06fec785e8ba0e23eee72907e8fb7cce1d2473a1
[lttng-tools.git] / src / common / hashtable / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #define _GNU_SOURCE
260 #include <stdlib.h>
261 #include <errno.h>
262 #include <assert.h>
263 #include <stdio.h>
264 #include <stdint.h>
265 #include <string.h>
266 #include <sched.h>
267
268 #include "config.h"
269 #include <urcu.h>
270 #include <urcu-call-rcu.h>
271 #include <urcu/arch.h>
272 #include <urcu/uatomic.h>
273 #include <urcu/compiler.h>
274 #include <stdio.h>
275 #include <pthread.h>
276
277 #include "rculfhash.h"
278 #include "rculfhash-internal.h"
279 #include "urcu-flavor.h"
280
281 /*
282 * We need to lock pthread exit, which deadlocks __nptl_setxid in the runas
283 * clone. This work-around will be allowed to be removed when runas.c gets
284 * changed to do an exec() before issuing seteuid/setegid. See
285 * http://sourceware.org/bugzilla/show_bug.cgi?id=10184 for details.
286 */
287 pthread_mutex_t lttng_libc_state_lock = PTHREAD_MUTEX_INITIALIZER;
288
289 /*
290 * Split-counters lazily update the global counter each 1024
291 * addition/removal. It automatically keeps track of resize required.
292 * We use the bucket length as indicator for need to expand for small
293 * tables and machines lacking per-cpu data suppport.
294 */
295 #define COUNT_COMMIT_ORDER 10
296 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
297 #define CHAIN_LEN_TARGET 1
298 #define CHAIN_LEN_RESIZE_THRESHOLD 3
299
300 /*
301 * Define the minimum table size.
302 */
303 #define MIN_TABLE_ORDER 0
304 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
305
306 /*
307 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
308 */
309 #define MIN_PARTITION_PER_THREAD_ORDER 12
310 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
311
312 /*
313 * The removed flag needs to be updated atomically with the pointer.
314 * It indicates that no node must attach to the node scheduled for
315 * removal, and that node garbage collection must be performed.
316 * The bucket flag does not require to be updated atomically with the
317 * pointer, but it is added as a pointer low bit flag to save space.
318 * The "removal owner" flag is used to detect which of the "del"
319 * operation that has set the "removed flag" gets to return the removed
320 * node to its caller. Note that the replace operation does not need to
321 * iteract with the "removal owner" flag, because it validates that
322 * the "removed" flag is not set before performing its cmpxchg.
323 */
324 #define REMOVED_FLAG (1UL << 0)
325 #define BUCKET_FLAG (1UL << 1)
326 #define REMOVAL_OWNER_FLAG (1UL << 2)
327 #define FLAGS_MASK ((1UL << 3) - 1)
328
329 /* Value of the end pointer. Should not interact with flags. */
330 #define END_VALUE NULL
331
332 /*
333 * ht_items_count: Split-counters counting the number of node addition
334 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
335 * is set at hash table creation.
336 *
337 * These are free-running counters, never reset to zero. They count the
338 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
339 * operations to update the global counter. We choose a power-of-2 value
340 * for the trigger to deal with 32 or 64-bit overflow of the counter.
341 */
342 struct ht_items_count {
343 unsigned long add, del;
344 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
345
346 /*
347 * rcu_resize_work: Contains arguments passed to RCU worker thread
348 * responsible for performing lazy resize.
349 */
350 struct rcu_resize_work {
351 struct rcu_head head;
352 struct cds_lfht *ht;
353 };
354
355 /*
356 * partition_resize_work: Contains arguments passed to worker threads
357 * executing the hash table resize on partitions of the hash table
358 * assigned to each processor's worker thread.
359 */
360 struct partition_resize_work {
361 pthread_t thread_id;
362 struct cds_lfht *ht;
363 unsigned long i, start, len;
364 void (*fct)(struct cds_lfht *ht, unsigned long i,
365 unsigned long start, unsigned long len);
366 };
367
368 /*
369 * Algorithm to reverse bits in a word by lookup table, extended to
370 * 64-bit words.
371 * Source:
372 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
373 * Originally from Public Domain.
374 */
375
376 static const uint8_t BitReverseTable256[256] =
377 {
378 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
379 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
380 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
381 R6(0), R6(2), R6(1), R6(3)
382 };
383 #undef R2
384 #undef R4
385 #undef R6
386
387 static
388 uint8_t bit_reverse_u8(uint8_t v)
389 {
390 return BitReverseTable256[v];
391 }
392
393 static __attribute__((unused))
394 uint32_t bit_reverse_u32(uint32_t v)
395 {
396 return ((uint32_t) bit_reverse_u8(v) << 24) |
397 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
398 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
399 ((uint32_t) bit_reverse_u8(v >> 24));
400 }
401
402 static __attribute__((unused))
403 uint64_t bit_reverse_u64(uint64_t v)
404 {
405 return ((uint64_t) bit_reverse_u8(v) << 56) |
406 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
407 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
408 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
409 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
410 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
411 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
412 ((uint64_t) bit_reverse_u8(v >> 56));
413 }
414
415 static
416 unsigned long bit_reverse_ulong(unsigned long v)
417 {
418 #if (CAA_BITS_PER_LONG == 32)
419 return bit_reverse_u32(v);
420 #else
421 return bit_reverse_u64(v);
422 #endif
423 }
424
425 /*
426 * fls: returns the position of the most significant bit.
427 * Returns 0 if no bit is set, else returns the position of the most
428 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
429 */
430 #if defined(__i386) || defined(__x86_64)
431 static inline
432 unsigned int fls_u32(uint32_t x)
433 {
434 int r;
435
436 asm("bsrl %1,%0\n\t"
437 "jnz 1f\n\t"
438 "movl $-1,%0\n\t"
439 "1:\n\t"
440 : "=r" (r) : "rm" (x));
441 return r + 1;
442 }
443 #define HAS_FLS_U32
444 #endif
445
446 #if defined(__x86_64)
447 static inline
448 unsigned int fls_u64(uint64_t x)
449 {
450 long r;
451
452 asm("bsrq %1,%0\n\t"
453 "jnz 1f\n\t"
454 "movq $-1,%0\n\t"
455 "1:\n\t"
456 : "=r" (r) : "rm" (x));
457 return r + 1;
458 }
459 #define HAS_FLS_U64
460 #endif
461
462 #ifndef HAS_FLS_U64
463 static __attribute__((unused))
464 unsigned int fls_u64(uint64_t x)
465 {
466 unsigned int r = 64;
467
468 if (!x)
469 return 0;
470
471 if (!(x & 0xFFFFFFFF00000000ULL)) {
472 x <<= 32;
473 r -= 32;
474 }
475 if (!(x & 0xFFFF000000000000ULL)) {
476 x <<= 16;
477 r -= 16;
478 }
479 if (!(x & 0xFF00000000000000ULL)) {
480 x <<= 8;
481 r -= 8;
482 }
483 if (!(x & 0xF000000000000000ULL)) {
484 x <<= 4;
485 r -= 4;
486 }
487 if (!(x & 0xC000000000000000ULL)) {
488 x <<= 2;
489 r -= 2;
490 }
491 if (!(x & 0x8000000000000000ULL)) {
492 x <<= 1;
493 r -= 1;
494 }
495 return r;
496 }
497 #endif
498
499 #ifndef HAS_FLS_U32
500 static __attribute__((unused))
501 unsigned int fls_u32(uint32_t x)
502 {
503 unsigned int r = 32;
504
505 if (!x)
506 return 0;
507 if (!(x & 0xFFFF0000U)) {
508 x <<= 16;
509 r -= 16;
510 }
511 if (!(x & 0xFF000000U)) {
512 x <<= 8;
513 r -= 8;
514 }
515 if (!(x & 0xF0000000U)) {
516 x <<= 4;
517 r -= 4;
518 }
519 if (!(x & 0xC0000000U)) {
520 x <<= 2;
521 r -= 2;
522 }
523 if (!(x & 0x80000000U)) {
524 x <<= 1;
525 r -= 1;
526 }
527 return r;
528 }
529 #endif
530
531 unsigned int cds_lfht_fls_ulong(unsigned long x)
532 {
533 #if (CAA_BITS_PER_LONG == 32)
534 return fls_u32(x);
535 #else
536 return fls_u64(x);
537 #endif
538 }
539
540 /*
541 * Return the minimum order for which x <= (1UL << order).
542 * Return -1 if x is 0.
543 */
544 int cds_lfht_get_count_order_u32(uint32_t x)
545 {
546 if (!x)
547 return -1;
548
549 return fls_u32(x - 1);
550 }
551
552 /*
553 * Return the minimum order for which x <= (1UL << order).
554 * Return -1 if x is 0.
555 */
556 int cds_lfht_get_count_order_ulong(unsigned long x)
557 {
558 if (!x)
559 return -1;
560
561 return cds_lfht_fls_ulong(x - 1);
562 }
563
564 static
565 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
566
567 static
568 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
569 unsigned long count);
570
571 static long nr_cpus_mask = -1;
572 static long split_count_mask = -1;
573
574 #if defined(HAVE_SYSCONF)
575 static void ht_init_nr_cpus_mask(void)
576 {
577 long maxcpus;
578
579 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
580 if (maxcpus <= 0) {
581 nr_cpus_mask = -2;
582 return;
583 }
584 /*
585 * round up number of CPUs to next power of two, so we
586 * can use & for modulo.
587 */
588 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
589 nr_cpus_mask = maxcpus - 1;
590 }
591 #else /* #if defined(HAVE_SYSCONF) */
592 static void ht_init_nr_cpus_mask(void)
593 {
594 nr_cpus_mask = -2;
595 }
596 #endif /* #else #if defined(HAVE_SYSCONF) */
597
598 static
599 void alloc_split_items_count(struct cds_lfht *ht)
600 {
601 struct ht_items_count *count;
602
603 if (nr_cpus_mask == -1) {
604 ht_init_nr_cpus_mask();
605 if (nr_cpus_mask < 0)
606 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
607 else
608 split_count_mask = nr_cpus_mask;
609 }
610
611 assert(split_count_mask >= 0);
612
613 if (ht->flags & CDS_LFHT_ACCOUNTING) {
614 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
615 assert(ht->split_count);
616 } else {
617 ht->split_count = NULL;
618 }
619 }
620
621 static
622 void free_split_items_count(struct cds_lfht *ht)
623 {
624 poison_free(ht->split_count);
625 }
626
627 #if defined(HAVE_SCHED_GETCPU)
628 static
629 int ht_get_split_count_index(unsigned long hash)
630 {
631 int cpu;
632
633 assert(split_count_mask >= 0);
634 cpu = sched_getcpu();
635 if (caa_unlikely(cpu < 0))
636 return hash & split_count_mask;
637 else
638 return cpu & split_count_mask;
639 }
640 #else /* #if defined(HAVE_SCHED_GETCPU) */
641 static
642 int ht_get_split_count_index(unsigned long hash)
643 {
644 return hash & split_count_mask;
645 }
646 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
647
648 static
649 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
650 {
651 unsigned long split_count;
652 int index;
653 long count;
654
655 if (caa_unlikely(!ht->split_count))
656 return;
657 index = ht_get_split_count_index(hash);
658 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
659 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
660 return;
661 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
662
663 dbg_printf("add split count %lu\n", split_count);
664 count = uatomic_add_return(&ht->count,
665 1UL << COUNT_COMMIT_ORDER);
666 if (caa_likely(count & (count - 1)))
667 return;
668 /* Only if global count is power of 2 */
669
670 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
671 return;
672 dbg_printf("add set global %ld\n", count);
673 cds_lfht_resize_lazy_count(ht, size,
674 count >> (CHAIN_LEN_TARGET - 1));
675 }
676
677 static
678 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
679 {
680 unsigned long split_count;
681 int index;
682 long count;
683
684 if (caa_unlikely(!ht->split_count))
685 return;
686 index = ht_get_split_count_index(hash);
687 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
688 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
689 return;
690 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
691
692 dbg_printf("del split count %lu\n", split_count);
693 count = uatomic_add_return(&ht->count,
694 -(1UL << COUNT_COMMIT_ORDER));
695 if (caa_likely(count & (count - 1)))
696 return;
697 /* Only if global count is power of 2 */
698
699 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
700 return;
701 dbg_printf("del set global %ld\n", count);
702 /*
703 * Don't shrink table if the number of nodes is below a
704 * certain threshold.
705 */
706 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
707 return;
708 cds_lfht_resize_lazy_count(ht, size,
709 count >> (CHAIN_LEN_TARGET - 1));
710 }
711
712 static
713 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
714 {
715 unsigned long count;
716
717 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
718 return;
719 count = uatomic_read(&ht->count);
720 /*
721 * Use bucket-local length for small table expand and for
722 * environments lacking per-cpu data support.
723 */
724 if (count >= (1UL << COUNT_COMMIT_ORDER))
725 return;
726 if (chain_len > 100)
727 dbg_printf("WARNING: large chain length: %u.\n",
728 chain_len);
729 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
730 cds_lfht_resize_lazy_grow(ht, size,
731 cds_lfht_get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
732 }
733
734 static
735 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
736 {
737 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
738 }
739
740 static
741 int is_removed(struct cds_lfht_node *node)
742 {
743 return ((unsigned long) node) & REMOVED_FLAG;
744 }
745
746 static
747 int is_bucket(struct cds_lfht_node *node)
748 {
749 return ((unsigned long) node) & BUCKET_FLAG;
750 }
751
752 static
753 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
754 {
755 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
756 }
757
758 static
759 int is_removal_owner(struct cds_lfht_node *node)
760 {
761 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
762 }
763
764 static
765 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
766 {
767 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
768 }
769
770 static
771 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
772 {
773 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
774 }
775
776 static
777 struct cds_lfht_node *get_end(void)
778 {
779 return (struct cds_lfht_node *) END_VALUE;
780 }
781
782 static
783 int is_end(struct cds_lfht_node *node)
784 {
785 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
786 }
787
788 static
789 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
790 unsigned long v)
791 {
792 unsigned long old1, old2;
793
794 old1 = uatomic_read(ptr);
795 do {
796 old2 = old1;
797 if (old2 >= v)
798 return old2;
799 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
800 return old2;
801 }
802
803 static
804 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
805 {
806 return ht->mm->alloc_bucket_table(ht, order);
807 }
808
809 /*
810 * cds_lfht_free_bucket_table() should be called with decreasing order.
811 * When cds_lfht_free_bucket_table(0) is called, it means the whole
812 * lfht is destroyed.
813 */
814 static
815 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
816 {
817 return ht->mm->free_bucket_table(ht, order);
818 }
819
820 static inline
821 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
822 {
823 return ht->bucket_at(ht, index);
824 }
825
826 static inline
827 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
828 unsigned long hash)
829 {
830 assert(size > 0);
831 return bucket_at(ht, hash & (size - 1));
832 }
833
834 /*
835 * Remove all logically deleted nodes from a bucket up to a certain node key.
836 */
837 static
838 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
839 {
840 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
841
842 assert(!is_bucket(bucket));
843 assert(!is_removed(bucket));
844 assert(!is_bucket(node));
845 assert(!is_removed(node));
846 for (;;) {
847 iter_prev = bucket;
848 /* We can always skip the bucket node initially */
849 iter = rcu_dereference(iter_prev->next);
850 assert(!is_removed(iter));
851 assert(iter_prev->reverse_hash <= node->reverse_hash);
852 /*
853 * We should never be called with bucket (start of chain)
854 * and logically removed node (end of path compression
855 * marker) being the actual same node. This would be a
856 * bug in the algorithm implementation.
857 */
858 assert(bucket != node);
859 for (;;) {
860 if (caa_unlikely(is_end(iter)))
861 return;
862 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
863 return;
864 next = rcu_dereference(clear_flag(iter)->next);
865 if (caa_likely(is_removed(next)))
866 break;
867 iter_prev = clear_flag(iter);
868 iter = next;
869 }
870 assert(!is_removed(iter));
871 if (is_bucket(iter))
872 new_next = flag_bucket(clear_flag(next));
873 else
874 new_next = clear_flag(next);
875 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
876 }
877 }
878
879 static
880 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
881 struct cds_lfht_node *old_node,
882 struct cds_lfht_node *old_next,
883 struct cds_lfht_node *new_node)
884 {
885 struct cds_lfht_node *bucket, *ret_next;
886
887 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
888 return -ENOENT;
889
890 assert(!is_removed(old_node));
891 assert(!is_bucket(old_node));
892 assert(!is_removed(new_node));
893 assert(!is_bucket(new_node));
894 assert(new_node != old_node);
895 for (;;) {
896 /* Insert after node to be replaced */
897 if (is_removed(old_next)) {
898 /*
899 * Too late, the old node has been removed under us
900 * between lookup and replace. Fail.
901 */
902 return -ENOENT;
903 }
904 assert(old_next == clear_flag(old_next));
905 assert(new_node != old_next);
906 /*
907 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
908 * flag. It is either set atomically at the same time
909 * (replace) or after (del).
910 */
911 assert(!is_removal_owner(old_next));
912 new_node->next = old_next;
913 /*
914 * Here is the whole trick for lock-free replace: we add
915 * the replacement node _after_ the node we want to
916 * replace by atomically setting its next pointer at the
917 * same time we set its removal flag. Given that
918 * the lookups/get next use an iterator aware of the
919 * next pointer, they will either skip the old node due
920 * to the removal flag and see the new node, or use
921 * the old node, but will not see the new one.
922 * This is a replacement of a node with another node
923 * that has the same value: we are therefore not
924 * removing a value from the hash table. We set both the
925 * REMOVED and REMOVAL_OWNER flags atomically so we own
926 * the node after successful cmpxchg.
927 */
928 ret_next = uatomic_cmpxchg(&old_node->next,
929 old_next, flag_removed_or_removal_owner(new_node));
930 if (ret_next == old_next)
931 break; /* We performed the replacement. */
932 old_next = ret_next;
933 }
934
935 /*
936 * Ensure that the old node is not visible to readers anymore:
937 * lookup for the node, and remove it (along with any other
938 * logically removed node) if found.
939 */
940 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
941 _cds_lfht_gc_bucket(bucket, new_node);
942
943 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
944 return 0;
945 }
946
947 /*
948 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
949 * mode. A NULL unique_ret allows creation of duplicate keys.
950 */
951 static
952 void _cds_lfht_add(struct cds_lfht *ht,
953 unsigned long hash,
954 cds_lfht_match_fct match,
955 const void *key,
956 unsigned long size,
957 struct cds_lfht_node *node,
958 struct cds_lfht_iter *unique_ret,
959 int bucket_flag)
960 {
961 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
962 *return_node;
963 struct cds_lfht_node *bucket;
964
965 assert(!is_bucket(node));
966 assert(!is_removed(node));
967 bucket = lookup_bucket(ht, size, hash);
968 for (;;) {
969 uint32_t chain_len = 0;
970
971 /*
972 * iter_prev points to the non-removed node prior to the
973 * insert location.
974 */
975 iter_prev = bucket;
976 /* We can always skip the bucket node initially */
977 iter = rcu_dereference(iter_prev->next);
978 assert(iter_prev->reverse_hash <= node->reverse_hash);
979 for (;;) {
980 if (caa_unlikely(is_end(iter)))
981 goto insert;
982 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
983 goto insert;
984
985 /* bucket node is the first node of the identical-hash-value chain */
986 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
987 goto insert;
988
989 next = rcu_dereference(clear_flag(iter)->next);
990 if (caa_unlikely(is_removed(next)))
991 goto gc_node;
992
993 /* uniquely add */
994 if (unique_ret
995 && !is_bucket(next)
996 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
997 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
998
999 /*
1000 * uniquely adding inserts the node as the first
1001 * node of the identical-hash-value node chain.
1002 *
1003 * This semantic ensures no duplicated keys
1004 * should ever be observable in the table
1005 * (including traversing the table node by
1006 * node by forward iterations)
1007 */
1008 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1009 if (!d_iter.node)
1010 goto insert;
1011
1012 *unique_ret = d_iter;
1013 return;
1014 }
1015
1016 /* Only account for identical reverse hash once */
1017 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1018 && !is_bucket(next))
1019 check_resize(ht, size, ++chain_len);
1020 iter_prev = clear_flag(iter);
1021 iter = next;
1022 }
1023
1024 insert:
1025 assert(node != clear_flag(iter));
1026 assert(!is_removed(iter_prev));
1027 assert(!is_removed(iter));
1028 assert(iter_prev != node);
1029 if (!bucket_flag)
1030 node->next = clear_flag(iter);
1031 else
1032 node->next = flag_bucket(clear_flag(iter));
1033 if (is_bucket(iter))
1034 new_node = flag_bucket(node);
1035 else
1036 new_node = node;
1037 if (uatomic_cmpxchg(&iter_prev->next, iter,
1038 new_node) != iter) {
1039 continue; /* retry */
1040 } else {
1041 return_node = node;
1042 goto end;
1043 }
1044
1045 gc_node:
1046 assert(!is_removed(iter));
1047 if (is_bucket(iter))
1048 new_next = flag_bucket(clear_flag(next));
1049 else
1050 new_next = clear_flag(next);
1051 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1052 /* retry */
1053 }
1054 end:
1055 if (unique_ret) {
1056 unique_ret->node = return_node;
1057 /* unique_ret->next left unset, never used. */
1058 }
1059 }
1060
1061 static
1062 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1063 struct cds_lfht_node *node)
1064 {
1065 struct cds_lfht_node *bucket, *next;
1066
1067 if (!node) /* Return -ENOENT if asked to delete NULL node */
1068 return -ENOENT;
1069
1070 /* logically delete the node */
1071 assert(!is_bucket(node));
1072 assert(!is_removed(node));
1073 assert(!is_removal_owner(node));
1074
1075 /*
1076 * We are first checking if the node had previously been
1077 * logically removed (this check is not atomic with setting the
1078 * logical removal flag). Return -ENOENT if the node had
1079 * previously been removed.
1080 */
1081 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1082 if (caa_unlikely(is_removed(next)))
1083 return -ENOENT;
1084 assert(!is_bucket(next));
1085 /*
1086 * The del operation semantic guarantees a full memory barrier
1087 * before the uatomic_or atomic commit of the deletion flag.
1088 */
1089 cmm_smp_mb__before_uatomic_or();
1090 /*
1091 * We set the REMOVED_FLAG unconditionally. Note that there may
1092 * be more than one concurrent thread setting this flag.
1093 * Knowing which wins the race will be known after the garbage
1094 * collection phase, stay tuned!
1095 */
1096 uatomic_or(&node->next, REMOVED_FLAG);
1097 /* We performed the (logical) deletion. */
1098
1099 /*
1100 * Ensure that the node is not visible to readers anymore: lookup for
1101 * the node, and remove it (along with any other logically removed node)
1102 * if found.
1103 */
1104 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1105 _cds_lfht_gc_bucket(bucket, node);
1106
1107 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1108 /*
1109 * Last phase: atomically exchange node->next with a version
1110 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1111 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1112 * the node and win the removal race.
1113 * It is interesting to note that all "add" paths are forbidden
1114 * to change the next pointer starting from the point where the
1115 * REMOVED_FLAG is set, so here using a read, followed by a
1116 * xchg() suffice to guarantee that the xchg() will ever only
1117 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1118 * was already set).
1119 */
1120 if (!is_removal_owner(uatomic_xchg(&node->next,
1121 flag_removal_owner(node->next))))
1122 return 0;
1123 else
1124 return -ENOENT;
1125 }
1126
1127 static
1128 void *partition_resize_thread(void *arg)
1129 {
1130 struct partition_resize_work *work = arg;
1131
1132 work->ht->flavor->register_thread();
1133 work->fct(work->ht, work->i, work->start, work->len);
1134 work->ht->flavor->unregister_thread();
1135 return NULL;
1136 }
1137
1138 static
1139 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1140 unsigned long len,
1141 void (*fct)(struct cds_lfht *ht, unsigned long i,
1142 unsigned long start, unsigned long len))
1143 {
1144 unsigned long partition_len;
1145 struct partition_resize_work *work;
1146 int thread, ret;
1147 unsigned long nr_threads;
1148
1149 /*
1150 * Note: nr_cpus_mask + 1 is always power of 2.
1151 * We spawn just the number of threads we need to satisfy the minimum
1152 * partition size, up to the number of CPUs in the system.
1153 */
1154 if (nr_cpus_mask > 0) {
1155 nr_threads = min(nr_cpus_mask + 1,
1156 len >> MIN_PARTITION_PER_THREAD_ORDER);
1157 } else {
1158 nr_threads = 1;
1159 }
1160 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1161 work = calloc(nr_threads, sizeof(*work));
1162 assert(work);
1163 for (thread = 0; thread < nr_threads; thread++) {
1164 work[thread].ht = ht;
1165 work[thread].i = i;
1166 work[thread].len = partition_len;
1167 work[thread].start = thread * partition_len;
1168 work[thread].fct = fct;
1169 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1170 partition_resize_thread, &work[thread]);
1171 assert(!ret);
1172 }
1173 for (thread = 0; thread < nr_threads; thread++) {
1174 ret = pthread_join(work[thread].thread_id, NULL);
1175 assert(!ret);
1176 }
1177 free(work);
1178 }
1179
1180 /*
1181 * Holding RCU read lock to protect _cds_lfht_add against memory
1182 * reclaim that could be performed by other call_rcu worker threads (ABA
1183 * problem).
1184 *
1185 * When we reach a certain length, we can split this population phase over
1186 * many worker threads, based on the number of CPUs available in the system.
1187 * This should therefore take care of not having the expand lagging behind too
1188 * many concurrent insertion threads by using the scheduler's ability to
1189 * schedule bucket node population fairly with insertions.
1190 */
1191 static
1192 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1193 unsigned long start, unsigned long len)
1194 {
1195 unsigned long j, size = 1UL << (i - 1);
1196
1197 assert(i > MIN_TABLE_ORDER);
1198 ht->flavor->read_lock();
1199 for (j = size + start; j < size + start + len; j++) {
1200 struct cds_lfht_node *new_node = bucket_at(ht, j);
1201
1202 assert(j >= size && j < (size << 1));
1203 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1204 i, j, j);
1205 new_node->reverse_hash = bit_reverse_ulong(j);
1206 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1207 }
1208 ht->flavor->read_unlock();
1209 }
1210
1211 static
1212 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1213 unsigned long len)
1214 {
1215 assert(nr_cpus_mask != -1);
1216 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1217 ht->flavor->thread_online();
1218 init_table_populate_partition(ht, i, 0, len);
1219 ht->flavor->thread_offline();
1220 return;
1221 }
1222 partition_resize_helper(ht, i, len, init_table_populate_partition);
1223 }
1224
1225 static
1226 void init_table(struct cds_lfht *ht,
1227 unsigned long first_order, unsigned long last_order)
1228 {
1229 unsigned long i;
1230
1231 dbg_printf("init table: first_order %lu last_order %lu\n",
1232 first_order, last_order);
1233 assert(first_order > MIN_TABLE_ORDER);
1234 for (i = first_order; i <= last_order; i++) {
1235 unsigned long len;
1236
1237 len = 1UL << (i - 1);
1238 dbg_printf("init order %lu len: %lu\n", i, len);
1239
1240 /* Stop expand if the resize target changes under us */
1241 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1242 break;
1243
1244 cds_lfht_alloc_bucket_table(ht, i);
1245
1246 /*
1247 * Set all bucket nodes reverse hash values for a level and
1248 * link all bucket nodes into the table.
1249 */
1250 init_table_populate(ht, i, len);
1251
1252 /*
1253 * Update table size.
1254 */
1255 cmm_smp_wmb(); /* populate data before RCU size */
1256 CMM_STORE_SHARED(ht->size, 1UL << i);
1257
1258 dbg_printf("init new size: %lu\n", 1UL << i);
1259 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1260 break;
1261 }
1262 }
1263
1264 /*
1265 * Holding RCU read lock to protect _cds_lfht_remove against memory
1266 * reclaim that could be performed by other call_rcu worker threads (ABA
1267 * problem).
1268 * For a single level, we logically remove and garbage collect each node.
1269 *
1270 * As a design choice, we perform logical removal and garbage collection on a
1271 * node-per-node basis to simplify this algorithm. We also assume keeping good
1272 * cache locality of the operation would overweight possible performance gain
1273 * that could be achieved by batching garbage collection for multiple levels.
1274 * However, this would have to be justified by benchmarks.
1275 *
1276 * Concurrent removal and add operations are helping us perform garbage
1277 * collection of logically removed nodes. We guarantee that all logically
1278 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1279 * invoked to free a hole level of bucket nodes (after a grace period).
1280 *
1281 * Logical removal and garbage collection can therefore be done in batch
1282 * or on a node-per-node basis, as long as the guarantee above holds.
1283 *
1284 * When we reach a certain length, we can split this removal over many worker
1285 * threads, based on the number of CPUs available in the system. This should
1286 * take care of not letting resize process lag behind too many concurrent
1287 * updater threads actively inserting into the hash table.
1288 */
1289 static
1290 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1291 unsigned long start, unsigned long len)
1292 {
1293 unsigned long j, size = 1UL << (i - 1);
1294
1295 assert(i > MIN_TABLE_ORDER);
1296 ht->flavor->read_lock();
1297 for (j = size + start; j < size + start + len; j++) {
1298 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1299 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1300
1301 assert(j >= size && j < (size << 1));
1302 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1303 i, j, j);
1304 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1305 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1306 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1307 }
1308 ht->flavor->read_unlock();
1309 }
1310
1311 static
1312 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1313 {
1314
1315 assert(nr_cpus_mask != -1);
1316 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1317 ht->flavor->thread_online();
1318 remove_table_partition(ht, i, 0, len);
1319 ht->flavor->thread_offline();
1320 return;
1321 }
1322 partition_resize_helper(ht, i, len, remove_table_partition);
1323 }
1324
1325 /*
1326 * fini_table() is never called for first_order == 0, which is why
1327 * free_by_rcu_order == 0 can be used as criterion to know if free must
1328 * be called.
1329 */
1330 static
1331 void fini_table(struct cds_lfht *ht,
1332 unsigned long first_order, unsigned long last_order)
1333 {
1334 long i;
1335 unsigned long free_by_rcu_order = 0;
1336
1337 dbg_printf("fini table: first_order %lu last_order %lu\n",
1338 first_order, last_order);
1339 assert(first_order > MIN_TABLE_ORDER);
1340 for (i = last_order; i >= first_order; i--) {
1341 unsigned long len;
1342
1343 len = 1UL << (i - 1);
1344 dbg_printf("fini order %lu len: %lu\n", i, len);
1345
1346 /* Stop shrink if the resize target changes under us */
1347 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1348 break;
1349
1350 cmm_smp_wmb(); /* populate data before RCU size */
1351 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1352
1353 /*
1354 * We need to wait for all add operations to reach Q.S. (and
1355 * thus use the new table for lookups) before we can start
1356 * releasing the old bucket nodes. Otherwise their lookup will
1357 * return a logically removed node as insert position.
1358 */
1359 ht->flavor->update_synchronize_rcu();
1360 if (free_by_rcu_order)
1361 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1362
1363 /*
1364 * Set "removed" flag in bucket nodes about to be removed.
1365 * Unlink all now-logically-removed bucket node pointers.
1366 * Concurrent add/remove operation are helping us doing
1367 * the gc.
1368 */
1369 remove_table(ht, i, len);
1370
1371 free_by_rcu_order = i;
1372
1373 dbg_printf("fini new size: %lu\n", 1UL << i);
1374 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1375 break;
1376 }
1377
1378 if (free_by_rcu_order) {
1379 ht->flavor->update_synchronize_rcu();
1380 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1381 }
1382 }
1383
1384 static
1385 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1386 {
1387 struct cds_lfht_node *prev, *node;
1388 unsigned long order, len, i;
1389
1390 cds_lfht_alloc_bucket_table(ht, 0);
1391
1392 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1393 node = bucket_at(ht, 0);
1394 node->next = flag_bucket(get_end());
1395 node->reverse_hash = 0;
1396
1397 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1398 len = 1UL << (order - 1);
1399 cds_lfht_alloc_bucket_table(ht, order);
1400
1401 for (i = 0; i < len; i++) {
1402 /*
1403 * Now, we are trying to init the node with the
1404 * hash=(len+i) (which is also a bucket with the
1405 * index=(len+i)) and insert it into the hash table,
1406 * so this node has to be inserted after the bucket
1407 * with the index=(len+i)&(len-1)=i. And because there
1408 * is no other non-bucket node nor bucket node with
1409 * larger index/hash inserted, so the bucket node
1410 * being inserted should be inserted directly linked
1411 * after the bucket node with index=i.
1412 */
1413 prev = bucket_at(ht, i);
1414 node = bucket_at(ht, len + i);
1415
1416 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1417 order, len + i, len + i);
1418 node->reverse_hash = bit_reverse_ulong(len + i);
1419
1420 /* insert after prev */
1421 assert(is_bucket(prev->next));
1422 node->next = prev->next;
1423 prev->next = flag_bucket(node);
1424 }
1425 }
1426 }
1427
1428 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1429 unsigned long min_nr_alloc_buckets,
1430 unsigned long max_nr_buckets,
1431 int flags,
1432 const struct cds_lfht_mm_type *mm,
1433 const struct rcu_flavor_struct *flavor,
1434 pthread_attr_t *attr)
1435 {
1436 struct cds_lfht *ht;
1437 unsigned long order;
1438
1439 /* min_nr_alloc_buckets must be power of two */
1440 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1441 return NULL;
1442
1443 /* init_size must be power of two */
1444 if (!init_size || (init_size & (init_size - 1)))
1445 return NULL;
1446
1447 /*
1448 * Memory management plugin default.
1449 */
1450 if (!mm) {
1451 if (CAA_BITS_PER_LONG > 32
1452 && max_nr_buckets
1453 && max_nr_buckets <= (1ULL << 32)) {
1454 /*
1455 * For 64-bit architectures, with max number of
1456 * buckets small enough not to use the entire
1457 * 64-bit memory mapping space (and allowing a
1458 * fair number of hash table instances), use the
1459 * mmap allocator, which is faster than the
1460 * order allocator.
1461 */
1462 mm = &cds_lfht_mm_mmap;
1463 } else {
1464 /*
1465 * The fallback is to use the order allocator.
1466 */
1467 mm = &cds_lfht_mm_order;
1468 }
1469 }
1470
1471 /* max_nr_buckets == 0 for order based mm means infinite */
1472 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1473 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1474
1475 /* max_nr_buckets must be power of two */
1476 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1477 return NULL;
1478
1479 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1480 init_size = max(init_size, MIN_TABLE_SIZE);
1481 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1482 init_size = min(init_size, max_nr_buckets);
1483
1484 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1485 assert(ht);
1486 assert(ht->mm == mm);
1487 assert(ht->bucket_at == mm->bucket_at);
1488
1489 ht->flags = flags;
1490 ht->flavor = flavor;
1491 ht->resize_attr = attr;
1492 alloc_split_items_count(ht);
1493 /* this mutex should not nest in read-side C.S. */
1494 pthread_mutex_init(&ht->resize_mutex, NULL);
1495 order = cds_lfht_get_count_order_ulong(init_size);
1496 ht->resize_target = 1UL << order;
1497 cds_lfht_create_bucket(ht, 1UL << order);
1498 ht->size = 1UL << order;
1499 return ht;
1500 }
1501
1502 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1503 cds_lfht_match_fct match, const void *key,
1504 struct cds_lfht_iter *iter)
1505 {
1506 struct cds_lfht_node *node, *next, *bucket;
1507 unsigned long reverse_hash, size;
1508
1509 reverse_hash = bit_reverse_ulong(hash);
1510
1511 size = rcu_dereference(ht->size);
1512 bucket = lookup_bucket(ht, size, hash);
1513 /* We can always skip the bucket node initially */
1514 node = rcu_dereference(bucket->next);
1515 node = clear_flag(node);
1516 for (;;) {
1517 if (caa_unlikely(is_end(node))) {
1518 node = next = NULL;
1519 break;
1520 }
1521 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1522 node = next = NULL;
1523 break;
1524 }
1525 next = rcu_dereference(node->next);
1526 assert(node == clear_flag(node));
1527 if (caa_likely(!is_removed(next))
1528 && !is_bucket(next)
1529 && node->reverse_hash == reverse_hash
1530 && caa_likely(match(node, key))) {
1531 break;
1532 }
1533 node = clear_flag(next);
1534 }
1535 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1536 iter->node = node;
1537 iter->next = next;
1538 }
1539
1540 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1541 const void *key, struct cds_lfht_iter *iter)
1542 {
1543 struct cds_lfht_node *node, *next;
1544 unsigned long reverse_hash;
1545
1546 node = iter->node;
1547 reverse_hash = node->reverse_hash;
1548 next = iter->next;
1549 node = clear_flag(next);
1550
1551 for (;;) {
1552 if (caa_unlikely(is_end(node))) {
1553 node = next = NULL;
1554 break;
1555 }
1556 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1557 node = next = NULL;
1558 break;
1559 }
1560 next = rcu_dereference(node->next);
1561 if (caa_likely(!is_removed(next))
1562 && !is_bucket(next)
1563 && caa_likely(match(node, key))) {
1564 break;
1565 }
1566 node = clear_flag(next);
1567 }
1568 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1569 iter->node = node;
1570 iter->next = next;
1571 }
1572
1573 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1574 {
1575 struct cds_lfht_node *node, *next;
1576
1577 node = clear_flag(iter->next);
1578 for (;;) {
1579 if (caa_unlikely(is_end(node))) {
1580 node = next = NULL;
1581 break;
1582 }
1583 next = rcu_dereference(node->next);
1584 if (caa_likely(!is_removed(next))
1585 && !is_bucket(next)) {
1586 break;
1587 }
1588 node = clear_flag(next);
1589 }
1590 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1591 iter->node = node;
1592 iter->next = next;
1593 }
1594
1595 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1596 {
1597 /*
1598 * Get next after first bucket node. The first bucket node is the
1599 * first node of the linked list.
1600 */
1601 iter->next = bucket_at(ht, 0)->next;
1602 cds_lfht_next(ht, iter);
1603 }
1604
1605 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1606 struct cds_lfht_node *node)
1607 {
1608 unsigned long size;
1609
1610 node->reverse_hash = bit_reverse_ulong(hash);
1611 size = rcu_dereference(ht->size);
1612 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1613 ht_count_add(ht, size, hash);
1614 }
1615
1616 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1617 unsigned long hash,
1618 cds_lfht_match_fct match,
1619 const void *key,
1620 struct cds_lfht_node *node)
1621 {
1622 unsigned long size;
1623 struct cds_lfht_iter iter;
1624
1625 node->reverse_hash = bit_reverse_ulong(hash);
1626 size = rcu_dereference(ht->size);
1627 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1628 if (iter.node == node)
1629 ht_count_add(ht, size, hash);
1630 return iter.node;
1631 }
1632
1633 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1634 unsigned long hash,
1635 cds_lfht_match_fct match,
1636 const void *key,
1637 struct cds_lfht_node *node)
1638 {
1639 unsigned long size;
1640 struct cds_lfht_iter iter;
1641
1642 node->reverse_hash = bit_reverse_ulong(hash);
1643 size = rcu_dereference(ht->size);
1644 for (;;) {
1645 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1646 if (iter.node == node) {
1647 ht_count_add(ht, size, hash);
1648 return NULL;
1649 }
1650
1651 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1652 return iter.node;
1653 }
1654 }
1655
1656 int cds_lfht_replace(struct cds_lfht *ht,
1657 struct cds_lfht_iter *old_iter,
1658 unsigned long hash,
1659 cds_lfht_match_fct match,
1660 const void *key,
1661 struct cds_lfht_node *new_node)
1662 {
1663 unsigned long size;
1664
1665 new_node->reverse_hash = bit_reverse_ulong(hash);
1666 if (!old_iter->node)
1667 return -ENOENT;
1668 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1669 return -EINVAL;
1670 if (caa_unlikely(!match(old_iter->node, key)))
1671 return -EINVAL;
1672 size = rcu_dereference(ht->size);
1673 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1674 new_node);
1675 }
1676
1677 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1678 {
1679 unsigned long size, hash;
1680 int ret;
1681
1682 size = rcu_dereference(ht->size);
1683 ret = _cds_lfht_del(ht, size, node);
1684 if (!ret) {
1685 hash = bit_reverse_ulong(node->reverse_hash);
1686 ht_count_del(ht, size, hash);
1687 }
1688 return ret;
1689 }
1690
1691 int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1692 {
1693 return is_removed(CMM_LOAD_SHARED(node->next));
1694 }
1695
1696 static
1697 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1698 {
1699 struct cds_lfht_node *node;
1700 unsigned long order, i, size;
1701
1702 /* Check that the table is empty */
1703 node = bucket_at(ht, 0);
1704 do {
1705 node = clear_flag(node)->next;
1706 if (!is_bucket(node))
1707 return -EPERM;
1708 assert(!is_removed(node));
1709 } while (!is_end(node));
1710 /*
1711 * size accessed without rcu_dereference because hash table is
1712 * being destroyed.
1713 */
1714 size = ht->size;
1715 /* Internal sanity check: all nodes left should be buckets */
1716 for (i = 0; i < size; i++) {
1717 node = bucket_at(ht, i);
1718 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1719 i, i, bit_reverse_ulong(node->reverse_hash));
1720 assert(is_bucket(node->next));
1721 }
1722
1723 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1724 cds_lfht_free_bucket_table(ht, order);
1725
1726 return 0;
1727 }
1728
1729 /*
1730 * Should only be called when no more concurrent readers nor writers can
1731 * possibly access the table.
1732 */
1733 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1734 {
1735 int ret;
1736
1737 /* Wait for in-flight resize operations to complete */
1738 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1739 cmm_smp_mb(); /* Store destroy before load resize */
1740 while (uatomic_read(&ht->in_progress_resize))
1741 poll(NULL, 0, 100); /* wait for 100ms */
1742 ret = cds_lfht_delete_bucket(ht);
1743 if (ret)
1744 return ret;
1745 free_split_items_count(ht);
1746 if (attr)
1747 *attr = ht->resize_attr;
1748 poison_free(ht);
1749 return ret;
1750 }
1751
1752 void cds_lfht_count_nodes(struct cds_lfht *ht,
1753 long *approx_before,
1754 unsigned long *count,
1755 long *approx_after)
1756 {
1757 struct cds_lfht_node *node, *next;
1758 unsigned long nr_bucket = 0, nr_removed = 0;
1759
1760 *approx_before = 0;
1761 if (ht->split_count) {
1762 int i;
1763
1764 for (i = 0; i < split_count_mask + 1; i++) {
1765 *approx_before += uatomic_read(&ht->split_count[i].add);
1766 *approx_before -= uatomic_read(&ht->split_count[i].del);
1767 }
1768 }
1769
1770 *count = 0;
1771
1772 /* Count non-bucket nodes in the table */
1773 node = bucket_at(ht, 0);
1774 do {
1775 next = rcu_dereference(node->next);
1776 if (is_removed(next)) {
1777 if (!is_bucket(next))
1778 (nr_removed)++;
1779 else
1780 (nr_bucket)++;
1781 } else if (!is_bucket(next))
1782 (*count)++;
1783 else
1784 (nr_bucket)++;
1785 node = clear_flag(next);
1786 } while (!is_end(node));
1787 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1788 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1789 *approx_after = 0;
1790 if (ht->split_count) {
1791 int i;
1792
1793 for (i = 0; i < split_count_mask + 1; i++) {
1794 *approx_after += uatomic_read(&ht->split_count[i].add);
1795 *approx_after -= uatomic_read(&ht->split_count[i].del);
1796 }
1797 }
1798 }
1799
1800 /* called with resize mutex held */
1801 static
1802 void _do_cds_lfht_grow(struct cds_lfht *ht,
1803 unsigned long old_size, unsigned long new_size)
1804 {
1805 unsigned long old_order, new_order;
1806
1807 old_order = cds_lfht_get_count_order_ulong(old_size);
1808 new_order = cds_lfht_get_count_order_ulong(new_size);
1809 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1810 old_size, old_order, new_size, new_order);
1811 assert(new_size > old_size);
1812 init_table(ht, old_order + 1, new_order);
1813 }
1814
1815 /* called with resize mutex held */
1816 static
1817 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1818 unsigned long old_size, unsigned long new_size)
1819 {
1820 unsigned long old_order, new_order;
1821
1822 new_size = max(new_size, MIN_TABLE_SIZE);
1823 old_order = cds_lfht_get_count_order_ulong(old_size);
1824 new_order = cds_lfht_get_count_order_ulong(new_size);
1825 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1826 old_size, old_order, new_size, new_order);
1827 assert(new_size < old_size);
1828
1829 /* Remove and unlink all bucket nodes to remove. */
1830 fini_table(ht, new_order + 1, old_order);
1831 }
1832
1833
1834 /* called with resize mutex held */
1835 static
1836 void _do_cds_lfht_resize(struct cds_lfht *ht)
1837 {
1838 unsigned long new_size, old_size;
1839
1840 /*
1841 * Resize table, re-do if the target size has changed under us.
1842 */
1843 do {
1844 assert(uatomic_read(&ht->in_progress_resize));
1845 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1846 break;
1847 ht->resize_initiated = 1;
1848 old_size = ht->size;
1849 new_size = CMM_LOAD_SHARED(ht->resize_target);
1850 if (old_size < new_size)
1851 _do_cds_lfht_grow(ht, old_size, new_size);
1852 else if (old_size > new_size)
1853 _do_cds_lfht_shrink(ht, old_size, new_size);
1854 ht->resize_initiated = 0;
1855 /* write resize_initiated before read resize_target */
1856 cmm_smp_mb();
1857 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1858 }
1859
1860 static
1861 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1862 {
1863 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1864 }
1865
1866 static
1867 void resize_target_update_count(struct cds_lfht *ht,
1868 unsigned long count)
1869 {
1870 count = max(count, MIN_TABLE_SIZE);
1871 count = min(count, ht->max_nr_buckets);
1872 uatomic_set(&ht->resize_target, count);
1873 }
1874
1875 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1876 {
1877 resize_target_update_count(ht, new_size);
1878 CMM_STORE_SHARED(ht->resize_initiated, 1);
1879 ht->flavor->thread_offline();
1880 pthread_mutex_lock(&ht->resize_mutex);
1881 _do_cds_lfht_resize(ht);
1882 pthread_mutex_unlock(&ht->resize_mutex);
1883 ht->flavor->thread_online();
1884 }
1885
1886 static
1887 void do_resize_cb(struct rcu_head *head)
1888 {
1889 struct rcu_resize_work *work =
1890 caa_container_of(head, struct rcu_resize_work, head);
1891 struct cds_lfht *ht = work->ht;
1892
1893 ht->flavor->thread_offline();
1894 pthread_mutex_lock(&ht->resize_mutex);
1895 _do_cds_lfht_resize(ht);
1896 pthread_mutex_unlock(&ht->resize_mutex);
1897 ht->flavor->thread_online();
1898 poison_free(work);
1899 cmm_smp_mb(); /* finish resize before decrement */
1900 uatomic_dec(&ht->in_progress_resize);
1901 }
1902
1903 static
1904 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1905 {
1906 struct rcu_resize_work *work;
1907
1908 /* Store resize_target before read resize_initiated */
1909 cmm_smp_mb();
1910 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1911 uatomic_inc(&ht->in_progress_resize);
1912 cmm_smp_mb(); /* increment resize count before load destroy */
1913 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1914 uatomic_dec(&ht->in_progress_resize);
1915 return;
1916 }
1917 work = malloc(sizeof(*work));
1918 if (work == NULL) {
1919 dbg_printf("error allocating resize work, bailing out\n");
1920 uatomic_dec(&ht->in_progress_resize);
1921 return;
1922 }
1923 work->ht = ht;
1924 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1925 CMM_STORE_SHARED(ht->resize_initiated, 1);
1926 }
1927 }
1928
1929 static
1930 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1931 {
1932 unsigned long target_size = size << growth;
1933
1934 target_size = min(target_size, ht->max_nr_buckets);
1935 if (resize_target_grow(ht, target_size) >= target_size)
1936 return;
1937
1938 __cds_lfht_resize_lazy_launch(ht);
1939 }
1940
1941 /*
1942 * We favor grow operations over shrink. A shrink operation never occurs
1943 * if a grow operation is queued for lazy execution. A grow operation
1944 * cancels any pending shrink lazy execution.
1945 */
1946 static
1947 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1948 unsigned long count)
1949 {
1950 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1951 return;
1952 count = max(count, MIN_TABLE_SIZE);
1953 count = min(count, ht->max_nr_buckets);
1954 if (count == size)
1955 return; /* Already the right size, no resize needed */
1956 if (count > size) { /* lazy grow */
1957 if (resize_target_grow(ht, count) >= count)
1958 return;
1959 } else { /* lazy shrink */
1960 for (;;) {
1961 unsigned long s;
1962
1963 s = uatomic_cmpxchg(&ht->resize_target, size, count);
1964 if (s == size)
1965 break; /* no resize needed */
1966 if (s > size)
1967 return; /* growing is/(was just) in progress */
1968 if (s <= count)
1969 return; /* some other thread do shrink */
1970 size = s;
1971 }
1972 }
1973 __cds_lfht_resize_lazy_launch(ht);
1974 }
This page took 0.122733 seconds and 3 git commands to generate.