Implement PID tracking for kernel tracing
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define _GNU_SOURCE
20 #define _LGPL_SOURCE
21 #define __USE_LINUX_IOCTL_DEFS
22 #include <sys/ioctl.h>
23 #include <string.h>
24 #include <common/align.h>
25
26 #include "kernel-ctl.h"
27 #include "kernel-ioctl.h"
28
29 /*
30 * This flag indicates which version of the kernel ABI to use. The old
31 * ABI (namespace _old) does not support a 32-bit user-space when the
32 * kernel is 64-bit. The old ABI is kept here for compatibility but is
33 * deprecated and will be removed eventually.
34 */
35 static int lttng_kernel_use_old_abi = -1;
36
37 /*
38 * Execute the new or old ioctl depending on the ABI version.
39 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
40 * this function tests if the new ABI is available and otherwise fallbacks
41 * on the old one.
42 * This function takes the fd on which the ioctl must be executed and the old
43 * and new request codes.
44 * It returns the return value of the ioctl executed.
45 */
46 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
47 unsigned long newname)
48 {
49 int ret;
50
51 if (lttng_kernel_use_old_abi == -1) {
52 ret = ioctl(fd, newname);
53 if (!ret) {
54 lttng_kernel_use_old_abi = 0;
55 goto end;
56 }
57 lttng_kernel_use_old_abi = 1;
58 }
59 if (lttng_kernel_use_old_abi) {
60 ret = ioctl(fd, oldname);
61 } else {
62 ret = ioctl(fd, newname);
63 }
64
65 end:
66 return ret;
67 }
68
69 int kernctl_create_session(int fd)
70 {
71 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
72 LTTNG_KERNEL_SESSION);
73 }
74
75 /* open the metadata global channel */
76 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
77 {
78 struct lttng_kernel_old_channel old_channel;
79 struct lttng_kernel_channel channel;
80
81 if (lttng_kernel_use_old_abi) {
82 old_channel.overwrite = chops->overwrite;
83 old_channel.subbuf_size = chops->subbuf_size;
84 old_channel.num_subbuf = chops->num_subbuf;
85 old_channel.switch_timer_interval = chops->switch_timer_interval;
86 old_channel.read_timer_interval = chops->read_timer_interval;
87 old_channel.output = chops->output;
88
89 memset(old_channel.padding, 0, sizeof(old_channel.padding));
90 /*
91 * The new channel padding is smaller than the old ABI so we use the
92 * new ABI padding size for the memcpy.
93 */
94 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
95
96 return ioctl(fd, LTTNG_KERNEL_OLD_METADATA, &old_channel);
97 }
98
99 channel.overwrite = chops->overwrite;
100 channel.subbuf_size = chops->subbuf_size;
101 channel.num_subbuf = chops->num_subbuf;
102 channel.switch_timer_interval = chops->switch_timer_interval;
103 channel.read_timer_interval = chops->read_timer_interval;
104 channel.output = chops->output;
105 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
106
107 return ioctl(fd, LTTNG_KERNEL_METADATA, &channel);
108 }
109
110 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
111 {
112 struct lttng_kernel_channel channel;
113
114 if (lttng_kernel_use_old_abi) {
115 struct lttng_kernel_old_channel old_channel;
116
117 old_channel.overwrite = chops->overwrite;
118 old_channel.subbuf_size = chops->subbuf_size;
119 old_channel.num_subbuf = chops->num_subbuf;
120 old_channel.switch_timer_interval = chops->switch_timer_interval;
121 old_channel.read_timer_interval = chops->read_timer_interval;
122 old_channel.output = chops->output;
123
124 memset(old_channel.padding, 0, sizeof(old_channel.padding));
125 /*
126 * The new channel padding is smaller than the old ABI so we use the
127 * new ABI padding size for the memcpy.
128 */
129 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
130
131 return ioctl(fd, LTTNG_KERNEL_OLD_CHANNEL, &old_channel);
132 }
133
134 channel.overwrite = chops->overwrite;
135 channel.subbuf_size = chops->subbuf_size;
136 channel.num_subbuf = chops->num_subbuf;
137 channel.switch_timer_interval = chops->switch_timer_interval;
138 channel.read_timer_interval = chops->read_timer_interval;
139 channel.output = chops->output;
140 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
141
142 return ioctl(fd, LTTNG_KERNEL_CHANNEL, &channel);
143 }
144
145 int kernctl_enable_syscall(int fd, const char *syscall_name)
146 {
147 struct lttng_kernel_event event;
148
149 memset(&event, 0, sizeof(event));
150 strncpy(event.name, syscall_name, sizeof(event.name));
151 event.name[sizeof(event.name) - 1] = '\0';
152 event.instrumentation = LTTNG_KERNEL_SYSCALL;
153 event.u.syscall.enable = 1;
154 return ioctl(fd, LTTNG_KERNEL_EVENT, &event);
155 }
156
157 int kernctl_disable_syscall(int fd, const char *syscall_name)
158 {
159 struct lttng_kernel_event event;
160
161 memset(&event, 0, sizeof(event));
162 strncpy(event.name, syscall_name, sizeof(event.name));
163 event.name[sizeof(event.name) - 1] = '\0';
164 event.instrumentation = LTTNG_KERNEL_SYSCALL;
165 event.u.syscall.enable = 0;
166 return ioctl(fd, LTTNG_KERNEL_EVENT, &event);
167 }
168
169 int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
170 {
171 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
172 size_t array_alloc_len;
173 char *new_mask;
174 int ret = 0;
175
176 if (!syscall_mask) {
177 ret = -1;
178 goto end;
179 }
180
181 if (!nr_bits) {
182 ret = -1;
183 goto end;
184 }
185
186 kmask_len.len = 0;
187 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
188 if (ret) {
189 goto end;
190 }
191
192 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
193
194 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
195 if (!kmask) {
196 ret = -1;
197 goto end;
198 }
199
200 kmask->len = kmask_len.len;
201 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
202 if (ret) {
203 goto end;
204 }
205
206 new_mask = realloc(*syscall_mask, array_alloc_len);
207 if (!new_mask) {
208 ret = -1;
209 goto end;
210 }
211 memcpy(new_mask, kmask->mask, array_alloc_len);
212 *syscall_mask = new_mask;
213 *nr_bits = kmask->len;
214
215 end:
216 free(kmask);
217 return ret;
218 }
219
220 int kernctl_track_pid(int fd, int pid)
221 {
222 return ioctl(fd, LTTNG_KERNEL_SESSION_TRACK_PID, pid);
223 }
224
225 int kernctl_untrack_pid(int fd, int pid)
226 {
227 return ioctl(fd, LTTNG_KERNEL_SESSION_UNTRACK_PID, pid);
228 }
229
230 int kernctl_create_stream(int fd)
231 {
232 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
233 LTTNG_KERNEL_STREAM);
234 }
235
236 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
237 {
238 if (lttng_kernel_use_old_abi) {
239 struct lttng_kernel_old_event old_event;
240
241 memcpy(old_event.name, ev->name, sizeof(old_event.name));
242 old_event.instrumentation = ev->instrumentation;
243 switch (ev->instrumentation) {
244 case LTTNG_KERNEL_KPROBE:
245 old_event.u.kprobe.addr = ev->u.kprobe.addr;
246 old_event.u.kprobe.offset = ev->u.kprobe.offset;
247 memcpy(old_event.u.kprobe.symbol_name,
248 ev->u.kprobe.symbol_name,
249 sizeof(old_event.u.kprobe.symbol_name));
250 break;
251 case LTTNG_KERNEL_KRETPROBE:
252 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
253 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
254 memcpy(old_event.u.kretprobe.symbol_name,
255 ev->u.kretprobe.symbol_name,
256 sizeof(old_event.u.kretprobe.symbol_name));
257 break;
258 case LTTNG_KERNEL_FUNCTION:
259 memcpy(old_event.u.ftrace.symbol_name,
260 ev->u.ftrace.symbol_name,
261 sizeof(old_event.u.ftrace.symbol_name));
262 break;
263 default:
264 break;
265 }
266
267 return ioctl(fd, LTTNG_KERNEL_OLD_EVENT, &old_event);
268 }
269 return ioctl(fd, LTTNG_KERNEL_EVENT, ev);
270 }
271
272 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
273 {
274 if (lttng_kernel_use_old_abi) {
275 struct lttng_kernel_old_context old_ctx;
276
277 old_ctx.ctx = ctx->ctx;
278 /* only type that uses the union */
279 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
280 old_ctx.u.perf_counter.type =
281 ctx->u.perf_counter.type;
282 old_ctx.u.perf_counter.config =
283 ctx->u.perf_counter.config;
284 memcpy(old_ctx.u.perf_counter.name,
285 ctx->u.perf_counter.name,
286 sizeof(old_ctx.u.perf_counter.name));
287 }
288 return ioctl(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
289 }
290 return ioctl(fd, LTTNG_KERNEL_CONTEXT, ctx);
291 }
292
293
294 /* Enable event, channel and session ioctl */
295 int kernctl_enable(int fd)
296 {
297 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
298 LTTNG_KERNEL_ENABLE);
299 }
300
301 /* Disable event, channel and session ioctl */
302 int kernctl_disable(int fd)
303 {
304 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
305 LTTNG_KERNEL_DISABLE);
306 }
307
308 int kernctl_start_session(int fd)
309 {
310 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
311 LTTNG_KERNEL_SESSION_START);
312 }
313
314 int kernctl_stop_session(int fd)
315 {
316 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
317 LTTNG_KERNEL_SESSION_STOP);
318 }
319
320 int kernctl_tracepoint_list(int fd)
321 {
322 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
323 LTTNG_KERNEL_TRACEPOINT_LIST);
324 }
325
326 int kernctl_syscall_list(int fd)
327 {
328 return ioctl(fd, LTTNG_KERNEL_SYSCALL_LIST);
329 }
330
331 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
332 {
333 int ret;
334
335 if (lttng_kernel_use_old_abi == -1) {
336 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
337 if (!ret) {
338 lttng_kernel_use_old_abi = 0;
339 goto end;
340 }
341 lttng_kernel_use_old_abi = 1;
342 }
343 if (lttng_kernel_use_old_abi) {
344 struct lttng_kernel_old_tracer_version old_v;
345
346 ret = ioctl(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
347 if (ret) {
348 goto end;
349 }
350 v->major = old_v.major;
351 v->minor = old_v.minor;
352 v->patchlevel = old_v.patchlevel;
353 } else {
354 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
355 }
356
357 end:
358 return ret;
359 }
360
361 int kernctl_tracer_abi_version(int fd,
362 struct lttng_kernel_tracer_abi_version *v)
363 {
364 return ioctl(fd, LTTNG_KERNEL_TRACER_ABI_VERSION, v);
365 }
366
367 int kernctl_wait_quiescent(int fd)
368 {
369 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
370 LTTNG_KERNEL_WAIT_QUIESCENT);
371 }
372
373 int kernctl_calibrate(int fd, struct lttng_kernel_calibrate *calibrate)
374 {
375 int ret;
376
377 if (lttng_kernel_use_old_abi == -1) {
378 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
379 if (!ret) {
380 lttng_kernel_use_old_abi = 0;
381 goto end;
382 }
383 lttng_kernel_use_old_abi = 1;
384 }
385 if (lttng_kernel_use_old_abi) {
386 struct lttng_kernel_old_calibrate old_calibrate;
387
388 old_calibrate.type = calibrate->type;
389 ret = ioctl(fd, LTTNG_KERNEL_OLD_CALIBRATE, &old_calibrate);
390 if (ret) {
391 goto end;
392 }
393 calibrate->type = old_calibrate.type;
394 } else {
395 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
396 }
397
398 end:
399 return ret;
400 }
401
402
403 int kernctl_buffer_flush(int fd)
404 {
405 return ioctl(fd, RING_BUFFER_FLUSH);
406 }
407
408
409 /* Buffer operations */
410
411 /* For mmap mode, readable without "get" operation */
412
413 /* returns the length to mmap. */
414 int kernctl_get_mmap_len(int fd, unsigned long *len)
415 {
416 return ioctl(fd, RING_BUFFER_GET_MMAP_LEN, len);
417 }
418
419 /* returns the maximum size for sub-buffers. */
420 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
421 {
422 return ioctl(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
423 }
424
425 /*
426 * For mmap mode, operate on the current packet (between get/put or
427 * get_next/put_next).
428 */
429
430 /* returns the offset of the subbuffer belonging to the mmap reader. */
431 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
432 {
433 return ioctl(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
434 }
435
436 /* returns the size of the current sub-buffer, without padding (for mmap). */
437 int kernctl_get_subbuf_size(int fd, unsigned long *len)
438 {
439 return ioctl(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
440 }
441
442 /* returns the size of the current sub-buffer, without padding (for mmap). */
443 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
444 {
445 return ioctl(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
446 }
447
448 /* Get exclusive read access to the next sub-buffer that can be read. */
449 int kernctl_get_next_subbuf(int fd)
450 {
451 return ioctl(fd, RING_BUFFER_GET_NEXT_SUBBUF);
452 }
453
454
455 /* Release exclusive sub-buffer access, move consumer forward. */
456 int kernctl_put_next_subbuf(int fd)
457 {
458 return ioctl(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
459 }
460
461 /* snapshot */
462
463 /* Get a snapshot of the current ring buffer producer and consumer positions */
464 int kernctl_snapshot(int fd)
465 {
466 return ioctl(fd, RING_BUFFER_SNAPSHOT);
467 }
468
469 /* Get the consumer position (iteration start) */
470 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
471 {
472 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
473 }
474
475 /* Get the producer position (iteration end) */
476 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
477 {
478 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
479 }
480
481 /* Get exclusive read access to the specified sub-buffer position */
482 int kernctl_get_subbuf(int fd, unsigned long *len)
483 {
484 return ioctl(fd, RING_BUFFER_GET_SUBBUF, len);
485 }
486
487 /* Release exclusive sub-buffer access */
488 int kernctl_put_subbuf(int fd)
489 {
490 return ioctl(fd, RING_BUFFER_PUT_SUBBUF);
491 }
492
493 /* Returns the timestamp begin of the current sub-buffer. */
494 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
495 {
496 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN, timestamp_begin);
497 }
498
499 /* Returns the timestamp end of the current sub-buffer. */
500 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
501 {
502 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END, timestamp_end);
503 }
504
505 /* Returns the number of discarded events in the current sub-buffer. */
506 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
507 {
508 return ioctl(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED, events_discarded);
509 }
510
511 /* Returns the content size in the current sub-buffer. */
512 int kernctl_get_content_size(int fd, uint64_t *content_size)
513 {
514 return ioctl(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE, content_size);
515 }
516
517 /* Returns the packet size in the current sub-buffer. */
518 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
519 {
520 return ioctl(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE, packet_size);
521 }
522
523 /* Returns the stream id of the current sub-buffer. */
524 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
525 {
526 return ioctl(fd, LTTNG_RING_BUFFER_GET_STREAM_ID, stream_id);
527 }
528
529 /* Returns the current timestamp. */
530 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
531 {
532 return ioctl(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP, ts);
533 }
This page took 0.040112 seconds and 5 git commands to generate.