Fix: only perform lttng_consumer_sync_trace_file() in local mode
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50
51 struct lttng_consumer_global_data consumer_data = {
52 .stream_count = 0,
53 .need_update = 1,
54 .type = LTTNG_CONSUMER_UNKNOWN,
55 };
56
57 enum consumer_channel_action {
58 CONSUMER_CHANNEL_ADD,
59 CONSUMER_CHANNEL_DEL,
60 CONSUMER_CHANNEL_QUIT,
61 };
62
63 struct consumer_channel_msg {
64 enum consumer_channel_action action;
65 struct lttng_consumer_channel *chan; /* add */
66 uint64_t key; /* del */
67 };
68
69 /*
70 * Flag to inform the polling thread to quit when all fd hung up. Updated by
71 * the consumer_thread_receive_fds when it notices that all fds has hung up.
72 * Also updated by the signal handler (consumer_should_exit()). Read by the
73 * polling threads.
74 */
75 volatile int consumer_quit;
76
77 /*
78 * Global hash table containing respectively metadata and data streams. The
79 * stream element in this ht should only be updated by the metadata poll thread
80 * for the metadata and the data poll thread for the data.
81 */
82 static struct lttng_ht *metadata_ht;
83 static struct lttng_ht *data_ht;
84
85 /*
86 * Notify a thread lttng pipe to poll back again. This usually means that some
87 * global state has changed so we just send back the thread in a poll wait
88 * call.
89 */
90 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
91 {
92 struct lttng_consumer_stream *null_stream = NULL;
93
94 assert(pipe);
95
96 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
97 }
98
99 static void notify_health_quit_pipe(int *pipe)
100 {
101 ssize_t ret;
102
103 ret = lttng_write(pipe[1], "4", 1);
104 if (ret < 1) {
105 PERROR("write consumer health quit");
106 }
107 }
108
109 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
110 struct lttng_consumer_channel *chan,
111 uint64_t key,
112 enum consumer_channel_action action)
113 {
114 struct consumer_channel_msg msg;
115 ssize_t ret;
116
117 memset(&msg, 0, sizeof(msg));
118
119 msg.action = action;
120 msg.chan = chan;
121 msg.key = key;
122 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
123 if (ret < sizeof(msg)) {
124 PERROR("notify_channel_pipe write error");
125 }
126 }
127
128 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
129 uint64_t key)
130 {
131 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
132 }
133
134 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
135 struct lttng_consumer_channel **chan,
136 uint64_t *key,
137 enum consumer_channel_action *action)
138 {
139 struct consumer_channel_msg msg;
140 ssize_t ret;
141
142 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
143 if (ret < sizeof(msg)) {
144 ret = -1;
145 goto error;
146 }
147 *action = msg.action;
148 *chan = msg.chan;
149 *key = msg.key;
150 error:
151 return (int) ret;
152 }
153
154 /*
155 * Cleanup the stream list of a channel. Those streams are not yet globally
156 * visible
157 */
158 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
159 {
160 struct lttng_consumer_stream *stream, *stmp;
161
162 assert(channel);
163
164 /* Delete streams that might have been left in the stream list. */
165 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
166 send_node) {
167 cds_list_del(&stream->send_node);
168 /*
169 * Once a stream is added to this list, the buffers were created so we
170 * have a guarantee that this call will succeed. Setting the monitor
171 * mode to 0 so we don't lock nor try to delete the stream from the
172 * global hash table.
173 */
174 stream->monitor = 0;
175 consumer_stream_destroy(stream, NULL);
176 }
177 }
178
179 /*
180 * Find a stream. The consumer_data.lock must be locked during this
181 * call.
182 */
183 static struct lttng_consumer_stream *find_stream(uint64_t key,
184 struct lttng_ht *ht)
185 {
186 struct lttng_ht_iter iter;
187 struct lttng_ht_node_u64 *node;
188 struct lttng_consumer_stream *stream = NULL;
189
190 assert(ht);
191
192 /* -1ULL keys are lookup failures */
193 if (key == (uint64_t) -1ULL) {
194 return NULL;
195 }
196
197 rcu_read_lock();
198
199 lttng_ht_lookup(ht, &key, &iter);
200 node = lttng_ht_iter_get_node_u64(&iter);
201 if (node != NULL) {
202 stream = caa_container_of(node, struct lttng_consumer_stream, node);
203 }
204
205 rcu_read_unlock();
206
207 return stream;
208 }
209
210 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
211 {
212 struct lttng_consumer_stream *stream;
213
214 rcu_read_lock();
215 stream = find_stream(key, ht);
216 if (stream) {
217 stream->key = (uint64_t) -1ULL;
218 /*
219 * We don't want the lookup to match, but we still need
220 * to iterate on this stream when iterating over the hash table. Just
221 * change the node key.
222 */
223 stream->node.key = (uint64_t) -1ULL;
224 }
225 rcu_read_unlock();
226 }
227
228 /*
229 * Return a channel object for the given key.
230 *
231 * RCU read side lock MUST be acquired before calling this function and
232 * protects the channel ptr.
233 */
234 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
235 {
236 struct lttng_ht_iter iter;
237 struct lttng_ht_node_u64 *node;
238 struct lttng_consumer_channel *channel = NULL;
239
240 /* -1ULL keys are lookup failures */
241 if (key == (uint64_t) -1ULL) {
242 return NULL;
243 }
244
245 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
246 node = lttng_ht_iter_get_node_u64(&iter);
247 if (node != NULL) {
248 channel = caa_container_of(node, struct lttng_consumer_channel, node);
249 }
250
251 return channel;
252 }
253
254 /*
255 * There is a possibility that the consumer does not have enough time between
256 * the close of the channel on the session daemon and the cleanup in here thus
257 * once we have a channel add with an existing key, we know for sure that this
258 * channel will eventually get cleaned up by all streams being closed.
259 *
260 * This function just nullifies the already existing channel key.
261 */
262 static void steal_channel_key(uint64_t key)
263 {
264 struct lttng_consumer_channel *channel;
265
266 rcu_read_lock();
267 channel = consumer_find_channel(key);
268 if (channel) {
269 channel->key = (uint64_t) -1ULL;
270 /*
271 * We don't want the lookup to match, but we still need to iterate on
272 * this channel when iterating over the hash table. Just change the
273 * node key.
274 */
275 channel->node.key = (uint64_t) -1ULL;
276 }
277 rcu_read_unlock();
278 }
279
280 static void free_channel_rcu(struct rcu_head *head)
281 {
282 struct lttng_ht_node_u64 *node =
283 caa_container_of(head, struct lttng_ht_node_u64, head);
284 struct lttng_consumer_channel *channel =
285 caa_container_of(node, struct lttng_consumer_channel, node);
286
287 switch (consumer_data.type) {
288 case LTTNG_CONSUMER_KERNEL:
289 break;
290 case LTTNG_CONSUMER32_UST:
291 case LTTNG_CONSUMER64_UST:
292 lttng_ustconsumer_free_channel(channel);
293 break;
294 default:
295 ERR("Unknown consumer_data type");
296 abort();
297 }
298 free(channel);
299 }
300
301 /*
302 * RCU protected relayd socket pair free.
303 */
304 static void free_relayd_rcu(struct rcu_head *head)
305 {
306 struct lttng_ht_node_u64 *node =
307 caa_container_of(head, struct lttng_ht_node_u64, head);
308 struct consumer_relayd_sock_pair *relayd =
309 caa_container_of(node, struct consumer_relayd_sock_pair, node);
310
311 /*
312 * Close all sockets. This is done in the call RCU since we don't want the
313 * socket fds to be reassigned thus potentially creating bad state of the
314 * relayd object.
315 *
316 * We do not have to lock the control socket mutex here since at this stage
317 * there is no one referencing to this relayd object.
318 */
319 (void) relayd_close(&relayd->control_sock);
320 (void) relayd_close(&relayd->data_sock);
321
322 free(relayd);
323 }
324
325 /*
326 * Destroy and free relayd socket pair object.
327 */
328 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
329 {
330 int ret;
331 struct lttng_ht_iter iter;
332
333 if (relayd == NULL) {
334 return;
335 }
336
337 DBG("Consumer destroy and close relayd socket pair");
338
339 iter.iter.node = &relayd->node.node;
340 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
341 if (ret != 0) {
342 /* We assume the relayd is being or is destroyed */
343 return;
344 }
345
346 /* RCU free() call */
347 call_rcu(&relayd->node.head, free_relayd_rcu);
348 }
349
350 /*
351 * Remove a channel from the global list protected by a mutex. This function is
352 * also responsible for freeing its data structures.
353 */
354 void consumer_del_channel(struct lttng_consumer_channel *channel)
355 {
356 int ret;
357 struct lttng_ht_iter iter;
358
359 DBG("Consumer delete channel key %" PRIu64, channel->key);
360
361 pthread_mutex_lock(&consumer_data.lock);
362 pthread_mutex_lock(&channel->lock);
363
364 /* Destroy streams that might have been left in the stream list. */
365 clean_channel_stream_list(channel);
366
367 if (channel->live_timer_enabled == 1) {
368 consumer_timer_live_stop(channel);
369 }
370
371 switch (consumer_data.type) {
372 case LTTNG_CONSUMER_KERNEL:
373 break;
374 case LTTNG_CONSUMER32_UST:
375 case LTTNG_CONSUMER64_UST:
376 lttng_ustconsumer_del_channel(channel);
377 break;
378 default:
379 ERR("Unknown consumer_data type");
380 assert(0);
381 goto end;
382 }
383
384 rcu_read_lock();
385 iter.iter.node = &channel->node.node;
386 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
387 assert(!ret);
388 rcu_read_unlock();
389
390 call_rcu(&channel->node.head, free_channel_rcu);
391 end:
392 pthread_mutex_unlock(&channel->lock);
393 pthread_mutex_unlock(&consumer_data.lock);
394 }
395
396 /*
397 * Iterate over the relayd hash table and destroy each element. Finally,
398 * destroy the whole hash table.
399 */
400 static void cleanup_relayd_ht(void)
401 {
402 struct lttng_ht_iter iter;
403 struct consumer_relayd_sock_pair *relayd;
404
405 rcu_read_lock();
406
407 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
408 node.node) {
409 consumer_destroy_relayd(relayd);
410 }
411
412 rcu_read_unlock();
413
414 lttng_ht_destroy(consumer_data.relayd_ht);
415 }
416
417 /*
418 * Update the end point status of all streams having the given network sequence
419 * index (relayd index).
420 *
421 * It's atomically set without having the stream mutex locked which is fine
422 * because we handle the write/read race with a pipe wakeup for each thread.
423 */
424 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
425 enum consumer_endpoint_status status)
426 {
427 struct lttng_ht_iter iter;
428 struct lttng_consumer_stream *stream;
429
430 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
431
432 rcu_read_lock();
433
434 /* Let's begin with metadata */
435 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
436 if (stream->net_seq_idx == net_seq_idx) {
437 uatomic_set(&stream->endpoint_status, status);
438 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
439 }
440 }
441
442 /* Follow up by the data streams */
443 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
444 if (stream->net_seq_idx == net_seq_idx) {
445 uatomic_set(&stream->endpoint_status, status);
446 DBG("Delete flag set to data stream %d", stream->wait_fd);
447 }
448 }
449 rcu_read_unlock();
450 }
451
452 /*
453 * Cleanup a relayd object by flagging every associated streams for deletion,
454 * destroying the object meaning removing it from the relayd hash table,
455 * closing the sockets and freeing the memory in a RCU call.
456 *
457 * If a local data context is available, notify the threads that the streams'
458 * state have changed.
459 */
460 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
461 struct lttng_consumer_local_data *ctx)
462 {
463 uint64_t netidx;
464
465 assert(relayd);
466
467 DBG("Cleaning up relayd sockets");
468
469 /* Save the net sequence index before destroying the object */
470 netidx = relayd->net_seq_idx;
471
472 /*
473 * Delete the relayd from the relayd hash table, close the sockets and free
474 * the object in a RCU call.
475 */
476 consumer_destroy_relayd(relayd);
477
478 /* Set inactive endpoint to all streams */
479 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
480
481 /*
482 * With a local data context, notify the threads that the streams' state
483 * have changed. The write() action on the pipe acts as an "implicit"
484 * memory barrier ordering the updates of the end point status from the
485 * read of this status which happens AFTER receiving this notify.
486 */
487 if (ctx) {
488 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
489 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
490 }
491 }
492
493 /*
494 * Flag a relayd socket pair for destruction. Destroy it if the refcount
495 * reaches zero.
496 *
497 * RCU read side lock MUST be aquired before calling this function.
498 */
499 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
500 {
501 assert(relayd);
502
503 /* Set destroy flag for this object */
504 uatomic_set(&relayd->destroy_flag, 1);
505
506 /* Destroy the relayd if refcount is 0 */
507 if (uatomic_read(&relayd->refcount) == 0) {
508 consumer_destroy_relayd(relayd);
509 }
510 }
511
512 /*
513 * Completly destroy stream from every visiable data structure and the given
514 * hash table if one.
515 *
516 * One this call returns, the stream object is not longer usable nor visible.
517 */
518 void consumer_del_stream(struct lttng_consumer_stream *stream,
519 struct lttng_ht *ht)
520 {
521 consumer_stream_destroy(stream, ht);
522 }
523
524 /*
525 * XXX naming of del vs destroy is all mixed up.
526 */
527 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
528 {
529 consumer_stream_destroy(stream, data_ht);
530 }
531
532 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
533 {
534 consumer_stream_destroy(stream, metadata_ht);
535 }
536
537 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
538 uint64_t stream_key,
539 enum lttng_consumer_stream_state state,
540 const char *channel_name,
541 uid_t uid,
542 gid_t gid,
543 uint64_t relayd_id,
544 uint64_t session_id,
545 int cpu,
546 int *alloc_ret,
547 enum consumer_channel_type type,
548 unsigned int monitor)
549 {
550 int ret;
551 struct lttng_consumer_stream *stream;
552
553 stream = zmalloc(sizeof(*stream));
554 if (stream == NULL) {
555 PERROR("malloc struct lttng_consumer_stream");
556 ret = -ENOMEM;
557 goto end;
558 }
559
560 rcu_read_lock();
561
562 stream->key = stream_key;
563 stream->out_fd = -1;
564 stream->out_fd_offset = 0;
565 stream->output_written = 0;
566 stream->state = state;
567 stream->uid = uid;
568 stream->gid = gid;
569 stream->net_seq_idx = relayd_id;
570 stream->session_id = session_id;
571 stream->monitor = monitor;
572 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
573 stream->index_fd = -1;
574 stream->last_sequence_number = -1ULL;
575 pthread_mutex_init(&stream->lock, NULL);
576 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
577
578 /* If channel is the metadata, flag this stream as metadata. */
579 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
580 stream->metadata_flag = 1;
581 /* Metadata is flat out. */
582 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
583 /* Live rendez-vous point. */
584 pthread_cond_init(&stream->metadata_rdv, NULL);
585 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
586 } else {
587 /* Format stream name to <channel_name>_<cpu_number> */
588 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
589 channel_name, cpu);
590 if (ret < 0) {
591 PERROR("snprintf stream name");
592 goto error;
593 }
594 }
595
596 /* Key is always the wait_fd for streams. */
597 lttng_ht_node_init_u64(&stream->node, stream->key);
598
599 /* Init node per channel id key */
600 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
601
602 /* Init session id node with the stream session id */
603 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
604
605 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
606 " relayd_id %" PRIu64 ", session_id %" PRIu64,
607 stream->name, stream->key, channel_key,
608 stream->net_seq_idx, stream->session_id);
609
610 rcu_read_unlock();
611 return stream;
612
613 error:
614 rcu_read_unlock();
615 free(stream);
616 end:
617 if (alloc_ret) {
618 *alloc_ret = ret;
619 }
620 return NULL;
621 }
622
623 /*
624 * Add a stream to the global list protected by a mutex.
625 */
626 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
627 {
628 struct lttng_ht *ht = data_ht;
629 int ret = 0;
630
631 assert(stream);
632 assert(ht);
633
634 DBG3("Adding consumer stream %" PRIu64, stream->key);
635
636 pthread_mutex_lock(&consumer_data.lock);
637 pthread_mutex_lock(&stream->chan->lock);
638 pthread_mutex_lock(&stream->chan->timer_lock);
639 pthread_mutex_lock(&stream->lock);
640 rcu_read_lock();
641
642 /* Steal stream identifier to avoid having streams with the same key */
643 steal_stream_key(stream->key, ht);
644
645 lttng_ht_add_unique_u64(ht, &stream->node);
646
647 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
648 &stream->node_channel_id);
649
650 /*
651 * Add stream to the stream_list_ht of the consumer data. No need to steal
652 * the key since the HT does not use it and we allow to add redundant keys
653 * into this table.
654 */
655 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
656
657 /*
658 * When nb_init_stream_left reaches 0, we don't need to trigger any action
659 * in terms of destroying the associated channel, because the action that
660 * causes the count to become 0 also causes a stream to be added. The
661 * channel deletion will thus be triggered by the following removal of this
662 * stream.
663 */
664 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
665 /* Increment refcount before decrementing nb_init_stream_left */
666 cmm_smp_wmb();
667 uatomic_dec(&stream->chan->nb_init_stream_left);
668 }
669
670 /* Update consumer data once the node is inserted. */
671 consumer_data.stream_count++;
672 consumer_data.need_update = 1;
673
674 rcu_read_unlock();
675 pthread_mutex_unlock(&stream->lock);
676 pthread_mutex_unlock(&stream->chan->timer_lock);
677 pthread_mutex_unlock(&stream->chan->lock);
678 pthread_mutex_unlock(&consumer_data.lock);
679
680 return ret;
681 }
682
683 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
684 {
685 consumer_del_stream(stream, data_ht);
686 }
687
688 /*
689 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
690 * be acquired before calling this.
691 */
692 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
693 {
694 int ret = 0;
695 struct lttng_ht_node_u64 *node;
696 struct lttng_ht_iter iter;
697
698 assert(relayd);
699
700 lttng_ht_lookup(consumer_data.relayd_ht,
701 &relayd->net_seq_idx, &iter);
702 node = lttng_ht_iter_get_node_u64(&iter);
703 if (node != NULL) {
704 goto end;
705 }
706 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
707
708 end:
709 return ret;
710 }
711
712 /*
713 * Allocate and return a consumer relayd socket.
714 */
715 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
716 uint64_t net_seq_idx)
717 {
718 struct consumer_relayd_sock_pair *obj = NULL;
719
720 /* net sequence index of -1 is a failure */
721 if (net_seq_idx == (uint64_t) -1ULL) {
722 goto error;
723 }
724
725 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
726 if (obj == NULL) {
727 PERROR("zmalloc relayd sock");
728 goto error;
729 }
730
731 obj->net_seq_idx = net_seq_idx;
732 obj->refcount = 0;
733 obj->destroy_flag = 0;
734 obj->control_sock.sock.fd = -1;
735 obj->data_sock.sock.fd = -1;
736 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
737 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
738
739 error:
740 return obj;
741 }
742
743 /*
744 * Find a relayd socket pair in the global consumer data.
745 *
746 * Return the object if found else NULL.
747 * RCU read-side lock must be held across this call and while using the
748 * returned object.
749 */
750 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
751 {
752 struct lttng_ht_iter iter;
753 struct lttng_ht_node_u64 *node;
754 struct consumer_relayd_sock_pair *relayd = NULL;
755
756 /* Negative keys are lookup failures */
757 if (key == (uint64_t) -1ULL) {
758 goto error;
759 }
760
761 lttng_ht_lookup(consumer_data.relayd_ht, &key,
762 &iter);
763 node = lttng_ht_iter_get_node_u64(&iter);
764 if (node != NULL) {
765 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
766 }
767
768 error:
769 return relayd;
770 }
771
772 /*
773 * Find a relayd and send the stream
774 *
775 * Returns 0 on success, < 0 on error
776 */
777 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
778 char *path)
779 {
780 int ret = 0;
781 struct consumer_relayd_sock_pair *relayd;
782
783 assert(stream);
784 assert(stream->net_seq_idx != -1ULL);
785 assert(path);
786
787 /* The stream is not metadata. Get relayd reference if exists. */
788 rcu_read_lock();
789 relayd = consumer_find_relayd(stream->net_seq_idx);
790 if (relayd != NULL) {
791 /* Add stream on the relayd */
792 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
793 ret = relayd_add_stream(&relayd->control_sock, stream->name,
794 path, &stream->relayd_stream_id,
795 stream->chan->tracefile_size, stream->chan->tracefile_count);
796 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
797 if (ret < 0) {
798 goto end;
799 }
800
801 uatomic_inc(&relayd->refcount);
802 stream->sent_to_relayd = 1;
803 } else {
804 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
805 stream->key, stream->net_seq_idx);
806 ret = -1;
807 goto end;
808 }
809
810 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
811 stream->name, stream->key, stream->net_seq_idx);
812
813 end:
814 rcu_read_unlock();
815 return ret;
816 }
817
818 /*
819 * Find a relayd and send the streams sent message
820 *
821 * Returns 0 on success, < 0 on error
822 */
823 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
824 {
825 int ret = 0;
826 struct consumer_relayd_sock_pair *relayd;
827
828 assert(net_seq_idx != -1ULL);
829
830 /* The stream is not metadata. Get relayd reference if exists. */
831 rcu_read_lock();
832 relayd = consumer_find_relayd(net_seq_idx);
833 if (relayd != NULL) {
834 /* Add stream on the relayd */
835 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
836 ret = relayd_streams_sent(&relayd->control_sock);
837 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
838 if (ret < 0) {
839 goto end;
840 }
841 } else {
842 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
843 net_seq_idx);
844 ret = -1;
845 goto end;
846 }
847
848 ret = 0;
849 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
850
851 end:
852 rcu_read_unlock();
853 return ret;
854 }
855
856 /*
857 * Find a relayd and close the stream
858 */
859 void close_relayd_stream(struct lttng_consumer_stream *stream)
860 {
861 struct consumer_relayd_sock_pair *relayd;
862
863 /* The stream is not metadata. Get relayd reference if exists. */
864 rcu_read_lock();
865 relayd = consumer_find_relayd(stream->net_seq_idx);
866 if (relayd) {
867 consumer_stream_relayd_close(stream, relayd);
868 }
869 rcu_read_unlock();
870 }
871
872 /*
873 * Handle stream for relayd transmission if the stream applies for network
874 * streaming where the net sequence index is set.
875 *
876 * Return destination file descriptor or negative value on error.
877 */
878 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
879 size_t data_size, unsigned long padding,
880 struct consumer_relayd_sock_pair *relayd)
881 {
882 int outfd = -1, ret;
883 struct lttcomm_relayd_data_hdr data_hdr;
884
885 /* Safety net */
886 assert(stream);
887 assert(relayd);
888
889 /* Reset data header */
890 memset(&data_hdr, 0, sizeof(data_hdr));
891
892 if (stream->metadata_flag) {
893 /* Caller MUST acquire the relayd control socket lock */
894 ret = relayd_send_metadata(&relayd->control_sock, data_size);
895 if (ret < 0) {
896 goto error;
897 }
898
899 /* Metadata are always sent on the control socket. */
900 outfd = relayd->control_sock.sock.fd;
901 } else {
902 /* Set header with stream information */
903 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
904 data_hdr.data_size = htobe32(data_size);
905 data_hdr.padding_size = htobe32(padding);
906 /*
907 * Note that net_seq_num below is assigned with the *current* value of
908 * next_net_seq_num and only after that the next_net_seq_num will be
909 * increment. This is why when issuing a command on the relayd using
910 * this next value, 1 should always be substracted in order to compare
911 * the last seen sequence number on the relayd side to the last sent.
912 */
913 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
914 /* Other fields are zeroed previously */
915
916 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
917 sizeof(data_hdr));
918 if (ret < 0) {
919 goto error;
920 }
921
922 ++stream->next_net_seq_num;
923
924 /* Set to go on data socket */
925 outfd = relayd->data_sock.sock.fd;
926 }
927
928 error:
929 return outfd;
930 }
931
932 /*
933 * Allocate and return a new lttng_consumer_channel object using the given key
934 * to initialize the hash table node.
935 *
936 * On error, return NULL.
937 */
938 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
939 uint64_t session_id,
940 const char *pathname,
941 const char *name,
942 uid_t uid,
943 gid_t gid,
944 uint64_t relayd_id,
945 enum lttng_event_output output,
946 uint64_t tracefile_size,
947 uint64_t tracefile_count,
948 uint64_t session_id_per_pid,
949 unsigned int monitor,
950 unsigned int live_timer_interval,
951 const char *root_shm_path,
952 const char *shm_path)
953 {
954 struct lttng_consumer_channel *channel;
955
956 channel = zmalloc(sizeof(*channel));
957 if (channel == NULL) {
958 PERROR("malloc struct lttng_consumer_channel");
959 goto end;
960 }
961
962 channel->key = key;
963 channel->refcount = 0;
964 channel->session_id = session_id;
965 channel->session_id_per_pid = session_id_per_pid;
966 channel->uid = uid;
967 channel->gid = gid;
968 channel->relayd_id = relayd_id;
969 channel->tracefile_size = tracefile_size;
970 channel->tracefile_count = tracefile_count;
971 channel->monitor = monitor;
972 channel->live_timer_interval = live_timer_interval;
973 pthread_mutex_init(&channel->lock, NULL);
974 pthread_mutex_init(&channel->timer_lock, NULL);
975
976 switch (output) {
977 case LTTNG_EVENT_SPLICE:
978 channel->output = CONSUMER_CHANNEL_SPLICE;
979 break;
980 case LTTNG_EVENT_MMAP:
981 channel->output = CONSUMER_CHANNEL_MMAP;
982 break;
983 default:
984 assert(0);
985 free(channel);
986 channel = NULL;
987 goto end;
988 }
989
990 /*
991 * In monitor mode, the streams associated with the channel will be put in
992 * a special list ONLY owned by this channel. So, the refcount is set to 1
993 * here meaning that the channel itself has streams that are referenced.
994 *
995 * On a channel deletion, once the channel is no longer visible, the
996 * refcount is decremented and checked for a zero value to delete it. With
997 * streams in no monitor mode, it will now be safe to destroy the channel.
998 */
999 if (!channel->monitor) {
1000 channel->refcount = 1;
1001 }
1002
1003 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1004 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1005
1006 strncpy(channel->name, name, sizeof(channel->name));
1007 channel->name[sizeof(channel->name) - 1] = '\0';
1008
1009 if (root_shm_path) {
1010 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1011 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1012 }
1013 if (shm_path) {
1014 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1015 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1016 }
1017
1018 lttng_ht_node_init_u64(&channel->node, channel->key);
1019
1020 channel->wait_fd = -1;
1021
1022 CDS_INIT_LIST_HEAD(&channel->streams.head);
1023
1024 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1025
1026 end:
1027 return channel;
1028 }
1029
1030 /*
1031 * Add a channel to the global list protected by a mutex.
1032 *
1033 * Always return 0 indicating success.
1034 */
1035 int consumer_add_channel(struct lttng_consumer_channel *channel,
1036 struct lttng_consumer_local_data *ctx)
1037 {
1038 pthread_mutex_lock(&consumer_data.lock);
1039 pthread_mutex_lock(&channel->lock);
1040 pthread_mutex_lock(&channel->timer_lock);
1041
1042 /*
1043 * This gives us a guarantee that the channel we are about to add to the
1044 * channel hash table will be unique. See this function comment on the why
1045 * we need to steel the channel key at this stage.
1046 */
1047 steal_channel_key(channel->key);
1048
1049 rcu_read_lock();
1050 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1051 rcu_read_unlock();
1052
1053 pthread_mutex_unlock(&channel->timer_lock);
1054 pthread_mutex_unlock(&channel->lock);
1055 pthread_mutex_unlock(&consumer_data.lock);
1056
1057 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1058 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1059 }
1060
1061 return 0;
1062 }
1063
1064 /*
1065 * Allocate the pollfd structure and the local view of the out fds to avoid
1066 * doing a lookup in the linked list and concurrency issues when writing is
1067 * needed. Called with consumer_data.lock held.
1068 *
1069 * Returns the number of fds in the structures.
1070 */
1071 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1072 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1073 struct lttng_ht *ht)
1074 {
1075 int i = 0;
1076 struct lttng_ht_iter iter;
1077 struct lttng_consumer_stream *stream;
1078
1079 assert(ctx);
1080 assert(ht);
1081 assert(pollfd);
1082 assert(local_stream);
1083
1084 DBG("Updating poll fd array");
1085 rcu_read_lock();
1086 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1087 /*
1088 * Only active streams with an active end point can be added to the
1089 * poll set and local stream storage of the thread.
1090 *
1091 * There is a potential race here for endpoint_status to be updated
1092 * just after the check. However, this is OK since the stream(s) will
1093 * be deleted once the thread is notified that the end point state has
1094 * changed where this function will be called back again.
1095 */
1096 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1097 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1098 continue;
1099 }
1100 /*
1101 * This clobbers way too much the debug output. Uncomment that if you
1102 * need it for debugging purposes.
1103 *
1104 * DBG("Active FD %d", stream->wait_fd);
1105 */
1106 (*pollfd)[i].fd = stream->wait_fd;
1107 (*pollfd)[i].events = POLLIN | POLLPRI;
1108 local_stream[i] = stream;
1109 i++;
1110 }
1111 rcu_read_unlock();
1112
1113 /*
1114 * Insert the consumer_data_pipe at the end of the array and don't
1115 * increment i so nb_fd is the number of real FD.
1116 */
1117 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1118 (*pollfd)[i].events = POLLIN | POLLPRI;
1119
1120 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1121 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1122 return i;
1123 }
1124
1125 /*
1126 * Poll on the should_quit pipe and the command socket return -1 on
1127 * error, 1 if should exit, 0 if data is available on the command socket
1128 */
1129 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1130 {
1131 int num_rdy;
1132
1133 restart:
1134 num_rdy = poll(consumer_sockpoll, 2, -1);
1135 if (num_rdy == -1) {
1136 /*
1137 * Restart interrupted system call.
1138 */
1139 if (errno == EINTR) {
1140 goto restart;
1141 }
1142 PERROR("Poll error");
1143 return -1;
1144 }
1145 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1146 DBG("consumer_should_quit wake up");
1147 return 1;
1148 }
1149 return 0;
1150 }
1151
1152 /*
1153 * Set the error socket.
1154 */
1155 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1156 int sock)
1157 {
1158 ctx->consumer_error_socket = sock;
1159 }
1160
1161 /*
1162 * Set the command socket path.
1163 */
1164 void lttng_consumer_set_command_sock_path(
1165 struct lttng_consumer_local_data *ctx, char *sock)
1166 {
1167 ctx->consumer_command_sock_path = sock;
1168 }
1169
1170 /*
1171 * Send return code to the session daemon.
1172 * If the socket is not defined, we return 0, it is not a fatal error
1173 */
1174 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1175 {
1176 if (ctx->consumer_error_socket > 0) {
1177 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1178 sizeof(enum lttcomm_sessiond_command));
1179 }
1180
1181 return 0;
1182 }
1183
1184 /*
1185 * Close all the tracefiles and stream fds and MUST be called when all
1186 * instances are destroyed i.e. when all threads were joined and are ended.
1187 */
1188 void lttng_consumer_cleanup(void)
1189 {
1190 struct lttng_ht_iter iter;
1191 struct lttng_consumer_channel *channel;
1192
1193 rcu_read_lock();
1194
1195 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1196 node.node) {
1197 consumer_del_channel(channel);
1198 }
1199
1200 rcu_read_unlock();
1201
1202 lttng_ht_destroy(consumer_data.channel_ht);
1203
1204 cleanup_relayd_ht();
1205
1206 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1207
1208 /*
1209 * This HT contains streams that are freed by either the metadata thread or
1210 * the data thread so we do *nothing* on the hash table and simply destroy
1211 * it.
1212 */
1213 lttng_ht_destroy(consumer_data.stream_list_ht);
1214 }
1215
1216 /*
1217 * Called from signal handler.
1218 */
1219 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1220 {
1221 ssize_t ret;
1222
1223 consumer_quit = 1;
1224 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1225 if (ret < 1) {
1226 PERROR("write consumer quit");
1227 }
1228
1229 DBG("Consumer flag that it should quit");
1230 }
1231
1232
1233 /*
1234 * Flush pending writes to trace output disk file.
1235 */
1236 static
1237 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1238 off_t orig_offset)
1239 {
1240 int ret;
1241 int outfd = stream->out_fd;
1242
1243 /*
1244 * This does a blocking write-and-wait on any page that belongs to the
1245 * subbuffer prior to the one we just wrote.
1246 * Don't care about error values, as these are just hints and ways to
1247 * limit the amount of page cache used.
1248 */
1249 if (orig_offset < stream->max_sb_size) {
1250 return;
1251 }
1252 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1253 stream->max_sb_size,
1254 SYNC_FILE_RANGE_WAIT_BEFORE
1255 | SYNC_FILE_RANGE_WRITE
1256 | SYNC_FILE_RANGE_WAIT_AFTER);
1257 /*
1258 * Give hints to the kernel about how we access the file:
1259 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1260 * we write it.
1261 *
1262 * We need to call fadvise again after the file grows because the
1263 * kernel does not seem to apply fadvise to non-existing parts of the
1264 * file.
1265 *
1266 * Call fadvise _after_ having waited for the page writeback to
1267 * complete because the dirty page writeback semantic is not well
1268 * defined. So it can be expected to lead to lower throughput in
1269 * streaming.
1270 */
1271 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1272 stream->max_sb_size, POSIX_FADV_DONTNEED);
1273 if (ret && ret != -ENOSYS) {
1274 errno = ret;
1275 PERROR("posix_fadvise on fd %i", outfd);
1276 }
1277 }
1278
1279 /*
1280 * Initialise the necessary environnement :
1281 * - create a new context
1282 * - create the poll_pipe
1283 * - create the should_quit pipe (for signal handler)
1284 * - create the thread pipe (for splice)
1285 *
1286 * Takes a function pointer as argument, this function is called when data is
1287 * available on a buffer. This function is responsible to do the
1288 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1289 * buffer configuration and then kernctl_put_next_subbuf at the end.
1290 *
1291 * Returns a pointer to the new context or NULL on error.
1292 */
1293 struct lttng_consumer_local_data *lttng_consumer_create(
1294 enum lttng_consumer_type type,
1295 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1296 struct lttng_consumer_local_data *ctx),
1297 int (*recv_channel)(struct lttng_consumer_channel *channel),
1298 int (*recv_stream)(struct lttng_consumer_stream *stream),
1299 int (*update_stream)(uint64_t stream_key, uint32_t state))
1300 {
1301 int ret;
1302 struct lttng_consumer_local_data *ctx;
1303
1304 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1305 consumer_data.type == type);
1306 consumer_data.type = type;
1307
1308 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1309 if (ctx == NULL) {
1310 PERROR("allocating context");
1311 goto error;
1312 }
1313
1314 ctx->consumer_error_socket = -1;
1315 ctx->consumer_metadata_socket = -1;
1316 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1317 /* assign the callbacks */
1318 ctx->on_buffer_ready = buffer_ready;
1319 ctx->on_recv_channel = recv_channel;
1320 ctx->on_recv_stream = recv_stream;
1321 ctx->on_update_stream = update_stream;
1322
1323 ctx->consumer_data_pipe = lttng_pipe_open(0);
1324 if (!ctx->consumer_data_pipe) {
1325 goto error_poll_pipe;
1326 }
1327
1328 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1329 if (!ctx->consumer_wakeup_pipe) {
1330 goto error_wakeup_pipe;
1331 }
1332
1333 ret = pipe(ctx->consumer_should_quit);
1334 if (ret < 0) {
1335 PERROR("Error creating recv pipe");
1336 goto error_quit_pipe;
1337 }
1338
1339 ret = pipe(ctx->consumer_channel_pipe);
1340 if (ret < 0) {
1341 PERROR("Error creating channel pipe");
1342 goto error_channel_pipe;
1343 }
1344
1345 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1346 if (!ctx->consumer_metadata_pipe) {
1347 goto error_metadata_pipe;
1348 }
1349
1350 return ctx;
1351
1352 error_metadata_pipe:
1353 utils_close_pipe(ctx->consumer_channel_pipe);
1354 error_channel_pipe:
1355 utils_close_pipe(ctx->consumer_should_quit);
1356 error_quit_pipe:
1357 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1358 error_wakeup_pipe:
1359 lttng_pipe_destroy(ctx->consumer_data_pipe);
1360 error_poll_pipe:
1361 free(ctx);
1362 error:
1363 return NULL;
1364 }
1365
1366 /*
1367 * Iterate over all streams of the hashtable and free them properly.
1368 */
1369 static void destroy_data_stream_ht(struct lttng_ht *ht)
1370 {
1371 struct lttng_ht_iter iter;
1372 struct lttng_consumer_stream *stream;
1373
1374 if (ht == NULL) {
1375 return;
1376 }
1377
1378 rcu_read_lock();
1379 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1380 /*
1381 * Ignore return value since we are currently cleaning up so any error
1382 * can't be handled.
1383 */
1384 (void) consumer_del_stream(stream, ht);
1385 }
1386 rcu_read_unlock();
1387
1388 lttng_ht_destroy(ht);
1389 }
1390
1391 /*
1392 * Iterate over all streams of the metadata hashtable and free them
1393 * properly.
1394 */
1395 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1396 {
1397 struct lttng_ht_iter iter;
1398 struct lttng_consumer_stream *stream;
1399
1400 if (ht == NULL) {
1401 return;
1402 }
1403
1404 rcu_read_lock();
1405 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1406 /*
1407 * Ignore return value since we are currently cleaning up so any error
1408 * can't be handled.
1409 */
1410 (void) consumer_del_metadata_stream(stream, ht);
1411 }
1412 rcu_read_unlock();
1413
1414 lttng_ht_destroy(ht);
1415 }
1416
1417 /*
1418 * Close all fds associated with the instance and free the context.
1419 */
1420 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1421 {
1422 int ret;
1423
1424 DBG("Consumer destroying it. Closing everything.");
1425
1426 if (!ctx) {
1427 return;
1428 }
1429
1430 destroy_data_stream_ht(data_ht);
1431 destroy_metadata_stream_ht(metadata_ht);
1432
1433 ret = close(ctx->consumer_error_socket);
1434 if (ret) {
1435 PERROR("close");
1436 }
1437 ret = close(ctx->consumer_metadata_socket);
1438 if (ret) {
1439 PERROR("close");
1440 }
1441 utils_close_pipe(ctx->consumer_channel_pipe);
1442 lttng_pipe_destroy(ctx->consumer_data_pipe);
1443 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1444 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1445 utils_close_pipe(ctx->consumer_should_quit);
1446
1447 unlink(ctx->consumer_command_sock_path);
1448 free(ctx);
1449 }
1450
1451 /*
1452 * Write the metadata stream id on the specified file descriptor.
1453 */
1454 static int write_relayd_metadata_id(int fd,
1455 struct lttng_consumer_stream *stream,
1456 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1457 {
1458 ssize_t ret;
1459 struct lttcomm_relayd_metadata_payload hdr;
1460
1461 hdr.stream_id = htobe64(stream->relayd_stream_id);
1462 hdr.padding_size = htobe32(padding);
1463 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1464 if (ret < sizeof(hdr)) {
1465 /*
1466 * This error means that the fd's end is closed so ignore the PERROR
1467 * not to clubber the error output since this can happen in a normal
1468 * code path.
1469 */
1470 if (errno != EPIPE) {
1471 PERROR("write metadata stream id");
1472 }
1473 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1474 /*
1475 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1476 * handle writting the missing part so report that as an error and
1477 * don't lie to the caller.
1478 */
1479 ret = -1;
1480 goto end;
1481 }
1482 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1483 stream->relayd_stream_id, padding);
1484
1485 end:
1486 return (int) ret;
1487 }
1488
1489 /*
1490 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1491 * core function for writing trace buffers to either the local filesystem or
1492 * the network.
1493 *
1494 * It must be called with the stream lock held.
1495 *
1496 * Careful review MUST be put if any changes occur!
1497 *
1498 * Returns the number of bytes written
1499 */
1500 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1501 struct lttng_consumer_local_data *ctx,
1502 struct lttng_consumer_stream *stream, unsigned long len,
1503 unsigned long padding,
1504 struct ctf_packet_index *index)
1505 {
1506 unsigned long mmap_offset;
1507 void *mmap_base;
1508 ssize_t ret = 0;
1509 off_t orig_offset = stream->out_fd_offset;
1510 /* Default is on the disk */
1511 int outfd = stream->out_fd;
1512 struct consumer_relayd_sock_pair *relayd = NULL;
1513 unsigned int relayd_hang_up = 0;
1514
1515 /* RCU lock for the relayd pointer */
1516 rcu_read_lock();
1517
1518 /* Flag that the current stream if set for network streaming. */
1519 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1520 relayd = consumer_find_relayd(stream->net_seq_idx);
1521 if (relayd == NULL) {
1522 ret = -EPIPE;
1523 goto end;
1524 }
1525 }
1526
1527 /* get the offset inside the fd to mmap */
1528 switch (consumer_data.type) {
1529 case LTTNG_CONSUMER_KERNEL:
1530 mmap_base = stream->mmap_base;
1531 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1532 if (ret < 0) {
1533 ret = -errno;
1534 PERROR("tracer ctl get_mmap_read_offset");
1535 goto end;
1536 }
1537 break;
1538 case LTTNG_CONSUMER32_UST:
1539 case LTTNG_CONSUMER64_UST:
1540 mmap_base = lttng_ustctl_get_mmap_base(stream);
1541 if (!mmap_base) {
1542 ERR("read mmap get mmap base for stream %s", stream->name);
1543 ret = -EPERM;
1544 goto end;
1545 }
1546 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1547 if (ret != 0) {
1548 PERROR("tracer ctl get_mmap_read_offset");
1549 ret = -EINVAL;
1550 goto end;
1551 }
1552 break;
1553 default:
1554 ERR("Unknown consumer_data type");
1555 assert(0);
1556 }
1557
1558 /* Handle stream on the relayd if the output is on the network */
1559 if (relayd) {
1560 unsigned long netlen = len;
1561
1562 /*
1563 * Lock the control socket for the complete duration of the function
1564 * since from this point on we will use the socket.
1565 */
1566 if (stream->metadata_flag) {
1567 /* Metadata requires the control socket. */
1568 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1569 if (stream->reset_metadata_flag) {
1570 ret = relayd_reset_metadata(&relayd->control_sock,
1571 stream->relayd_stream_id,
1572 stream->metadata_version);
1573 if (ret < 0) {
1574 relayd_hang_up = 1;
1575 goto write_error;
1576 }
1577 stream->reset_metadata_flag = 0;
1578 }
1579 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1580 }
1581
1582 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1583 if (ret < 0) {
1584 relayd_hang_up = 1;
1585 goto write_error;
1586 }
1587 /* Use the returned socket. */
1588 outfd = ret;
1589
1590 /* Write metadata stream id before payload */
1591 if (stream->metadata_flag) {
1592 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1593 if (ret < 0) {
1594 relayd_hang_up = 1;
1595 goto write_error;
1596 }
1597 }
1598 } else {
1599 /* No streaming, we have to set the len with the full padding */
1600 len += padding;
1601
1602 if (stream->metadata_flag && stream->reset_metadata_flag) {
1603 ret = utils_truncate_stream_file(stream->out_fd, 0);
1604 if (ret < 0) {
1605 ERR("Reset metadata file");
1606 goto end;
1607 }
1608 stream->reset_metadata_flag = 0;
1609 }
1610
1611 /*
1612 * Check if we need to change the tracefile before writing the packet.
1613 */
1614 if (stream->chan->tracefile_size > 0 &&
1615 (stream->tracefile_size_current + len) >
1616 stream->chan->tracefile_size) {
1617 ret = utils_rotate_stream_file(stream->chan->pathname,
1618 stream->name, stream->chan->tracefile_size,
1619 stream->chan->tracefile_count, stream->uid, stream->gid,
1620 stream->out_fd, &(stream->tracefile_count_current),
1621 &stream->out_fd);
1622 if (ret < 0) {
1623 ERR("Rotating output file");
1624 goto end;
1625 }
1626 outfd = stream->out_fd;
1627
1628 if (stream->index_fd >= 0) {
1629 ret = close(stream->index_fd);
1630 if (ret < 0) {
1631 PERROR("Closing index");
1632 goto end;
1633 }
1634 stream->index_fd = -1;
1635 ret = index_create_file(stream->chan->pathname,
1636 stream->name, stream->uid, stream->gid,
1637 stream->chan->tracefile_size,
1638 stream->tracefile_count_current);
1639 if (ret < 0) {
1640 goto end;
1641 }
1642 stream->index_fd = ret;
1643 }
1644
1645 /* Reset current size because we just perform a rotation. */
1646 stream->tracefile_size_current = 0;
1647 stream->out_fd_offset = 0;
1648 orig_offset = 0;
1649 }
1650 stream->tracefile_size_current += len;
1651 if (index) {
1652 index->offset = htobe64(stream->out_fd_offset);
1653 }
1654 }
1655
1656 /*
1657 * This call guarantee that len or less is returned. It's impossible to
1658 * receive a ret value that is bigger than len.
1659 */
1660 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1661 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1662 if (ret < 0 || ((size_t) ret != len)) {
1663 /*
1664 * Report error to caller if nothing was written else at least send the
1665 * amount written.
1666 */
1667 if (ret < 0) {
1668 ret = -errno;
1669 }
1670 relayd_hang_up = 1;
1671
1672 /* Socket operation failed. We consider the relayd dead */
1673 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1674 /*
1675 * This is possible if the fd is closed on the other side
1676 * (outfd) or any write problem. It can be verbose a bit for a
1677 * normal execution if for instance the relayd is stopped
1678 * abruptly. This can happen so set this to a DBG statement.
1679 */
1680 DBG("Consumer mmap write detected relayd hang up");
1681 } else {
1682 /* Unhandled error, print it and stop function right now. */
1683 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1684 }
1685 goto write_error;
1686 }
1687 stream->output_written += ret;
1688
1689 /* This call is useless on a socket so better save a syscall. */
1690 if (!relayd) {
1691 /* This won't block, but will start writeout asynchronously */
1692 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1693 SYNC_FILE_RANGE_WRITE);
1694 stream->out_fd_offset += len;
1695 lttng_consumer_sync_trace_file(stream, orig_offset);
1696 }
1697
1698 write_error:
1699 /*
1700 * This is a special case that the relayd has closed its socket. Let's
1701 * cleanup the relayd object and all associated streams.
1702 */
1703 if (relayd && relayd_hang_up) {
1704 cleanup_relayd(relayd, ctx);
1705 }
1706
1707 end:
1708 /* Unlock only if ctrl socket used */
1709 if (relayd && stream->metadata_flag) {
1710 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1711 }
1712
1713 rcu_read_unlock();
1714 return ret;
1715 }
1716
1717 /*
1718 * Splice the data from the ring buffer to the tracefile.
1719 *
1720 * It must be called with the stream lock held.
1721 *
1722 * Returns the number of bytes spliced.
1723 */
1724 ssize_t lttng_consumer_on_read_subbuffer_splice(
1725 struct lttng_consumer_local_data *ctx,
1726 struct lttng_consumer_stream *stream, unsigned long len,
1727 unsigned long padding,
1728 struct ctf_packet_index *index)
1729 {
1730 ssize_t ret = 0, written = 0, ret_splice = 0;
1731 loff_t offset = 0;
1732 off_t orig_offset = stream->out_fd_offset;
1733 int fd = stream->wait_fd;
1734 /* Default is on the disk */
1735 int outfd = stream->out_fd;
1736 struct consumer_relayd_sock_pair *relayd = NULL;
1737 int *splice_pipe;
1738 unsigned int relayd_hang_up = 0;
1739
1740 switch (consumer_data.type) {
1741 case LTTNG_CONSUMER_KERNEL:
1742 break;
1743 case LTTNG_CONSUMER32_UST:
1744 case LTTNG_CONSUMER64_UST:
1745 /* Not supported for user space tracing */
1746 return -ENOSYS;
1747 default:
1748 ERR("Unknown consumer_data type");
1749 assert(0);
1750 }
1751
1752 /* RCU lock for the relayd pointer */
1753 rcu_read_lock();
1754
1755 /* Flag that the current stream if set for network streaming. */
1756 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1757 relayd = consumer_find_relayd(stream->net_seq_idx);
1758 if (relayd == NULL) {
1759 written = -ret;
1760 goto end;
1761 }
1762 }
1763 splice_pipe = stream->splice_pipe;
1764
1765 /* Write metadata stream id before payload */
1766 if (relayd) {
1767 unsigned long total_len = len;
1768
1769 if (stream->metadata_flag) {
1770 /*
1771 * Lock the control socket for the complete duration of the function
1772 * since from this point on we will use the socket.
1773 */
1774 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1775
1776 if (stream->reset_metadata_flag) {
1777 ret = relayd_reset_metadata(&relayd->control_sock,
1778 stream->relayd_stream_id,
1779 stream->metadata_version);
1780 if (ret < 0) {
1781 relayd_hang_up = 1;
1782 goto write_error;
1783 }
1784 stream->reset_metadata_flag = 0;
1785 }
1786 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1787 padding);
1788 if (ret < 0) {
1789 written = ret;
1790 relayd_hang_up = 1;
1791 goto write_error;
1792 }
1793
1794 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1795 }
1796
1797 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1798 if (ret < 0) {
1799 written = ret;
1800 relayd_hang_up = 1;
1801 goto write_error;
1802 }
1803 /* Use the returned socket. */
1804 outfd = ret;
1805 } else {
1806 /* No streaming, we have to set the len with the full padding */
1807 len += padding;
1808
1809 if (stream->metadata_flag && stream->reset_metadata_flag) {
1810 ret = utils_truncate_stream_file(stream->out_fd, 0);
1811 if (ret < 0) {
1812 ERR("Reset metadata file");
1813 goto end;
1814 }
1815 stream->reset_metadata_flag = 0;
1816 }
1817 /*
1818 * Check if we need to change the tracefile before writing the packet.
1819 */
1820 if (stream->chan->tracefile_size > 0 &&
1821 (stream->tracefile_size_current + len) >
1822 stream->chan->tracefile_size) {
1823 ret = utils_rotate_stream_file(stream->chan->pathname,
1824 stream->name, stream->chan->tracefile_size,
1825 stream->chan->tracefile_count, stream->uid, stream->gid,
1826 stream->out_fd, &(stream->tracefile_count_current),
1827 &stream->out_fd);
1828 if (ret < 0) {
1829 written = ret;
1830 ERR("Rotating output file");
1831 goto end;
1832 }
1833 outfd = stream->out_fd;
1834
1835 if (stream->index_fd >= 0) {
1836 ret = close(stream->index_fd);
1837 if (ret < 0) {
1838 PERROR("Closing index");
1839 goto end;
1840 }
1841 stream->index_fd = -1;
1842 ret = index_create_file(stream->chan->pathname,
1843 stream->name, stream->uid, stream->gid,
1844 stream->chan->tracefile_size,
1845 stream->tracefile_count_current);
1846 if (ret < 0) {
1847 written = ret;
1848 goto end;
1849 }
1850 stream->index_fd = ret;
1851 }
1852
1853 /* Reset current size because we just perform a rotation. */
1854 stream->tracefile_size_current = 0;
1855 stream->out_fd_offset = 0;
1856 orig_offset = 0;
1857 }
1858 stream->tracefile_size_current += len;
1859 index->offset = htobe64(stream->out_fd_offset);
1860 }
1861
1862 while (len > 0) {
1863 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1864 (unsigned long)offset, len, fd, splice_pipe[1]);
1865 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1866 SPLICE_F_MOVE | SPLICE_F_MORE);
1867 DBG("splice chan to pipe, ret %zd", ret_splice);
1868 if (ret_splice < 0) {
1869 ret = errno;
1870 written = -ret;
1871 PERROR("Error in relay splice");
1872 goto splice_error;
1873 }
1874
1875 /* Handle stream on the relayd if the output is on the network */
1876 if (relayd && stream->metadata_flag) {
1877 size_t metadata_payload_size =
1878 sizeof(struct lttcomm_relayd_metadata_payload);
1879
1880 /* Update counter to fit the spliced data */
1881 ret_splice += metadata_payload_size;
1882 len += metadata_payload_size;
1883 /*
1884 * We do this so the return value can match the len passed as
1885 * argument to this function.
1886 */
1887 written -= metadata_payload_size;
1888 }
1889
1890 /* Splice data out */
1891 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1892 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1893 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1894 outfd, ret_splice);
1895 if (ret_splice < 0) {
1896 ret = errno;
1897 written = -ret;
1898 relayd_hang_up = 1;
1899 goto write_error;
1900 } else if (ret_splice > len) {
1901 /*
1902 * We don't expect this code path to be executed but you never know
1903 * so this is an extra protection agains a buggy splice().
1904 */
1905 ret = errno;
1906 written += ret_splice;
1907 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1908 len);
1909 goto splice_error;
1910 } else {
1911 /* All good, update current len and continue. */
1912 len -= ret_splice;
1913 }
1914
1915 /* This call is useless on a socket so better save a syscall. */
1916 if (!relayd) {
1917 /* This won't block, but will start writeout asynchronously */
1918 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1919 SYNC_FILE_RANGE_WRITE);
1920 stream->out_fd_offset += ret_splice;
1921 }
1922 stream->output_written += ret_splice;
1923 written += ret_splice;
1924 }
1925 if (!relayd) {
1926 lttng_consumer_sync_trace_file(stream, orig_offset);
1927 }
1928 goto end;
1929
1930 write_error:
1931 /*
1932 * This is a special case that the relayd has closed its socket. Let's
1933 * cleanup the relayd object and all associated streams.
1934 */
1935 if (relayd && relayd_hang_up) {
1936 cleanup_relayd(relayd, ctx);
1937 /* Skip splice error so the consumer does not fail */
1938 goto end;
1939 }
1940
1941 splice_error:
1942 /* send the appropriate error description to sessiond */
1943 switch (ret) {
1944 case EINVAL:
1945 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1946 break;
1947 case ENOMEM:
1948 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1949 break;
1950 case ESPIPE:
1951 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1952 break;
1953 }
1954
1955 end:
1956 if (relayd && stream->metadata_flag) {
1957 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1958 }
1959
1960 rcu_read_unlock();
1961 return written;
1962 }
1963
1964 /*
1965 * Take a snapshot for a specific fd
1966 *
1967 * Returns 0 on success, < 0 on error
1968 */
1969 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1970 {
1971 switch (consumer_data.type) {
1972 case LTTNG_CONSUMER_KERNEL:
1973 return lttng_kconsumer_take_snapshot(stream);
1974 case LTTNG_CONSUMER32_UST:
1975 case LTTNG_CONSUMER64_UST:
1976 return lttng_ustconsumer_take_snapshot(stream);
1977 default:
1978 ERR("Unknown consumer_data type");
1979 assert(0);
1980 return -ENOSYS;
1981 }
1982 }
1983
1984 /*
1985 * Get the produced position
1986 *
1987 * Returns 0 on success, < 0 on error
1988 */
1989 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1990 unsigned long *pos)
1991 {
1992 switch (consumer_data.type) {
1993 case LTTNG_CONSUMER_KERNEL:
1994 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1995 case LTTNG_CONSUMER32_UST:
1996 case LTTNG_CONSUMER64_UST:
1997 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1998 default:
1999 ERR("Unknown consumer_data type");
2000 assert(0);
2001 return -ENOSYS;
2002 }
2003 }
2004
2005 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2006 int sock, struct pollfd *consumer_sockpoll)
2007 {
2008 switch (consumer_data.type) {
2009 case LTTNG_CONSUMER_KERNEL:
2010 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2011 case LTTNG_CONSUMER32_UST:
2012 case LTTNG_CONSUMER64_UST:
2013 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2014 default:
2015 ERR("Unknown consumer_data type");
2016 assert(0);
2017 return -ENOSYS;
2018 }
2019 }
2020
2021 void lttng_consumer_close_all_metadata(void)
2022 {
2023 switch (consumer_data.type) {
2024 case LTTNG_CONSUMER_KERNEL:
2025 /*
2026 * The Kernel consumer has a different metadata scheme so we don't
2027 * close anything because the stream will be closed by the session
2028 * daemon.
2029 */
2030 break;
2031 case LTTNG_CONSUMER32_UST:
2032 case LTTNG_CONSUMER64_UST:
2033 /*
2034 * Close all metadata streams. The metadata hash table is passed and
2035 * this call iterates over it by closing all wakeup fd. This is safe
2036 * because at this point we are sure that the metadata producer is
2037 * either dead or blocked.
2038 */
2039 lttng_ustconsumer_close_all_metadata(metadata_ht);
2040 break;
2041 default:
2042 ERR("Unknown consumer_data type");
2043 assert(0);
2044 }
2045 }
2046
2047 /*
2048 * Clean up a metadata stream and free its memory.
2049 */
2050 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2051 struct lttng_ht *ht)
2052 {
2053 struct lttng_consumer_channel *free_chan = NULL;
2054
2055 assert(stream);
2056 /*
2057 * This call should NEVER receive regular stream. It must always be
2058 * metadata stream and this is crucial for data structure synchronization.
2059 */
2060 assert(stream->metadata_flag);
2061
2062 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2063
2064 pthread_mutex_lock(&consumer_data.lock);
2065 pthread_mutex_lock(&stream->chan->lock);
2066 pthread_mutex_lock(&stream->lock);
2067
2068 /* Remove any reference to that stream. */
2069 consumer_stream_delete(stream, ht);
2070
2071 /* Close down everything including the relayd if one. */
2072 consumer_stream_close(stream);
2073 /* Destroy tracer buffers of the stream. */
2074 consumer_stream_destroy_buffers(stream);
2075
2076 /* Atomically decrement channel refcount since other threads can use it. */
2077 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2078 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2079 /* Go for channel deletion! */
2080 free_chan = stream->chan;
2081 }
2082
2083 /*
2084 * Nullify the stream reference so it is not used after deletion. The
2085 * channel lock MUST be acquired before being able to check for a NULL
2086 * pointer value.
2087 */
2088 stream->chan->metadata_stream = NULL;
2089
2090 pthread_mutex_unlock(&stream->lock);
2091 pthread_mutex_unlock(&stream->chan->lock);
2092 pthread_mutex_unlock(&consumer_data.lock);
2093
2094 if (free_chan) {
2095 consumer_del_channel(free_chan);
2096 }
2097
2098 consumer_stream_free(stream);
2099 }
2100
2101 /*
2102 * Action done with the metadata stream when adding it to the consumer internal
2103 * data structures to handle it.
2104 */
2105 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2106 {
2107 struct lttng_ht *ht = metadata_ht;
2108 int ret = 0;
2109 struct lttng_ht_iter iter;
2110 struct lttng_ht_node_u64 *node;
2111
2112 assert(stream);
2113 assert(ht);
2114
2115 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2116
2117 pthread_mutex_lock(&consumer_data.lock);
2118 pthread_mutex_lock(&stream->chan->lock);
2119 pthread_mutex_lock(&stream->chan->timer_lock);
2120 pthread_mutex_lock(&stream->lock);
2121
2122 /*
2123 * From here, refcounts are updated so be _careful_ when returning an error
2124 * after this point.
2125 */
2126
2127 rcu_read_lock();
2128
2129 /*
2130 * Lookup the stream just to make sure it does not exist in our internal
2131 * state. This should NEVER happen.
2132 */
2133 lttng_ht_lookup(ht, &stream->key, &iter);
2134 node = lttng_ht_iter_get_node_u64(&iter);
2135 assert(!node);
2136
2137 /*
2138 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2139 * in terms of destroying the associated channel, because the action that
2140 * causes the count to become 0 also causes a stream to be added. The
2141 * channel deletion will thus be triggered by the following removal of this
2142 * stream.
2143 */
2144 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2145 /* Increment refcount before decrementing nb_init_stream_left */
2146 cmm_smp_wmb();
2147 uatomic_dec(&stream->chan->nb_init_stream_left);
2148 }
2149
2150 lttng_ht_add_unique_u64(ht, &stream->node);
2151
2152 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2153 &stream->node_channel_id);
2154
2155 /*
2156 * Add stream to the stream_list_ht of the consumer data. No need to steal
2157 * the key since the HT does not use it and we allow to add redundant keys
2158 * into this table.
2159 */
2160 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2161
2162 rcu_read_unlock();
2163
2164 pthread_mutex_unlock(&stream->lock);
2165 pthread_mutex_unlock(&stream->chan->lock);
2166 pthread_mutex_unlock(&stream->chan->timer_lock);
2167 pthread_mutex_unlock(&consumer_data.lock);
2168 return ret;
2169 }
2170
2171 /*
2172 * Delete data stream that are flagged for deletion (endpoint_status).
2173 */
2174 static void validate_endpoint_status_data_stream(void)
2175 {
2176 struct lttng_ht_iter iter;
2177 struct lttng_consumer_stream *stream;
2178
2179 DBG("Consumer delete flagged data stream");
2180
2181 rcu_read_lock();
2182 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2183 /* Validate delete flag of the stream */
2184 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2185 continue;
2186 }
2187 /* Delete it right now */
2188 consumer_del_stream(stream, data_ht);
2189 }
2190 rcu_read_unlock();
2191 }
2192
2193 /*
2194 * Delete metadata stream that are flagged for deletion (endpoint_status).
2195 */
2196 static void validate_endpoint_status_metadata_stream(
2197 struct lttng_poll_event *pollset)
2198 {
2199 struct lttng_ht_iter iter;
2200 struct lttng_consumer_stream *stream;
2201
2202 DBG("Consumer delete flagged metadata stream");
2203
2204 assert(pollset);
2205
2206 rcu_read_lock();
2207 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2208 /* Validate delete flag of the stream */
2209 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2210 continue;
2211 }
2212 /*
2213 * Remove from pollset so the metadata thread can continue without
2214 * blocking on a deleted stream.
2215 */
2216 lttng_poll_del(pollset, stream->wait_fd);
2217
2218 /* Delete it right now */
2219 consumer_del_metadata_stream(stream, metadata_ht);
2220 }
2221 rcu_read_unlock();
2222 }
2223
2224 /*
2225 * Thread polls on metadata file descriptor and write them on disk or on the
2226 * network.
2227 */
2228 void *consumer_thread_metadata_poll(void *data)
2229 {
2230 int ret, i, pollfd, err = -1;
2231 uint32_t revents, nb_fd;
2232 struct lttng_consumer_stream *stream = NULL;
2233 struct lttng_ht_iter iter;
2234 struct lttng_ht_node_u64 *node;
2235 struct lttng_poll_event events;
2236 struct lttng_consumer_local_data *ctx = data;
2237 ssize_t len;
2238
2239 rcu_register_thread();
2240
2241 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2242
2243 if (testpoint(consumerd_thread_metadata)) {
2244 goto error_testpoint;
2245 }
2246
2247 health_code_update();
2248
2249 DBG("Thread metadata poll started");
2250
2251 /* Size is set to 1 for the consumer_metadata pipe */
2252 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2253 if (ret < 0) {
2254 ERR("Poll set creation failed");
2255 goto end_poll;
2256 }
2257
2258 ret = lttng_poll_add(&events,
2259 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2260 if (ret < 0) {
2261 goto end;
2262 }
2263
2264 /* Main loop */
2265 DBG("Metadata main loop started");
2266
2267 while (1) {
2268 restart:
2269 health_code_update();
2270 health_poll_entry();
2271 DBG("Metadata poll wait");
2272 ret = lttng_poll_wait(&events, -1);
2273 DBG("Metadata poll return from wait with %d fd(s)",
2274 LTTNG_POLL_GETNB(&events));
2275 health_poll_exit();
2276 DBG("Metadata event caught in thread");
2277 if (ret < 0) {
2278 if (errno == EINTR) {
2279 ERR("Poll EINTR caught");
2280 goto restart;
2281 }
2282 if (LTTNG_POLL_GETNB(&events) == 0) {
2283 err = 0; /* All is OK */
2284 }
2285 goto end;
2286 }
2287
2288 nb_fd = ret;
2289
2290 /* From here, the event is a metadata wait fd */
2291 for (i = 0; i < nb_fd; i++) {
2292 health_code_update();
2293
2294 revents = LTTNG_POLL_GETEV(&events, i);
2295 pollfd = LTTNG_POLL_GETFD(&events, i);
2296
2297 if (!revents) {
2298 /* No activity for this FD (poll implementation). */
2299 continue;
2300 }
2301
2302 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2303 if (revents & LPOLLIN) {
2304 ssize_t pipe_len;
2305
2306 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2307 &stream, sizeof(stream));
2308 if (pipe_len < sizeof(stream)) {
2309 if (pipe_len < 0) {
2310 PERROR("read metadata stream");
2311 }
2312 /*
2313 * Remove the pipe from the poll set and continue the loop
2314 * since their might be data to consume.
2315 */
2316 lttng_poll_del(&events,
2317 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2318 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2319 continue;
2320 }
2321
2322 /* A NULL stream means that the state has changed. */
2323 if (stream == NULL) {
2324 /* Check for deleted streams. */
2325 validate_endpoint_status_metadata_stream(&events);
2326 goto restart;
2327 }
2328
2329 DBG("Adding metadata stream %d to poll set",
2330 stream->wait_fd);
2331
2332 /* Add metadata stream to the global poll events list */
2333 lttng_poll_add(&events, stream->wait_fd,
2334 LPOLLIN | LPOLLPRI | LPOLLHUP);
2335 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2336 DBG("Metadata thread pipe hung up");
2337 /*
2338 * Remove the pipe from the poll set and continue the loop
2339 * since their might be data to consume.
2340 */
2341 lttng_poll_del(&events,
2342 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2343 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2344 continue;
2345 } else {
2346 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2347 goto end;
2348 }
2349
2350 /* Handle other stream */
2351 continue;
2352 }
2353
2354 rcu_read_lock();
2355 {
2356 uint64_t tmp_id = (uint64_t) pollfd;
2357
2358 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2359 }
2360 node = lttng_ht_iter_get_node_u64(&iter);
2361 assert(node);
2362
2363 stream = caa_container_of(node, struct lttng_consumer_stream,
2364 node);
2365
2366 if (revents & (LPOLLIN | LPOLLPRI)) {
2367 /* Get the data out of the metadata file descriptor */
2368 DBG("Metadata available on fd %d", pollfd);
2369 assert(stream->wait_fd == pollfd);
2370
2371 do {
2372 health_code_update();
2373
2374 len = ctx->on_buffer_ready(stream, ctx);
2375 /*
2376 * We don't check the return value here since if we get
2377 * a negative len, it means an error occured thus we
2378 * simply remove it from the poll set and free the
2379 * stream.
2380 */
2381 } while (len > 0);
2382
2383 /* It's ok to have an unavailable sub-buffer */
2384 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2385 /* Clean up stream from consumer and free it. */
2386 lttng_poll_del(&events, stream->wait_fd);
2387 consumer_del_metadata_stream(stream, metadata_ht);
2388 }
2389 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2390 DBG("Metadata fd %d is hup|err.", pollfd);
2391 if (!stream->hangup_flush_done
2392 && (consumer_data.type == LTTNG_CONSUMER32_UST
2393 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2394 DBG("Attempting to flush and consume the UST buffers");
2395 lttng_ustconsumer_on_stream_hangup(stream);
2396
2397 /* We just flushed the stream now read it. */
2398 do {
2399 health_code_update();
2400
2401 len = ctx->on_buffer_ready(stream, ctx);
2402 /*
2403 * We don't check the return value here since if we get
2404 * a negative len, it means an error occured thus we
2405 * simply remove it from the poll set and free the
2406 * stream.
2407 */
2408 } while (len > 0);
2409 }
2410
2411 lttng_poll_del(&events, stream->wait_fd);
2412 /*
2413 * This call update the channel states, closes file descriptors
2414 * and securely free the stream.
2415 */
2416 consumer_del_metadata_stream(stream, metadata_ht);
2417 } else {
2418 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2419 rcu_read_unlock();
2420 goto end;
2421 }
2422 /* Release RCU lock for the stream looked up */
2423 rcu_read_unlock();
2424 }
2425 }
2426
2427 /* All is OK */
2428 err = 0;
2429 end:
2430 DBG("Metadata poll thread exiting");
2431
2432 lttng_poll_clean(&events);
2433 end_poll:
2434 error_testpoint:
2435 if (err) {
2436 health_error();
2437 ERR("Health error occurred in %s", __func__);
2438 }
2439 health_unregister(health_consumerd);
2440 rcu_unregister_thread();
2441 return NULL;
2442 }
2443
2444 /*
2445 * This thread polls the fds in the set to consume the data and write
2446 * it to tracefile if necessary.
2447 */
2448 void *consumer_thread_data_poll(void *data)
2449 {
2450 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2451 struct pollfd *pollfd = NULL;
2452 /* local view of the streams */
2453 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2454 /* local view of consumer_data.fds_count */
2455 int nb_fd = 0;
2456 struct lttng_consumer_local_data *ctx = data;
2457 ssize_t len;
2458
2459 rcu_register_thread();
2460
2461 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2462
2463 if (testpoint(consumerd_thread_data)) {
2464 goto error_testpoint;
2465 }
2466
2467 health_code_update();
2468
2469 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2470 if (local_stream == NULL) {
2471 PERROR("local_stream malloc");
2472 goto end;
2473 }
2474
2475 while (1) {
2476 health_code_update();
2477
2478 high_prio = 0;
2479 num_hup = 0;
2480
2481 /*
2482 * the fds set has been updated, we need to update our
2483 * local array as well
2484 */
2485 pthread_mutex_lock(&consumer_data.lock);
2486 if (consumer_data.need_update) {
2487 free(pollfd);
2488 pollfd = NULL;
2489
2490 free(local_stream);
2491 local_stream = NULL;
2492
2493 /*
2494 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2495 * wake up pipe.
2496 */
2497 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2498 if (pollfd == NULL) {
2499 PERROR("pollfd malloc");
2500 pthread_mutex_unlock(&consumer_data.lock);
2501 goto end;
2502 }
2503
2504 local_stream = zmalloc((consumer_data.stream_count + 2) *
2505 sizeof(struct lttng_consumer_stream *));
2506 if (local_stream == NULL) {
2507 PERROR("local_stream malloc");
2508 pthread_mutex_unlock(&consumer_data.lock);
2509 goto end;
2510 }
2511 ret = update_poll_array(ctx, &pollfd, local_stream,
2512 data_ht);
2513 if (ret < 0) {
2514 ERR("Error in allocating pollfd or local_outfds");
2515 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2516 pthread_mutex_unlock(&consumer_data.lock);
2517 goto end;
2518 }
2519 nb_fd = ret;
2520 consumer_data.need_update = 0;
2521 }
2522 pthread_mutex_unlock(&consumer_data.lock);
2523
2524 /* No FDs and consumer_quit, consumer_cleanup the thread */
2525 if (nb_fd == 0 && consumer_quit == 1) {
2526 err = 0; /* All is OK */
2527 goto end;
2528 }
2529 /* poll on the array of fds */
2530 restart:
2531 DBG("polling on %d fd", nb_fd + 2);
2532 health_poll_entry();
2533 num_rdy = poll(pollfd, nb_fd + 2, -1);
2534 health_poll_exit();
2535 DBG("poll num_rdy : %d", num_rdy);
2536 if (num_rdy == -1) {
2537 /*
2538 * Restart interrupted system call.
2539 */
2540 if (errno == EINTR) {
2541 goto restart;
2542 }
2543 PERROR("Poll error");
2544 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2545 goto end;
2546 } else if (num_rdy == 0) {
2547 DBG("Polling thread timed out");
2548 goto end;
2549 }
2550
2551 /*
2552 * If the consumer_data_pipe triggered poll go directly to the
2553 * beginning of the loop to update the array. We want to prioritize
2554 * array update over low-priority reads.
2555 */
2556 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2557 ssize_t pipe_readlen;
2558
2559 DBG("consumer_data_pipe wake up");
2560 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2561 &new_stream, sizeof(new_stream));
2562 if (pipe_readlen < sizeof(new_stream)) {
2563 PERROR("Consumer data pipe");
2564 /* Continue so we can at least handle the current stream(s). */
2565 continue;
2566 }
2567
2568 /*
2569 * If the stream is NULL, just ignore it. It's also possible that
2570 * the sessiond poll thread changed the consumer_quit state and is
2571 * waking us up to test it.
2572 */
2573 if (new_stream == NULL) {
2574 validate_endpoint_status_data_stream();
2575 continue;
2576 }
2577
2578 /* Continue to update the local streams and handle prio ones */
2579 continue;
2580 }
2581
2582 /* Handle wakeup pipe. */
2583 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2584 char dummy;
2585 ssize_t pipe_readlen;
2586
2587 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2588 sizeof(dummy));
2589 if (pipe_readlen < 0) {
2590 PERROR("Consumer data wakeup pipe");
2591 }
2592 /* We've been awakened to handle stream(s). */
2593 ctx->has_wakeup = 0;
2594 }
2595
2596 /* Take care of high priority channels first. */
2597 for (i = 0; i < nb_fd; i++) {
2598 health_code_update();
2599
2600 if (local_stream[i] == NULL) {
2601 continue;
2602 }
2603 if (pollfd[i].revents & POLLPRI) {
2604 DBG("Urgent read on fd %d", pollfd[i].fd);
2605 high_prio = 1;
2606 len = ctx->on_buffer_ready(local_stream[i], ctx);
2607 /* it's ok to have an unavailable sub-buffer */
2608 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2609 /* Clean the stream and free it. */
2610 consumer_del_stream(local_stream[i], data_ht);
2611 local_stream[i] = NULL;
2612 } else if (len > 0) {
2613 local_stream[i]->data_read = 1;
2614 }
2615 }
2616 }
2617
2618 /*
2619 * If we read high prio channel in this loop, try again
2620 * for more high prio data.
2621 */
2622 if (high_prio) {
2623 continue;
2624 }
2625
2626 /* Take care of low priority channels. */
2627 for (i = 0; i < nb_fd; i++) {
2628 health_code_update();
2629
2630 if (local_stream[i] == NULL) {
2631 continue;
2632 }
2633 if ((pollfd[i].revents & POLLIN) ||
2634 local_stream[i]->hangup_flush_done ||
2635 local_stream[i]->has_data) {
2636 DBG("Normal read on fd %d", pollfd[i].fd);
2637 len = ctx->on_buffer_ready(local_stream[i], ctx);
2638 /* it's ok to have an unavailable sub-buffer */
2639 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2640 /* Clean the stream and free it. */
2641 consumer_del_stream(local_stream[i], data_ht);
2642 local_stream[i] = NULL;
2643 } else if (len > 0) {
2644 local_stream[i]->data_read = 1;
2645 }
2646 }
2647 }
2648
2649 /* Handle hangup and errors */
2650 for (i = 0; i < nb_fd; i++) {
2651 health_code_update();
2652
2653 if (local_stream[i] == NULL) {
2654 continue;
2655 }
2656 if (!local_stream[i]->hangup_flush_done
2657 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2658 && (consumer_data.type == LTTNG_CONSUMER32_UST
2659 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2660 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2661 pollfd[i].fd);
2662 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2663 /* Attempt read again, for the data we just flushed. */
2664 local_stream[i]->data_read = 1;
2665 }
2666 /*
2667 * If the poll flag is HUP/ERR/NVAL and we have
2668 * read no data in this pass, we can remove the
2669 * stream from its hash table.
2670 */
2671 if ((pollfd[i].revents & POLLHUP)) {
2672 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2673 if (!local_stream[i]->data_read) {
2674 consumer_del_stream(local_stream[i], data_ht);
2675 local_stream[i] = NULL;
2676 num_hup++;
2677 }
2678 } else if (pollfd[i].revents & POLLERR) {
2679 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2680 if (!local_stream[i]->data_read) {
2681 consumer_del_stream(local_stream[i], data_ht);
2682 local_stream[i] = NULL;
2683 num_hup++;
2684 }
2685 } else if (pollfd[i].revents & POLLNVAL) {
2686 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2687 if (!local_stream[i]->data_read) {
2688 consumer_del_stream(local_stream[i], data_ht);
2689 local_stream[i] = NULL;
2690 num_hup++;
2691 }
2692 }
2693 if (local_stream[i] != NULL) {
2694 local_stream[i]->data_read = 0;
2695 }
2696 }
2697 }
2698 /* All is OK */
2699 err = 0;
2700 end:
2701 DBG("polling thread exiting");
2702 free(pollfd);
2703 free(local_stream);
2704
2705 /*
2706 * Close the write side of the pipe so epoll_wait() in
2707 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2708 * read side of the pipe. If we close them both, epoll_wait strangely does
2709 * not return and could create a endless wait period if the pipe is the
2710 * only tracked fd in the poll set. The thread will take care of closing
2711 * the read side.
2712 */
2713 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2714
2715 error_testpoint:
2716 if (err) {
2717 health_error();
2718 ERR("Health error occurred in %s", __func__);
2719 }
2720 health_unregister(health_consumerd);
2721
2722 rcu_unregister_thread();
2723 return NULL;
2724 }
2725
2726 /*
2727 * Close wake-up end of each stream belonging to the channel. This will
2728 * allow the poll() on the stream read-side to detect when the
2729 * write-side (application) finally closes them.
2730 */
2731 static
2732 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2733 {
2734 struct lttng_ht *ht;
2735 struct lttng_consumer_stream *stream;
2736 struct lttng_ht_iter iter;
2737
2738 ht = consumer_data.stream_per_chan_id_ht;
2739
2740 rcu_read_lock();
2741 cds_lfht_for_each_entry_duplicate(ht->ht,
2742 ht->hash_fct(&channel->key, lttng_ht_seed),
2743 ht->match_fct, &channel->key,
2744 &iter.iter, stream, node_channel_id.node) {
2745 /*
2746 * Protect against teardown with mutex.
2747 */
2748 pthread_mutex_lock(&stream->lock);
2749 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2750 goto next;
2751 }
2752 switch (consumer_data.type) {
2753 case LTTNG_CONSUMER_KERNEL:
2754 break;
2755 case LTTNG_CONSUMER32_UST:
2756 case LTTNG_CONSUMER64_UST:
2757 if (stream->metadata_flag) {
2758 /* Safe and protected by the stream lock. */
2759 lttng_ustconsumer_close_metadata(stream->chan);
2760 } else {
2761 /*
2762 * Note: a mutex is taken internally within
2763 * liblttng-ust-ctl to protect timer wakeup_fd
2764 * use from concurrent close.
2765 */
2766 lttng_ustconsumer_close_stream_wakeup(stream);
2767 }
2768 break;
2769 default:
2770 ERR("Unknown consumer_data type");
2771 assert(0);
2772 }
2773 next:
2774 pthread_mutex_unlock(&stream->lock);
2775 }
2776 rcu_read_unlock();
2777 }
2778
2779 static void destroy_channel_ht(struct lttng_ht *ht)
2780 {
2781 struct lttng_ht_iter iter;
2782 struct lttng_consumer_channel *channel;
2783 int ret;
2784
2785 if (ht == NULL) {
2786 return;
2787 }
2788
2789 rcu_read_lock();
2790 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2791 ret = lttng_ht_del(ht, &iter);
2792 assert(ret != 0);
2793 }
2794 rcu_read_unlock();
2795
2796 lttng_ht_destroy(ht);
2797 }
2798
2799 /*
2800 * This thread polls the channel fds to detect when they are being
2801 * closed. It closes all related streams if the channel is detected as
2802 * closed. It is currently only used as a shim layer for UST because the
2803 * consumerd needs to keep the per-stream wakeup end of pipes open for
2804 * periodical flush.
2805 */
2806 void *consumer_thread_channel_poll(void *data)
2807 {
2808 int ret, i, pollfd, err = -1;
2809 uint32_t revents, nb_fd;
2810 struct lttng_consumer_channel *chan = NULL;
2811 struct lttng_ht_iter iter;
2812 struct lttng_ht_node_u64 *node;
2813 struct lttng_poll_event events;
2814 struct lttng_consumer_local_data *ctx = data;
2815 struct lttng_ht *channel_ht;
2816
2817 rcu_register_thread();
2818
2819 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2820
2821 if (testpoint(consumerd_thread_channel)) {
2822 goto error_testpoint;
2823 }
2824
2825 health_code_update();
2826
2827 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2828 if (!channel_ht) {
2829 /* ENOMEM at this point. Better to bail out. */
2830 goto end_ht;
2831 }
2832
2833 DBG("Thread channel poll started");
2834
2835 /* Size is set to 1 for the consumer_channel pipe */
2836 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2837 if (ret < 0) {
2838 ERR("Poll set creation failed");
2839 goto end_poll;
2840 }
2841
2842 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2843 if (ret < 0) {
2844 goto end;
2845 }
2846
2847 /* Main loop */
2848 DBG("Channel main loop started");
2849
2850 while (1) {
2851 restart:
2852 health_code_update();
2853 DBG("Channel poll wait");
2854 health_poll_entry();
2855 ret = lttng_poll_wait(&events, -1);
2856 DBG("Channel poll return from wait with %d fd(s)",
2857 LTTNG_POLL_GETNB(&events));
2858 health_poll_exit();
2859 DBG("Channel event caught in thread");
2860 if (ret < 0) {
2861 if (errno == EINTR) {
2862 ERR("Poll EINTR caught");
2863 goto restart;
2864 }
2865 if (LTTNG_POLL_GETNB(&events) == 0) {
2866 err = 0; /* All is OK */
2867 }
2868 goto end;
2869 }
2870
2871 nb_fd = ret;
2872
2873 /* From here, the event is a channel wait fd */
2874 for (i = 0; i < nb_fd; i++) {
2875 health_code_update();
2876
2877 revents = LTTNG_POLL_GETEV(&events, i);
2878 pollfd = LTTNG_POLL_GETFD(&events, i);
2879
2880 if (!revents) {
2881 /* No activity for this FD (poll implementation). */
2882 continue;
2883 }
2884
2885 if (pollfd == ctx->consumer_channel_pipe[0]) {
2886 if (revents & LPOLLIN) {
2887 enum consumer_channel_action action;
2888 uint64_t key;
2889
2890 ret = read_channel_pipe(ctx, &chan, &key, &action);
2891 if (ret <= 0) {
2892 if (ret < 0) {
2893 ERR("Error reading channel pipe");
2894 }
2895 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2896 continue;
2897 }
2898
2899 switch (action) {
2900 case CONSUMER_CHANNEL_ADD:
2901 DBG("Adding channel %d to poll set",
2902 chan->wait_fd);
2903
2904 lttng_ht_node_init_u64(&chan->wait_fd_node,
2905 chan->wait_fd);
2906 rcu_read_lock();
2907 lttng_ht_add_unique_u64(channel_ht,
2908 &chan->wait_fd_node);
2909 rcu_read_unlock();
2910 /* Add channel to the global poll events list */
2911 lttng_poll_add(&events, chan->wait_fd,
2912 LPOLLERR | LPOLLHUP);
2913 break;
2914 case CONSUMER_CHANNEL_DEL:
2915 {
2916 /*
2917 * This command should never be called if the channel
2918 * has streams monitored by either the data or metadata
2919 * thread. The consumer only notify this thread with a
2920 * channel del. command if it receives a destroy
2921 * channel command from the session daemon that send it
2922 * if a command prior to the GET_CHANNEL failed.
2923 */
2924
2925 rcu_read_lock();
2926 chan = consumer_find_channel(key);
2927 if (!chan) {
2928 rcu_read_unlock();
2929 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2930 break;
2931 }
2932 lttng_poll_del(&events, chan->wait_fd);
2933 iter.iter.node = &chan->wait_fd_node.node;
2934 ret = lttng_ht_del(channel_ht, &iter);
2935 assert(ret == 0);
2936
2937 switch (consumer_data.type) {
2938 case LTTNG_CONSUMER_KERNEL:
2939 break;
2940 case LTTNG_CONSUMER32_UST:
2941 case LTTNG_CONSUMER64_UST:
2942 health_code_update();
2943 /* Destroy streams that might have been left in the stream list. */
2944 clean_channel_stream_list(chan);
2945 break;
2946 default:
2947 ERR("Unknown consumer_data type");
2948 assert(0);
2949 }
2950
2951 /*
2952 * Release our own refcount. Force channel deletion even if
2953 * streams were not initialized.
2954 */
2955 if (!uatomic_sub_return(&chan->refcount, 1)) {
2956 consumer_del_channel(chan);
2957 }
2958 rcu_read_unlock();
2959 goto restart;
2960 }
2961 case CONSUMER_CHANNEL_QUIT:
2962 /*
2963 * Remove the pipe from the poll set and continue the loop
2964 * since their might be data to consume.
2965 */
2966 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2967 continue;
2968 default:
2969 ERR("Unknown action");
2970 break;
2971 }
2972 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2973 DBG("Channel thread pipe hung up");
2974 /*
2975 * Remove the pipe from the poll set and continue the loop
2976 * since their might be data to consume.
2977 */
2978 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2979 continue;
2980 } else {
2981 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2982 goto end;
2983 }
2984
2985 /* Handle other stream */
2986 continue;
2987 }
2988
2989 rcu_read_lock();
2990 {
2991 uint64_t tmp_id = (uint64_t) pollfd;
2992
2993 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2994 }
2995 node = lttng_ht_iter_get_node_u64(&iter);
2996 assert(node);
2997
2998 chan = caa_container_of(node, struct lttng_consumer_channel,
2999 wait_fd_node);
3000
3001 /* Check for error event */
3002 if (revents & (LPOLLERR | LPOLLHUP)) {
3003 DBG("Channel fd %d is hup|err.", pollfd);
3004
3005 lttng_poll_del(&events, chan->wait_fd);
3006 ret = lttng_ht_del(channel_ht, &iter);
3007 assert(ret == 0);
3008
3009 /*
3010 * This will close the wait fd for each stream associated to
3011 * this channel AND monitored by the data/metadata thread thus
3012 * will be clean by the right thread.
3013 */
3014 consumer_close_channel_streams(chan);
3015
3016 /* Release our own refcount */
3017 if (!uatomic_sub_return(&chan->refcount, 1)
3018 && !uatomic_read(&chan->nb_init_stream_left)) {
3019 consumer_del_channel(chan);
3020 }
3021 } else {
3022 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3023 rcu_read_unlock();
3024 goto end;
3025 }
3026
3027 /* Release RCU lock for the channel looked up */
3028 rcu_read_unlock();
3029 }
3030 }
3031
3032 /* All is OK */
3033 err = 0;
3034 end:
3035 lttng_poll_clean(&events);
3036 end_poll:
3037 destroy_channel_ht(channel_ht);
3038 end_ht:
3039 error_testpoint:
3040 DBG("Channel poll thread exiting");
3041 if (err) {
3042 health_error();
3043 ERR("Health error occurred in %s", __func__);
3044 }
3045 health_unregister(health_consumerd);
3046 rcu_unregister_thread();
3047 return NULL;
3048 }
3049
3050 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3051 struct pollfd *sockpoll, int client_socket)
3052 {
3053 int ret;
3054
3055 assert(ctx);
3056 assert(sockpoll);
3057
3058 ret = lttng_consumer_poll_socket(sockpoll);
3059 if (ret) {
3060 goto error;
3061 }
3062 DBG("Metadata connection on client_socket");
3063
3064 /* Blocking call, waiting for transmission */
3065 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3066 if (ctx->consumer_metadata_socket < 0) {
3067 WARN("On accept metadata");
3068 ret = -1;
3069 goto error;
3070 }
3071 ret = 0;
3072
3073 error:
3074 return ret;
3075 }
3076
3077 /*
3078 * This thread listens on the consumerd socket and receives the file
3079 * descriptors from the session daemon.
3080 */
3081 void *consumer_thread_sessiond_poll(void *data)
3082 {
3083 int sock = -1, client_socket, ret, err = -1;
3084 /*
3085 * structure to poll for incoming data on communication socket avoids
3086 * making blocking sockets.
3087 */
3088 struct pollfd consumer_sockpoll[2];
3089 struct lttng_consumer_local_data *ctx = data;
3090
3091 rcu_register_thread();
3092
3093 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3094
3095 if (testpoint(consumerd_thread_sessiond)) {
3096 goto error_testpoint;
3097 }
3098
3099 health_code_update();
3100
3101 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3102 unlink(ctx->consumer_command_sock_path);
3103 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3104 if (client_socket < 0) {
3105 ERR("Cannot create command socket");
3106 goto end;
3107 }
3108
3109 ret = lttcomm_listen_unix_sock(client_socket);
3110 if (ret < 0) {
3111 goto end;
3112 }
3113
3114 DBG("Sending ready command to lttng-sessiond");
3115 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3116 /* return < 0 on error, but == 0 is not fatal */
3117 if (ret < 0) {
3118 ERR("Error sending ready command to lttng-sessiond");
3119 goto end;
3120 }
3121
3122 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3123 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3124 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3125 consumer_sockpoll[1].fd = client_socket;
3126 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3127
3128 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3129 if (ret) {
3130 if (ret > 0) {
3131 /* should exit */
3132 err = 0;
3133 }
3134 goto end;
3135 }
3136 DBG("Connection on client_socket");
3137
3138 /* Blocking call, waiting for transmission */
3139 sock = lttcomm_accept_unix_sock(client_socket);
3140 if (sock < 0) {
3141 WARN("On accept");
3142 goto end;
3143 }
3144
3145 /*
3146 * Setup metadata socket which is the second socket connection on the
3147 * command unix socket.
3148 */
3149 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3150 if (ret) {
3151 if (ret > 0) {
3152 /* should exit */
3153 err = 0;
3154 }
3155 goto end;
3156 }
3157
3158 /* This socket is not useful anymore. */
3159 ret = close(client_socket);
3160 if (ret < 0) {
3161 PERROR("close client_socket");
3162 }
3163 client_socket = -1;
3164
3165 /* update the polling structure to poll on the established socket */
3166 consumer_sockpoll[1].fd = sock;
3167 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3168
3169 while (1) {
3170 health_code_update();
3171
3172 health_poll_entry();
3173 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3174 health_poll_exit();
3175 if (ret) {
3176 if (ret > 0) {
3177 /* should exit */
3178 err = 0;
3179 }
3180 goto end;
3181 }
3182 DBG("Incoming command on sock");
3183 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3184 if (ret <= 0) {
3185 /*
3186 * This could simply be a session daemon quitting. Don't output
3187 * ERR() here.
3188 */
3189 DBG("Communication interrupted on command socket");
3190 err = 0;
3191 goto end;
3192 }
3193 if (consumer_quit) {
3194 DBG("consumer_thread_receive_fds received quit from signal");
3195 err = 0; /* All is OK */
3196 goto end;
3197 }
3198 DBG("received command on sock");
3199 }
3200 /* All is OK */
3201 err = 0;
3202
3203 end:
3204 DBG("Consumer thread sessiond poll exiting");
3205
3206 /*
3207 * Close metadata streams since the producer is the session daemon which
3208 * just died.
3209 *
3210 * NOTE: for now, this only applies to the UST tracer.
3211 */
3212 lttng_consumer_close_all_metadata();
3213
3214 /*
3215 * when all fds have hung up, the polling thread
3216 * can exit cleanly
3217 */
3218 consumer_quit = 1;
3219
3220 /*
3221 * Notify the data poll thread to poll back again and test the
3222 * consumer_quit state that we just set so to quit gracefully.
3223 */
3224 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3225
3226 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3227
3228 notify_health_quit_pipe(health_quit_pipe);
3229
3230 /* Cleaning up possibly open sockets. */
3231 if (sock >= 0) {
3232 ret = close(sock);
3233 if (ret < 0) {
3234 PERROR("close sock sessiond poll");
3235 }
3236 }
3237 if (client_socket >= 0) {
3238 ret = close(client_socket);
3239 if (ret < 0) {
3240 PERROR("close client_socket sessiond poll");
3241 }
3242 }
3243
3244 error_testpoint:
3245 if (err) {
3246 health_error();
3247 ERR("Health error occurred in %s", __func__);
3248 }
3249 health_unregister(health_consumerd);
3250
3251 rcu_unregister_thread();
3252 return NULL;
3253 }
3254
3255 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3256 struct lttng_consumer_local_data *ctx)
3257 {
3258 ssize_t ret;
3259
3260 pthread_mutex_lock(&stream->lock);
3261 if (stream->metadata_flag) {
3262 pthread_mutex_lock(&stream->metadata_rdv_lock);
3263 }
3264
3265 switch (consumer_data.type) {
3266 case LTTNG_CONSUMER_KERNEL:
3267 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3268 break;
3269 case LTTNG_CONSUMER32_UST:
3270 case LTTNG_CONSUMER64_UST:
3271 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3272 break;
3273 default:
3274 ERR("Unknown consumer_data type");
3275 assert(0);
3276 ret = -ENOSYS;
3277 break;
3278 }
3279
3280 if (stream->metadata_flag) {
3281 pthread_cond_broadcast(&stream->metadata_rdv);
3282 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3283 }
3284 pthread_mutex_unlock(&stream->lock);
3285 return ret;
3286 }
3287
3288 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3289 {
3290 switch (consumer_data.type) {
3291 case LTTNG_CONSUMER_KERNEL:
3292 return lttng_kconsumer_on_recv_stream(stream);
3293 case LTTNG_CONSUMER32_UST:
3294 case LTTNG_CONSUMER64_UST:
3295 return lttng_ustconsumer_on_recv_stream(stream);
3296 default:
3297 ERR("Unknown consumer_data type");
3298 assert(0);
3299 return -ENOSYS;
3300 }
3301 }
3302
3303 /*
3304 * Allocate and set consumer data hash tables.
3305 */
3306 int lttng_consumer_init(void)
3307 {
3308 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3309 if (!consumer_data.channel_ht) {
3310 goto error;
3311 }
3312
3313 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3314 if (!consumer_data.relayd_ht) {
3315 goto error;
3316 }
3317
3318 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3319 if (!consumer_data.stream_list_ht) {
3320 goto error;
3321 }
3322
3323 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3324 if (!consumer_data.stream_per_chan_id_ht) {
3325 goto error;
3326 }
3327
3328 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3329 if (!data_ht) {
3330 goto error;
3331 }
3332
3333 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3334 if (!metadata_ht) {
3335 goto error;
3336 }
3337
3338 return 0;
3339
3340 error:
3341 return -1;
3342 }
3343
3344 /*
3345 * Process the ADD_RELAYD command receive by a consumer.
3346 *
3347 * This will create a relayd socket pair and add it to the relayd hash table.
3348 * The caller MUST acquire a RCU read side lock before calling it.
3349 */
3350 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3351 struct lttng_consumer_local_data *ctx, int sock,
3352 struct pollfd *consumer_sockpoll,
3353 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3354 uint64_t relayd_session_id)
3355 {
3356 int fd = -1, ret = -1, relayd_created = 0;
3357 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3358 struct consumer_relayd_sock_pair *relayd = NULL;
3359
3360 assert(ctx);
3361 assert(relayd_sock);
3362
3363 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3364
3365 /* Get relayd reference if exists. */
3366 relayd = consumer_find_relayd(net_seq_idx);
3367 if (relayd == NULL) {
3368 assert(sock_type == LTTNG_STREAM_CONTROL);
3369 /* Not found. Allocate one. */
3370 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3371 if (relayd == NULL) {
3372 ret = -ENOMEM;
3373 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3374 goto error;
3375 } else {
3376 relayd->sessiond_session_id = sessiond_id;
3377 relayd_created = 1;
3378 }
3379
3380 /*
3381 * This code path MUST continue to the consumer send status message to
3382 * we can notify the session daemon and continue our work without
3383 * killing everything.
3384 */
3385 } else {
3386 /*
3387 * relayd key should never be found for control socket.
3388 */
3389 assert(sock_type != LTTNG_STREAM_CONTROL);
3390 }
3391
3392 /* First send a status message before receiving the fds. */
3393 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3394 if (ret < 0) {
3395 /* Somehow, the session daemon is not responding anymore. */
3396 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3397 goto error_nosignal;
3398 }
3399
3400 /* Poll on consumer socket. */
3401 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3402 if (ret) {
3403 /* Needing to exit in the middle of a command: error. */
3404 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3405 ret = -EINTR;
3406 goto error_nosignal;
3407 }
3408
3409 /* Get relayd socket from session daemon */
3410 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3411 if (ret != sizeof(fd)) {
3412 ret = -1;
3413 fd = -1; /* Just in case it gets set with an invalid value. */
3414
3415 /*
3416 * Failing to receive FDs might indicate a major problem such as
3417 * reaching a fd limit during the receive where the kernel returns a
3418 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3419 * don't take any chances and stop everything.
3420 *
3421 * XXX: Feature request #558 will fix that and avoid this possible
3422 * issue when reaching the fd limit.
3423 */
3424 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3425 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3426 goto error;
3427 }
3428
3429 /* Copy socket information and received FD */
3430 switch (sock_type) {
3431 case LTTNG_STREAM_CONTROL:
3432 /* Copy received lttcomm socket */
3433 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3434 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3435 /* Handle create_sock error. */
3436 if (ret < 0) {
3437 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3438 goto error;
3439 }
3440 /*
3441 * Close the socket created internally by
3442 * lttcomm_create_sock, so we can replace it by the one
3443 * received from sessiond.
3444 */
3445 if (close(relayd->control_sock.sock.fd)) {
3446 PERROR("close");
3447 }
3448
3449 /* Assign new file descriptor */
3450 relayd->control_sock.sock.fd = fd;
3451 fd = -1; /* For error path */
3452 /* Assign version values. */
3453 relayd->control_sock.major = relayd_sock->major;
3454 relayd->control_sock.minor = relayd_sock->minor;
3455
3456 relayd->relayd_session_id = relayd_session_id;
3457
3458 break;
3459 case LTTNG_STREAM_DATA:
3460 /* Copy received lttcomm socket */
3461 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3462 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3463 /* Handle create_sock error. */
3464 if (ret < 0) {
3465 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3466 goto error;
3467 }
3468 /*
3469 * Close the socket created internally by
3470 * lttcomm_create_sock, so we can replace it by the one
3471 * received from sessiond.
3472 */
3473 if (close(relayd->data_sock.sock.fd)) {
3474 PERROR("close");
3475 }
3476
3477 /* Assign new file descriptor */
3478 relayd->data_sock.sock.fd = fd;
3479 fd = -1; /* for eventual error paths */
3480 /* Assign version values. */
3481 relayd->data_sock.major = relayd_sock->major;
3482 relayd->data_sock.minor = relayd_sock->minor;
3483 break;
3484 default:
3485 ERR("Unknown relayd socket type (%d)", sock_type);
3486 ret = -1;
3487 ret_code = LTTCOMM_CONSUMERD_FATAL;
3488 goto error;
3489 }
3490
3491 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3492 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3493 relayd->net_seq_idx, fd);
3494
3495 /* We successfully added the socket. Send status back. */
3496 ret = consumer_send_status_msg(sock, ret_code);
3497 if (ret < 0) {
3498 /* Somehow, the session daemon is not responding anymore. */
3499 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3500 goto error_nosignal;
3501 }
3502
3503 /*
3504 * Add relayd socket pair to consumer data hashtable. If object already
3505 * exists or on error, the function gracefully returns.
3506 */
3507 add_relayd(relayd);
3508
3509 /* All good! */
3510 return 0;
3511
3512 error:
3513 if (consumer_send_status_msg(sock, ret_code) < 0) {
3514 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3515 }
3516
3517 error_nosignal:
3518 /* Close received socket if valid. */
3519 if (fd >= 0) {
3520 if (close(fd)) {
3521 PERROR("close received socket");
3522 }
3523 }
3524
3525 if (relayd_created) {
3526 free(relayd);
3527 }
3528
3529 return ret;
3530 }
3531
3532 /*
3533 * Try to lock the stream mutex.
3534 *
3535 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3536 */
3537 static int stream_try_lock(struct lttng_consumer_stream *stream)
3538 {
3539 int ret;
3540
3541 assert(stream);
3542
3543 /*
3544 * Try to lock the stream mutex. On failure, we know that the stream is
3545 * being used else where hence there is data still being extracted.
3546 */
3547 ret = pthread_mutex_trylock(&stream->lock);
3548 if (ret) {
3549 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3550 ret = 0;
3551 goto end;
3552 }
3553
3554 ret = 1;
3555
3556 end:
3557 return ret;
3558 }
3559
3560 /*
3561 * Search for a relayd associated to the session id and return the reference.
3562 *
3563 * A rcu read side lock MUST be acquire before calling this function and locked
3564 * until the relayd object is no longer necessary.
3565 */
3566 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3567 {
3568 struct lttng_ht_iter iter;
3569 struct consumer_relayd_sock_pair *relayd = NULL;
3570
3571 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3572 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3573 node.node) {
3574 /*
3575 * Check by sessiond id which is unique here where the relayd session
3576 * id might not be when having multiple relayd.
3577 */
3578 if (relayd->sessiond_session_id == id) {
3579 /* Found the relayd. There can be only one per id. */
3580 goto found;
3581 }
3582 }
3583
3584 return NULL;
3585
3586 found:
3587 return relayd;
3588 }
3589
3590 /*
3591 * Check if for a given session id there is still data needed to be extract
3592 * from the buffers.
3593 *
3594 * Return 1 if data is pending or else 0 meaning ready to be read.
3595 */
3596 int consumer_data_pending(uint64_t id)
3597 {
3598 int ret;
3599 struct lttng_ht_iter iter;
3600 struct lttng_ht *ht;
3601 struct lttng_consumer_stream *stream;
3602 struct consumer_relayd_sock_pair *relayd = NULL;
3603 int (*data_pending)(struct lttng_consumer_stream *);
3604
3605 DBG("Consumer data pending command on session id %" PRIu64, id);
3606
3607 rcu_read_lock();
3608 pthread_mutex_lock(&consumer_data.lock);
3609
3610 switch (consumer_data.type) {
3611 case LTTNG_CONSUMER_KERNEL:
3612 data_pending = lttng_kconsumer_data_pending;
3613 break;
3614 case LTTNG_CONSUMER32_UST:
3615 case LTTNG_CONSUMER64_UST:
3616 data_pending = lttng_ustconsumer_data_pending;
3617 break;
3618 default:
3619 ERR("Unknown consumer data type");
3620 assert(0);
3621 }
3622
3623 /* Ease our life a bit */
3624 ht = consumer_data.stream_list_ht;
3625
3626 relayd = find_relayd_by_session_id(id);
3627 if (relayd) {
3628 /* Send init command for data pending. */
3629 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3630 ret = relayd_begin_data_pending(&relayd->control_sock,
3631 relayd->relayd_session_id);
3632 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3633 if (ret < 0) {
3634 /* Communication error thus the relayd so no data pending. */
3635 goto data_not_pending;
3636 }
3637 }
3638
3639 cds_lfht_for_each_entry_duplicate(ht->ht,
3640 ht->hash_fct(&id, lttng_ht_seed),
3641 ht->match_fct, &id,
3642 &iter.iter, stream, node_session_id.node) {
3643 /* If this call fails, the stream is being used hence data pending. */
3644 ret = stream_try_lock(stream);
3645 if (!ret) {
3646 goto data_pending;
3647 }
3648
3649 /*
3650 * A removed node from the hash table indicates that the stream has
3651 * been deleted thus having a guarantee that the buffers are closed
3652 * on the consumer side. However, data can still be transmitted
3653 * over the network so don't skip the relayd check.
3654 */
3655 ret = cds_lfht_is_node_deleted(&stream->node.node);
3656 if (!ret) {
3657 /* Check the stream if there is data in the buffers. */
3658 ret = data_pending(stream);
3659 if (ret == 1) {
3660 pthread_mutex_unlock(&stream->lock);
3661 goto data_pending;
3662 }
3663 }
3664
3665 /* Relayd check */
3666 if (relayd) {
3667 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3668 if (stream->metadata_flag) {
3669 ret = relayd_quiescent_control(&relayd->control_sock,
3670 stream->relayd_stream_id);
3671 } else {
3672 ret = relayd_data_pending(&relayd->control_sock,
3673 stream->relayd_stream_id,
3674 stream->next_net_seq_num - 1);
3675 }
3676 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3677 if (ret == 1) {
3678 pthread_mutex_unlock(&stream->lock);
3679 goto data_pending;
3680 }
3681 }
3682 pthread_mutex_unlock(&stream->lock);
3683 }
3684
3685 if (relayd) {
3686 unsigned int is_data_inflight = 0;
3687
3688 /* Send init command for data pending. */
3689 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3690 ret = relayd_end_data_pending(&relayd->control_sock,
3691 relayd->relayd_session_id, &is_data_inflight);
3692 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3693 if (ret < 0) {
3694 goto data_not_pending;
3695 }
3696 if (is_data_inflight) {
3697 goto data_pending;
3698 }
3699 }
3700
3701 /*
3702 * Finding _no_ node in the hash table and no inflight data means that the
3703 * stream(s) have been removed thus data is guaranteed to be available for
3704 * analysis from the trace files.
3705 */
3706
3707 data_not_pending:
3708 /* Data is available to be read by a viewer. */
3709 pthread_mutex_unlock(&consumer_data.lock);
3710 rcu_read_unlock();
3711 return 0;
3712
3713 data_pending:
3714 /* Data is still being extracted from buffers. */
3715 pthread_mutex_unlock(&consumer_data.lock);
3716 rcu_read_unlock();
3717 return 1;
3718 }
3719
3720 /*
3721 * Send a ret code status message to the sessiond daemon.
3722 *
3723 * Return the sendmsg() return value.
3724 */
3725 int consumer_send_status_msg(int sock, int ret_code)
3726 {
3727 struct lttcomm_consumer_status_msg msg;
3728
3729 memset(&msg, 0, sizeof(msg));
3730 msg.ret_code = ret_code;
3731
3732 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3733 }
3734
3735 /*
3736 * Send a channel status message to the sessiond daemon.
3737 *
3738 * Return the sendmsg() return value.
3739 */
3740 int consumer_send_status_channel(int sock,
3741 struct lttng_consumer_channel *channel)
3742 {
3743 struct lttcomm_consumer_status_channel msg;
3744
3745 assert(sock >= 0);
3746
3747 memset(&msg, 0, sizeof(msg));
3748 if (!channel) {
3749 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3750 } else {
3751 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3752 msg.key = channel->key;
3753 msg.stream_count = channel->streams.count;
3754 }
3755
3756 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3757 }
3758
3759 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3760 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3761 uint64_t max_sb_size)
3762 {
3763 unsigned long start_pos;
3764
3765 if (!nb_packets_per_stream) {
3766 return consumed_pos; /* Grab everything */
3767 }
3768 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3769 start_pos -= max_sb_size * nb_packets_per_stream;
3770 if ((long) (start_pos - consumed_pos) < 0) {
3771 return consumed_pos; /* Grab everything */
3772 }
3773 return start_pos;
3774 }
This page took 0.170774 seconds and 5 git commands to generate.