Extract the lost packets and discarded events counters
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define _LGPL_SOURCE
20 #define __USE_LINUX_IOCTL_DEFS
21 #include <sys/ioctl.h>
22 #include <string.h>
23 #include <common/align.h>
24 #include <errno.h>
25
26 #include "kernel-ctl.h"
27 #include "kernel-ioctl.h"
28
29 /*
30 * This flag indicates which version of the kernel ABI to use. The old
31 * ABI (namespace _old) does not support a 32-bit user-space when the
32 * kernel is 64-bit. The old ABI is kept here for compatibility but is
33 * deprecated and will be removed eventually.
34 */
35 static int lttng_kernel_use_old_abi = -1;
36
37 /*
38 * Execute the new or old ioctl depending on the ABI version.
39 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
40 * this function tests if the new ABI is available and otherwise fallbacks
41 * on the old one.
42 * This function takes the fd on which the ioctl must be executed and the old
43 * and new request codes.
44 * It returns the return value of the ioctl executed.
45 */
46 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
47 unsigned long newname)
48 {
49 int ret;
50
51 if (lttng_kernel_use_old_abi == -1) {
52 ret = ioctl(fd, newname);
53 if (!ret) {
54 lttng_kernel_use_old_abi = 0;
55 goto end;
56 }
57 lttng_kernel_use_old_abi = 1;
58 }
59 if (lttng_kernel_use_old_abi) {
60 ret = ioctl(fd, oldname);
61 } else {
62 ret = ioctl(fd, newname);
63 }
64
65 end:
66 return ret;
67 }
68
69 int kernctl_create_session(int fd)
70 {
71 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
72 LTTNG_KERNEL_SESSION);
73 }
74
75 /* open the metadata global channel */
76 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
77 {
78 struct lttng_kernel_old_channel old_channel;
79 struct lttng_kernel_channel channel;
80
81 if (lttng_kernel_use_old_abi) {
82 old_channel.overwrite = chops->overwrite;
83 old_channel.subbuf_size = chops->subbuf_size;
84 old_channel.num_subbuf = chops->num_subbuf;
85 old_channel.switch_timer_interval = chops->switch_timer_interval;
86 old_channel.read_timer_interval = chops->read_timer_interval;
87 old_channel.output = chops->output;
88
89 memset(old_channel.padding, 0, sizeof(old_channel.padding));
90 /*
91 * The new channel padding is smaller than the old ABI so we use the
92 * new ABI padding size for the memcpy.
93 */
94 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
95
96 return ioctl(fd, LTTNG_KERNEL_OLD_METADATA, &old_channel);
97 }
98
99 channel.overwrite = chops->overwrite;
100 channel.subbuf_size = chops->subbuf_size;
101 channel.num_subbuf = chops->num_subbuf;
102 channel.switch_timer_interval = chops->switch_timer_interval;
103 channel.read_timer_interval = chops->read_timer_interval;
104 channel.output = chops->output;
105 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
106
107 return ioctl(fd, LTTNG_KERNEL_METADATA, &channel);
108 }
109
110 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
111 {
112 struct lttng_kernel_channel channel;
113
114 memset(&channel, 0, sizeof(channel));
115 if (lttng_kernel_use_old_abi) {
116 struct lttng_kernel_old_channel old_channel;
117
118 old_channel.overwrite = chops->overwrite;
119 old_channel.subbuf_size = chops->subbuf_size;
120 old_channel.num_subbuf = chops->num_subbuf;
121 old_channel.switch_timer_interval = chops->switch_timer_interval;
122 old_channel.read_timer_interval = chops->read_timer_interval;
123 old_channel.output = chops->output;
124
125 memset(old_channel.padding, 0, sizeof(old_channel.padding));
126 /*
127 * The new channel padding is smaller than the old ABI so we use the
128 * new ABI padding size for the memcpy.
129 */
130 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
131
132 return ioctl(fd, LTTNG_KERNEL_OLD_CHANNEL, &old_channel);
133 }
134
135 channel.overwrite = chops->overwrite;
136 channel.subbuf_size = chops->subbuf_size;
137 channel.num_subbuf = chops->num_subbuf;
138 channel.switch_timer_interval = chops->switch_timer_interval;
139 channel.read_timer_interval = chops->read_timer_interval;
140 channel.output = chops->output;
141 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
142
143 return ioctl(fd, LTTNG_KERNEL_CHANNEL, &channel);
144 }
145
146 int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
147 {
148 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
149 size_t array_alloc_len;
150 char *new_mask;
151 int ret = 0;
152
153 if (!syscall_mask) {
154 ret = -1;
155 goto end;
156 }
157
158 if (!nr_bits) {
159 ret = -1;
160 goto end;
161 }
162
163 kmask_len.len = 0;
164 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
165 if (ret) {
166 goto end;
167 }
168
169 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
170
171 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
172 if (!kmask) {
173 ret = -1;
174 goto end;
175 }
176
177 kmask->len = kmask_len.len;
178 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
179 if (ret) {
180 goto end;
181 }
182
183 new_mask = realloc(*syscall_mask, array_alloc_len);
184 if (!new_mask) {
185 ret = -1;
186 goto end;
187 }
188 memcpy(new_mask, kmask->mask, array_alloc_len);
189 *syscall_mask = new_mask;
190 *nr_bits = kmask->len;
191
192 end:
193 free(kmask);
194 return ret;
195 }
196
197 int kernctl_track_pid(int fd, int pid)
198 {
199 return ioctl(fd, LTTNG_KERNEL_SESSION_TRACK_PID, pid);
200 }
201
202 int kernctl_untrack_pid(int fd, int pid)
203 {
204 return ioctl(fd, LTTNG_KERNEL_SESSION_UNTRACK_PID, pid);
205 }
206
207 int kernctl_list_tracker_pids(int fd)
208 {
209 return ioctl(fd, LTTNG_KERNEL_SESSION_LIST_TRACKER_PIDS);
210 }
211
212 int kernctl_create_stream(int fd)
213 {
214 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
215 LTTNG_KERNEL_STREAM);
216 }
217
218 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
219 {
220 if (lttng_kernel_use_old_abi) {
221 struct lttng_kernel_old_event old_event;
222
223 memcpy(old_event.name, ev->name, sizeof(old_event.name));
224 old_event.instrumentation = ev->instrumentation;
225 switch (ev->instrumentation) {
226 case LTTNG_KERNEL_KPROBE:
227 old_event.u.kprobe.addr = ev->u.kprobe.addr;
228 old_event.u.kprobe.offset = ev->u.kprobe.offset;
229 memcpy(old_event.u.kprobe.symbol_name,
230 ev->u.kprobe.symbol_name,
231 sizeof(old_event.u.kprobe.symbol_name));
232 break;
233 case LTTNG_KERNEL_KRETPROBE:
234 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
235 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
236 memcpy(old_event.u.kretprobe.symbol_name,
237 ev->u.kretprobe.symbol_name,
238 sizeof(old_event.u.kretprobe.symbol_name));
239 break;
240 case LTTNG_KERNEL_FUNCTION:
241 memcpy(old_event.u.ftrace.symbol_name,
242 ev->u.ftrace.symbol_name,
243 sizeof(old_event.u.ftrace.symbol_name));
244 break;
245 default:
246 break;
247 }
248
249 return ioctl(fd, LTTNG_KERNEL_OLD_EVENT, &old_event);
250 }
251 return ioctl(fd, LTTNG_KERNEL_EVENT, ev);
252 }
253
254 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
255 {
256 if (lttng_kernel_use_old_abi) {
257 struct lttng_kernel_old_context old_ctx;
258
259 old_ctx.ctx = ctx->ctx;
260 /* only type that uses the union */
261 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
262 old_ctx.u.perf_counter.type =
263 ctx->u.perf_counter.type;
264 old_ctx.u.perf_counter.config =
265 ctx->u.perf_counter.config;
266 memcpy(old_ctx.u.perf_counter.name,
267 ctx->u.perf_counter.name,
268 sizeof(old_ctx.u.perf_counter.name));
269 }
270 return ioctl(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
271 }
272 return ioctl(fd, LTTNG_KERNEL_CONTEXT, ctx);
273 }
274
275
276 /* Enable event, channel and session ioctl */
277 int kernctl_enable(int fd)
278 {
279 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
280 LTTNG_KERNEL_ENABLE);
281 }
282
283 /* Disable event, channel and session ioctl */
284 int kernctl_disable(int fd)
285 {
286 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
287 LTTNG_KERNEL_DISABLE);
288 }
289
290 int kernctl_start_session(int fd)
291 {
292 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
293 LTTNG_KERNEL_SESSION_START);
294 }
295
296 int kernctl_stop_session(int fd)
297 {
298 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
299 LTTNG_KERNEL_SESSION_STOP);
300 }
301
302 int kernctl_filter(int fd, struct lttng_filter_bytecode *filter)
303 {
304 struct lttng_kernel_filter_bytecode *kb;
305 uint32_t len;
306 int ret;
307
308 /* Translate bytecode to kernel bytecode */
309 kb = zmalloc(sizeof(*kb) + filter->len);
310 if (!kb)
311 return -ENOMEM;
312 kb->len = len = filter->len;
313 kb->reloc_offset = filter->reloc_table_offset;
314 kb->seqnum = filter->seqnum;
315 memcpy(kb->data, filter->data, len);
316 ret = ioctl(fd, LTTNG_KERNEL_FILTER, kb);
317 free(kb);
318 return ret;
319 }
320
321 int kernctl_tracepoint_list(int fd)
322 {
323 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
324 LTTNG_KERNEL_TRACEPOINT_LIST);
325 }
326
327 int kernctl_syscall_list(int fd)
328 {
329 return ioctl(fd, LTTNG_KERNEL_SYSCALL_LIST);
330 }
331
332 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
333 {
334 int ret;
335
336 if (lttng_kernel_use_old_abi == -1) {
337 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
338 if (!ret) {
339 lttng_kernel_use_old_abi = 0;
340 goto end;
341 }
342 lttng_kernel_use_old_abi = 1;
343 }
344 if (lttng_kernel_use_old_abi) {
345 struct lttng_kernel_old_tracer_version old_v;
346
347 ret = ioctl(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
348 if (ret) {
349 goto end;
350 }
351 v->major = old_v.major;
352 v->minor = old_v.minor;
353 v->patchlevel = old_v.patchlevel;
354 } else {
355 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
356 }
357
358 end:
359 return ret;
360 }
361
362 int kernctl_tracer_abi_version(int fd,
363 struct lttng_kernel_tracer_abi_version *v)
364 {
365 return ioctl(fd, LTTNG_KERNEL_TRACER_ABI_VERSION, v);
366 }
367
368 int kernctl_wait_quiescent(int fd)
369 {
370 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
371 LTTNG_KERNEL_WAIT_QUIESCENT);
372 }
373
374 int kernctl_calibrate(int fd, struct lttng_kernel_calibrate *calibrate)
375 {
376 int ret;
377
378 if (lttng_kernel_use_old_abi == -1) {
379 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
380 if (!ret) {
381 lttng_kernel_use_old_abi = 0;
382 goto end;
383 }
384 lttng_kernel_use_old_abi = 1;
385 }
386 if (lttng_kernel_use_old_abi) {
387 struct lttng_kernel_old_calibrate old_calibrate;
388
389 old_calibrate.type = calibrate->type;
390 ret = ioctl(fd, LTTNG_KERNEL_OLD_CALIBRATE, &old_calibrate);
391 if (ret) {
392 goto end;
393 }
394 calibrate->type = old_calibrate.type;
395 } else {
396 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
397 }
398
399 end:
400 return ret;
401 }
402
403
404 int kernctl_buffer_flush(int fd)
405 {
406 return ioctl(fd, RING_BUFFER_FLUSH);
407 }
408
409
410 /* Buffer operations */
411
412 /* For mmap mode, readable without "get" operation */
413
414 /* returns the length to mmap. */
415 int kernctl_get_mmap_len(int fd, unsigned long *len)
416 {
417 return ioctl(fd, RING_BUFFER_GET_MMAP_LEN, len);
418 }
419
420 /* returns the maximum size for sub-buffers. */
421 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
422 {
423 return ioctl(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
424 }
425
426 /*
427 * For mmap mode, operate on the current packet (between get/put or
428 * get_next/put_next).
429 */
430
431 /* returns the offset of the subbuffer belonging to the mmap reader. */
432 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
433 {
434 return ioctl(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
435 }
436
437 /* returns the size of the current sub-buffer, without padding (for mmap). */
438 int kernctl_get_subbuf_size(int fd, unsigned long *len)
439 {
440 return ioctl(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
441 }
442
443 /* returns the size of the current sub-buffer, without padding (for mmap). */
444 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
445 {
446 return ioctl(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
447 }
448
449 /* Get exclusive read access to the next sub-buffer that can be read. */
450 int kernctl_get_next_subbuf(int fd)
451 {
452 return ioctl(fd, RING_BUFFER_GET_NEXT_SUBBUF);
453 }
454
455
456 /* Release exclusive sub-buffer access, move consumer forward. */
457 int kernctl_put_next_subbuf(int fd)
458 {
459 return ioctl(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
460 }
461
462 /* snapshot */
463
464 /* Get a snapshot of the current ring buffer producer and consumer positions */
465 int kernctl_snapshot(int fd)
466 {
467 return ioctl(fd, RING_BUFFER_SNAPSHOT);
468 }
469
470 /* Get the consumer position (iteration start) */
471 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
472 {
473 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
474 }
475
476 /* Get the producer position (iteration end) */
477 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
478 {
479 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
480 }
481
482 /* Get exclusive read access to the specified sub-buffer position */
483 int kernctl_get_subbuf(int fd, unsigned long *len)
484 {
485 return ioctl(fd, RING_BUFFER_GET_SUBBUF, len);
486 }
487
488 /* Release exclusive sub-buffer access */
489 int kernctl_put_subbuf(int fd)
490 {
491 return ioctl(fd, RING_BUFFER_PUT_SUBBUF);
492 }
493
494 /* Returns the timestamp begin of the current sub-buffer. */
495 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
496 {
497 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN, timestamp_begin);
498 }
499
500 /* Returns the timestamp end of the current sub-buffer. */
501 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
502 {
503 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END, timestamp_end);
504 }
505
506 /* Returns the number of discarded events in the current sub-buffer. */
507 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
508 {
509 return ioctl(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED, events_discarded);
510 }
511
512 /* Returns the content size in the current sub-buffer. */
513 int kernctl_get_content_size(int fd, uint64_t *content_size)
514 {
515 return ioctl(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE, content_size);
516 }
517
518 /* Returns the packet size in the current sub-buffer. */
519 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
520 {
521 return ioctl(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE, packet_size);
522 }
523
524 /* Returns the stream id of the current sub-buffer. */
525 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
526 {
527 return ioctl(fd, LTTNG_RING_BUFFER_GET_STREAM_ID, stream_id);
528 }
529
530 /* Returns the current timestamp. */
531 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
532 {
533 return ioctl(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP, ts);
534 }
535
536 /* Returns the packet sequence number of the current sub-buffer. */
537 int kernctl_get_sequence_number(int fd, uint64_t *seq)
538 {
539 return ioctl(fd, LTTNG_RING_BUFFER_GET_SEQ_NUM, seq);
540 }
This page took 0.040633 seconds and 5 git commands to generate.