Clean-up: consumer: prepend `the_` to global variable
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Copyright (C) 2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
5 *
6 * SPDX-License-Identifier: GPL-2.0-only
7 *
8 */
9
10 #include "common/index/ctf-index.h"
11 #define _LGPL_SOURCE
12 #include <assert.h>
13 #include <poll.h>
14 #include <pthread.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <sys/mman.h>
18 #include <sys/socket.h>
19 #include <sys/types.h>
20 #include <unistd.h>
21 #include <inttypes.h>
22 #include <signal.h>
23
24 #include <bin/lttng-consumerd/health-consumerd.h>
25 #include <common/common.h>
26 #include <common/utils.h>
27 #include <common/time.h>
28 #include <common/compat/poll.h>
29 #include <common/compat/endian.h>
30 #include <common/index/index.h>
31 #include <common/kernel-ctl/kernel-ctl.h>
32 #include <common/sessiond-comm/relayd.h>
33 #include <common/sessiond-comm/sessiond-comm.h>
34 #include <common/kernel-consumer/kernel-consumer.h>
35 #include <common/relayd/relayd.h>
36 #include <common/ust-consumer/ust-consumer.h>
37 #include <common/consumer/consumer-timer.h>
38 #include <common/consumer/consumer.h>
39 #include <common/consumer/consumer-stream.h>
40 #include <common/consumer/consumer-testpoint.h>
41 #include <common/align.h>
42 #include <common/consumer/consumer-metadata-cache.h>
43 #include <common/trace-chunk.h>
44 #include <common/trace-chunk-registry.h>
45 #include <common/string-utils/format.h>
46 #include <common/dynamic-array.h>
47
48 struct lttng_consumer_global_data the_consumer_data = {
49 .stream_count = 0,
50 .need_update = 1,
51 .type = LTTNG_CONSUMER_UNKNOWN,
52 };
53
54 enum consumer_channel_action {
55 CONSUMER_CHANNEL_ADD,
56 CONSUMER_CHANNEL_DEL,
57 CONSUMER_CHANNEL_QUIT,
58 };
59
60 struct consumer_channel_msg {
61 enum consumer_channel_action action;
62 struct lttng_consumer_channel *chan; /* add */
63 uint64_t key; /* del */
64 };
65
66 /* Flag used to temporarily pause data consumption from testpoints. */
67 int data_consumption_paused;
68
69 /*
70 * Flag to inform the polling thread to quit when all fd hung up. Updated by
71 * the consumer_thread_receive_fds when it notices that all fds has hung up.
72 * Also updated by the signal handler (consumer_should_exit()). Read by the
73 * polling threads.
74 */
75 int consumer_quit;
76
77 /*
78 * Global hash table containing respectively metadata and data streams. The
79 * stream element in this ht should only be updated by the metadata poll thread
80 * for the metadata and the data poll thread for the data.
81 */
82 static struct lttng_ht *metadata_ht;
83 static struct lttng_ht *data_ht;
84
85 static const char *get_consumer_domain(void)
86 {
87 switch (the_consumer_data.type) {
88 case LTTNG_CONSUMER_KERNEL:
89 return DEFAULT_KERNEL_TRACE_DIR;
90 case LTTNG_CONSUMER64_UST:
91 /* Fall-through. */
92 case LTTNG_CONSUMER32_UST:
93 return DEFAULT_UST_TRACE_DIR;
94 default:
95 abort();
96 }
97 }
98
99 /*
100 * Notify a thread lttng pipe to poll back again. This usually means that some
101 * global state has changed so we just send back the thread in a poll wait
102 * call.
103 */
104 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
105 {
106 struct lttng_consumer_stream *null_stream = NULL;
107
108 assert(pipe);
109
110 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
111 }
112
113 static void notify_health_quit_pipe(int *pipe)
114 {
115 ssize_t ret;
116
117 ret = lttng_write(pipe[1], "4", 1);
118 if (ret < 1) {
119 PERROR("write consumer health quit");
120 }
121 }
122
123 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
124 struct lttng_consumer_channel *chan,
125 uint64_t key,
126 enum consumer_channel_action action)
127 {
128 struct consumer_channel_msg msg;
129 ssize_t ret;
130
131 memset(&msg, 0, sizeof(msg));
132
133 msg.action = action;
134 msg.chan = chan;
135 msg.key = key;
136 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
137 if (ret < sizeof(msg)) {
138 PERROR("notify_channel_pipe write error");
139 }
140 }
141
142 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
143 uint64_t key)
144 {
145 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
146 }
147
148 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
149 struct lttng_consumer_channel **chan,
150 uint64_t *key,
151 enum consumer_channel_action *action)
152 {
153 struct consumer_channel_msg msg;
154 ssize_t ret;
155
156 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
157 if (ret < sizeof(msg)) {
158 ret = -1;
159 goto error;
160 }
161 *action = msg.action;
162 *chan = msg.chan;
163 *key = msg.key;
164 error:
165 return (int) ret;
166 }
167
168 /*
169 * Cleanup the stream list of a channel. Those streams are not yet globally
170 * visible
171 */
172 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
173 {
174 struct lttng_consumer_stream *stream, *stmp;
175
176 assert(channel);
177
178 /* Delete streams that might have been left in the stream list. */
179 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
180 send_node) {
181 cds_list_del(&stream->send_node);
182 /*
183 * Once a stream is added to this list, the buffers were created so we
184 * have a guarantee that this call will succeed. Setting the monitor
185 * mode to 0 so we don't lock nor try to delete the stream from the
186 * global hash table.
187 */
188 stream->monitor = 0;
189 consumer_stream_destroy(stream, NULL);
190 }
191 }
192
193 /*
194 * Find a stream. The consumer_data.lock must be locked during this
195 * call.
196 */
197 static struct lttng_consumer_stream *find_stream(uint64_t key,
198 struct lttng_ht *ht)
199 {
200 struct lttng_ht_iter iter;
201 struct lttng_ht_node_u64 *node;
202 struct lttng_consumer_stream *stream = NULL;
203
204 assert(ht);
205
206 /* -1ULL keys are lookup failures */
207 if (key == (uint64_t) -1ULL) {
208 return NULL;
209 }
210
211 rcu_read_lock();
212
213 lttng_ht_lookup(ht, &key, &iter);
214 node = lttng_ht_iter_get_node_u64(&iter);
215 if (node != NULL) {
216 stream = caa_container_of(node, struct lttng_consumer_stream, node);
217 }
218
219 rcu_read_unlock();
220
221 return stream;
222 }
223
224 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
225 {
226 struct lttng_consumer_stream *stream;
227
228 rcu_read_lock();
229 stream = find_stream(key, ht);
230 if (stream) {
231 stream->key = (uint64_t) -1ULL;
232 /*
233 * We don't want the lookup to match, but we still need
234 * to iterate on this stream when iterating over the hash table. Just
235 * change the node key.
236 */
237 stream->node.key = (uint64_t) -1ULL;
238 }
239 rcu_read_unlock();
240 }
241
242 /*
243 * Return a channel object for the given key.
244 *
245 * RCU read side lock MUST be acquired before calling this function and
246 * protects the channel ptr.
247 */
248 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
249 {
250 struct lttng_ht_iter iter;
251 struct lttng_ht_node_u64 *node;
252 struct lttng_consumer_channel *channel = NULL;
253
254 /* -1ULL keys are lookup failures */
255 if (key == (uint64_t) -1ULL) {
256 return NULL;
257 }
258
259 lttng_ht_lookup(the_consumer_data.channel_ht, &key, &iter);
260 node = lttng_ht_iter_get_node_u64(&iter);
261 if (node != NULL) {
262 channel = caa_container_of(node, struct lttng_consumer_channel, node);
263 }
264
265 return channel;
266 }
267
268 /*
269 * There is a possibility that the consumer does not have enough time between
270 * the close of the channel on the session daemon and the cleanup in here thus
271 * once we have a channel add with an existing key, we know for sure that this
272 * channel will eventually get cleaned up by all streams being closed.
273 *
274 * This function just nullifies the already existing channel key.
275 */
276 static void steal_channel_key(uint64_t key)
277 {
278 struct lttng_consumer_channel *channel;
279
280 rcu_read_lock();
281 channel = consumer_find_channel(key);
282 if (channel) {
283 channel->key = (uint64_t) -1ULL;
284 /*
285 * We don't want the lookup to match, but we still need to iterate on
286 * this channel when iterating over the hash table. Just change the
287 * node key.
288 */
289 channel->node.key = (uint64_t) -1ULL;
290 }
291 rcu_read_unlock();
292 }
293
294 static void free_channel_rcu(struct rcu_head *head)
295 {
296 struct lttng_ht_node_u64 *node =
297 caa_container_of(head, struct lttng_ht_node_u64, head);
298 struct lttng_consumer_channel *channel =
299 caa_container_of(node, struct lttng_consumer_channel, node);
300
301 switch (the_consumer_data.type) {
302 case LTTNG_CONSUMER_KERNEL:
303 break;
304 case LTTNG_CONSUMER32_UST:
305 case LTTNG_CONSUMER64_UST:
306 lttng_ustconsumer_free_channel(channel);
307 break;
308 default:
309 ERR("Unknown consumer_data type");
310 abort();
311 }
312 free(channel);
313 }
314
315 /*
316 * RCU protected relayd socket pair free.
317 */
318 static void free_relayd_rcu(struct rcu_head *head)
319 {
320 struct lttng_ht_node_u64 *node =
321 caa_container_of(head, struct lttng_ht_node_u64, head);
322 struct consumer_relayd_sock_pair *relayd =
323 caa_container_of(node, struct consumer_relayd_sock_pair, node);
324
325 /*
326 * Close all sockets. This is done in the call RCU since we don't want the
327 * socket fds to be reassigned thus potentially creating bad state of the
328 * relayd object.
329 *
330 * We do not have to lock the control socket mutex here since at this stage
331 * there is no one referencing to this relayd object.
332 */
333 (void) relayd_close(&relayd->control_sock);
334 (void) relayd_close(&relayd->data_sock);
335
336 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
337 free(relayd);
338 }
339
340 /*
341 * Destroy and free relayd socket pair object.
342 */
343 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
344 {
345 int ret;
346 struct lttng_ht_iter iter;
347
348 if (relayd == NULL) {
349 return;
350 }
351
352 DBG("Consumer destroy and close relayd socket pair");
353
354 iter.iter.node = &relayd->node.node;
355 ret = lttng_ht_del(the_consumer_data.relayd_ht, &iter);
356 if (ret != 0) {
357 /* We assume the relayd is being or is destroyed */
358 return;
359 }
360
361 /* RCU free() call */
362 call_rcu(&relayd->node.head, free_relayd_rcu);
363 }
364
365 /*
366 * Remove a channel from the global list protected by a mutex. This function is
367 * also responsible for freeing its data structures.
368 */
369 void consumer_del_channel(struct lttng_consumer_channel *channel)
370 {
371 struct lttng_ht_iter iter;
372
373 DBG("Consumer delete channel key %" PRIu64, channel->key);
374
375 pthread_mutex_lock(&the_consumer_data.lock);
376 pthread_mutex_lock(&channel->lock);
377
378 /* Destroy streams that might have been left in the stream list. */
379 clean_channel_stream_list(channel);
380
381 if (channel->live_timer_enabled == 1) {
382 consumer_timer_live_stop(channel);
383 }
384 if (channel->monitor_timer_enabled == 1) {
385 consumer_timer_monitor_stop(channel);
386 }
387
388 switch (the_consumer_data.type) {
389 case LTTNG_CONSUMER_KERNEL:
390 break;
391 case LTTNG_CONSUMER32_UST:
392 case LTTNG_CONSUMER64_UST:
393 lttng_ustconsumer_del_channel(channel);
394 break;
395 default:
396 ERR("Unknown consumer_data type");
397 assert(0);
398 goto end;
399 }
400
401 lttng_trace_chunk_put(channel->trace_chunk);
402 channel->trace_chunk = NULL;
403
404 if (channel->is_published) {
405 int ret;
406
407 rcu_read_lock();
408 iter.iter.node = &channel->node.node;
409 ret = lttng_ht_del(the_consumer_data.channel_ht, &iter);
410 assert(!ret);
411
412 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
413 ret = lttng_ht_del(the_consumer_data.channels_by_session_id_ht,
414 &iter);
415 assert(!ret);
416 rcu_read_unlock();
417 }
418
419 channel->is_deleted = true;
420 call_rcu(&channel->node.head, free_channel_rcu);
421 end:
422 pthread_mutex_unlock(&channel->lock);
423 pthread_mutex_unlock(&the_consumer_data.lock);
424 }
425
426 /*
427 * Iterate over the relayd hash table and destroy each element. Finally,
428 * destroy the whole hash table.
429 */
430 static void cleanup_relayd_ht(void)
431 {
432 struct lttng_ht_iter iter;
433 struct consumer_relayd_sock_pair *relayd;
434
435 rcu_read_lock();
436
437 cds_lfht_for_each_entry(the_consumer_data.relayd_ht->ht, &iter.iter,
438 relayd, node.node) {
439 consumer_destroy_relayd(relayd);
440 }
441
442 rcu_read_unlock();
443
444 lttng_ht_destroy(the_consumer_data.relayd_ht);
445 }
446
447 /*
448 * Update the end point status of all streams having the given network sequence
449 * index (relayd index).
450 *
451 * It's atomically set without having the stream mutex locked which is fine
452 * because we handle the write/read race with a pipe wakeup for each thread.
453 */
454 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
455 enum consumer_endpoint_status status)
456 {
457 struct lttng_ht_iter iter;
458 struct lttng_consumer_stream *stream;
459
460 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
461
462 rcu_read_lock();
463
464 /* Let's begin with metadata */
465 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
466 if (stream->net_seq_idx == net_seq_idx) {
467 uatomic_set(&stream->endpoint_status, status);
468 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
469 }
470 }
471
472 /* Follow up by the data streams */
473 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
474 if (stream->net_seq_idx == net_seq_idx) {
475 uatomic_set(&stream->endpoint_status, status);
476 DBG("Delete flag set to data stream %d", stream->wait_fd);
477 }
478 }
479 rcu_read_unlock();
480 }
481
482 /*
483 * Cleanup a relayd object by flagging every associated streams for deletion,
484 * destroying the object meaning removing it from the relayd hash table,
485 * closing the sockets and freeing the memory in a RCU call.
486 *
487 * If a local data context is available, notify the threads that the streams'
488 * state have changed.
489 */
490 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
491 {
492 uint64_t netidx;
493
494 assert(relayd);
495
496 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
497
498 /* Save the net sequence index before destroying the object */
499 netidx = relayd->net_seq_idx;
500
501 /*
502 * Delete the relayd from the relayd hash table, close the sockets and free
503 * the object in a RCU call.
504 */
505 consumer_destroy_relayd(relayd);
506
507 /* Set inactive endpoint to all streams */
508 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
509
510 /*
511 * With a local data context, notify the threads that the streams' state
512 * have changed. The write() action on the pipe acts as an "implicit"
513 * memory barrier ordering the updates of the end point status from the
514 * read of this status which happens AFTER receiving this notify.
515 */
516 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
517 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
518 }
519
520 /*
521 * Flag a relayd socket pair for destruction. Destroy it if the refcount
522 * reaches zero.
523 *
524 * RCU read side lock MUST be aquired before calling this function.
525 */
526 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
527 {
528 assert(relayd);
529
530 /* Set destroy flag for this object */
531 uatomic_set(&relayd->destroy_flag, 1);
532
533 /* Destroy the relayd if refcount is 0 */
534 if (uatomic_read(&relayd->refcount) == 0) {
535 consumer_destroy_relayd(relayd);
536 }
537 }
538
539 /*
540 * Completly destroy stream from every visiable data structure and the given
541 * hash table if one.
542 *
543 * One this call returns, the stream object is not longer usable nor visible.
544 */
545 void consumer_del_stream(struct lttng_consumer_stream *stream,
546 struct lttng_ht *ht)
547 {
548 consumer_stream_destroy(stream, ht);
549 }
550
551 /*
552 * XXX naming of del vs destroy is all mixed up.
553 */
554 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
555 {
556 consumer_stream_destroy(stream, data_ht);
557 }
558
559 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
560 {
561 consumer_stream_destroy(stream, metadata_ht);
562 }
563
564 void consumer_stream_update_channel_attributes(
565 struct lttng_consumer_stream *stream,
566 struct lttng_consumer_channel *channel)
567 {
568 stream->channel_read_only_attributes.tracefile_size =
569 channel->tracefile_size;
570 }
571
572 /*
573 * Add a stream to the global list protected by a mutex.
574 */
575 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
576 {
577 struct lttng_ht *ht = data_ht;
578
579 assert(stream);
580 assert(ht);
581
582 DBG3("Adding consumer stream %" PRIu64, stream->key);
583
584 pthread_mutex_lock(&the_consumer_data.lock);
585 pthread_mutex_lock(&stream->chan->lock);
586 pthread_mutex_lock(&stream->chan->timer_lock);
587 pthread_mutex_lock(&stream->lock);
588 rcu_read_lock();
589
590 /* Steal stream identifier to avoid having streams with the same key */
591 steal_stream_key(stream->key, ht);
592
593 lttng_ht_add_unique_u64(ht, &stream->node);
594
595 lttng_ht_add_u64(the_consumer_data.stream_per_chan_id_ht,
596 &stream->node_channel_id);
597
598 /*
599 * Add stream to the stream_list_ht of the consumer data. No need to steal
600 * the key since the HT does not use it and we allow to add redundant keys
601 * into this table.
602 */
603 lttng_ht_add_u64(the_consumer_data.stream_list_ht,
604 &stream->node_session_id);
605
606 /*
607 * When nb_init_stream_left reaches 0, we don't need to trigger any action
608 * in terms of destroying the associated channel, because the action that
609 * causes the count to become 0 also causes a stream to be added. The
610 * channel deletion will thus be triggered by the following removal of this
611 * stream.
612 */
613 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
614 /* Increment refcount before decrementing nb_init_stream_left */
615 cmm_smp_wmb();
616 uatomic_dec(&stream->chan->nb_init_stream_left);
617 }
618
619 /* Update consumer data once the node is inserted. */
620 the_consumer_data.stream_count++;
621 the_consumer_data.need_update = 1;
622
623 rcu_read_unlock();
624 pthread_mutex_unlock(&stream->lock);
625 pthread_mutex_unlock(&stream->chan->timer_lock);
626 pthread_mutex_unlock(&stream->chan->lock);
627 pthread_mutex_unlock(&the_consumer_data.lock);
628 }
629
630 /*
631 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
632 * be acquired before calling this.
633 */
634 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
635 {
636 int ret = 0;
637 struct lttng_ht_node_u64 *node;
638 struct lttng_ht_iter iter;
639
640 assert(relayd);
641
642 lttng_ht_lookup(the_consumer_data.relayd_ht, &relayd->net_seq_idx,
643 &iter);
644 node = lttng_ht_iter_get_node_u64(&iter);
645 if (node != NULL) {
646 goto end;
647 }
648 lttng_ht_add_unique_u64(the_consumer_data.relayd_ht, &relayd->node);
649
650 end:
651 return ret;
652 }
653
654 /*
655 * Allocate and return a consumer relayd socket.
656 */
657 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
658 uint64_t net_seq_idx)
659 {
660 struct consumer_relayd_sock_pair *obj = NULL;
661
662 /* net sequence index of -1 is a failure */
663 if (net_seq_idx == (uint64_t) -1ULL) {
664 goto error;
665 }
666
667 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
668 if (obj == NULL) {
669 PERROR("zmalloc relayd sock");
670 goto error;
671 }
672
673 obj->net_seq_idx = net_seq_idx;
674 obj->refcount = 0;
675 obj->destroy_flag = 0;
676 obj->control_sock.sock.fd = -1;
677 obj->data_sock.sock.fd = -1;
678 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
679 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
680
681 error:
682 return obj;
683 }
684
685 /*
686 * Find a relayd socket pair in the global consumer data.
687 *
688 * Return the object if found else NULL.
689 * RCU read-side lock must be held across this call and while using the
690 * returned object.
691 */
692 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
693 {
694 struct lttng_ht_iter iter;
695 struct lttng_ht_node_u64 *node;
696 struct consumer_relayd_sock_pair *relayd = NULL;
697
698 /* Negative keys are lookup failures */
699 if (key == (uint64_t) -1ULL) {
700 goto error;
701 }
702
703 lttng_ht_lookup(the_consumer_data.relayd_ht, &key, &iter);
704 node = lttng_ht_iter_get_node_u64(&iter);
705 if (node != NULL) {
706 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
707 }
708
709 error:
710 return relayd;
711 }
712
713 /*
714 * Find a relayd and send the stream
715 *
716 * Returns 0 on success, < 0 on error
717 */
718 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
719 char *path)
720 {
721 int ret = 0;
722 struct consumer_relayd_sock_pair *relayd;
723
724 assert(stream);
725 assert(stream->net_seq_idx != -1ULL);
726 assert(path);
727
728 /* The stream is not metadata. Get relayd reference if exists. */
729 rcu_read_lock();
730 relayd = consumer_find_relayd(stream->net_seq_idx);
731 if (relayd != NULL) {
732 /* Add stream on the relayd */
733 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
734 ret = relayd_add_stream(&relayd->control_sock, stream->name,
735 get_consumer_domain(), path, &stream->relayd_stream_id,
736 stream->chan->tracefile_size,
737 stream->chan->tracefile_count,
738 stream->trace_chunk);
739 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
740 if (ret < 0) {
741 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
742 lttng_consumer_cleanup_relayd(relayd);
743 goto end;
744 }
745
746 uatomic_inc(&relayd->refcount);
747 stream->sent_to_relayd = 1;
748 } else {
749 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
750 stream->key, stream->net_seq_idx);
751 ret = -1;
752 goto end;
753 }
754
755 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
756 stream->name, stream->key, stream->net_seq_idx);
757
758 end:
759 rcu_read_unlock();
760 return ret;
761 }
762
763 /*
764 * Find a relayd and send the streams sent message
765 *
766 * Returns 0 on success, < 0 on error
767 */
768 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
769 {
770 int ret = 0;
771 struct consumer_relayd_sock_pair *relayd;
772
773 assert(net_seq_idx != -1ULL);
774
775 /* The stream is not metadata. Get relayd reference if exists. */
776 rcu_read_lock();
777 relayd = consumer_find_relayd(net_seq_idx);
778 if (relayd != NULL) {
779 /* Add stream on the relayd */
780 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
781 ret = relayd_streams_sent(&relayd->control_sock);
782 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
783 if (ret < 0) {
784 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
785 lttng_consumer_cleanup_relayd(relayd);
786 goto end;
787 }
788 } else {
789 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
790 net_seq_idx);
791 ret = -1;
792 goto end;
793 }
794
795 ret = 0;
796 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
797
798 end:
799 rcu_read_unlock();
800 return ret;
801 }
802
803 /*
804 * Find a relayd and close the stream
805 */
806 void close_relayd_stream(struct lttng_consumer_stream *stream)
807 {
808 struct consumer_relayd_sock_pair *relayd;
809
810 /* The stream is not metadata. Get relayd reference if exists. */
811 rcu_read_lock();
812 relayd = consumer_find_relayd(stream->net_seq_idx);
813 if (relayd) {
814 consumer_stream_relayd_close(stream, relayd);
815 }
816 rcu_read_unlock();
817 }
818
819 /*
820 * Handle stream for relayd transmission if the stream applies for network
821 * streaming where the net sequence index is set.
822 *
823 * Return destination file descriptor or negative value on error.
824 */
825 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
826 size_t data_size, unsigned long padding,
827 struct consumer_relayd_sock_pair *relayd)
828 {
829 int outfd = -1, ret;
830 struct lttcomm_relayd_data_hdr data_hdr;
831
832 /* Safety net */
833 assert(stream);
834 assert(relayd);
835
836 /* Reset data header */
837 memset(&data_hdr, 0, sizeof(data_hdr));
838
839 if (stream->metadata_flag) {
840 /* Caller MUST acquire the relayd control socket lock */
841 ret = relayd_send_metadata(&relayd->control_sock, data_size);
842 if (ret < 0) {
843 goto error;
844 }
845
846 /* Metadata are always sent on the control socket. */
847 outfd = relayd->control_sock.sock.fd;
848 } else {
849 /* Set header with stream information */
850 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
851 data_hdr.data_size = htobe32(data_size);
852 data_hdr.padding_size = htobe32(padding);
853
854 /*
855 * Note that net_seq_num below is assigned with the *current* value of
856 * next_net_seq_num and only after that the next_net_seq_num will be
857 * increment. This is why when issuing a command on the relayd using
858 * this next value, 1 should always be substracted in order to compare
859 * the last seen sequence number on the relayd side to the last sent.
860 */
861 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
862 /* Other fields are zeroed previously */
863
864 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
865 sizeof(data_hdr));
866 if (ret < 0) {
867 goto error;
868 }
869
870 ++stream->next_net_seq_num;
871
872 /* Set to go on data socket */
873 outfd = relayd->data_sock.sock.fd;
874 }
875
876 error:
877 return outfd;
878 }
879
880 /*
881 * Write a character on the metadata poll pipe to wake the metadata thread.
882 * Returns 0 on success, -1 on error.
883 */
884 int consumer_metadata_wakeup_pipe(const struct lttng_consumer_channel *channel)
885 {
886 int ret = 0;
887
888 DBG("Waking up metadata poll thread (writing to pipe): channel name = '%s'",
889 channel->name);
890 if (channel->monitor && channel->metadata_stream) {
891 const char dummy = 'c';
892 const ssize_t write_ret = lttng_write(
893 channel->metadata_stream->ust_metadata_poll_pipe[1],
894 &dummy, 1);
895
896 if (write_ret < 1) {
897 if (errno == EWOULDBLOCK) {
898 /*
899 * This is fine, the metadata poll thread
900 * is having a hard time keeping-up, but
901 * it will eventually wake-up and consume
902 * the available data.
903 */
904 ret = 0;
905 } else {
906 PERROR("Failed to write to UST metadata pipe while attempting to wake-up the metadata poll thread");
907 ret = -1;
908 goto end;
909 }
910 }
911 }
912
913 end:
914 return ret;
915 }
916
917 /*
918 * Trigger a dump of the metadata content. Following/during the succesful
919 * completion of this call, the metadata poll thread will start receiving
920 * metadata packets to consume.
921 *
922 * The caller must hold the channel and stream locks.
923 */
924 static
925 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
926 {
927 int ret;
928
929 ASSERT_LOCKED(stream->chan->lock);
930 ASSERT_LOCKED(stream->lock);
931 assert(stream->metadata_flag);
932 assert(stream->chan->trace_chunk);
933
934 switch (the_consumer_data.type) {
935 case LTTNG_CONSUMER_KERNEL:
936 /*
937 * Reset the position of what has been read from the
938 * metadata cache to 0 so we can dump it again.
939 */
940 ret = kernctl_metadata_cache_dump(stream->wait_fd);
941 break;
942 case LTTNG_CONSUMER32_UST:
943 case LTTNG_CONSUMER64_UST:
944 /*
945 * Reset the position pushed from the metadata cache so it
946 * will write from the beginning on the next push.
947 */
948 stream->ust_metadata_pushed = 0;
949 ret = consumer_metadata_wakeup_pipe(stream->chan);
950 break;
951 default:
952 ERR("Unknown consumer_data type");
953 abort();
954 }
955 if (ret < 0) {
956 ERR("Failed to dump the metadata cache");
957 }
958 return ret;
959 }
960
961 static
962 int lttng_consumer_channel_set_trace_chunk(
963 struct lttng_consumer_channel *channel,
964 struct lttng_trace_chunk *new_trace_chunk)
965 {
966 pthread_mutex_lock(&channel->lock);
967 if (channel->is_deleted) {
968 /*
969 * The channel has been logically deleted and should no longer
970 * be used. It has released its reference to its current trace
971 * chunk and should not acquire a new one.
972 *
973 * Return success as there is nothing for the caller to do.
974 */
975 goto end;
976 }
977
978 /*
979 * The acquisition of the reference cannot fail (barring
980 * a severe internal error) since a reference to the published
981 * chunk is already held by the caller.
982 */
983 if (new_trace_chunk) {
984 const bool acquired_reference = lttng_trace_chunk_get(
985 new_trace_chunk);
986
987 assert(acquired_reference);
988 }
989
990 lttng_trace_chunk_put(channel->trace_chunk);
991 channel->trace_chunk = new_trace_chunk;
992 end:
993 pthread_mutex_unlock(&channel->lock);
994 return 0;
995 }
996
997 /*
998 * Allocate and return a new lttng_consumer_channel object using the given key
999 * to initialize the hash table node.
1000 *
1001 * On error, return NULL.
1002 */
1003 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1004 uint64_t session_id,
1005 const uint64_t *chunk_id,
1006 const char *pathname,
1007 const char *name,
1008 uint64_t relayd_id,
1009 enum lttng_event_output output,
1010 uint64_t tracefile_size,
1011 uint64_t tracefile_count,
1012 uint64_t session_id_per_pid,
1013 unsigned int monitor,
1014 unsigned int live_timer_interval,
1015 bool is_in_live_session,
1016 const char *root_shm_path,
1017 const char *shm_path)
1018 {
1019 struct lttng_consumer_channel *channel = NULL;
1020 struct lttng_trace_chunk *trace_chunk = NULL;
1021
1022 if (chunk_id) {
1023 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1024 the_consumer_data.chunk_registry, session_id,
1025 *chunk_id);
1026 if (!trace_chunk) {
1027 ERR("Failed to find trace chunk reference during creation of channel");
1028 goto end;
1029 }
1030 }
1031
1032 channel = zmalloc(sizeof(*channel));
1033 if (channel == NULL) {
1034 PERROR("malloc struct lttng_consumer_channel");
1035 goto end;
1036 }
1037
1038 channel->key = key;
1039 channel->refcount = 0;
1040 channel->session_id = session_id;
1041 channel->session_id_per_pid = session_id_per_pid;
1042 channel->relayd_id = relayd_id;
1043 channel->tracefile_size = tracefile_size;
1044 channel->tracefile_count = tracefile_count;
1045 channel->monitor = monitor;
1046 channel->live_timer_interval = live_timer_interval;
1047 channel->is_live = is_in_live_session;
1048 pthread_mutex_init(&channel->lock, NULL);
1049 pthread_mutex_init(&channel->timer_lock, NULL);
1050
1051 switch (output) {
1052 case LTTNG_EVENT_SPLICE:
1053 channel->output = CONSUMER_CHANNEL_SPLICE;
1054 break;
1055 case LTTNG_EVENT_MMAP:
1056 channel->output = CONSUMER_CHANNEL_MMAP;
1057 break;
1058 default:
1059 assert(0);
1060 free(channel);
1061 channel = NULL;
1062 goto end;
1063 }
1064
1065 /*
1066 * In monitor mode, the streams associated with the channel will be put in
1067 * a special list ONLY owned by this channel. So, the refcount is set to 1
1068 * here meaning that the channel itself has streams that are referenced.
1069 *
1070 * On a channel deletion, once the channel is no longer visible, the
1071 * refcount is decremented and checked for a zero value to delete it. With
1072 * streams in no monitor mode, it will now be safe to destroy the channel.
1073 */
1074 if (!channel->monitor) {
1075 channel->refcount = 1;
1076 }
1077
1078 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1079 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1080
1081 strncpy(channel->name, name, sizeof(channel->name));
1082 channel->name[sizeof(channel->name) - 1] = '\0';
1083
1084 if (root_shm_path) {
1085 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1086 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1087 }
1088 if (shm_path) {
1089 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1090 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1091 }
1092
1093 lttng_ht_node_init_u64(&channel->node, channel->key);
1094 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1095 channel->session_id);
1096
1097 channel->wait_fd = -1;
1098 CDS_INIT_LIST_HEAD(&channel->streams.head);
1099
1100 if (trace_chunk) {
1101 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1102 trace_chunk);
1103 if (ret) {
1104 goto error;
1105 }
1106 }
1107
1108 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1109
1110 end:
1111 lttng_trace_chunk_put(trace_chunk);
1112 return channel;
1113 error:
1114 consumer_del_channel(channel);
1115 channel = NULL;
1116 goto end;
1117 }
1118
1119 /*
1120 * Add a channel to the global list protected by a mutex.
1121 *
1122 * Always return 0 indicating success.
1123 */
1124 int consumer_add_channel(struct lttng_consumer_channel *channel,
1125 struct lttng_consumer_local_data *ctx)
1126 {
1127 pthread_mutex_lock(&the_consumer_data.lock);
1128 pthread_mutex_lock(&channel->lock);
1129 pthread_mutex_lock(&channel->timer_lock);
1130
1131 /*
1132 * This gives us a guarantee that the channel we are about to add to the
1133 * channel hash table will be unique. See this function comment on the why
1134 * we need to steel the channel key at this stage.
1135 */
1136 steal_channel_key(channel->key);
1137
1138 rcu_read_lock();
1139 lttng_ht_add_unique_u64(the_consumer_data.channel_ht, &channel->node);
1140 lttng_ht_add_u64(the_consumer_data.channels_by_session_id_ht,
1141 &channel->channels_by_session_id_ht_node);
1142 rcu_read_unlock();
1143 channel->is_published = true;
1144
1145 pthread_mutex_unlock(&channel->timer_lock);
1146 pthread_mutex_unlock(&channel->lock);
1147 pthread_mutex_unlock(&the_consumer_data.lock);
1148
1149 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1150 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Allocate the pollfd structure and the local view of the out fds to avoid
1158 * doing a lookup in the linked list and concurrency issues when writing is
1159 * needed. Called with consumer_data.lock held.
1160 *
1161 * Returns the number of fds in the structures.
1162 */
1163 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1164 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1165 struct lttng_ht *ht, int *nb_inactive_fd)
1166 {
1167 int i = 0;
1168 struct lttng_ht_iter iter;
1169 struct lttng_consumer_stream *stream;
1170
1171 assert(ctx);
1172 assert(ht);
1173 assert(pollfd);
1174 assert(local_stream);
1175
1176 DBG("Updating poll fd array");
1177 *nb_inactive_fd = 0;
1178 rcu_read_lock();
1179 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1180 /*
1181 * Only active streams with an active end point can be added to the
1182 * poll set and local stream storage of the thread.
1183 *
1184 * There is a potential race here for endpoint_status to be updated
1185 * just after the check. However, this is OK since the stream(s) will
1186 * be deleted once the thread is notified that the end point state has
1187 * changed where this function will be called back again.
1188 *
1189 * We track the number of inactive FDs because they still need to be
1190 * closed by the polling thread after a wakeup on the data_pipe or
1191 * metadata_pipe.
1192 */
1193 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1194 (*nb_inactive_fd)++;
1195 continue;
1196 }
1197 /*
1198 * This clobbers way too much the debug output. Uncomment that if you
1199 * need it for debugging purposes.
1200 */
1201 (*pollfd)[i].fd = stream->wait_fd;
1202 (*pollfd)[i].events = POLLIN | POLLPRI;
1203 local_stream[i] = stream;
1204 i++;
1205 }
1206 rcu_read_unlock();
1207
1208 /*
1209 * Insert the consumer_data_pipe at the end of the array and don't
1210 * increment i so nb_fd is the number of real FD.
1211 */
1212 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1213 (*pollfd)[i].events = POLLIN | POLLPRI;
1214
1215 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1216 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1217 return i;
1218 }
1219
1220 /*
1221 * Poll on the should_quit pipe and the command socket return -1 on
1222 * error, 1 if should exit, 0 if data is available on the command socket
1223 */
1224 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1225 {
1226 int num_rdy;
1227
1228 restart:
1229 num_rdy = poll(consumer_sockpoll, 2, -1);
1230 if (num_rdy == -1) {
1231 /*
1232 * Restart interrupted system call.
1233 */
1234 if (errno == EINTR) {
1235 goto restart;
1236 }
1237 PERROR("Poll error");
1238 return -1;
1239 }
1240 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1241 DBG("consumer_should_quit wake up");
1242 return 1;
1243 }
1244 return 0;
1245 }
1246
1247 /*
1248 * Set the error socket.
1249 */
1250 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1251 int sock)
1252 {
1253 ctx->consumer_error_socket = sock;
1254 }
1255
1256 /*
1257 * Set the command socket path.
1258 */
1259 void lttng_consumer_set_command_sock_path(
1260 struct lttng_consumer_local_data *ctx, char *sock)
1261 {
1262 ctx->consumer_command_sock_path = sock;
1263 }
1264
1265 /*
1266 * Send return code to the session daemon.
1267 * If the socket is not defined, we return 0, it is not a fatal error
1268 */
1269 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1270 {
1271 if (ctx->consumer_error_socket > 0) {
1272 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1273 sizeof(enum lttcomm_sessiond_command));
1274 }
1275
1276 return 0;
1277 }
1278
1279 /*
1280 * Close all the tracefiles and stream fds and MUST be called when all
1281 * instances are destroyed i.e. when all threads were joined and are ended.
1282 */
1283 void lttng_consumer_cleanup(void)
1284 {
1285 struct lttng_ht_iter iter;
1286 struct lttng_consumer_channel *channel;
1287 unsigned int trace_chunks_left;
1288
1289 rcu_read_lock();
1290
1291 cds_lfht_for_each_entry(the_consumer_data.channel_ht->ht, &iter.iter,
1292 channel, node.node) {
1293 consumer_del_channel(channel);
1294 }
1295
1296 rcu_read_unlock();
1297
1298 lttng_ht_destroy(the_consumer_data.channel_ht);
1299 lttng_ht_destroy(the_consumer_data.channels_by_session_id_ht);
1300
1301 cleanup_relayd_ht();
1302
1303 lttng_ht_destroy(the_consumer_data.stream_per_chan_id_ht);
1304
1305 /*
1306 * This HT contains streams that are freed by either the metadata thread or
1307 * the data thread so we do *nothing* on the hash table and simply destroy
1308 * it.
1309 */
1310 lttng_ht_destroy(the_consumer_data.stream_list_ht);
1311
1312 /*
1313 * Trace chunks in the registry may still exist if the session
1314 * daemon has encountered an internal error and could not
1315 * tear down its sessions and/or trace chunks properly.
1316 *
1317 * Release the session daemon's implicit reference to any remaining
1318 * trace chunk and print an error if any trace chunk was found. Note
1319 * that there are _no_ legitimate cases for trace chunks to be left,
1320 * it is a leak. However, it can happen following a crash of the
1321 * session daemon and not emptying the registry would cause an assertion
1322 * to hit.
1323 */
1324 trace_chunks_left = lttng_trace_chunk_registry_put_each_chunk(
1325 the_consumer_data.chunk_registry);
1326 if (trace_chunks_left) {
1327 ERR("%u trace chunks are leaked by lttng-consumerd. "
1328 "This can be caused by an internal error of the session daemon.",
1329 trace_chunks_left);
1330 }
1331 /* Run all callbacks freeing each chunk. */
1332 rcu_barrier();
1333 lttng_trace_chunk_registry_destroy(the_consumer_data.chunk_registry);
1334 }
1335
1336 /*
1337 * Called from signal handler.
1338 */
1339 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1340 {
1341 ssize_t ret;
1342
1343 CMM_STORE_SHARED(consumer_quit, 1);
1344 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1345 if (ret < 1) {
1346 PERROR("write consumer quit");
1347 }
1348
1349 DBG("Consumer flag that it should quit");
1350 }
1351
1352
1353 /*
1354 * Flush pending writes to trace output disk file.
1355 */
1356 static
1357 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1358 off_t orig_offset)
1359 {
1360 int ret;
1361 int outfd = stream->out_fd;
1362
1363 /*
1364 * This does a blocking write-and-wait on any page that belongs to the
1365 * subbuffer prior to the one we just wrote.
1366 * Don't care about error values, as these are just hints and ways to
1367 * limit the amount of page cache used.
1368 */
1369 if (orig_offset < stream->max_sb_size) {
1370 return;
1371 }
1372 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1373 stream->max_sb_size,
1374 SYNC_FILE_RANGE_WAIT_BEFORE
1375 | SYNC_FILE_RANGE_WRITE
1376 | SYNC_FILE_RANGE_WAIT_AFTER);
1377 /*
1378 * Give hints to the kernel about how we access the file:
1379 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1380 * we write it.
1381 *
1382 * We need to call fadvise again after the file grows because the
1383 * kernel does not seem to apply fadvise to non-existing parts of the
1384 * file.
1385 *
1386 * Call fadvise _after_ having waited for the page writeback to
1387 * complete because the dirty page writeback semantic is not well
1388 * defined. So it can be expected to lead to lower throughput in
1389 * streaming.
1390 */
1391 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1392 stream->max_sb_size, POSIX_FADV_DONTNEED);
1393 if (ret && ret != -ENOSYS) {
1394 errno = ret;
1395 PERROR("posix_fadvise on fd %i", outfd);
1396 }
1397 }
1398
1399 /*
1400 * Initialise the necessary environnement :
1401 * - create a new context
1402 * - create the poll_pipe
1403 * - create the should_quit pipe (for signal handler)
1404 * - create the thread pipe (for splice)
1405 *
1406 * Takes a function pointer as argument, this function is called when data is
1407 * available on a buffer. This function is responsible to do the
1408 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1409 * buffer configuration and then kernctl_put_next_subbuf at the end.
1410 *
1411 * Returns a pointer to the new context or NULL on error.
1412 */
1413 struct lttng_consumer_local_data *lttng_consumer_create(
1414 enum lttng_consumer_type type,
1415 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1416 struct lttng_consumer_local_data *ctx, bool locked_by_caller),
1417 int (*recv_channel)(struct lttng_consumer_channel *channel),
1418 int (*recv_stream)(struct lttng_consumer_stream *stream),
1419 int (*update_stream)(uint64_t stream_key, uint32_t state))
1420 {
1421 int ret;
1422 struct lttng_consumer_local_data *ctx;
1423
1424 assert(the_consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1425 the_consumer_data.type == type);
1426 the_consumer_data.type = type;
1427
1428 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1429 if (ctx == NULL) {
1430 PERROR("allocating context");
1431 goto error;
1432 }
1433
1434 ctx->consumer_error_socket = -1;
1435 ctx->consumer_metadata_socket = -1;
1436 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1437 /* assign the callbacks */
1438 ctx->on_buffer_ready = buffer_ready;
1439 ctx->on_recv_channel = recv_channel;
1440 ctx->on_recv_stream = recv_stream;
1441 ctx->on_update_stream = update_stream;
1442
1443 ctx->consumer_data_pipe = lttng_pipe_open(0);
1444 if (!ctx->consumer_data_pipe) {
1445 goto error_poll_pipe;
1446 }
1447
1448 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1449 if (!ctx->consumer_wakeup_pipe) {
1450 goto error_wakeup_pipe;
1451 }
1452
1453 ret = pipe(ctx->consumer_should_quit);
1454 if (ret < 0) {
1455 PERROR("Error creating recv pipe");
1456 goto error_quit_pipe;
1457 }
1458
1459 ret = pipe(ctx->consumer_channel_pipe);
1460 if (ret < 0) {
1461 PERROR("Error creating channel pipe");
1462 goto error_channel_pipe;
1463 }
1464
1465 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1466 if (!ctx->consumer_metadata_pipe) {
1467 goto error_metadata_pipe;
1468 }
1469
1470 ctx->channel_monitor_pipe = -1;
1471
1472 return ctx;
1473
1474 error_metadata_pipe:
1475 utils_close_pipe(ctx->consumer_channel_pipe);
1476 error_channel_pipe:
1477 utils_close_pipe(ctx->consumer_should_quit);
1478 error_quit_pipe:
1479 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1480 error_wakeup_pipe:
1481 lttng_pipe_destroy(ctx->consumer_data_pipe);
1482 error_poll_pipe:
1483 free(ctx);
1484 error:
1485 return NULL;
1486 }
1487
1488 /*
1489 * Iterate over all streams of the hashtable and free them properly.
1490 */
1491 static void destroy_data_stream_ht(struct lttng_ht *ht)
1492 {
1493 struct lttng_ht_iter iter;
1494 struct lttng_consumer_stream *stream;
1495
1496 if (ht == NULL) {
1497 return;
1498 }
1499
1500 rcu_read_lock();
1501 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1502 /*
1503 * Ignore return value since we are currently cleaning up so any error
1504 * can't be handled.
1505 */
1506 (void) consumer_del_stream(stream, ht);
1507 }
1508 rcu_read_unlock();
1509
1510 lttng_ht_destroy(ht);
1511 }
1512
1513 /*
1514 * Iterate over all streams of the metadata hashtable and free them
1515 * properly.
1516 */
1517 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1518 {
1519 struct lttng_ht_iter iter;
1520 struct lttng_consumer_stream *stream;
1521
1522 if (ht == NULL) {
1523 return;
1524 }
1525
1526 rcu_read_lock();
1527 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1528 /*
1529 * Ignore return value since we are currently cleaning up so any error
1530 * can't be handled.
1531 */
1532 (void) consumer_del_metadata_stream(stream, ht);
1533 }
1534 rcu_read_unlock();
1535
1536 lttng_ht_destroy(ht);
1537 }
1538
1539 /*
1540 * Close all fds associated with the instance and free the context.
1541 */
1542 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1543 {
1544 int ret;
1545
1546 DBG("Consumer destroying it. Closing everything.");
1547
1548 if (!ctx) {
1549 return;
1550 }
1551
1552 destroy_data_stream_ht(data_ht);
1553 destroy_metadata_stream_ht(metadata_ht);
1554
1555 ret = close(ctx->consumer_error_socket);
1556 if (ret) {
1557 PERROR("close");
1558 }
1559 ret = close(ctx->consumer_metadata_socket);
1560 if (ret) {
1561 PERROR("close");
1562 }
1563 utils_close_pipe(ctx->consumer_channel_pipe);
1564 lttng_pipe_destroy(ctx->consumer_data_pipe);
1565 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1566 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1567 utils_close_pipe(ctx->consumer_should_quit);
1568
1569 unlink(ctx->consumer_command_sock_path);
1570 free(ctx);
1571 }
1572
1573 /*
1574 * Write the metadata stream id on the specified file descriptor.
1575 */
1576 static int write_relayd_metadata_id(int fd,
1577 struct lttng_consumer_stream *stream,
1578 unsigned long padding)
1579 {
1580 ssize_t ret;
1581 struct lttcomm_relayd_metadata_payload hdr;
1582
1583 hdr.stream_id = htobe64(stream->relayd_stream_id);
1584 hdr.padding_size = htobe32(padding);
1585 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1586 if (ret < sizeof(hdr)) {
1587 /*
1588 * This error means that the fd's end is closed so ignore the PERROR
1589 * not to clubber the error output since this can happen in a normal
1590 * code path.
1591 */
1592 if (errno != EPIPE) {
1593 PERROR("write metadata stream id");
1594 }
1595 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1596 /*
1597 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1598 * handle writting the missing part so report that as an error and
1599 * don't lie to the caller.
1600 */
1601 ret = -1;
1602 goto end;
1603 }
1604 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1605 stream->relayd_stream_id, padding);
1606
1607 end:
1608 return (int) ret;
1609 }
1610
1611 /*
1612 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1613 * core function for writing trace buffers to either the local filesystem or
1614 * the network.
1615 *
1616 * It must be called with the stream and the channel lock held.
1617 *
1618 * Careful review MUST be put if any changes occur!
1619 *
1620 * Returns the number of bytes written
1621 */
1622 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1623 struct lttng_consumer_stream *stream,
1624 const struct lttng_buffer_view *buffer,
1625 unsigned long padding)
1626 {
1627 ssize_t ret = 0;
1628 off_t orig_offset = stream->out_fd_offset;
1629 /* Default is on the disk */
1630 int outfd = stream->out_fd;
1631 struct consumer_relayd_sock_pair *relayd = NULL;
1632 unsigned int relayd_hang_up = 0;
1633 const size_t subbuf_content_size = buffer->size - padding;
1634 size_t write_len;
1635
1636 /* RCU lock for the relayd pointer */
1637 rcu_read_lock();
1638 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1639 stream->trace_chunk);
1640
1641 /* Flag that the current stream if set for network streaming. */
1642 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1643 relayd = consumer_find_relayd(stream->net_seq_idx);
1644 if (relayd == NULL) {
1645 ret = -EPIPE;
1646 goto end;
1647 }
1648 }
1649
1650 /* Handle stream on the relayd if the output is on the network */
1651 if (relayd) {
1652 unsigned long netlen = subbuf_content_size;
1653
1654 /*
1655 * Lock the control socket for the complete duration of the function
1656 * since from this point on we will use the socket.
1657 */
1658 if (stream->metadata_flag) {
1659 /* Metadata requires the control socket. */
1660 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1661 if (stream->reset_metadata_flag) {
1662 ret = relayd_reset_metadata(&relayd->control_sock,
1663 stream->relayd_stream_id,
1664 stream->metadata_version);
1665 if (ret < 0) {
1666 relayd_hang_up = 1;
1667 goto write_error;
1668 }
1669 stream->reset_metadata_flag = 0;
1670 }
1671 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1672 }
1673
1674 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1675 if (ret < 0) {
1676 relayd_hang_up = 1;
1677 goto write_error;
1678 }
1679 /* Use the returned socket. */
1680 outfd = ret;
1681
1682 /* Write metadata stream id before payload */
1683 if (stream->metadata_flag) {
1684 ret = write_relayd_metadata_id(outfd, stream, padding);
1685 if (ret < 0) {
1686 relayd_hang_up = 1;
1687 goto write_error;
1688 }
1689 }
1690
1691 write_len = subbuf_content_size;
1692 } else {
1693 /* No streaming; we have to write the full padding. */
1694 if (stream->metadata_flag && stream->reset_metadata_flag) {
1695 ret = utils_truncate_stream_file(stream->out_fd, 0);
1696 if (ret < 0) {
1697 ERR("Reset metadata file");
1698 goto end;
1699 }
1700 stream->reset_metadata_flag = 0;
1701 }
1702
1703 /*
1704 * Check if we need to change the tracefile before writing the packet.
1705 */
1706 if (stream->chan->tracefile_size > 0 &&
1707 (stream->tracefile_size_current + buffer->size) >
1708 stream->chan->tracefile_size) {
1709 ret = consumer_stream_rotate_output_files(stream);
1710 if (ret) {
1711 goto end;
1712 }
1713 outfd = stream->out_fd;
1714 orig_offset = 0;
1715 }
1716 stream->tracefile_size_current += buffer->size;
1717 write_len = buffer->size;
1718 }
1719
1720 /*
1721 * This call guarantee that len or less is returned. It's impossible to
1722 * receive a ret value that is bigger than len.
1723 */
1724 ret = lttng_write(outfd, buffer->data, write_len);
1725 DBG("Consumer mmap write() ret %zd (len %zu)", ret, write_len);
1726 if (ret < 0 || ((size_t) ret != write_len)) {
1727 /*
1728 * Report error to caller if nothing was written else at least send the
1729 * amount written.
1730 */
1731 if (ret < 0) {
1732 ret = -errno;
1733 }
1734 relayd_hang_up = 1;
1735
1736 /* Socket operation failed. We consider the relayd dead */
1737 if (errno == EPIPE) {
1738 /*
1739 * This is possible if the fd is closed on the other side
1740 * (outfd) or any write problem. It can be verbose a bit for a
1741 * normal execution if for instance the relayd is stopped
1742 * abruptly. This can happen so set this to a DBG statement.
1743 */
1744 DBG("Consumer mmap write detected relayd hang up");
1745 } else {
1746 /* Unhandled error, print it and stop function right now. */
1747 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret,
1748 write_len);
1749 }
1750 goto write_error;
1751 }
1752 stream->output_written += ret;
1753
1754 /* This call is useless on a socket so better save a syscall. */
1755 if (!relayd) {
1756 /* This won't block, but will start writeout asynchronously */
1757 lttng_sync_file_range(outfd, stream->out_fd_offset, write_len,
1758 SYNC_FILE_RANGE_WRITE);
1759 stream->out_fd_offset += write_len;
1760 lttng_consumer_sync_trace_file(stream, orig_offset);
1761 }
1762
1763 write_error:
1764 /*
1765 * This is a special case that the relayd has closed its socket. Let's
1766 * cleanup the relayd object and all associated streams.
1767 */
1768 if (relayd && relayd_hang_up) {
1769 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1770 lttng_consumer_cleanup_relayd(relayd);
1771 }
1772
1773 end:
1774 /* Unlock only if ctrl socket used */
1775 if (relayd && stream->metadata_flag) {
1776 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1777 }
1778
1779 rcu_read_unlock();
1780 return ret;
1781 }
1782
1783 /*
1784 * Splice the data from the ring buffer to the tracefile.
1785 *
1786 * It must be called with the stream lock held.
1787 *
1788 * Returns the number of bytes spliced.
1789 */
1790 ssize_t lttng_consumer_on_read_subbuffer_splice(
1791 struct lttng_consumer_local_data *ctx,
1792 struct lttng_consumer_stream *stream, unsigned long len,
1793 unsigned long padding)
1794 {
1795 ssize_t ret = 0, written = 0, ret_splice = 0;
1796 loff_t offset = 0;
1797 off_t orig_offset = stream->out_fd_offset;
1798 int fd = stream->wait_fd;
1799 /* Default is on the disk */
1800 int outfd = stream->out_fd;
1801 struct consumer_relayd_sock_pair *relayd = NULL;
1802 int *splice_pipe;
1803 unsigned int relayd_hang_up = 0;
1804
1805 switch (the_consumer_data.type) {
1806 case LTTNG_CONSUMER_KERNEL:
1807 break;
1808 case LTTNG_CONSUMER32_UST:
1809 case LTTNG_CONSUMER64_UST:
1810 /* Not supported for user space tracing */
1811 return -ENOSYS;
1812 default:
1813 ERR("Unknown consumer_data type");
1814 assert(0);
1815 }
1816
1817 /* RCU lock for the relayd pointer */
1818 rcu_read_lock();
1819
1820 /* Flag that the current stream if set for network streaming. */
1821 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1822 relayd = consumer_find_relayd(stream->net_seq_idx);
1823 if (relayd == NULL) {
1824 written = -ret;
1825 goto end;
1826 }
1827 }
1828 splice_pipe = stream->splice_pipe;
1829
1830 /* Write metadata stream id before payload */
1831 if (relayd) {
1832 unsigned long total_len = len;
1833
1834 if (stream->metadata_flag) {
1835 /*
1836 * Lock the control socket for the complete duration of the function
1837 * since from this point on we will use the socket.
1838 */
1839 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1840
1841 if (stream->reset_metadata_flag) {
1842 ret = relayd_reset_metadata(&relayd->control_sock,
1843 stream->relayd_stream_id,
1844 stream->metadata_version);
1845 if (ret < 0) {
1846 relayd_hang_up = 1;
1847 goto write_error;
1848 }
1849 stream->reset_metadata_flag = 0;
1850 }
1851 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1852 padding);
1853 if (ret < 0) {
1854 written = ret;
1855 relayd_hang_up = 1;
1856 goto write_error;
1857 }
1858
1859 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1860 }
1861
1862 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1863 if (ret < 0) {
1864 written = ret;
1865 relayd_hang_up = 1;
1866 goto write_error;
1867 }
1868 /* Use the returned socket. */
1869 outfd = ret;
1870 } else {
1871 /* No streaming, we have to set the len with the full padding */
1872 len += padding;
1873
1874 if (stream->metadata_flag && stream->reset_metadata_flag) {
1875 ret = utils_truncate_stream_file(stream->out_fd, 0);
1876 if (ret < 0) {
1877 ERR("Reset metadata file");
1878 goto end;
1879 }
1880 stream->reset_metadata_flag = 0;
1881 }
1882 /*
1883 * Check if we need to change the tracefile before writing the packet.
1884 */
1885 if (stream->chan->tracefile_size > 0 &&
1886 (stream->tracefile_size_current + len) >
1887 stream->chan->tracefile_size) {
1888 ret = consumer_stream_rotate_output_files(stream);
1889 if (ret < 0) {
1890 written = ret;
1891 goto end;
1892 }
1893 outfd = stream->out_fd;
1894 orig_offset = 0;
1895 }
1896 stream->tracefile_size_current += len;
1897 }
1898
1899 while (len > 0) {
1900 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1901 (unsigned long)offset, len, fd, splice_pipe[1]);
1902 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1903 SPLICE_F_MOVE | SPLICE_F_MORE);
1904 DBG("splice chan to pipe, ret %zd", ret_splice);
1905 if (ret_splice < 0) {
1906 ret = errno;
1907 written = -ret;
1908 PERROR("Error in relay splice");
1909 goto splice_error;
1910 }
1911
1912 /* Handle stream on the relayd if the output is on the network */
1913 if (relayd && stream->metadata_flag) {
1914 size_t metadata_payload_size =
1915 sizeof(struct lttcomm_relayd_metadata_payload);
1916
1917 /* Update counter to fit the spliced data */
1918 ret_splice += metadata_payload_size;
1919 len += metadata_payload_size;
1920 /*
1921 * We do this so the return value can match the len passed as
1922 * argument to this function.
1923 */
1924 written -= metadata_payload_size;
1925 }
1926
1927 /* Splice data out */
1928 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1929 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1930 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1931 outfd, ret_splice);
1932 if (ret_splice < 0) {
1933 ret = errno;
1934 written = -ret;
1935 relayd_hang_up = 1;
1936 goto write_error;
1937 } else if (ret_splice > len) {
1938 /*
1939 * We don't expect this code path to be executed but you never know
1940 * so this is an extra protection agains a buggy splice().
1941 */
1942 ret = errno;
1943 written += ret_splice;
1944 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1945 len);
1946 goto splice_error;
1947 } else {
1948 /* All good, update current len and continue. */
1949 len -= ret_splice;
1950 }
1951
1952 /* This call is useless on a socket so better save a syscall. */
1953 if (!relayd) {
1954 /* This won't block, but will start writeout asynchronously */
1955 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1956 SYNC_FILE_RANGE_WRITE);
1957 stream->out_fd_offset += ret_splice;
1958 }
1959 stream->output_written += ret_splice;
1960 written += ret_splice;
1961 }
1962 if (!relayd) {
1963 lttng_consumer_sync_trace_file(stream, orig_offset);
1964 }
1965 goto end;
1966
1967 write_error:
1968 /*
1969 * This is a special case that the relayd has closed its socket. Let's
1970 * cleanup the relayd object and all associated streams.
1971 */
1972 if (relayd && relayd_hang_up) {
1973 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1974 lttng_consumer_cleanup_relayd(relayd);
1975 /* Skip splice error so the consumer does not fail */
1976 goto end;
1977 }
1978
1979 splice_error:
1980 /* send the appropriate error description to sessiond */
1981 switch (ret) {
1982 case EINVAL:
1983 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1984 break;
1985 case ENOMEM:
1986 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1987 break;
1988 case ESPIPE:
1989 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1990 break;
1991 }
1992
1993 end:
1994 if (relayd && stream->metadata_flag) {
1995 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1996 }
1997
1998 rcu_read_unlock();
1999 return written;
2000 }
2001
2002 /*
2003 * Sample the snapshot positions for a specific fd
2004 *
2005 * Returns 0 on success, < 0 on error
2006 */
2007 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2008 {
2009 switch (the_consumer_data.type) {
2010 case LTTNG_CONSUMER_KERNEL:
2011 return lttng_kconsumer_sample_snapshot_positions(stream);
2012 case LTTNG_CONSUMER32_UST:
2013 case LTTNG_CONSUMER64_UST:
2014 return lttng_ustconsumer_sample_snapshot_positions(stream);
2015 default:
2016 ERR("Unknown consumer_data type");
2017 assert(0);
2018 return -ENOSYS;
2019 }
2020 }
2021 /*
2022 * Take a snapshot for a specific fd
2023 *
2024 * Returns 0 on success, < 0 on error
2025 */
2026 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2027 {
2028 switch (the_consumer_data.type) {
2029 case LTTNG_CONSUMER_KERNEL:
2030 return lttng_kconsumer_take_snapshot(stream);
2031 case LTTNG_CONSUMER32_UST:
2032 case LTTNG_CONSUMER64_UST:
2033 return lttng_ustconsumer_take_snapshot(stream);
2034 default:
2035 ERR("Unknown consumer_data type");
2036 assert(0);
2037 return -ENOSYS;
2038 }
2039 }
2040
2041 /*
2042 * Get the produced position
2043 *
2044 * Returns 0 on success, < 0 on error
2045 */
2046 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2047 unsigned long *pos)
2048 {
2049 switch (the_consumer_data.type) {
2050 case LTTNG_CONSUMER_KERNEL:
2051 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2052 case LTTNG_CONSUMER32_UST:
2053 case LTTNG_CONSUMER64_UST:
2054 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2055 default:
2056 ERR("Unknown consumer_data type");
2057 assert(0);
2058 return -ENOSYS;
2059 }
2060 }
2061
2062 /*
2063 * Get the consumed position (free-running counter position in bytes).
2064 *
2065 * Returns 0 on success, < 0 on error
2066 */
2067 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2068 unsigned long *pos)
2069 {
2070 switch (the_consumer_data.type) {
2071 case LTTNG_CONSUMER_KERNEL:
2072 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2073 case LTTNG_CONSUMER32_UST:
2074 case LTTNG_CONSUMER64_UST:
2075 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2076 default:
2077 ERR("Unknown consumer_data type");
2078 assert(0);
2079 return -ENOSYS;
2080 }
2081 }
2082
2083 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2084 int sock, struct pollfd *consumer_sockpoll)
2085 {
2086 switch (the_consumer_data.type) {
2087 case LTTNG_CONSUMER_KERNEL:
2088 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2089 case LTTNG_CONSUMER32_UST:
2090 case LTTNG_CONSUMER64_UST:
2091 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2092 default:
2093 ERR("Unknown consumer_data type");
2094 assert(0);
2095 return -ENOSYS;
2096 }
2097 }
2098
2099 static
2100 void lttng_consumer_close_all_metadata(void)
2101 {
2102 switch (the_consumer_data.type) {
2103 case LTTNG_CONSUMER_KERNEL:
2104 /*
2105 * The Kernel consumer has a different metadata scheme so we don't
2106 * close anything because the stream will be closed by the session
2107 * daemon.
2108 */
2109 break;
2110 case LTTNG_CONSUMER32_UST:
2111 case LTTNG_CONSUMER64_UST:
2112 /*
2113 * Close all metadata streams. The metadata hash table is passed and
2114 * this call iterates over it by closing all wakeup fd. This is safe
2115 * because at this point we are sure that the metadata producer is
2116 * either dead or blocked.
2117 */
2118 lttng_ustconsumer_close_all_metadata(metadata_ht);
2119 break;
2120 default:
2121 ERR("Unknown consumer_data type");
2122 assert(0);
2123 }
2124 }
2125
2126 /*
2127 * Clean up a metadata stream and free its memory.
2128 */
2129 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2130 struct lttng_ht *ht)
2131 {
2132 struct lttng_consumer_channel *channel = NULL;
2133 bool free_channel = false;
2134
2135 assert(stream);
2136 /*
2137 * This call should NEVER receive regular stream. It must always be
2138 * metadata stream and this is crucial for data structure synchronization.
2139 */
2140 assert(stream->metadata_flag);
2141
2142 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2143
2144 pthread_mutex_lock(&the_consumer_data.lock);
2145 /*
2146 * Note that this assumes that a stream's channel is never changed and
2147 * that the stream's lock doesn't need to be taken to sample its
2148 * channel.
2149 */
2150 channel = stream->chan;
2151 pthread_mutex_lock(&channel->lock);
2152 pthread_mutex_lock(&stream->lock);
2153 if (channel->metadata_cache) {
2154 /* Only applicable to userspace consumers. */
2155 pthread_mutex_lock(&channel->metadata_cache->lock);
2156 }
2157
2158 /* Remove any reference to that stream. */
2159 consumer_stream_delete(stream, ht);
2160
2161 /* Close down everything including the relayd if one. */
2162 consumer_stream_close(stream);
2163 /* Destroy tracer buffers of the stream. */
2164 consumer_stream_destroy_buffers(stream);
2165
2166 /* Atomically decrement channel refcount since other threads can use it. */
2167 if (!uatomic_sub_return(&channel->refcount, 1)
2168 && !uatomic_read(&channel->nb_init_stream_left)) {
2169 /* Go for channel deletion! */
2170 free_channel = true;
2171 }
2172 stream->chan = NULL;
2173
2174 /*
2175 * Nullify the stream reference so it is not used after deletion. The
2176 * channel lock MUST be acquired before being able to check for a NULL
2177 * pointer value.
2178 */
2179 channel->metadata_stream = NULL;
2180
2181 if (channel->metadata_cache) {
2182 pthread_mutex_unlock(&channel->metadata_cache->lock);
2183 }
2184 pthread_mutex_unlock(&stream->lock);
2185 pthread_mutex_unlock(&channel->lock);
2186 pthread_mutex_unlock(&the_consumer_data.lock);
2187
2188 if (free_channel) {
2189 consumer_del_channel(channel);
2190 }
2191
2192 lttng_trace_chunk_put(stream->trace_chunk);
2193 stream->trace_chunk = NULL;
2194 consumer_stream_free(stream);
2195 }
2196
2197 /*
2198 * Action done with the metadata stream when adding it to the consumer internal
2199 * data structures to handle it.
2200 */
2201 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2202 {
2203 struct lttng_ht *ht = metadata_ht;
2204 struct lttng_ht_iter iter;
2205 struct lttng_ht_node_u64 *node;
2206
2207 assert(stream);
2208 assert(ht);
2209
2210 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2211
2212 pthread_mutex_lock(&the_consumer_data.lock);
2213 pthread_mutex_lock(&stream->chan->lock);
2214 pthread_mutex_lock(&stream->chan->timer_lock);
2215 pthread_mutex_lock(&stream->lock);
2216
2217 /*
2218 * From here, refcounts are updated so be _careful_ when returning an error
2219 * after this point.
2220 */
2221
2222 rcu_read_lock();
2223
2224 /*
2225 * Lookup the stream just to make sure it does not exist in our internal
2226 * state. This should NEVER happen.
2227 */
2228 lttng_ht_lookup(ht, &stream->key, &iter);
2229 node = lttng_ht_iter_get_node_u64(&iter);
2230 assert(!node);
2231
2232 /*
2233 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2234 * in terms of destroying the associated channel, because the action that
2235 * causes the count to become 0 also causes a stream to be added. The
2236 * channel deletion will thus be triggered by the following removal of this
2237 * stream.
2238 */
2239 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2240 /* Increment refcount before decrementing nb_init_stream_left */
2241 cmm_smp_wmb();
2242 uatomic_dec(&stream->chan->nb_init_stream_left);
2243 }
2244
2245 lttng_ht_add_unique_u64(ht, &stream->node);
2246
2247 lttng_ht_add_u64(the_consumer_data.stream_per_chan_id_ht,
2248 &stream->node_channel_id);
2249
2250 /*
2251 * Add stream to the stream_list_ht of the consumer data. No need to steal
2252 * the key since the HT does not use it and we allow to add redundant keys
2253 * into this table.
2254 */
2255 lttng_ht_add_u64(the_consumer_data.stream_list_ht,
2256 &stream->node_session_id);
2257
2258 rcu_read_unlock();
2259
2260 pthread_mutex_unlock(&stream->lock);
2261 pthread_mutex_unlock(&stream->chan->lock);
2262 pthread_mutex_unlock(&stream->chan->timer_lock);
2263 pthread_mutex_unlock(&the_consumer_data.lock);
2264 }
2265
2266 /*
2267 * Delete data stream that are flagged for deletion (endpoint_status).
2268 */
2269 static void validate_endpoint_status_data_stream(void)
2270 {
2271 struct lttng_ht_iter iter;
2272 struct lttng_consumer_stream *stream;
2273
2274 DBG("Consumer delete flagged data stream");
2275
2276 rcu_read_lock();
2277 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2278 /* Validate delete flag of the stream */
2279 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2280 continue;
2281 }
2282 /* Delete it right now */
2283 consumer_del_stream(stream, data_ht);
2284 }
2285 rcu_read_unlock();
2286 }
2287
2288 /*
2289 * Delete metadata stream that are flagged for deletion (endpoint_status).
2290 */
2291 static void validate_endpoint_status_metadata_stream(
2292 struct lttng_poll_event *pollset)
2293 {
2294 struct lttng_ht_iter iter;
2295 struct lttng_consumer_stream *stream;
2296
2297 DBG("Consumer delete flagged metadata stream");
2298
2299 assert(pollset);
2300
2301 rcu_read_lock();
2302 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2303 /* Validate delete flag of the stream */
2304 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2305 continue;
2306 }
2307 /*
2308 * Remove from pollset so the metadata thread can continue without
2309 * blocking on a deleted stream.
2310 */
2311 lttng_poll_del(pollset, stream->wait_fd);
2312
2313 /* Delete it right now */
2314 consumer_del_metadata_stream(stream, metadata_ht);
2315 }
2316 rcu_read_unlock();
2317 }
2318
2319 /*
2320 * Thread polls on metadata file descriptor and write them on disk or on the
2321 * network.
2322 */
2323 void *consumer_thread_metadata_poll(void *data)
2324 {
2325 int ret, i, pollfd, err = -1;
2326 uint32_t revents, nb_fd;
2327 struct lttng_consumer_stream *stream = NULL;
2328 struct lttng_ht_iter iter;
2329 struct lttng_ht_node_u64 *node;
2330 struct lttng_poll_event events;
2331 struct lttng_consumer_local_data *ctx = data;
2332 ssize_t len;
2333
2334 rcu_register_thread();
2335
2336 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2337
2338 if (testpoint(consumerd_thread_metadata)) {
2339 goto error_testpoint;
2340 }
2341
2342 health_code_update();
2343
2344 DBG("Thread metadata poll started");
2345
2346 /* Size is set to 1 for the consumer_metadata pipe */
2347 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2348 if (ret < 0) {
2349 ERR("Poll set creation failed");
2350 goto end_poll;
2351 }
2352
2353 ret = lttng_poll_add(&events,
2354 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2355 if (ret < 0) {
2356 goto end;
2357 }
2358
2359 /* Main loop */
2360 DBG("Metadata main loop started");
2361
2362 while (1) {
2363 restart:
2364 health_code_update();
2365 health_poll_entry();
2366 DBG("Metadata poll wait");
2367 ret = lttng_poll_wait(&events, -1);
2368 DBG("Metadata poll return from wait with %d fd(s)",
2369 LTTNG_POLL_GETNB(&events));
2370 health_poll_exit();
2371 DBG("Metadata event caught in thread");
2372 if (ret < 0) {
2373 if (errno == EINTR) {
2374 ERR("Poll EINTR caught");
2375 goto restart;
2376 }
2377 if (LTTNG_POLL_GETNB(&events) == 0) {
2378 err = 0; /* All is OK */
2379 }
2380 goto end;
2381 }
2382
2383 nb_fd = ret;
2384
2385 /* From here, the event is a metadata wait fd */
2386 for (i = 0; i < nb_fd; i++) {
2387 health_code_update();
2388
2389 revents = LTTNG_POLL_GETEV(&events, i);
2390 pollfd = LTTNG_POLL_GETFD(&events, i);
2391
2392 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2393 if (revents & LPOLLIN) {
2394 ssize_t pipe_len;
2395
2396 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2397 &stream, sizeof(stream));
2398 if (pipe_len < sizeof(stream)) {
2399 if (pipe_len < 0) {
2400 PERROR("read metadata stream");
2401 }
2402 /*
2403 * Remove the pipe from the poll set and continue the loop
2404 * since their might be data to consume.
2405 */
2406 lttng_poll_del(&events,
2407 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2408 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2409 continue;
2410 }
2411
2412 /* A NULL stream means that the state has changed. */
2413 if (stream == NULL) {
2414 /* Check for deleted streams. */
2415 validate_endpoint_status_metadata_stream(&events);
2416 goto restart;
2417 }
2418
2419 DBG("Adding metadata stream %d to poll set",
2420 stream->wait_fd);
2421
2422 /* Add metadata stream to the global poll events list */
2423 lttng_poll_add(&events, stream->wait_fd,
2424 LPOLLIN | LPOLLPRI | LPOLLHUP);
2425 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2426 DBG("Metadata thread pipe hung up");
2427 /*
2428 * Remove the pipe from the poll set and continue the loop
2429 * since their might be data to consume.
2430 */
2431 lttng_poll_del(&events,
2432 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2433 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2434 continue;
2435 } else {
2436 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2437 goto end;
2438 }
2439
2440 /* Handle other stream */
2441 continue;
2442 }
2443
2444 rcu_read_lock();
2445 {
2446 uint64_t tmp_id = (uint64_t) pollfd;
2447
2448 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2449 }
2450 node = lttng_ht_iter_get_node_u64(&iter);
2451 assert(node);
2452
2453 stream = caa_container_of(node, struct lttng_consumer_stream,
2454 node);
2455
2456 if (revents & (LPOLLIN | LPOLLPRI)) {
2457 /* Get the data out of the metadata file descriptor */
2458 DBG("Metadata available on fd %d", pollfd);
2459 assert(stream->wait_fd == pollfd);
2460
2461 do {
2462 health_code_update();
2463
2464 len = ctx->on_buffer_ready(stream, ctx, false);
2465 /*
2466 * We don't check the return value here since if we get
2467 * a negative len, it means an error occurred thus we
2468 * simply remove it from the poll set and free the
2469 * stream.
2470 */
2471 } while (len > 0);
2472
2473 /* It's ok to have an unavailable sub-buffer */
2474 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2475 /* Clean up stream from consumer and free it. */
2476 lttng_poll_del(&events, stream->wait_fd);
2477 consumer_del_metadata_stream(stream, metadata_ht);
2478 }
2479 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2480 DBG("Metadata fd %d is hup|err.", pollfd);
2481 if (!stream->hangup_flush_done &&
2482 (the_consumer_data.type == LTTNG_CONSUMER32_UST ||
2483 the_consumer_data.type ==
2484 LTTNG_CONSUMER64_UST)) {
2485 DBG("Attempting to flush and consume the UST buffers");
2486 lttng_ustconsumer_on_stream_hangup(stream);
2487
2488 /* We just flushed the stream now read it. */
2489 do {
2490 health_code_update();
2491
2492 len = ctx->on_buffer_ready(stream, ctx, false);
2493 /*
2494 * We don't check the return value here since if we get
2495 * a negative len, it means an error occurred thus we
2496 * simply remove it from the poll set and free the
2497 * stream.
2498 */
2499 } while (len > 0);
2500 }
2501
2502 lttng_poll_del(&events, stream->wait_fd);
2503 /*
2504 * This call update the channel states, closes file descriptors
2505 * and securely free the stream.
2506 */
2507 consumer_del_metadata_stream(stream, metadata_ht);
2508 } else {
2509 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2510 rcu_read_unlock();
2511 goto end;
2512 }
2513 /* Release RCU lock for the stream looked up */
2514 rcu_read_unlock();
2515 }
2516 }
2517
2518 /* All is OK */
2519 err = 0;
2520 end:
2521 DBG("Metadata poll thread exiting");
2522
2523 lttng_poll_clean(&events);
2524 end_poll:
2525 error_testpoint:
2526 if (err) {
2527 health_error();
2528 ERR("Health error occurred in %s", __func__);
2529 }
2530 health_unregister(health_consumerd);
2531 rcu_unregister_thread();
2532 return NULL;
2533 }
2534
2535 /*
2536 * This thread polls the fds in the set to consume the data and write
2537 * it to tracefile if necessary.
2538 */
2539 void *consumer_thread_data_poll(void *data)
2540 {
2541 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2542 struct pollfd *pollfd = NULL;
2543 /* local view of the streams */
2544 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2545 /* local view of consumer_data.fds_count */
2546 int nb_fd = 0;
2547 /* 2 for the consumer_data_pipe and wake up pipe */
2548 const int nb_pipes_fd = 2;
2549 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2550 int nb_inactive_fd = 0;
2551 struct lttng_consumer_local_data *ctx = data;
2552 ssize_t len;
2553
2554 rcu_register_thread();
2555
2556 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2557
2558 if (testpoint(consumerd_thread_data)) {
2559 goto error_testpoint;
2560 }
2561
2562 health_code_update();
2563
2564 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2565 if (local_stream == NULL) {
2566 PERROR("local_stream malloc");
2567 goto end;
2568 }
2569
2570 while (1) {
2571 health_code_update();
2572
2573 high_prio = 0;
2574 num_hup = 0;
2575
2576 /*
2577 * the fds set has been updated, we need to update our
2578 * local array as well
2579 */
2580 pthread_mutex_lock(&the_consumer_data.lock);
2581 if (the_consumer_data.need_update) {
2582 free(pollfd);
2583 pollfd = NULL;
2584
2585 free(local_stream);
2586 local_stream = NULL;
2587
2588 /* Allocate for all fds */
2589 pollfd = zmalloc((the_consumer_data.stream_count +
2590 nb_pipes_fd) *
2591 sizeof(struct pollfd));
2592 if (pollfd == NULL) {
2593 PERROR("pollfd malloc");
2594 pthread_mutex_unlock(&the_consumer_data.lock);
2595 goto end;
2596 }
2597
2598 local_stream = zmalloc((the_consumer_data.stream_count +
2599 nb_pipes_fd) *
2600 sizeof(struct lttng_consumer_stream *));
2601 if (local_stream == NULL) {
2602 PERROR("local_stream malloc");
2603 pthread_mutex_unlock(&the_consumer_data.lock);
2604 goto end;
2605 }
2606 ret = update_poll_array(ctx, &pollfd, local_stream,
2607 data_ht, &nb_inactive_fd);
2608 if (ret < 0) {
2609 ERR("Error in allocating pollfd or local_outfds");
2610 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2611 pthread_mutex_unlock(&the_consumer_data.lock);
2612 goto end;
2613 }
2614 nb_fd = ret;
2615 the_consumer_data.need_update = 0;
2616 }
2617 pthread_mutex_unlock(&the_consumer_data.lock);
2618
2619 /* No FDs and consumer_quit, consumer_cleanup the thread */
2620 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2621 CMM_LOAD_SHARED(consumer_quit) == 1) {
2622 err = 0; /* All is OK */
2623 goto end;
2624 }
2625 /* poll on the array of fds */
2626 restart:
2627 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2628 if (testpoint(consumerd_thread_data_poll)) {
2629 goto end;
2630 }
2631 health_poll_entry();
2632 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2633 health_poll_exit();
2634 DBG("poll num_rdy : %d", num_rdy);
2635 if (num_rdy == -1) {
2636 /*
2637 * Restart interrupted system call.
2638 */
2639 if (errno == EINTR) {
2640 goto restart;
2641 }
2642 PERROR("Poll error");
2643 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2644 goto end;
2645 } else if (num_rdy == 0) {
2646 DBG("Polling thread timed out");
2647 goto end;
2648 }
2649
2650 if (caa_unlikely(data_consumption_paused)) {
2651 DBG("Data consumption paused, sleeping...");
2652 sleep(1);
2653 goto restart;
2654 }
2655
2656 /*
2657 * If the consumer_data_pipe triggered poll go directly to the
2658 * beginning of the loop to update the array. We want to prioritize
2659 * array update over low-priority reads.
2660 */
2661 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2662 ssize_t pipe_readlen;
2663
2664 DBG("consumer_data_pipe wake up");
2665 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2666 &new_stream, sizeof(new_stream));
2667 if (pipe_readlen < sizeof(new_stream)) {
2668 PERROR("Consumer data pipe");
2669 /* Continue so we can at least handle the current stream(s). */
2670 continue;
2671 }
2672
2673 /*
2674 * If the stream is NULL, just ignore it. It's also possible that
2675 * the sessiond poll thread changed the consumer_quit state and is
2676 * waking us up to test it.
2677 */
2678 if (new_stream == NULL) {
2679 validate_endpoint_status_data_stream();
2680 continue;
2681 }
2682
2683 /* Continue to update the local streams and handle prio ones */
2684 continue;
2685 }
2686
2687 /* Handle wakeup pipe. */
2688 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2689 char dummy;
2690 ssize_t pipe_readlen;
2691
2692 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2693 sizeof(dummy));
2694 if (pipe_readlen < 0) {
2695 PERROR("Consumer data wakeup pipe");
2696 }
2697 /* We've been awakened to handle stream(s). */
2698 ctx->has_wakeup = 0;
2699 }
2700
2701 /* Take care of high priority channels first. */
2702 for (i = 0; i < nb_fd; i++) {
2703 health_code_update();
2704
2705 if (local_stream[i] == NULL) {
2706 continue;
2707 }
2708 if (pollfd[i].revents & POLLPRI) {
2709 DBG("Urgent read on fd %d", pollfd[i].fd);
2710 high_prio = 1;
2711 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2712 /* it's ok to have an unavailable sub-buffer */
2713 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2714 /* Clean the stream and free it. */
2715 consumer_del_stream(local_stream[i], data_ht);
2716 local_stream[i] = NULL;
2717 } else if (len > 0) {
2718 local_stream[i]->data_read = 1;
2719 }
2720 }
2721 }
2722
2723 /*
2724 * If we read high prio channel in this loop, try again
2725 * for more high prio data.
2726 */
2727 if (high_prio) {
2728 continue;
2729 }
2730
2731 /* Take care of low priority channels. */
2732 for (i = 0; i < nb_fd; i++) {
2733 health_code_update();
2734
2735 if (local_stream[i] == NULL) {
2736 continue;
2737 }
2738 if ((pollfd[i].revents & POLLIN) ||
2739 local_stream[i]->hangup_flush_done ||
2740 local_stream[i]->has_data) {
2741 DBG("Normal read on fd %d", pollfd[i].fd);
2742 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2743 /* it's ok to have an unavailable sub-buffer */
2744 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2745 /* Clean the stream and free it. */
2746 consumer_del_stream(local_stream[i], data_ht);
2747 local_stream[i] = NULL;
2748 } else if (len > 0) {
2749 local_stream[i]->data_read = 1;
2750 }
2751 }
2752 }
2753
2754 /* Handle hangup and errors */
2755 for (i = 0; i < nb_fd; i++) {
2756 health_code_update();
2757
2758 if (local_stream[i] == NULL) {
2759 continue;
2760 }
2761 if (!local_stream[i]->hangup_flush_done
2762 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2763 && (the_consumer_data.type == LTTNG_CONSUMER32_UST
2764 || the_consumer_data.type == LTTNG_CONSUMER64_UST)) {
2765 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2766 pollfd[i].fd);
2767 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2768 /* Attempt read again, for the data we just flushed. */
2769 local_stream[i]->data_read = 1;
2770 }
2771 /*
2772 * If the poll flag is HUP/ERR/NVAL and we have
2773 * read no data in this pass, we can remove the
2774 * stream from its hash table.
2775 */
2776 if ((pollfd[i].revents & POLLHUP)) {
2777 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2778 if (!local_stream[i]->data_read) {
2779 consumer_del_stream(local_stream[i], data_ht);
2780 local_stream[i] = NULL;
2781 num_hup++;
2782 }
2783 } else if (pollfd[i].revents & POLLERR) {
2784 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2785 if (!local_stream[i]->data_read) {
2786 consumer_del_stream(local_stream[i], data_ht);
2787 local_stream[i] = NULL;
2788 num_hup++;
2789 }
2790 } else if (pollfd[i].revents & POLLNVAL) {
2791 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2792 if (!local_stream[i]->data_read) {
2793 consumer_del_stream(local_stream[i], data_ht);
2794 local_stream[i] = NULL;
2795 num_hup++;
2796 }
2797 }
2798 if (local_stream[i] != NULL) {
2799 local_stream[i]->data_read = 0;
2800 }
2801 }
2802 }
2803 /* All is OK */
2804 err = 0;
2805 end:
2806 DBG("polling thread exiting");
2807 free(pollfd);
2808 free(local_stream);
2809
2810 /*
2811 * Close the write side of the pipe so epoll_wait() in
2812 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2813 * read side of the pipe. If we close them both, epoll_wait strangely does
2814 * not return and could create a endless wait period if the pipe is the
2815 * only tracked fd in the poll set. The thread will take care of closing
2816 * the read side.
2817 */
2818 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2819
2820 error_testpoint:
2821 if (err) {
2822 health_error();
2823 ERR("Health error occurred in %s", __func__);
2824 }
2825 health_unregister(health_consumerd);
2826
2827 rcu_unregister_thread();
2828 return NULL;
2829 }
2830
2831 /*
2832 * Close wake-up end of each stream belonging to the channel. This will
2833 * allow the poll() on the stream read-side to detect when the
2834 * write-side (application) finally closes them.
2835 */
2836 static
2837 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2838 {
2839 struct lttng_ht *ht;
2840 struct lttng_consumer_stream *stream;
2841 struct lttng_ht_iter iter;
2842
2843 ht = the_consumer_data.stream_per_chan_id_ht;
2844
2845 rcu_read_lock();
2846 cds_lfht_for_each_entry_duplicate(ht->ht,
2847 ht->hash_fct(&channel->key, lttng_ht_seed),
2848 ht->match_fct, &channel->key,
2849 &iter.iter, stream, node_channel_id.node) {
2850 /*
2851 * Protect against teardown with mutex.
2852 */
2853 pthread_mutex_lock(&stream->lock);
2854 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2855 goto next;
2856 }
2857 switch (the_consumer_data.type) {
2858 case LTTNG_CONSUMER_KERNEL:
2859 break;
2860 case LTTNG_CONSUMER32_UST:
2861 case LTTNG_CONSUMER64_UST:
2862 if (stream->metadata_flag) {
2863 /* Safe and protected by the stream lock. */
2864 lttng_ustconsumer_close_metadata(stream->chan);
2865 } else {
2866 /*
2867 * Note: a mutex is taken internally within
2868 * liblttng-ust-ctl to protect timer wakeup_fd
2869 * use from concurrent close.
2870 */
2871 lttng_ustconsumer_close_stream_wakeup(stream);
2872 }
2873 break;
2874 default:
2875 ERR("Unknown consumer_data type");
2876 assert(0);
2877 }
2878 next:
2879 pthread_mutex_unlock(&stream->lock);
2880 }
2881 rcu_read_unlock();
2882 }
2883
2884 static void destroy_channel_ht(struct lttng_ht *ht)
2885 {
2886 struct lttng_ht_iter iter;
2887 struct lttng_consumer_channel *channel;
2888 int ret;
2889
2890 if (ht == NULL) {
2891 return;
2892 }
2893
2894 rcu_read_lock();
2895 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2896 ret = lttng_ht_del(ht, &iter);
2897 assert(ret != 0);
2898 }
2899 rcu_read_unlock();
2900
2901 lttng_ht_destroy(ht);
2902 }
2903
2904 /*
2905 * This thread polls the channel fds to detect when they are being
2906 * closed. It closes all related streams if the channel is detected as
2907 * closed. It is currently only used as a shim layer for UST because the
2908 * consumerd needs to keep the per-stream wakeup end of pipes open for
2909 * periodical flush.
2910 */
2911 void *consumer_thread_channel_poll(void *data)
2912 {
2913 int ret, i, pollfd, err = -1;
2914 uint32_t revents, nb_fd;
2915 struct lttng_consumer_channel *chan = NULL;
2916 struct lttng_ht_iter iter;
2917 struct lttng_ht_node_u64 *node;
2918 struct lttng_poll_event events;
2919 struct lttng_consumer_local_data *ctx = data;
2920 struct lttng_ht *channel_ht;
2921
2922 rcu_register_thread();
2923
2924 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2925
2926 if (testpoint(consumerd_thread_channel)) {
2927 goto error_testpoint;
2928 }
2929
2930 health_code_update();
2931
2932 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2933 if (!channel_ht) {
2934 /* ENOMEM at this point. Better to bail out. */
2935 goto end_ht;
2936 }
2937
2938 DBG("Thread channel poll started");
2939
2940 /* Size is set to 1 for the consumer_channel pipe */
2941 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2942 if (ret < 0) {
2943 ERR("Poll set creation failed");
2944 goto end_poll;
2945 }
2946
2947 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2948 if (ret < 0) {
2949 goto end;
2950 }
2951
2952 /* Main loop */
2953 DBG("Channel main loop started");
2954
2955 while (1) {
2956 restart:
2957 health_code_update();
2958 DBG("Channel poll wait");
2959 health_poll_entry();
2960 ret = lttng_poll_wait(&events, -1);
2961 DBG("Channel poll return from wait with %d fd(s)",
2962 LTTNG_POLL_GETNB(&events));
2963 health_poll_exit();
2964 DBG("Channel event caught in thread");
2965 if (ret < 0) {
2966 if (errno == EINTR) {
2967 ERR("Poll EINTR caught");
2968 goto restart;
2969 }
2970 if (LTTNG_POLL_GETNB(&events) == 0) {
2971 err = 0; /* All is OK */
2972 }
2973 goto end;
2974 }
2975
2976 nb_fd = ret;
2977
2978 /* From here, the event is a channel wait fd */
2979 for (i = 0; i < nb_fd; i++) {
2980 health_code_update();
2981
2982 revents = LTTNG_POLL_GETEV(&events, i);
2983 pollfd = LTTNG_POLL_GETFD(&events, i);
2984
2985 if (pollfd == ctx->consumer_channel_pipe[0]) {
2986 if (revents & LPOLLIN) {
2987 enum consumer_channel_action action;
2988 uint64_t key;
2989
2990 ret = read_channel_pipe(ctx, &chan, &key, &action);
2991 if (ret <= 0) {
2992 if (ret < 0) {
2993 ERR("Error reading channel pipe");
2994 }
2995 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2996 continue;
2997 }
2998
2999 switch (action) {
3000 case CONSUMER_CHANNEL_ADD:
3001 DBG("Adding channel %d to poll set",
3002 chan->wait_fd);
3003
3004 lttng_ht_node_init_u64(&chan->wait_fd_node,
3005 chan->wait_fd);
3006 rcu_read_lock();
3007 lttng_ht_add_unique_u64(channel_ht,
3008 &chan->wait_fd_node);
3009 rcu_read_unlock();
3010 /* Add channel to the global poll events list */
3011 lttng_poll_add(&events, chan->wait_fd,
3012 LPOLLERR | LPOLLHUP);
3013 break;
3014 case CONSUMER_CHANNEL_DEL:
3015 {
3016 /*
3017 * This command should never be called if the channel
3018 * has streams monitored by either the data or metadata
3019 * thread. The consumer only notify this thread with a
3020 * channel del. command if it receives a destroy
3021 * channel command from the session daemon that send it
3022 * if a command prior to the GET_CHANNEL failed.
3023 */
3024
3025 rcu_read_lock();
3026 chan = consumer_find_channel(key);
3027 if (!chan) {
3028 rcu_read_unlock();
3029 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3030 break;
3031 }
3032 lttng_poll_del(&events, chan->wait_fd);
3033 iter.iter.node = &chan->wait_fd_node.node;
3034 ret = lttng_ht_del(channel_ht, &iter);
3035 assert(ret == 0);
3036
3037 switch (the_consumer_data.type) {
3038 case LTTNG_CONSUMER_KERNEL:
3039 break;
3040 case LTTNG_CONSUMER32_UST:
3041 case LTTNG_CONSUMER64_UST:
3042 health_code_update();
3043 /* Destroy streams that might have been left in the stream list. */
3044 clean_channel_stream_list(chan);
3045 break;
3046 default:
3047 ERR("Unknown consumer_data type");
3048 assert(0);
3049 }
3050
3051 /*
3052 * Release our own refcount. Force channel deletion even if
3053 * streams were not initialized.
3054 */
3055 if (!uatomic_sub_return(&chan->refcount, 1)) {
3056 consumer_del_channel(chan);
3057 }
3058 rcu_read_unlock();
3059 goto restart;
3060 }
3061 case CONSUMER_CHANNEL_QUIT:
3062 /*
3063 * Remove the pipe from the poll set and continue the loop
3064 * since their might be data to consume.
3065 */
3066 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3067 continue;
3068 default:
3069 ERR("Unknown action");
3070 break;
3071 }
3072 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3073 DBG("Channel thread pipe hung up");
3074 /*
3075 * Remove the pipe from the poll set and continue the loop
3076 * since their might be data to consume.
3077 */
3078 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3079 continue;
3080 } else {
3081 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3082 goto end;
3083 }
3084
3085 /* Handle other stream */
3086 continue;
3087 }
3088
3089 rcu_read_lock();
3090 {
3091 uint64_t tmp_id = (uint64_t) pollfd;
3092
3093 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3094 }
3095 node = lttng_ht_iter_get_node_u64(&iter);
3096 assert(node);
3097
3098 chan = caa_container_of(node, struct lttng_consumer_channel,
3099 wait_fd_node);
3100
3101 /* Check for error event */
3102 if (revents & (LPOLLERR | LPOLLHUP)) {
3103 DBG("Channel fd %d is hup|err.", pollfd);
3104
3105 lttng_poll_del(&events, chan->wait_fd);
3106 ret = lttng_ht_del(channel_ht, &iter);
3107 assert(ret == 0);
3108
3109 /*
3110 * This will close the wait fd for each stream associated to
3111 * this channel AND monitored by the data/metadata thread thus
3112 * will be clean by the right thread.
3113 */
3114 consumer_close_channel_streams(chan);
3115
3116 /* Release our own refcount */
3117 if (!uatomic_sub_return(&chan->refcount, 1)
3118 && !uatomic_read(&chan->nb_init_stream_left)) {
3119 consumer_del_channel(chan);
3120 }
3121 } else {
3122 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3123 rcu_read_unlock();
3124 goto end;
3125 }
3126
3127 /* Release RCU lock for the channel looked up */
3128 rcu_read_unlock();
3129 }
3130 }
3131
3132 /* All is OK */
3133 err = 0;
3134 end:
3135 lttng_poll_clean(&events);
3136 end_poll:
3137 destroy_channel_ht(channel_ht);
3138 end_ht:
3139 error_testpoint:
3140 DBG("Channel poll thread exiting");
3141 if (err) {
3142 health_error();
3143 ERR("Health error occurred in %s", __func__);
3144 }
3145 health_unregister(health_consumerd);
3146 rcu_unregister_thread();
3147 return NULL;
3148 }
3149
3150 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3151 struct pollfd *sockpoll, int client_socket)
3152 {
3153 int ret;
3154
3155 assert(ctx);
3156 assert(sockpoll);
3157
3158 ret = lttng_consumer_poll_socket(sockpoll);
3159 if (ret) {
3160 goto error;
3161 }
3162 DBG("Metadata connection on client_socket");
3163
3164 /* Blocking call, waiting for transmission */
3165 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3166 if (ctx->consumer_metadata_socket < 0) {
3167 WARN("On accept metadata");
3168 ret = -1;
3169 goto error;
3170 }
3171 ret = 0;
3172
3173 error:
3174 return ret;
3175 }
3176
3177 /*
3178 * This thread listens on the consumerd socket and receives the file
3179 * descriptors from the session daemon.
3180 */
3181 void *consumer_thread_sessiond_poll(void *data)
3182 {
3183 int sock = -1, client_socket, ret, err = -1;
3184 /*
3185 * structure to poll for incoming data on communication socket avoids
3186 * making blocking sockets.
3187 */
3188 struct pollfd consumer_sockpoll[2];
3189 struct lttng_consumer_local_data *ctx = data;
3190
3191 rcu_register_thread();
3192
3193 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3194
3195 if (testpoint(consumerd_thread_sessiond)) {
3196 goto error_testpoint;
3197 }
3198
3199 health_code_update();
3200
3201 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3202 unlink(ctx->consumer_command_sock_path);
3203 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3204 if (client_socket < 0) {
3205 ERR("Cannot create command socket");
3206 goto end;
3207 }
3208
3209 ret = lttcomm_listen_unix_sock(client_socket);
3210 if (ret < 0) {
3211 goto end;
3212 }
3213
3214 DBG("Sending ready command to lttng-sessiond");
3215 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3216 /* return < 0 on error, but == 0 is not fatal */
3217 if (ret < 0) {
3218 ERR("Error sending ready command to lttng-sessiond");
3219 goto end;
3220 }
3221
3222 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3223 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3224 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3225 consumer_sockpoll[1].fd = client_socket;
3226 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3227
3228 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3229 if (ret) {
3230 if (ret > 0) {
3231 /* should exit */
3232 err = 0;
3233 }
3234 goto end;
3235 }
3236 DBG("Connection on client_socket");
3237
3238 /* Blocking call, waiting for transmission */
3239 sock = lttcomm_accept_unix_sock(client_socket);
3240 if (sock < 0) {
3241 WARN("On accept");
3242 goto end;
3243 }
3244
3245 /*
3246 * Setup metadata socket which is the second socket connection on the
3247 * command unix socket.
3248 */
3249 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3250 if (ret) {
3251 if (ret > 0) {
3252 /* should exit */
3253 err = 0;
3254 }
3255 goto end;
3256 }
3257
3258 /* This socket is not useful anymore. */
3259 ret = close(client_socket);
3260 if (ret < 0) {
3261 PERROR("close client_socket");
3262 }
3263 client_socket = -1;
3264
3265 /* update the polling structure to poll on the established socket */
3266 consumer_sockpoll[1].fd = sock;
3267 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3268
3269 while (1) {
3270 health_code_update();
3271
3272 health_poll_entry();
3273 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3274 health_poll_exit();
3275 if (ret) {
3276 if (ret > 0) {
3277 /* should exit */
3278 err = 0;
3279 }
3280 goto end;
3281 }
3282 DBG("Incoming command on sock");
3283 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3284 if (ret <= 0) {
3285 /*
3286 * This could simply be a session daemon quitting. Don't output
3287 * ERR() here.
3288 */
3289 DBG("Communication interrupted on command socket");
3290 err = 0;
3291 goto end;
3292 }
3293 if (CMM_LOAD_SHARED(consumer_quit)) {
3294 DBG("consumer_thread_receive_fds received quit from signal");
3295 err = 0; /* All is OK */
3296 goto end;
3297 }
3298 DBG("Received command on sock");
3299 }
3300 /* All is OK */
3301 err = 0;
3302
3303 end:
3304 DBG("Consumer thread sessiond poll exiting");
3305
3306 /*
3307 * Close metadata streams since the producer is the session daemon which
3308 * just died.
3309 *
3310 * NOTE: for now, this only applies to the UST tracer.
3311 */
3312 lttng_consumer_close_all_metadata();
3313
3314 /*
3315 * when all fds have hung up, the polling thread
3316 * can exit cleanly
3317 */
3318 CMM_STORE_SHARED(consumer_quit, 1);
3319
3320 /*
3321 * Notify the data poll thread to poll back again and test the
3322 * consumer_quit state that we just set so to quit gracefully.
3323 */
3324 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3325
3326 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3327
3328 notify_health_quit_pipe(health_quit_pipe);
3329
3330 /* Cleaning up possibly open sockets. */
3331 if (sock >= 0) {
3332 ret = close(sock);
3333 if (ret < 0) {
3334 PERROR("close sock sessiond poll");
3335 }
3336 }
3337 if (client_socket >= 0) {
3338 ret = close(client_socket);
3339 if (ret < 0) {
3340 PERROR("close client_socket sessiond poll");
3341 }
3342 }
3343
3344 error_testpoint:
3345 if (err) {
3346 health_error();
3347 ERR("Health error occurred in %s", __func__);
3348 }
3349 health_unregister(health_consumerd);
3350
3351 rcu_unregister_thread();
3352 return NULL;
3353 }
3354
3355 static int post_consume(struct lttng_consumer_stream *stream,
3356 const struct stream_subbuffer *subbuffer,
3357 struct lttng_consumer_local_data *ctx)
3358 {
3359 size_t i;
3360 int ret = 0;
3361 const size_t count = lttng_dynamic_array_get_count(
3362 &stream->read_subbuffer_ops.post_consume_cbs);
3363
3364 for (i = 0; i < count; i++) {
3365 const post_consume_cb op = *(post_consume_cb *) lttng_dynamic_array_get_element(
3366 &stream->read_subbuffer_ops.post_consume_cbs,
3367 i);
3368
3369 ret = op(stream, subbuffer, ctx);
3370 if (ret) {
3371 goto end;
3372 }
3373 }
3374 end:
3375 return ret;
3376 }
3377
3378 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3379 struct lttng_consumer_local_data *ctx,
3380 bool locked_by_caller)
3381 {
3382 ssize_t ret, written_bytes = 0;
3383 int rotation_ret;
3384 struct stream_subbuffer subbuffer = {};
3385
3386 if (!locked_by_caller) {
3387 stream->read_subbuffer_ops.lock(stream);
3388 }
3389
3390 if (stream->read_subbuffer_ops.on_wake_up) {
3391 ret = stream->read_subbuffer_ops.on_wake_up(stream);
3392 if (ret) {
3393 goto end;
3394 }
3395 }
3396
3397 /*
3398 * If the stream was flagged to be ready for rotation before we extract
3399 * the next packet, rotate it now.
3400 */
3401 if (stream->rotate_ready) {
3402 DBG("Rotate stream before consuming data");
3403 ret = lttng_consumer_rotate_stream(ctx, stream);
3404 if (ret < 0) {
3405 ERR("Stream rotation error before consuming data");
3406 goto end;
3407 }
3408 }
3409
3410 ret = stream->read_subbuffer_ops.get_next_subbuffer(stream, &subbuffer);
3411 if (ret) {
3412 if (ret == -ENODATA) {
3413 /* Not an error. */
3414 ret = 0;
3415 goto sleep_stream;
3416 }
3417 goto end;
3418 }
3419
3420 ret = stream->read_subbuffer_ops.pre_consume_subbuffer(
3421 stream, &subbuffer);
3422 if (ret) {
3423 goto error_put_subbuf;
3424 }
3425
3426 written_bytes = stream->read_subbuffer_ops.consume_subbuffer(
3427 ctx, stream, &subbuffer);
3428 if (written_bytes <= 0) {
3429 ERR("Error consuming subbuffer: (%zd)", written_bytes);
3430 ret = (int) written_bytes;
3431 goto error_put_subbuf;
3432 }
3433
3434 ret = stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3435 if (ret) {
3436 goto end;
3437 }
3438
3439 ret = post_consume(stream, &subbuffer, ctx);
3440 if (ret) {
3441 goto end;
3442 }
3443
3444 /*
3445 * After extracting the packet, we check if the stream is now ready to
3446 * be rotated and perform the action immediately.
3447 *
3448 * Don't overwrite `ret` as callers expect the number of bytes
3449 * consumed to be returned on success.
3450 */
3451 rotation_ret = lttng_consumer_stream_is_rotate_ready(stream);
3452 if (rotation_ret == 1) {
3453 rotation_ret = lttng_consumer_rotate_stream(ctx, stream);
3454 if (rotation_ret < 0) {
3455 ret = rotation_ret;
3456 ERR("Stream rotation error after consuming data");
3457 goto end;
3458 }
3459
3460 } else if (rotation_ret < 0) {
3461 ret = rotation_ret;
3462 ERR("Failed to check if stream was ready to rotate after consuming data");
3463 goto end;
3464 }
3465
3466 sleep_stream:
3467 if (stream->read_subbuffer_ops.on_sleep) {
3468 stream->read_subbuffer_ops.on_sleep(stream, ctx);
3469 }
3470
3471 ret = written_bytes;
3472 end:
3473 if (!locked_by_caller) {
3474 stream->read_subbuffer_ops.unlock(stream);
3475 }
3476
3477 return ret;
3478 error_put_subbuf:
3479 (void) stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3480 goto end;
3481 }
3482
3483 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3484 {
3485 switch (the_consumer_data.type) {
3486 case LTTNG_CONSUMER_KERNEL:
3487 return lttng_kconsumer_on_recv_stream(stream);
3488 case LTTNG_CONSUMER32_UST:
3489 case LTTNG_CONSUMER64_UST:
3490 return lttng_ustconsumer_on_recv_stream(stream);
3491 default:
3492 ERR("Unknown consumer_data type");
3493 assert(0);
3494 return -ENOSYS;
3495 }
3496 }
3497
3498 /*
3499 * Allocate and set consumer data hash tables.
3500 */
3501 int lttng_consumer_init(void)
3502 {
3503 the_consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3504 if (!the_consumer_data.channel_ht) {
3505 goto error;
3506 }
3507
3508 the_consumer_data.channels_by_session_id_ht =
3509 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3510 if (!the_consumer_data.channels_by_session_id_ht) {
3511 goto error;
3512 }
3513
3514 the_consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3515 if (!the_consumer_data.relayd_ht) {
3516 goto error;
3517 }
3518
3519 the_consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3520 if (!the_consumer_data.stream_list_ht) {
3521 goto error;
3522 }
3523
3524 the_consumer_data.stream_per_chan_id_ht =
3525 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3526 if (!the_consumer_data.stream_per_chan_id_ht) {
3527 goto error;
3528 }
3529
3530 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3531 if (!data_ht) {
3532 goto error;
3533 }
3534
3535 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3536 if (!metadata_ht) {
3537 goto error;
3538 }
3539
3540 the_consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3541 if (!the_consumer_data.chunk_registry) {
3542 goto error;
3543 }
3544
3545 return 0;
3546
3547 error:
3548 return -1;
3549 }
3550
3551 /*
3552 * Process the ADD_RELAYD command receive by a consumer.
3553 *
3554 * This will create a relayd socket pair and add it to the relayd hash table.
3555 * The caller MUST acquire a RCU read side lock before calling it.
3556 */
3557 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3558 struct lttng_consumer_local_data *ctx, int sock,
3559 struct pollfd *consumer_sockpoll,
3560 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3561 uint64_t relayd_session_id)
3562 {
3563 int fd = -1, ret = -1, relayd_created = 0;
3564 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3565 struct consumer_relayd_sock_pair *relayd = NULL;
3566
3567 assert(ctx);
3568 assert(relayd_sock);
3569
3570 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3571
3572 /* Get relayd reference if exists. */
3573 relayd = consumer_find_relayd(net_seq_idx);
3574 if (relayd == NULL) {
3575 assert(sock_type == LTTNG_STREAM_CONTROL);
3576 /* Not found. Allocate one. */
3577 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3578 if (relayd == NULL) {
3579 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3580 goto error;
3581 } else {
3582 relayd->sessiond_session_id = sessiond_id;
3583 relayd_created = 1;
3584 }
3585
3586 /*
3587 * This code path MUST continue to the consumer send status message to
3588 * we can notify the session daemon and continue our work without
3589 * killing everything.
3590 */
3591 } else {
3592 /*
3593 * relayd key should never be found for control socket.
3594 */
3595 assert(sock_type != LTTNG_STREAM_CONTROL);
3596 }
3597
3598 /* First send a status message before receiving the fds. */
3599 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3600 if (ret < 0) {
3601 /* Somehow, the session daemon is not responding anymore. */
3602 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3603 goto error_nosignal;
3604 }
3605
3606 /* Poll on consumer socket. */
3607 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3608 if (ret) {
3609 /* Needing to exit in the middle of a command: error. */
3610 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3611 goto error_nosignal;
3612 }
3613
3614 /* Get relayd socket from session daemon */
3615 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3616 if (ret != sizeof(fd)) {
3617 fd = -1; /* Just in case it gets set with an invalid value. */
3618
3619 /*
3620 * Failing to receive FDs might indicate a major problem such as
3621 * reaching a fd limit during the receive where the kernel returns a
3622 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3623 * don't take any chances and stop everything.
3624 *
3625 * XXX: Feature request #558 will fix that and avoid this possible
3626 * issue when reaching the fd limit.
3627 */
3628 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3629 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3630 goto error;
3631 }
3632
3633 /* Copy socket information and received FD */
3634 switch (sock_type) {
3635 case LTTNG_STREAM_CONTROL:
3636 /* Copy received lttcomm socket */
3637 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3638 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3639 /* Handle create_sock error. */
3640 if (ret < 0) {
3641 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3642 goto error;
3643 }
3644 /*
3645 * Close the socket created internally by
3646 * lttcomm_create_sock, so we can replace it by the one
3647 * received from sessiond.
3648 */
3649 if (close(relayd->control_sock.sock.fd)) {
3650 PERROR("close");
3651 }
3652
3653 /* Assign new file descriptor */
3654 relayd->control_sock.sock.fd = fd;
3655 /* Assign version values. */
3656 relayd->control_sock.major = relayd_sock->major;
3657 relayd->control_sock.minor = relayd_sock->minor;
3658
3659 relayd->relayd_session_id = relayd_session_id;
3660
3661 break;
3662 case LTTNG_STREAM_DATA:
3663 /* Copy received lttcomm socket */
3664 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3665 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3666 /* Handle create_sock error. */
3667 if (ret < 0) {
3668 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3669 goto error;
3670 }
3671 /*
3672 * Close the socket created internally by
3673 * lttcomm_create_sock, so we can replace it by the one
3674 * received from sessiond.
3675 */
3676 if (close(relayd->data_sock.sock.fd)) {
3677 PERROR("close");
3678 }
3679
3680 /* Assign new file descriptor */
3681 relayd->data_sock.sock.fd = fd;
3682 /* Assign version values. */
3683 relayd->data_sock.major = relayd_sock->major;
3684 relayd->data_sock.minor = relayd_sock->minor;
3685 break;
3686 default:
3687 ERR("Unknown relayd socket type (%d)", sock_type);
3688 ret_code = LTTCOMM_CONSUMERD_FATAL;
3689 goto error;
3690 }
3691
3692 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3693 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3694 relayd->net_seq_idx, fd);
3695 /*
3696 * We gave the ownership of the fd to the relayd structure. Set the
3697 * fd to -1 so we don't call close() on it in the error path below.
3698 */
3699 fd = -1;
3700
3701 /* We successfully added the socket. Send status back. */
3702 ret = consumer_send_status_msg(sock, ret_code);
3703 if (ret < 0) {
3704 /* Somehow, the session daemon is not responding anymore. */
3705 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3706 goto error_nosignal;
3707 }
3708
3709 /*
3710 * Add relayd socket pair to consumer data hashtable. If object already
3711 * exists or on error, the function gracefully returns.
3712 */
3713 relayd->ctx = ctx;
3714 add_relayd(relayd);
3715
3716 /* All good! */
3717 return;
3718
3719 error:
3720 if (consumer_send_status_msg(sock, ret_code) < 0) {
3721 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3722 }
3723
3724 error_nosignal:
3725 /* Close received socket if valid. */
3726 if (fd >= 0) {
3727 if (close(fd)) {
3728 PERROR("close received socket");
3729 }
3730 }
3731
3732 if (relayd_created) {
3733 free(relayd);
3734 }
3735 }
3736
3737 /*
3738 * Search for a relayd associated to the session id and return the reference.
3739 *
3740 * A rcu read side lock MUST be acquire before calling this function and locked
3741 * until the relayd object is no longer necessary.
3742 */
3743 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3744 {
3745 struct lttng_ht_iter iter;
3746 struct consumer_relayd_sock_pair *relayd = NULL;
3747
3748 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3749 cds_lfht_for_each_entry(the_consumer_data.relayd_ht->ht, &iter.iter,
3750 relayd, node.node) {
3751 /*
3752 * Check by sessiond id which is unique here where the relayd session
3753 * id might not be when having multiple relayd.
3754 */
3755 if (relayd->sessiond_session_id == id) {
3756 /* Found the relayd. There can be only one per id. */
3757 goto found;
3758 }
3759 }
3760
3761 return NULL;
3762
3763 found:
3764 return relayd;
3765 }
3766
3767 /*
3768 * Check if for a given session id there is still data needed to be extract
3769 * from the buffers.
3770 *
3771 * Return 1 if data is pending or else 0 meaning ready to be read.
3772 */
3773 int consumer_data_pending(uint64_t id)
3774 {
3775 int ret;
3776 struct lttng_ht_iter iter;
3777 struct lttng_ht *ht;
3778 struct lttng_consumer_stream *stream;
3779 struct consumer_relayd_sock_pair *relayd = NULL;
3780 int (*data_pending)(struct lttng_consumer_stream *);
3781
3782 DBG("Consumer data pending command on session id %" PRIu64, id);
3783
3784 rcu_read_lock();
3785 pthread_mutex_lock(&the_consumer_data.lock);
3786
3787 switch (the_consumer_data.type) {
3788 case LTTNG_CONSUMER_KERNEL:
3789 data_pending = lttng_kconsumer_data_pending;
3790 break;
3791 case LTTNG_CONSUMER32_UST:
3792 case LTTNG_CONSUMER64_UST:
3793 data_pending = lttng_ustconsumer_data_pending;
3794 break;
3795 default:
3796 ERR("Unknown consumer data type");
3797 assert(0);
3798 }
3799
3800 /* Ease our life a bit */
3801 ht = the_consumer_data.stream_list_ht;
3802
3803 cds_lfht_for_each_entry_duplicate(ht->ht,
3804 ht->hash_fct(&id, lttng_ht_seed),
3805 ht->match_fct, &id,
3806 &iter.iter, stream, node_session_id.node) {
3807 pthread_mutex_lock(&stream->lock);
3808
3809 /*
3810 * A removed node from the hash table indicates that the stream has
3811 * been deleted thus having a guarantee that the buffers are closed
3812 * on the consumer side. However, data can still be transmitted
3813 * over the network so don't skip the relayd check.
3814 */
3815 ret = cds_lfht_is_node_deleted(&stream->node.node);
3816 if (!ret) {
3817 /* Check the stream if there is data in the buffers. */
3818 ret = data_pending(stream);
3819 if (ret == 1) {
3820 pthread_mutex_unlock(&stream->lock);
3821 goto data_pending;
3822 }
3823 }
3824
3825 pthread_mutex_unlock(&stream->lock);
3826 }
3827
3828 relayd = find_relayd_by_session_id(id);
3829 if (relayd) {
3830 unsigned int is_data_inflight = 0;
3831
3832 /* Send init command for data pending. */
3833 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3834 ret = relayd_begin_data_pending(&relayd->control_sock,
3835 relayd->relayd_session_id);
3836 if (ret < 0) {
3837 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3838 /* Communication error thus the relayd so no data pending. */
3839 goto data_not_pending;
3840 }
3841
3842 cds_lfht_for_each_entry_duplicate(ht->ht,
3843 ht->hash_fct(&id, lttng_ht_seed),
3844 ht->match_fct, &id,
3845 &iter.iter, stream, node_session_id.node) {
3846 if (stream->metadata_flag) {
3847 ret = relayd_quiescent_control(&relayd->control_sock,
3848 stream->relayd_stream_id);
3849 } else {
3850 ret = relayd_data_pending(&relayd->control_sock,
3851 stream->relayd_stream_id,
3852 stream->next_net_seq_num - 1);
3853 }
3854
3855 if (ret == 1) {
3856 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3857 goto data_pending;
3858 } else if (ret < 0) {
3859 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3860 lttng_consumer_cleanup_relayd(relayd);
3861 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3862 goto data_not_pending;
3863 }
3864 }
3865
3866 /* Send end command for data pending. */
3867 ret = relayd_end_data_pending(&relayd->control_sock,
3868 relayd->relayd_session_id, &is_data_inflight);
3869 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3870 if (ret < 0) {
3871 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3872 lttng_consumer_cleanup_relayd(relayd);
3873 goto data_not_pending;
3874 }
3875 if (is_data_inflight) {
3876 goto data_pending;
3877 }
3878 }
3879
3880 /*
3881 * Finding _no_ node in the hash table and no inflight data means that the
3882 * stream(s) have been removed thus data is guaranteed to be available for
3883 * analysis from the trace files.
3884 */
3885
3886 data_not_pending:
3887 /* Data is available to be read by a viewer. */
3888 pthread_mutex_unlock(&the_consumer_data.lock);
3889 rcu_read_unlock();
3890 return 0;
3891
3892 data_pending:
3893 /* Data is still being extracted from buffers. */
3894 pthread_mutex_unlock(&the_consumer_data.lock);
3895 rcu_read_unlock();
3896 return 1;
3897 }
3898
3899 /*
3900 * Send a ret code status message to the sessiond daemon.
3901 *
3902 * Return the sendmsg() return value.
3903 */
3904 int consumer_send_status_msg(int sock, int ret_code)
3905 {
3906 struct lttcomm_consumer_status_msg msg;
3907
3908 memset(&msg, 0, sizeof(msg));
3909 msg.ret_code = ret_code;
3910
3911 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3912 }
3913
3914 /*
3915 * Send a channel status message to the sessiond daemon.
3916 *
3917 * Return the sendmsg() return value.
3918 */
3919 int consumer_send_status_channel(int sock,
3920 struct lttng_consumer_channel *channel)
3921 {
3922 struct lttcomm_consumer_status_channel msg;
3923
3924 assert(sock >= 0);
3925
3926 memset(&msg, 0, sizeof(msg));
3927 if (!channel) {
3928 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3929 } else {
3930 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3931 msg.key = channel->key;
3932 msg.stream_count = channel->streams.count;
3933 }
3934
3935 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3936 }
3937
3938 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3939 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3940 uint64_t max_sb_size)
3941 {
3942 unsigned long start_pos;
3943
3944 if (!nb_packets_per_stream) {
3945 return consumed_pos; /* Grab everything */
3946 }
3947 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3948 start_pos -= max_sb_size * nb_packets_per_stream;
3949 if ((long) (start_pos - consumed_pos) < 0) {
3950 return consumed_pos; /* Grab everything */
3951 }
3952 return start_pos;
3953 }
3954
3955 /* Stream lock must be held by the caller. */
3956 static int sample_stream_positions(struct lttng_consumer_stream *stream,
3957 unsigned long *produced, unsigned long *consumed)
3958 {
3959 int ret;
3960
3961 ASSERT_LOCKED(stream->lock);
3962
3963 ret = lttng_consumer_sample_snapshot_positions(stream);
3964 if (ret < 0) {
3965 ERR("Failed to sample snapshot positions");
3966 goto end;
3967 }
3968
3969 ret = lttng_consumer_get_produced_snapshot(stream, produced);
3970 if (ret < 0) {
3971 ERR("Failed to sample produced position");
3972 goto end;
3973 }
3974
3975 ret = lttng_consumer_get_consumed_snapshot(stream, consumed);
3976 if (ret < 0) {
3977 ERR("Failed to sample consumed position");
3978 goto end;
3979 }
3980
3981 end:
3982 return ret;
3983 }
3984
3985 /*
3986 * Sample the rotate position for all the streams of a channel. If a stream
3987 * is already at the rotate position (produced == consumed), we flag it as
3988 * ready for rotation. The rotation of ready streams occurs after we have
3989 * replied to the session daemon that we have finished sampling the positions.
3990 * Must be called with RCU read-side lock held to ensure existence of channel.
3991 *
3992 * Returns 0 on success, < 0 on error
3993 */
3994 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
3995 uint64_t key, uint64_t relayd_id, uint32_t metadata,
3996 struct lttng_consumer_local_data *ctx)
3997 {
3998 int ret;
3999 struct lttng_consumer_stream *stream;
4000 struct lttng_ht_iter iter;
4001 struct lttng_ht *ht = the_consumer_data.stream_per_chan_id_ht;
4002 struct lttng_dynamic_array stream_rotation_positions;
4003 uint64_t next_chunk_id, stream_count = 0;
4004 enum lttng_trace_chunk_status chunk_status;
4005 const bool is_local_trace = relayd_id == -1ULL;
4006 struct consumer_relayd_sock_pair *relayd = NULL;
4007 bool rotating_to_new_chunk = true;
4008 /* Array of `struct lttng_consumer_stream *` */
4009 struct lttng_dynamic_pointer_array streams_packet_to_open;
4010 size_t stream_idx;
4011
4012 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4013
4014 lttng_dynamic_array_init(&stream_rotation_positions,
4015 sizeof(struct relayd_stream_rotation_position), NULL);
4016 lttng_dynamic_pointer_array_init(&streams_packet_to_open, NULL);
4017
4018 rcu_read_lock();
4019
4020 pthread_mutex_lock(&channel->lock);
4021 assert(channel->trace_chunk);
4022 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
4023 &next_chunk_id);
4024 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4025 ret = -1;
4026 goto end_unlock_channel;
4027 }
4028
4029 cds_lfht_for_each_entry_duplicate(ht->ht,
4030 ht->hash_fct(&channel->key, lttng_ht_seed),
4031 ht->match_fct, &channel->key, &iter.iter,
4032 stream, node_channel_id.node) {
4033 unsigned long produced_pos = 0, consumed_pos = 0;
4034
4035 health_code_update();
4036
4037 /*
4038 * Lock stream because we are about to change its state.
4039 */
4040 pthread_mutex_lock(&stream->lock);
4041
4042 if (stream->trace_chunk == stream->chan->trace_chunk) {
4043 rotating_to_new_chunk = false;
4044 }
4045
4046 /*
4047 * Do not flush a packet when rotating from a NULL trace
4048 * chunk. The stream has no means to output data, and the prior
4049 * rotation which rotated to NULL performed that side-effect
4050 * already. No new data can be produced when a stream has no
4051 * associated trace chunk (e.g. a stop followed by a rotate).
4052 */
4053 if (stream->trace_chunk) {
4054 bool flush_active;
4055
4056 if (stream->metadata_flag) {
4057 /*
4058 * Don't produce an empty metadata packet,
4059 * simply close the current one.
4060 *
4061 * Metadata is regenerated on every trace chunk
4062 * switch; there is no concern that no data was
4063 * produced.
4064 */
4065 flush_active = true;
4066 } else {
4067 /*
4068 * Only flush an empty packet if the "packet
4069 * open" could not be performed on transition
4070 * to a new trace chunk and no packets were
4071 * consumed within the chunk's lifetime.
4072 */
4073 if (stream->opened_packet_in_current_trace_chunk) {
4074 flush_active = true;
4075 } else {
4076 /*
4077 * Stream could have been full at the
4078 * time of rotation, but then have had
4079 * no activity at all.
4080 *
4081 * It is important to flush a packet
4082 * to prevent 0-length files from being
4083 * produced as most viewers choke on
4084 * them.
4085 *
4086 * Unfortunately viewers will not be
4087 * able to know that tracing was active
4088 * for this stream during this trace
4089 * chunk's lifetime.
4090 */
4091 ret = sample_stream_positions(stream, &produced_pos, &consumed_pos);
4092 if (ret) {
4093 goto end_unlock_stream;
4094 }
4095
4096 /*
4097 * Don't flush an empty packet if data
4098 * was produced; it will be consumed
4099 * before the rotation completes.
4100 */
4101 flush_active = produced_pos != consumed_pos;
4102 if (!flush_active) {
4103 const char *trace_chunk_name;
4104 uint64_t trace_chunk_id;
4105
4106 chunk_status = lttng_trace_chunk_get_name(
4107 stream->trace_chunk,
4108 &trace_chunk_name,
4109 NULL);
4110 if (chunk_status == LTTNG_TRACE_CHUNK_STATUS_NONE) {
4111 trace_chunk_name = "none";
4112 }
4113
4114 /*
4115 * Consumer trace chunks are
4116 * never anonymous.
4117 */
4118 chunk_status = lttng_trace_chunk_get_id(
4119 stream->trace_chunk,
4120 &trace_chunk_id);
4121 assert(chunk_status ==
4122 LTTNG_TRACE_CHUNK_STATUS_OK);
4123
4124 DBG("Unable to open packet for stream during trace chunk's lifetime. "
4125 "Flushing an empty packet to prevent an empty file from being created: "
4126 "stream id = %" PRIu64 ", trace chunk name = `%s`, trace chunk id = %" PRIu64,
4127 stream->key, trace_chunk_name, trace_chunk_id);
4128 }
4129 }
4130 }
4131
4132 /*
4133 * Close the current packet before sampling the
4134 * ring buffer positions.
4135 */
4136 ret = consumer_stream_flush_buffer(stream, flush_active);
4137 if (ret < 0) {
4138 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4139 stream->key);
4140 goto end_unlock_stream;
4141 }
4142 }
4143
4144 ret = lttng_consumer_take_snapshot(stream);
4145 if (ret < 0 && ret != -ENODATA && ret != -EAGAIN) {
4146 ERR("Failed to sample snapshot position during channel rotation");
4147 goto end_unlock_stream;
4148 }
4149 if (!ret) {
4150 ret = lttng_consumer_get_produced_snapshot(stream,
4151 &produced_pos);
4152 if (ret < 0) {
4153 ERR("Failed to sample produced position during channel rotation");
4154 goto end_unlock_stream;
4155 }
4156
4157 ret = lttng_consumer_get_consumed_snapshot(stream,
4158 &consumed_pos);
4159 if (ret < 0) {
4160 ERR("Failed to sample consumed position during channel rotation");
4161 goto end_unlock_stream;
4162 }
4163 }
4164 /*
4165 * Align produced position on the start-of-packet boundary of the first
4166 * packet going into the next trace chunk.
4167 */
4168 produced_pos = ALIGN_FLOOR(produced_pos, stream->max_sb_size);
4169 if (consumed_pos == produced_pos) {
4170 DBG("Set rotate ready for stream %" PRIu64 " produced = %lu consumed = %lu",
4171 stream->key, produced_pos, consumed_pos);
4172 stream->rotate_ready = true;
4173 } else {
4174 DBG("Different consumed and produced positions "
4175 "for stream %" PRIu64 " produced = %lu consumed = %lu",
4176 stream->key, produced_pos, consumed_pos);
4177 }
4178 /*
4179 * The rotation position is based on the packet_seq_num of the
4180 * packet following the last packet that was consumed for this
4181 * stream, incremented by the offset between produced and
4182 * consumed positions. This rotation position is a lower bound
4183 * (inclusive) at which the next trace chunk starts. Since it
4184 * is a lower bound, it is OK if the packet_seq_num does not
4185 * correspond exactly to the same packet identified by the
4186 * consumed_pos, which can happen in overwrite mode.
4187 */
4188 if (stream->sequence_number_unavailable) {
4189 /*
4190 * Rotation should never be performed on a session which
4191 * interacts with a pre-2.8 lttng-modules, which does
4192 * not implement packet sequence number.
4193 */
4194 ERR("Failure to rotate stream %" PRIu64 ": sequence number unavailable",
4195 stream->key);
4196 ret = -1;
4197 goto end_unlock_stream;
4198 }
4199 stream->rotate_position = stream->last_sequence_number + 1 +
4200 ((produced_pos - consumed_pos) / stream->max_sb_size);
4201 DBG("Set rotation position for stream %" PRIu64 " at position %" PRIu64,
4202 stream->key, stream->rotate_position);
4203
4204 if (!is_local_trace) {
4205 /*
4206 * The relay daemon control protocol expects a rotation
4207 * position as "the sequence number of the first packet
4208 * _after_ the current trace chunk".
4209 */
4210 const struct relayd_stream_rotation_position position = {
4211 .stream_id = stream->relayd_stream_id,
4212 .rotate_at_seq_num = stream->rotate_position,
4213 };
4214
4215 ret = lttng_dynamic_array_add_element(
4216 &stream_rotation_positions,
4217 &position);
4218 if (ret) {
4219 ERR("Failed to allocate stream rotation position");
4220 goto end_unlock_stream;
4221 }
4222 stream_count++;
4223 }
4224
4225 stream->opened_packet_in_current_trace_chunk = false;
4226
4227 if (rotating_to_new_chunk && !stream->metadata_flag) {
4228 /*
4229 * Attempt to flush an empty packet as close to the
4230 * rotation point as possible. In the event where a
4231 * stream remains inactive after the rotation point,
4232 * this ensures that the new trace chunk has a
4233 * beginning timestamp set at the begining of the
4234 * trace chunk instead of only creating an empty
4235 * packet when the trace chunk is stopped.
4236 *
4237 * This indicates to the viewers that the stream
4238 * was being recorded, but more importantly it
4239 * allows viewers to determine a useable trace
4240 * intersection.
4241 *
4242 * This presents a problem in the case where the
4243 * ring-buffer is completely full.
4244 *
4245 * Consider the following scenario:
4246 * - The consumption of data is slow (slow network,
4247 * for instance),
4248 * - The ring buffer is full,
4249 * - A rotation is initiated,
4250 * - The flush below does nothing (no space left to
4251 * open a new packet),
4252 * - The other streams rotate very soon, and new
4253 * data is produced in the new chunk,
4254 * - This stream completes its rotation long after the
4255 * rotation was initiated
4256 * - The session is stopped before any event can be
4257 * produced in this stream's buffers.
4258 *
4259 * The resulting trace chunk will have a single packet
4260 * temporaly at the end of the trace chunk for this
4261 * stream making the stream intersection more narrow
4262 * than it should be.
4263 *
4264 * To work-around this, an empty flush is performed
4265 * after the first consumption of a packet during a
4266 * rotation if open_packet fails. The idea is that
4267 * consuming a packet frees enough space to switch
4268 * packets in this scenario and allows the tracer to
4269 * "stamp" the beginning of the new trace chunk at the
4270 * earliest possible point.
4271 *
4272 * The packet open is performed after the channel
4273 * rotation to ensure that no attempt to open a packet
4274 * is performed in a stream that has no active trace
4275 * chunk.
4276 */
4277 ret = lttng_dynamic_pointer_array_add_pointer(
4278 &streams_packet_to_open, stream);
4279 if (ret) {
4280 PERROR("Failed to add a stream pointer to array of streams in which to open a packet");
4281 ret = -1;
4282 goto end_unlock_stream;
4283 }
4284 }
4285
4286 pthread_mutex_unlock(&stream->lock);
4287 }
4288 stream = NULL;
4289
4290 if (!is_local_trace) {
4291 relayd = consumer_find_relayd(relayd_id);
4292 if (!relayd) {
4293 ERR("Failed to find relayd %" PRIu64, relayd_id);
4294 ret = -1;
4295 goto end_unlock_channel;
4296 }
4297
4298 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4299 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4300 rotating_to_new_chunk ? &next_chunk_id : NULL,
4301 (const struct relayd_stream_rotation_position *)
4302 stream_rotation_positions.buffer
4303 .data);
4304 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4305 if (ret < 0) {
4306 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4307 relayd->net_seq_idx);
4308 lttng_consumer_cleanup_relayd(relayd);
4309 goto end_unlock_channel;
4310 }
4311 }
4312
4313 for (stream_idx = 0;
4314 stream_idx < lttng_dynamic_pointer_array_get_count(
4315 &streams_packet_to_open);
4316 stream_idx++) {
4317 enum consumer_stream_open_packet_status status;
4318
4319 stream = lttng_dynamic_pointer_array_get_pointer(
4320 &streams_packet_to_open, stream_idx);
4321
4322 pthread_mutex_lock(&stream->lock);
4323 status = consumer_stream_open_packet(stream);
4324 pthread_mutex_unlock(&stream->lock);
4325 switch (status) {
4326 case CONSUMER_STREAM_OPEN_PACKET_STATUS_OPENED:
4327 DBG("Opened a packet after a rotation: stream id = %" PRIu64
4328 ", channel name = %s, session id = %" PRIu64,
4329 stream->key, stream->chan->name,
4330 stream->chan->session_id);
4331 break;
4332 case CONSUMER_STREAM_OPEN_PACKET_STATUS_NO_SPACE:
4333 /*
4334 * Can't open a packet as there is no space left
4335 * in the buffer. A new packet will be opened
4336 * once one has been consumed.
4337 */
4338 DBG("No space left to open a packet after a rotation: stream id = %" PRIu64
4339 ", channel name = %s, session id = %" PRIu64,
4340 stream->key, stream->chan->name,
4341 stream->chan->session_id);
4342 break;
4343 case CONSUMER_STREAM_OPEN_PACKET_STATUS_ERROR:
4344 /* Logged by callee. */
4345 ret = -1;
4346 goto end_unlock_channel;
4347 default:
4348 abort();
4349 }
4350 }
4351
4352 pthread_mutex_unlock(&channel->lock);
4353 ret = 0;
4354 goto end;
4355
4356 end_unlock_stream:
4357 pthread_mutex_unlock(&stream->lock);
4358 end_unlock_channel:
4359 pthread_mutex_unlock(&channel->lock);
4360 end:
4361 rcu_read_unlock();
4362 lttng_dynamic_array_reset(&stream_rotation_positions);
4363 lttng_dynamic_pointer_array_reset(&streams_packet_to_open);
4364 return ret;
4365 }
4366
4367 static
4368 int consumer_clear_buffer(struct lttng_consumer_stream *stream)
4369 {
4370 int ret = 0;
4371 unsigned long consumed_pos_before, consumed_pos_after;
4372
4373 ret = lttng_consumer_sample_snapshot_positions(stream);
4374 if (ret < 0) {
4375 ERR("Taking snapshot positions");
4376 goto end;
4377 }
4378
4379 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_before);
4380 if (ret < 0) {
4381 ERR("Consumed snapshot position");
4382 goto end;
4383 }
4384
4385 switch (the_consumer_data.type) {
4386 case LTTNG_CONSUMER_KERNEL:
4387 ret = kernctl_buffer_clear(stream->wait_fd);
4388 if (ret < 0) {
4389 ERR("Failed to clear kernel stream (ret = %d)", ret);
4390 goto end;
4391 }
4392 break;
4393 case LTTNG_CONSUMER32_UST:
4394 case LTTNG_CONSUMER64_UST:
4395 lttng_ustconsumer_clear_buffer(stream);
4396 break;
4397 default:
4398 ERR("Unknown consumer_data type");
4399 abort();
4400 }
4401
4402 ret = lttng_consumer_sample_snapshot_positions(stream);
4403 if (ret < 0) {
4404 ERR("Taking snapshot positions");
4405 goto end;
4406 }
4407 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_after);
4408 if (ret < 0) {
4409 ERR("Consumed snapshot position");
4410 goto end;
4411 }
4412 DBG("clear: before: %lu after: %lu", consumed_pos_before, consumed_pos_after);
4413 end:
4414 return ret;
4415 }
4416
4417 static
4418 int consumer_clear_stream(struct lttng_consumer_stream *stream)
4419 {
4420 int ret;
4421
4422 ret = consumer_stream_flush_buffer(stream, 1);
4423 if (ret < 0) {
4424 ERR("Failed to flush stream %" PRIu64 " during channel clear",
4425 stream->key);
4426 ret = LTTCOMM_CONSUMERD_FATAL;
4427 goto error;
4428 }
4429
4430 ret = consumer_clear_buffer(stream);
4431 if (ret < 0) {
4432 ERR("Failed to clear stream %" PRIu64 " during channel clear",
4433 stream->key);
4434 ret = LTTCOMM_CONSUMERD_FATAL;
4435 goto error;
4436 }
4437
4438 ret = LTTCOMM_CONSUMERD_SUCCESS;
4439 error:
4440 return ret;
4441 }
4442
4443 static
4444 int consumer_clear_unmonitored_channel(struct lttng_consumer_channel *channel)
4445 {
4446 int ret;
4447 struct lttng_consumer_stream *stream;
4448
4449 rcu_read_lock();
4450 pthread_mutex_lock(&channel->lock);
4451 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
4452 health_code_update();
4453 pthread_mutex_lock(&stream->lock);
4454 ret = consumer_clear_stream(stream);
4455 if (ret) {
4456 goto error_unlock;
4457 }
4458 pthread_mutex_unlock(&stream->lock);
4459 }
4460 pthread_mutex_unlock(&channel->lock);
4461 rcu_read_unlock();
4462 return 0;
4463
4464 error_unlock:
4465 pthread_mutex_unlock(&stream->lock);
4466 pthread_mutex_unlock(&channel->lock);
4467 rcu_read_unlock();
4468 return ret;
4469 }
4470
4471 /*
4472 * Check if a stream is ready to be rotated after extracting it.
4473 *
4474 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4475 * error. Stream lock must be held.
4476 */
4477 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4478 {
4479 DBG("Check is rotate ready for stream %" PRIu64
4480 " ready %u rotate_position %" PRIu64
4481 " last_sequence_number %" PRIu64,
4482 stream->key, stream->rotate_ready,
4483 stream->rotate_position, stream->last_sequence_number);
4484 if (stream->rotate_ready) {
4485 return 1;
4486 }
4487
4488 /*
4489 * If packet seq num is unavailable, it means we are interacting
4490 * with a pre-2.8 lttng-modules which does not implement the
4491 * sequence number. Rotation should never be used by sessiond in this
4492 * scenario.
4493 */
4494 if (stream->sequence_number_unavailable) {
4495 ERR("Internal error: rotation used on stream %" PRIu64
4496 " with unavailable sequence number",
4497 stream->key);
4498 return -1;
4499 }
4500
4501 if (stream->rotate_position == -1ULL ||
4502 stream->last_sequence_number == -1ULL) {
4503 return 0;
4504 }
4505
4506 /*
4507 * Rotate position not reached yet. The stream rotate position is
4508 * the position of the next packet belonging to the next trace chunk,
4509 * but consumerd considers rotation ready when reaching the last
4510 * packet of the current chunk, hence the "rotate_position - 1".
4511 */
4512
4513 DBG("Check is rotate ready for stream %" PRIu64
4514 " last_sequence_number %" PRIu64
4515 " rotate_position %" PRIu64,
4516 stream->key, stream->last_sequence_number,
4517 stream->rotate_position);
4518 if (stream->last_sequence_number >= stream->rotate_position - 1) {
4519 return 1;
4520 }
4521
4522 return 0;
4523 }
4524
4525 /*
4526 * Reset the state for a stream after a rotation occurred.
4527 */
4528 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4529 {
4530 DBG("lttng_consumer_reset_stream_rotate_state for stream %" PRIu64,
4531 stream->key);
4532 stream->rotate_position = -1ULL;
4533 stream->rotate_ready = false;
4534 }
4535
4536 /*
4537 * Perform the rotation a local stream file.
4538 */
4539 static
4540 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4541 struct lttng_consumer_stream *stream)
4542 {
4543 int ret = 0;
4544
4545 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4546 stream->key,
4547 stream->chan->key);
4548 stream->tracefile_size_current = 0;
4549 stream->tracefile_count_current = 0;
4550
4551 if (stream->out_fd >= 0) {
4552 ret = close(stream->out_fd);
4553 if (ret) {
4554 PERROR("Failed to close stream out_fd of channel \"%s\"",
4555 stream->chan->name);
4556 }
4557 stream->out_fd = -1;
4558 }
4559
4560 if (stream->index_file) {
4561 lttng_index_file_put(stream->index_file);
4562 stream->index_file = NULL;
4563 }
4564
4565 if (!stream->trace_chunk) {
4566 goto end;
4567 }
4568
4569 ret = consumer_stream_create_output_files(stream, true);
4570 end:
4571 return ret;
4572 }
4573
4574 /*
4575 * Performs the stream rotation for the rotate session feature if needed.
4576 * It must be called with the channel and stream locks held.
4577 *
4578 * Return 0 on success, a negative number of error.
4579 */
4580 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4581 struct lttng_consumer_stream *stream)
4582 {
4583 int ret;
4584
4585 DBG("Consumer rotate stream %" PRIu64, stream->key);
4586
4587 /*
4588 * Update the stream's 'current' chunk to the session's (channel)
4589 * now-current chunk.
4590 */
4591 lttng_trace_chunk_put(stream->trace_chunk);
4592 if (stream->chan->trace_chunk == stream->trace_chunk) {
4593 /*
4594 * A channel can be rotated and not have a "next" chunk
4595 * to transition to. In that case, the channel's "current chunk"
4596 * has not been closed yet, but it has not been updated to
4597 * a "next" trace chunk either. Hence, the stream, like its
4598 * parent channel, becomes part of no chunk and can't output
4599 * anything until a new trace chunk is created.
4600 */
4601 stream->trace_chunk = NULL;
4602 } else if (stream->chan->trace_chunk &&
4603 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4604 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4605 ret = -1;
4606 goto error;
4607 } else {
4608 /*
4609 * Update the stream's trace chunk to its parent channel's
4610 * current trace chunk.
4611 */
4612 stream->trace_chunk = stream->chan->trace_chunk;
4613 }
4614
4615 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4616 ret = rotate_local_stream(ctx, stream);
4617 if (ret < 0) {
4618 ERR("Failed to rotate stream, ret = %i", ret);
4619 goto error;
4620 }
4621 }
4622
4623 if (stream->metadata_flag && stream->trace_chunk) {
4624 /*
4625 * If the stream has transitioned to a new trace
4626 * chunk, the metadata should be re-dumped to the
4627 * newest chunk.
4628 *
4629 * However, it is possible for a stream to transition to
4630 * a "no-chunk" state. This can happen if a rotation
4631 * occurs on an inactive session. In such cases, the metadata
4632 * regeneration will happen when the next trace chunk is
4633 * created.
4634 */
4635 ret = consumer_metadata_stream_dump(stream);
4636 if (ret) {
4637 goto error;
4638 }
4639 }
4640 lttng_consumer_reset_stream_rotate_state(stream);
4641
4642 ret = 0;
4643
4644 error:
4645 return ret;
4646 }
4647
4648 /*
4649 * Rotate all the ready streams now.
4650 *
4651 * This is especially important for low throughput streams that have already
4652 * been consumed, we cannot wait for their next packet to perform the
4653 * rotation.
4654 * Need to be called with RCU read-side lock held to ensure existence of
4655 * channel.
4656 *
4657 * Returns 0 on success, < 0 on error
4658 */
4659 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4660 uint64_t key, struct lttng_consumer_local_data *ctx)
4661 {
4662 int ret;
4663 struct lttng_consumer_stream *stream;
4664 struct lttng_ht_iter iter;
4665 struct lttng_ht *ht = the_consumer_data.stream_per_chan_id_ht;
4666
4667 rcu_read_lock();
4668
4669 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4670
4671 cds_lfht_for_each_entry_duplicate(ht->ht,
4672 ht->hash_fct(&channel->key, lttng_ht_seed),
4673 ht->match_fct, &channel->key, &iter.iter,
4674 stream, node_channel_id.node) {
4675 health_code_update();
4676
4677 pthread_mutex_lock(&stream->chan->lock);
4678 pthread_mutex_lock(&stream->lock);
4679
4680 if (!stream->rotate_ready) {
4681 pthread_mutex_unlock(&stream->lock);
4682 pthread_mutex_unlock(&stream->chan->lock);
4683 continue;
4684 }
4685 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4686
4687 ret = lttng_consumer_rotate_stream(ctx, stream);
4688 pthread_mutex_unlock(&stream->lock);
4689 pthread_mutex_unlock(&stream->chan->lock);
4690 if (ret) {
4691 goto end;
4692 }
4693 }
4694
4695 ret = 0;
4696
4697 end:
4698 rcu_read_unlock();
4699 return ret;
4700 }
4701
4702 enum lttcomm_return_code lttng_consumer_init_command(
4703 struct lttng_consumer_local_data *ctx,
4704 const lttng_uuid sessiond_uuid)
4705 {
4706 enum lttcomm_return_code ret;
4707 char uuid_str[LTTNG_UUID_STR_LEN];
4708
4709 if (ctx->sessiond_uuid.is_set) {
4710 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4711 goto end;
4712 }
4713
4714 ctx->sessiond_uuid.is_set = true;
4715 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4716 ret = LTTCOMM_CONSUMERD_SUCCESS;
4717 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4718 DBG("Received session daemon UUID: %s", uuid_str);
4719 end:
4720 return ret;
4721 }
4722
4723 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4724 const uint64_t *relayd_id, uint64_t session_id,
4725 uint64_t chunk_id,
4726 time_t chunk_creation_timestamp,
4727 const char *chunk_override_name,
4728 const struct lttng_credentials *credentials,
4729 struct lttng_directory_handle *chunk_directory_handle)
4730 {
4731 int ret;
4732 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4733 struct lttng_trace_chunk *created_chunk = NULL, *published_chunk = NULL;
4734 enum lttng_trace_chunk_status chunk_status;
4735 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4736 char creation_timestamp_buffer[ISO8601_STR_LEN];
4737 const char *relayd_id_str = "(none)";
4738 const char *creation_timestamp_str;
4739 struct lttng_ht_iter iter;
4740 struct lttng_consumer_channel *channel;
4741
4742 if (relayd_id) {
4743 /* Only used for logging purposes. */
4744 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4745 "%" PRIu64, *relayd_id);
4746 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4747 relayd_id_str = relayd_id_buffer;
4748 } else {
4749 relayd_id_str = "(formatting error)";
4750 }
4751 }
4752
4753 /* Local protocol error. */
4754 assert(chunk_creation_timestamp);
4755 ret = time_to_iso8601_str(chunk_creation_timestamp,
4756 creation_timestamp_buffer,
4757 sizeof(creation_timestamp_buffer));
4758 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4759 "(formatting error)";
4760
4761 DBG("Consumer create trace chunk command: relay_id = %s"
4762 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4763 ", chunk_override_name = %s"
4764 ", chunk_creation_timestamp = %s",
4765 relayd_id_str, session_id, chunk_id,
4766 chunk_override_name ? : "(none)",
4767 creation_timestamp_str);
4768
4769 /*
4770 * The trace chunk registry, as used by the consumer daemon, implicitly
4771 * owns the trace chunks. This is only needed in the consumer since
4772 * the consumer has no notion of a session beyond session IDs being
4773 * used to identify other objects.
4774 *
4775 * The lttng_trace_chunk_registry_publish() call below provides a
4776 * reference which is not released; it implicitly becomes the session
4777 * daemon's reference to the chunk in the consumer daemon.
4778 *
4779 * The lifetime of trace chunks in the consumer daemon is managed by
4780 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4781 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4782 */
4783 created_chunk = lttng_trace_chunk_create(chunk_id,
4784 chunk_creation_timestamp, NULL);
4785 if (!created_chunk) {
4786 ERR("Failed to create trace chunk");
4787 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4788 goto error;
4789 }
4790
4791 if (chunk_override_name) {
4792 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4793 chunk_override_name);
4794 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4795 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4796 goto error;
4797 }
4798 }
4799
4800 if (chunk_directory_handle) {
4801 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4802 credentials);
4803 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4804 ERR("Failed to set trace chunk credentials");
4805 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4806 goto error;
4807 }
4808 /*
4809 * The consumer daemon has no ownership of the chunk output
4810 * directory.
4811 */
4812 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4813 chunk_directory_handle);
4814 chunk_directory_handle = NULL;
4815 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4816 ERR("Failed to set trace chunk's directory handle");
4817 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4818 goto error;
4819 }
4820 }
4821
4822 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4823 the_consumer_data.chunk_registry, session_id,
4824 created_chunk);
4825 lttng_trace_chunk_put(created_chunk);
4826 created_chunk = NULL;
4827 if (!published_chunk) {
4828 ERR("Failed to publish trace chunk");
4829 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4830 goto error;
4831 }
4832
4833 rcu_read_lock();
4834 cds_lfht_for_each_entry_duplicate(
4835 the_consumer_data.channels_by_session_id_ht->ht,
4836 the_consumer_data.channels_by_session_id_ht->hash_fct(
4837 &session_id, lttng_ht_seed),
4838 the_consumer_data.channels_by_session_id_ht->match_fct,
4839 &session_id, &iter.iter, channel,
4840 channels_by_session_id_ht_node.node) {
4841 ret = lttng_consumer_channel_set_trace_chunk(channel,
4842 published_chunk);
4843 if (ret) {
4844 /*
4845 * Roll-back the creation of this chunk.
4846 *
4847 * This is important since the session daemon will
4848 * assume that the creation of this chunk failed and
4849 * will never ask for it to be closed, resulting
4850 * in a leak and an inconsistent state for some
4851 * channels.
4852 */
4853 enum lttcomm_return_code close_ret;
4854 char path[LTTNG_PATH_MAX];
4855
4856 DBG("Failed to set new trace chunk on existing channels, rolling back");
4857 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4858 session_id, chunk_id,
4859 chunk_creation_timestamp, NULL,
4860 path);
4861 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4862 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4863 session_id, chunk_id);
4864 }
4865
4866 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4867 break;
4868 }
4869 }
4870
4871 if (relayd_id) {
4872 struct consumer_relayd_sock_pair *relayd;
4873
4874 relayd = consumer_find_relayd(*relayd_id);
4875 if (relayd) {
4876 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4877 ret = relayd_create_trace_chunk(
4878 &relayd->control_sock, published_chunk);
4879 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4880 } else {
4881 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4882 }
4883
4884 if (!relayd || ret) {
4885 enum lttcomm_return_code close_ret;
4886 char path[LTTNG_PATH_MAX];
4887
4888 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4889 session_id,
4890 chunk_id,
4891 chunk_creation_timestamp,
4892 NULL, path);
4893 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4894 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4895 session_id,
4896 chunk_id);
4897 }
4898
4899 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4900 goto error_unlock;
4901 }
4902 }
4903 error_unlock:
4904 rcu_read_unlock();
4905 error:
4906 /* Release the reference returned by the "publish" operation. */
4907 lttng_trace_chunk_put(published_chunk);
4908 lttng_trace_chunk_put(created_chunk);
4909 return ret_code;
4910 }
4911
4912 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4913 const uint64_t *relayd_id, uint64_t session_id,
4914 uint64_t chunk_id, time_t chunk_close_timestamp,
4915 const enum lttng_trace_chunk_command_type *close_command,
4916 char *path)
4917 {
4918 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4919 struct lttng_trace_chunk *chunk;
4920 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4921 const char *relayd_id_str = "(none)";
4922 const char *close_command_name = "none";
4923 struct lttng_ht_iter iter;
4924 struct lttng_consumer_channel *channel;
4925 enum lttng_trace_chunk_status chunk_status;
4926
4927 if (relayd_id) {
4928 int ret;
4929
4930 /* Only used for logging purposes. */
4931 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4932 "%" PRIu64, *relayd_id);
4933 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4934 relayd_id_str = relayd_id_buffer;
4935 } else {
4936 relayd_id_str = "(formatting error)";
4937 }
4938 }
4939 if (close_command) {
4940 close_command_name = lttng_trace_chunk_command_type_get_name(
4941 *close_command);
4942 }
4943
4944 DBG("Consumer close trace chunk command: relayd_id = %s"
4945 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4946 ", close command = %s",
4947 relayd_id_str, session_id, chunk_id,
4948 close_command_name);
4949
4950 chunk = lttng_trace_chunk_registry_find_chunk(
4951 the_consumer_data.chunk_registry, session_id, chunk_id);
4952 if (!chunk) {
4953 ERR("Failed to find chunk: session_id = %" PRIu64
4954 ", chunk_id = %" PRIu64,
4955 session_id, chunk_id);
4956 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4957 goto end;
4958 }
4959
4960 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4961 chunk_close_timestamp);
4962 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4963 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4964 goto end;
4965 }
4966
4967 if (close_command) {
4968 chunk_status = lttng_trace_chunk_set_close_command(
4969 chunk, *close_command);
4970 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4971 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4972 goto end;
4973 }
4974 }
4975
4976 /*
4977 * chunk is now invalid to access as we no longer hold a reference to
4978 * it; it is only kept around to compare it (by address) to the
4979 * current chunk found in the session's channels.
4980 */
4981 rcu_read_lock();
4982 cds_lfht_for_each_entry(the_consumer_data.channel_ht->ht, &iter.iter,
4983 channel, node.node) {
4984 int ret;
4985
4986 /*
4987 * Only change the channel's chunk to NULL if it still
4988 * references the chunk being closed. The channel may
4989 * reference a newer channel in the case of a session
4990 * rotation. When a session rotation occurs, the "next"
4991 * chunk is created before the "current" chunk is closed.
4992 */
4993 if (channel->trace_chunk != chunk) {
4994 continue;
4995 }
4996 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4997 if (ret) {
4998 /*
4999 * Attempt to close the chunk on as many channels as
5000 * possible.
5001 */
5002 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
5003 }
5004 }
5005
5006 if (relayd_id) {
5007 int ret;
5008 struct consumer_relayd_sock_pair *relayd;
5009
5010 relayd = consumer_find_relayd(*relayd_id);
5011 if (relayd) {
5012 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
5013 ret = relayd_close_trace_chunk(
5014 &relayd->control_sock, chunk,
5015 path);
5016 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
5017 } else {
5018 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
5019 *relayd_id);
5020 }
5021
5022 if (!relayd || ret) {
5023 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
5024 goto error_unlock;
5025 }
5026 }
5027 error_unlock:
5028 rcu_read_unlock();
5029 end:
5030 /*
5031 * Release the reference returned by the "find" operation and
5032 * the session daemon's implicit reference to the chunk.
5033 */
5034 lttng_trace_chunk_put(chunk);
5035 lttng_trace_chunk_put(chunk);
5036
5037 return ret_code;
5038 }
5039
5040 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
5041 const uint64_t *relayd_id, uint64_t session_id,
5042 uint64_t chunk_id)
5043 {
5044 int ret;
5045 enum lttcomm_return_code ret_code;
5046 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
5047 const char *relayd_id_str = "(none)";
5048 const bool is_local_trace = !relayd_id;
5049 struct consumer_relayd_sock_pair *relayd = NULL;
5050 bool chunk_exists_local, chunk_exists_remote;
5051
5052 if (relayd_id) {
5053 /* Only used for logging purposes. */
5054 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
5055 "%" PRIu64, *relayd_id);
5056 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
5057 relayd_id_str = relayd_id_buffer;
5058 } else {
5059 relayd_id_str = "(formatting error)";
5060 }
5061 }
5062
5063 DBG("Consumer trace chunk exists command: relayd_id = %s"
5064 ", chunk_id = %" PRIu64, relayd_id_str,
5065 chunk_id);
5066 ret = lttng_trace_chunk_registry_chunk_exists(
5067 the_consumer_data.chunk_registry, session_id, chunk_id,
5068 &chunk_exists_local);
5069 if (ret) {
5070 /* Internal error. */
5071 ERR("Failed to query the existence of a trace chunk");
5072 ret_code = LTTCOMM_CONSUMERD_FATAL;
5073 goto end;
5074 }
5075 DBG("Trace chunk %s locally",
5076 chunk_exists_local ? "exists" : "does not exist");
5077 if (chunk_exists_local) {
5078 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
5079 goto end;
5080 } else if (is_local_trace) {
5081 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
5082 goto end;
5083 }
5084
5085 rcu_read_lock();
5086 relayd = consumer_find_relayd(*relayd_id);
5087 if (!relayd) {
5088 ERR("Failed to find relayd %" PRIu64, *relayd_id);
5089 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
5090 goto end_rcu_unlock;
5091 }
5092 DBG("Looking up existence of trace chunk on relay daemon");
5093 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
5094 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
5095 &chunk_exists_remote);
5096 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
5097 if (ret < 0) {
5098 ERR("Failed to look-up the existence of trace chunk on relay daemon");
5099 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
5100 goto end_rcu_unlock;
5101 }
5102
5103 ret_code = chunk_exists_remote ?
5104 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
5105 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
5106 DBG("Trace chunk %s on relay daemon",
5107 chunk_exists_remote ? "exists" : "does not exist");
5108
5109 end_rcu_unlock:
5110 rcu_read_unlock();
5111 end:
5112 return ret_code;
5113 }
5114
5115 static
5116 int consumer_clear_monitored_channel(struct lttng_consumer_channel *channel)
5117 {
5118 struct lttng_ht *ht;
5119 struct lttng_consumer_stream *stream;
5120 struct lttng_ht_iter iter;
5121 int ret;
5122
5123 ht = the_consumer_data.stream_per_chan_id_ht;
5124
5125 rcu_read_lock();
5126 cds_lfht_for_each_entry_duplicate(ht->ht,
5127 ht->hash_fct(&channel->key, lttng_ht_seed),
5128 ht->match_fct, &channel->key,
5129 &iter.iter, stream, node_channel_id.node) {
5130 /*
5131 * Protect against teardown with mutex.
5132 */
5133 pthread_mutex_lock(&stream->lock);
5134 if (cds_lfht_is_node_deleted(&stream->node.node)) {
5135 goto next;
5136 }
5137 ret = consumer_clear_stream(stream);
5138 if (ret) {
5139 goto error_unlock;
5140 }
5141 next:
5142 pthread_mutex_unlock(&stream->lock);
5143 }
5144 rcu_read_unlock();
5145 return LTTCOMM_CONSUMERD_SUCCESS;
5146
5147 error_unlock:
5148 pthread_mutex_unlock(&stream->lock);
5149 rcu_read_unlock();
5150 return ret;
5151 }
5152
5153 int lttng_consumer_clear_channel(struct lttng_consumer_channel *channel)
5154 {
5155 int ret;
5156
5157 DBG("Consumer clear channel %" PRIu64, channel->key);
5158
5159 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
5160 /*
5161 * Nothing to do for the metadata channel/stream.
5162 * Snapshot mechanism already take care of the metadata
5163 * handling/generation, and monitored channels only need to
5164 * have their data stream cleared..
5165 */
5166 ret = LTTCOMM_CONSUMERD_SUCCESS;
5167 goto end;
5168 }
5169
5170 if (!channel->monitor) {
5171 ret = consumer_clear_unmonitored_channel(channel);
5172 } else {
5173 ret = consumer_clear_monitored_channel(channel);
5174 }
5175 end:
5176 return ret;
5177 }
5178
5179 enum lttcomm_return_code lttng_consumer_open_channel_packets(
5180 struct lttng_consumer_channel *channel)
5181 {
5182 struct lttng_consumer_stream *stream;
5183 enum lttcomm_return_code ret = LTTCOMM_CONSUMERD_SUCCESS;
5184
5185 if (channel->metadata_stream) {
5186 ERR("Open channel packets command attempted on a metadata channel");
5187 ret = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
5188 goto end;
5189 }
5190
5191 rcu_read_lock();
5192 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
5193 enum consumer_stream_open_packet_status status;
5194
5195 pthread_mutex_lock(&stream->lock);
5196 if (cds_lfht_is_node_deleted(&stream->node.node)) {
5197 goto next;
5198 }
5199
5200 status = consumer_stream_open_packet(stream);
5201 switch (status) {
5202 case CONSUMER_STREAM_OPEN_PACKET_STATUS_OPENED:
5203 DBG("Opened a packet in \"open channel packets\" command: stream id = %" PRIu64
5204 ", channel name = %s, session id = %" PRIu64,
5205 stream->key, stream->chan->name,
5206 stream->chan->session_id);
5207 stream->opened_packet_in_current_trace_chunk = true;
5208 break;
5209 case CONSUMER_STREAM_OPEN_PACKET_STATUS_NO_SPACE:
5210 DBG("No space left to open a packet in \"open channel packets\" command: stream id = %" PRIu64
5211 ", channel name = %s, session id = %" PRIu64,
5212 stream->key, stream->chan->name,
5213 stream->chan->session_id);
5214 break;
5215 case CONSUMER_STREAM_OPEN_PACKET_STATUS_ERROR:
5216 /*
5217 * Only unexpected internal errors can lead to this
5218 * failing. Report an unknown error.
5219 */
5220 ERR("Failed to flush empty buffer in \"open channel packets\" command: stream id = %" PRIu64
5221 ", channel id = %" PRIu64
5222 ", channel name = %s"
5223 ", session id = %" PRIu64,
5224 stream->key, channel->key,
5225 channel->name, channel->session_id);
5226 ret = LTTCOMM_CONSUMERD_UNKNOWN_ERROR;
5227 goto error_unlock;
5228 default:
5229 abort();
5230 }
5231
5232 next:
5233 pthread_mutex_unlock(&stream->lock);
5234 }
5235
5236 end_rcu_unlock:
5237 rcu_read_unlock();
5238 end:
5239 return ret;
5240
5241 error_unlock:
5242 pthread_mutex_unlock(&stream->lock);
5243 goto end_rcu_unlock;
5244 }
This page took 0.168385 seconds and 5 git commands to generate.