409 }
2410
2411 ret = ustctl_put_subbuf(ustream);
2412 assert(!ret);
2413
2414 /* This stream still has data. Flag it and wake up the data thread. */
2415 stream->has_data = 1;
2416
2417 if (stream->monitor && !stream->hangup_flush_done && !ctx->has_wakeup) {
2418 ssize_t writelen;
2419
2420 writelen = lttng_pipe_write(ctx->consumer_wakeup_pipe, "!", 1);
2421 if (writelen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2422 ret = writelen;
2423 goto end;
2424 }
2425
2426 /* The wake up pipe has been notified. */
2427 ctx->has_wakeup = 1;
2428 }
2429 ret = 0;
2430
2431 end:
2432 return ret;
2433 }
2434
2435 static
2436 int update_stream_stats(struct lttng_consumer_stream *stream)
2437 {
2438 int ret;
2439 uint64_t seq, discarded;
2440
2441 ret = ustctl_get_sequence_number(stream->ustream, &seq);
2442 if (ret < 0) {
2443 PERROR("ustctl_get_sequence_number");
2444 goto end;
2445 }
2446 /*
2447 * Start the sequence when we extract the first packet in case we don't
2448 * start at 0 (for example if a consumer is not connected to the
2449 * session immediately after the beginning).
2450 */
2451 if (stream->last_sequence_number == -1ULL) {
2452 stream->last_sequence_number = seq;
2453 } else if (seq > stream->last_sequence_number) {
2454 stream->chan->lost_packets += seq -
2455 stream->last_sequence_number - 1;
2456 } else {
2457 /* seq <= last_sequence_number */
2458 ERR("Sequence number inconsistent : prev = %" PRIu64
2459 ", current = %" PRIu64,
2460 stream->last_sequence_number, seq);
2461 ret = -1;
2462 goto end;
2463 }
2464 stream->last_sequence_number = seq;
2465
2466 ret = ustctl_get_events_discarded(stream->ustream, &discarded);
2467 if (ret < 0) {
2468 PERROR("kernctl_get_events_discarded");
2469 goto end;
2470 }
2471 if (discarded < stream->last_discarded_events) {
2472 /*
2473 * Overflow has occurred. We assume only one wrap-around
2474 * has occurred.
2475 */
2476 stream->chan->discarded_events +=
2477 (1ULL << (CAA_BITS_PER_LONG - 1)) -
2478 stream->last_discarded_events + discarded;
2479 } else {
2480 stream->chan->discarded_events += discarded -
2481 stream->last_discarded_events;
2482 }
2483 stream->last_discarded_events = discarded;
2484 ret = 0;
2485
2486 end:
2487 return ret;
2488 }
2489
2490 /*
2491 * Read subbuffer from the given stream.
2492 *
2493 * Stream lock MUST be acquired.
2494 *
2495 * Return 0 on success else a negative value.
2496 */
2497 int lttng_ustconsumer_read_subbuffer(struct lttng_consumer_stream *stream,
2498 struct lttng_consumer_local_data *ctx)
2499 {
2500 unsigned long len, subbuf_size, padding;
2501 int err, write_index = 1;
2502 long ret = 0;
2503 struct ustctl_consumer_stream *ustream;
2504 struct ctf_packet_index index;
2505
2506 assert(stream);
2507 assert(stream->ustream);
2508 assert(ctx);
2509
2510 DBG("In UST read_subbuffer (wait_fd: %d, name: %s)", stream->wait_fd,
2511 stream->name);
2512
2513 /* Ease our life for what's next. */
2514 ustream = stream->ustream;
2515
2516 /*
2517 * We can consume the 1 byte written into the wait_fd by UST. Don't trigger
2518 * error if we cannot read this one byte (read returns 0), or if the error
2519 * is EAGAIN or EWOULDBLOCK.
2520 *
2521 * This is only done when the stream is monitored by a thread, before the
2522 * flush is done after a hangup and if the stream is not flagged with data
2523 * since there might be nothing to consume in the wait fd but still have
2524 * data available flagged by the consumer wake up pipe.
2525 */
2526 if (stream->monitor && !stream->hangup_flush_done && !stream->has_data) {
2527 char dummy;
2528 ssize_t readlen;
2529
2530 readlen = lttng_read(stream->wait_fd, &dummy, 1);
2531 if (readlen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2532 ret = readlen;
2533 goto end;
2534 }
2535 }
2536
2537 retry:
2538 /* Get the next subbuffer */
2539 err = ustctl_get_next_subbuf(ustream);
2540 if (err != 0) {
2541 /*
2542 * Populate metadata info if the existing info has
2543 * already been read.
2544 */
2545 if (stream->metadata_flag) {
2546 ret = commit_one_metadata_packet(stream);
2547 if (ret <= 0) {
2548 goto end;
2549 }
2550 ustctl_flush_buffer(stream->ustream, 1);
2551 goto retry;
2552 }
2553
2554 ret = err; /* ustctl_get_next_subbuf returns negative, caller expect positive. */
2555 /*
2556 * This is a debug message even for single-threaded consumer,
2557 * because poll() have more relaxed criterions than get subbuf,
2558 * so get_subbuf may fail for short race windows where poll()
2559 * would issue wakeups.
2560 */
2561 DBG("Reserving sub buffer failed (everything is normal, "
2562 "it is due to concurrency) [ret: %d]", err);
2563 goto end;
2564 }
2565 assert(stream->chan->output == CONSUMER_CHANNEL_MMAP);
2566
2567 if (!stream->metadata_flag) {
2568 index.offset = htobe64(stream->out_fd_offset);
2569 ret = get_index_values(&index, ustream);
2570 if (ret < 0) {
2571 err = ustctl_put_subbuf(ustream);
2572 assert(err == 0);
2573 goto end;
2574 }
2575
2576 /* Update the stream's sequence and discarded events count. */
2577 ret = update_stream_stats(stream);
2578 if (ret < 0) {
2579 PERROR("kernctl_get_events_discarded");
2580 err = ustctl_put_subbuf(ustream);
2581 assert(err == 0);
2582 goto end;
2583 }
2584 } else {
2585 write_index = 0;
2586 }
2587
2588 /* Get the full padded subbuffer size */
2589 err = ustctl_get_padded_subbuf_size(ustream, &len);
2590 assert(err == 0);
2591
2592 /* Get subbuffer data size (without padding) */
2593 err = ustctl_get_subbuf_size(ustream, &subbuf_size);
2594 assert(err == 0);
2595
2596 /* Make sure we don't get a subbuffer size bigger than the padded */
2597 assert(len >= subbuf_size);
2598
2599 padding = len - subbuf_size;
2600 /* write the subbuffer to the tracefile */
2601 ret = lttng_consumer_on_read_subbuffer_mmap(ctx, stream, subbuf_size, padding, &index);
2602 /*
2603 * The mmap operation should write subbuf_size amount of data when network
2604 * streaming or the full padding (len) size when we are _not_ streaming.
2605 */
2606 if ((ret != subbuf_size && stream->net_seq_idx != (uint64_t) -1ULL) ||
2607 (ret != len && stream->net_seq_idx == (uint64_t) -1ULL)) {
2608 /*
2609 * Display the error but continue processing to try to release the
2610 * subbuffer. This is a DBG statement since any unexpected kill or
2611 * signal, the application gets unregistered, relayd gets closed or
2612 * anything that affects the buffer lifetime will trigger this error.
2613 * So, for the sake of the user, don't print this error since it can
2614 * happen and it is OK with the code flow.
2615 */
2616 DBG("Error writing to tracefile "
2617 "(ret: %ld != len: %lu != subbuf_size: %lu)",
2618 ret, len, subbuf_size);
2619 write_index = 0;
2620 }
2621 err = ustctl_put_next_subbuf(ustream);
2622 assert(err == 0);
2623
2624 /*
2625 * This will consumer the byte on the wait_fd if and only if there is not
2626 * next subbuffer to be acquired.
2627 */
2628 if (!stream->metadata_flag) {
2629 ret = notify_if_more_data(stream, ctx);
2630 if (ret < 0) {
2631 goto end;
2632 }
2633 }
2634
2635 /* Write index if needed. */
2636 if (!write_index) {
2637 goto end;
2638 }
2639
2640 if (stream->chan->live_timer_interval && !stream->metadata_flag) {
2641 /*
2642 * In live, block until all the metadata is sent.
2643 */
2644 pthread_mutex_lock(&stream->metadata_timer_lock);
2645 assert(!stream->missed_metadata_flush);
2646 stream->waiting_on_metadata = true;
2647 pthread_mutex_unlock(&stream->metadata_timer_lock);
2648
2649 err = consumer_stream_sync_metadata(ctx, stream->session_id);
2650
2651 pthread_mutex_lock(&stream->metadata_timer_lock);
2652 stream->waiting_on_metadata = false;
2653 if (stream->missed_metadata_flush) {
2654 stream->missed_metadata_flush = false;
2655 pthread_mutex_unlock(&stream->metadata_timer_lock);
2656 (void) consumer_flush_ust_index(stream);
2657 } else {
2658 pthread_mutex_unlock(&stream->metadata_timer_lock);
2659 }
2660
2661 if (err < 0) {
2662 goto end;
2663 }
2664 }
2665
2666 assert(!stream->metadata_flag);
2667 err = consumer_stream_write_index(stream, &index);
2668 if (err < 0) {
2669 goto end;
2670 }
2671
2672 end:
2673 return ret;
2674 }
2675
2676 /*
2677 * Called when a stream is created.
2678 *
2679 * Return 0 on success or else a negative value.
2680 */
2681 int lttng_ustconsumer_on_recv_stream(struct lttng_consumer_stream *stream)
2682 {
2683 int ret;
2684
2685 assert(stream);
2686
2687 /* Don't create anything if this is set for streaming. */
2688 if (stream->net_seq_idx == (uint64_t) -1ULL && stream->chan->monitor) {
2689 ret = utils_create_stream_file(stream->chan->pathname, stream->name,
2690 stream->chan->tracefile_size, stream->tracefile_count_current,
2691 stream->uid, stream->gid, NULL);
2692 if (ret < 0) {
2693 goto error;
2694 }
2695 stream->out_fd = ret;
2696 stream->tracefile_size_current = 0;
2697
2698 if (!stream->metadata_flag) {
2699 struct lttng_index_file *index_file;
2700
2701 index_file = lttng_index_file_create(stream->chan->pathname,
2702 stream->name, stream->uid, stream->gid,
2703 stream->chan->tracefile_size,
2704 stream->tracefile_count_current,
2705 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
2706 if (!index_file) {
2707 goto error;
2708 }
2709 assert(!stream->index_file);
2710 stream->index_file = index_file;
2711 }
2712 }
2713 ret = 0;
2714
2715 error:
2716 return ret;
2717 }
2718
2719 /*
2720 * Check if data is still being extracted from the buffers for a specific
2721 * stream. Consumer data lock MUST be acquired before calling this function
2722 * and the stream lock.
2723 *
2724 * Return 1 if the traced data are still getting read else 0 meaning that the
2725 * data is available for trace viewer reading.
2726 */
2727 int lttng_ustconsumer_data_pending(struct lttng_consumer_stream *stream)
2728 {
2729 int ret;
2730
2731 assert(stream);
2732 assert(stream->ustream);
2733
2734 DBG("UST consumer checking data pending");
2735
2736 if (stream->endpoint_status != CONSUMER_ENDPOINT_ACTIVE) {
2737 ret = 0;
2738 goto end;
2739 }
2740
2741 if (stream->chan->type == CONSUMER_CHANNEL_TYPE_METADATA) {
2742 uint64_t contiguous, pushed;
2743
2744 /* Ease our life a bit. */
2745 contiguous = stream->chan->metadata_cache->max_offset;
2746 pushed = stream->ust_metadata_pushed;
2747
2748 /*
2749 * We can simply check whether all contiguously available data
2750 * has been pushed to the ring buffer, since the push operation
2751 * is performed within get_next_subbuf(), and because both
2752 * get_next_subbuf() and put_next_subbuf() are issued atomically
2753 * thanks to the stream lock within
2754 * lttng_ustconsumer_read_subbuffer(). This basically means that
2755 * whetnever ust_metadata_pushed is incremented, the associated
2756 * metadata has been consumed from the metadata stream.
2757 */
2758 DBG("UST consumer metadata pending check: contiguous %" PRIu64 " vs pushed %" PRIu64,
2759 contiguous, pushed);
2760 assert(((int64_t) (contiguous - pushed)) >= 0);
2761 if ((contiguous != pushed) ||
2762 (((int64_t) contiguous - pushed) > 0 || contiguous == 0)) {
2763 ret = 1; /* Data is pending */
2764 goto end;
2765 }
2766 } else {
2767 ret = ustctl_get_next_subbuf(stream->ustream);
2768 if (ret == 0) {
2769 /*
2770 * There is still data so let's put back this
2771 * subbuffer.
2772 */
2773 ret = ustctl_put_subbuf(stream->ustream);
2774 assert(ret == 0);
2775 ret = 1; /* Data is pending */
2776 goto end;
2777 }
2778 }
2779
2780 /* Data is NOT pending so ready to be read. */
2781 ret = 0;
2782
2783 end:
2784 return ret;
2785 }
2786
2787 /*
2788 * Stop a given metadata channel timer if enabled and close the wait fd which
2789 * is the poll pipe of the metadata stream.
2790 *
2791 * This MUST be called with the metadata channel acquired.
2792 */
2793 void lttng_ustconsumer_close_metadata(struct lttng_consumer_channel *metadata)
2794 {
2795 int ret;
2796
2797 assert(metadata);
2798 assert(metadata->type == CONSUMER_CHANNEL_TYPE_METADATA);
2799
2800 DBG("Closing metadata channel key %" PRIu64, metadata->key);
2801
2802 if (metadata->switch_timer_enabled == 1) {
2803 consumer_timer_switch_stop(metadata);
2804 }
2805
2806 if (!metadata->metadata_stream) {
2807 goto end;
2808 }
2809
2810 /*
2811 * Closing write side so the thread monitoring the stream wakes up if any
2812 * and clean the metadata stream.
2813 */
2814 if (metadata->metadata_stream->ust_metadata_poll_pipe[1] >= 0) {
2815 ret = close(metadata->metadata_stream->ust_metadata_poll_pipe[1]);
2816 if (ret < 0) {
2817 PERROR("closing metadata pipe write side");
2818 }
2819 metadata->metadata_stream->ust_metadata_poll_pipe[1] = -1;
2820 }
2821
2822 end:
2823 return;
2824 }
2825
2826 /*
2827 * Close every metadata stream wait fd of the metadata hash table. This
2828 * function MUST be used very carefully so not to run into a race between the
2829 * metadata thread handling streams and this function closing their wait fd.
2830 *
2831 * For UST, this is used when the session daemon hangs up. Its the metadata
2832 * producer so calling this is safe because we are assured that no state change
2833 * can occur in the metadata thread for the streams in the hash table.
2834 */
2835 void lttng_ustconsumer_close_all_metadata(struct lttng_ht *metadata_ht)
2836 {
2837 struct lttng_ht_iter iter;
2838 struct lttng_consumer_stream *stream;
2839
2840 assert(metadata_ht);
2841 assert(metadata_ht->ht);
2842
2843 DBG("UST consumer closing all metadata streams");
2844
2845 rcu_read_lock();
2846 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream,
2847 node.node) {
2848
2849 health_code_update();
2850
2851 pthread_mutex_lock(&stream->chan->lock);
2852 lttng_ustconsumer_close_metadata(stream->chan);
2853 pthread_mutex_unlock(&stream->chan->lock);
2854
2855 }
2856 rcu_read_unlock();
2857 }
2858
2859 void lttng_ustconsumer_close_stream_wakeup(struct lttng_consumer_stream *stream)
2860 {
2861 int ret;
2862
2863 ret = ustctl_stream_close_wakeup_fd(stream->ustream);
2864 if (ret < 0) {
2865 ERR("Unable to close wakeup fd");
2866 }
2867 }
2868
2869 /*
2870 * Please refer to consumer-timer.c before adding any lock within this
2871 * function or any of its callees. Timers have a very strict locking
2872 * semantic with respect to teardown. Failure to respect this semantic
2873 * introduces deadlocks.
2874 *
2875 * DON'T hold the metadata lock when calling this function, else this
2876 * can cause deadlock involving consumer awaiting for metadata to be
2877 * pushed out due to concurrent interaction with the session daemon.
2878 */
2879 int lttng_ustconsumer_request_metadata(struct lttng_consumer_local_data *ctx,
2880 struct lttng_consumer_channel *channel, int timer, int wait)
2881 {
2882 struct lttcomm_metadata_request_msg request;
2883 struct lttcomm_consumer_msg msg;
2884 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
2885 uint64_t len, key, offset, version;
2886 int ret;
2887
2888 assert(channel);
2889 assert(channel->metadata_cache);
2890
2891 memset(&request, 0, sizeof(request));
2892
2893 /* send the metadata request to sessiond */
2894 switch (consumer_data.type) {
2895 case LTTNG_CONSUMER64_UST:
2896 request.bits_per_long = 64;
2897 break;
2898 case LTTNG_CONSUMER32_UST:
2899 request.bits_per_long = 32;
2900 break;
2901 default:
2902 request.bits_per_long = 0;
2903 break;
2904 }
2905
2906 request.session_id = channel->session_id;
2907 request.session_id_per_pid = channel->session_id_per_pid;
2908 /*
2909 * Request the application UID here so the metadata of that application can
2910 * be sent back. The channel UID corresponds to the user UID of the session
2911 * used for the rights on the stream file(s).
2912 */
2913 request.uid = channel->ust_app_uid;
2914 request.key = channel->key;
2915
2916 DBG("Sending metadata request to sessiond, session id %" PRIu64
2917 ", per-pid %" PRIu64 ", app UID %u and channek key %" PRIu64,
2918 request.session_id, request.session_id_per_pid, request.uid,
2919 request.key);
2920
2921 pthread_mutex_lock(&ctx->metadata_socket_lock);
2922
2923 health_code_update();
2924
2925 ret = lttcomm_send_unix_sock(ctx->consumer_metadata_socket, &request,
2926 sizeof(request));
2927 if (ret < 0) {
2928 ERR("Asking metadata to sessiond");
2929 goto end;
2930 }
2931
2932 health_code_update();
2933
2934 /* Receive the metadata from sessiond */
2935 ret = lttcomm_recv_unix_sock(ctx->consumer_metadata_socket, &msg,
2936 sizeof(msg));
2937 if (ret != sizeof(msg)) {
2938 DBG("Consumer received unexpected message size %d (expects %zu)",
2939 ret, sizeof(msg));
2940 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
2941 /*
2942 * The ret value might 0 meaning an orderly shutdown but this is ok
2943 * since the caller handles this.
2944 */
2945 goto end;
2946 }
2947
2948 health_code_update();
2949
2950 if (msg.cmd_type == LTTNG_ERR_UND) {
2951 /* No registry found */
2952 (void) consumer_send_status_msg(ctx->consumer_metadata_socket,
2953 ret_code);
2954 ret = 0;
2955 goto end;
2956 } else if (msg.cmd_type != LTTNG_CONSUMER_PUSH_METADATA) {
2957 ERR("Unexpected cmd_type received %d", msg.cmd_type);
2958 ret = -1;
2959 goto end;
2960 }
2961
2962 len = msg.u.push_metadata.len;
2963 key = msg.u.push_metadata.key;
2964 offset = msg.u.push_metadata.target_offset;
2965 version = msg.u.push_metadata.version;
2966
2967 assert(key == channel->key);
2968 if (len == 0) {
2969 DBG("No new metadata to receive for key %" PRIu64, key);
2970 }
2971
2972 health_code_update();
2973
2974 /* Tell session daemon we are ready to receive the metadata. */
2975 ret = consumer_send_status_msg(ctx->consumer_metadata_socket,
2976 LTTCOMM_CONSUMERD_SUCCESS);
2977 if (ret < 0 || len == 0) {
2978 /*
2979 * Somehow, the session daemon is not responding anymore or there is
2980 * nothing to receive.
2981 */
2982 goto end;
2983 }
2984
2985 health_code_update();
2986
2987 ret = lttng_ustconsumer_recv_metadata(ctx->consumer_metadata_socket,
2988 key, offset, len, version, channel, timer, wait);
2989 if (ret >= 0) {
2990 /*
2991 * Only send the status msg if the sessiond is alive meaning a positive
2992 * ret code.
2993 */
2994 (void) consumer_send_status_msg(ctx->consumer_metadata_socket, ret);
2995 }
2996 ret = 0;
2997
2998 end:
2999 health_code_update();
3000
3001 pthread_mutex_unlock(&ctx->metadata_socket_lock);
3002 return ret;
3003 }
3004
3005 /*
3006 * Return the ustctl call for the get stream id.
3007 */
3008 int lttng_ustconsumer_get_stream_id(struct lttng_consumer_stream *stream,
3009 uint64_t *stream_id)
3010 {
3011 assert(stream);
3012 assert(stream_id);
3013
3014 return ustctl_get_stream_id(stream->ustream, stream_id);
3015 }
This page took 0.124884 seconds and 5 git commands to generate.