Dedicated function to wakeup the consumer metadata pipe
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 void consumer_stream_update_channel_attributes(
545 struct lttng_consumer_stream *stream,
546 struct lttng_consumer_channel *channel)
547 {
548 stream->channel_read_only_attributes.tracefile_size =
549 channel->tracefile_size;
550 memcpy(stream->channel_read_only_attributes.path, channel->pathname,
551 sizeof(stream->channel_read_only_attributes.path));
552 }
553
554 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
555 uint64_t stream_key,
556 enum lttng_consumer_stream_state state,
557 const char *channel_name,
558 uid_t uid,
559 gid_t gid,
560 uint64_t relayd_id,
561 uint64_t session_id,
562 int cpu,
563 int *alloc_ret,
564 enum consumer_channel_type type,
565 unsigned int monitor)
566 {
567 int ret;
568 struct lttng_consumer_stream *stream;
569
570 stream = zmalloc(sizeof(*stream));
571 if (stream == NULL) {
572 PERROR("malloc struct lttng_consumer_stream");
573 ret = -ENOMEM;
574 goto end;
575 }
576
577 rcu_read_lock();
578
579 stream->key = stream_key;
580 stream->out_fd = -1;
581 stream->out_fd_offset = 0;
582 stream->output_written = 0;
583 stream->state = state;
584 stream->uid = uid;
585 stream->gid = gid;
586 stream->net_seq_idx = relayd_id;
587 stream->session_id = session_id;
588 stream->monitor = monitor;
589 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
590 stream->index_file = NULL;
591 stream->last_sequence_number = -1ULL;
592 pthread_mutex_init(&stream->lock, NULL);
593 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
594
595 /* If channel is the metadata, flag this stream as metadata. */
596 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
597 stream->metadata_flag = 1;
598 /* Metadata is flat out. */
599 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
600 /* Live rendez-vous point. */
601 pthread_cond_init(&stream->metadata_rdv, NULL);
602 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
603 } else {
604 /* Format stream name to <channel_name>_<cpu_number> */
605 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
606 channel_name, cpu);
607 if (ret < 0) {
608 PERROR("snprintf stream name");
609 goto error;
610 }
611 }
612
613 /* Key is always the wait_fd for streams. */
614 lttng_ht_node_init_u64(&stream->node, stream->key);
615
616 /* Init node per channel id key */
617 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
618
619 /* Init session id node with the stream session id */
620 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
621
622 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
623 " relayd_id %" PRIu64 ", session_id %" PRIu64,
624 stream->name, stream->key, channel_key,
625 stream->net_seq_idx, stream->session_id);
626
627 rcu_read_unlock();
628 return stream;
629
630 error:
631 rcu_read_unlock();
632 free(stream);
633 end:
634 if (alloc_ret) {
635 *alloc_ret = ret;
636 }
637 return NULL;
638 }
639
640 /*
641 * Add a stream to the global list protected by a mutex.
642 */
643 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
644 {
645 struct lttng_ht *ht = data_ht;
646
647 assert(stream);
648 assert(ht);
649
650 DBG3("Adding consumer stream %" PRIu64, stream->key);
651
652 pthread_mutex_lock(&consumer_data.lock);
653 pthread_mutex_lock(&stream->chan->lock);
654 pthread_mutex_lock(&stream->chan->timer_lock);
655 pthread_mutex_lock(&stream->lock);
656 rcu_read_lock();
657
658 /* Steal stream identifier to avoid having streams with the same key */
659 steal_stream_key(stream->key, ht);
660
661 lttng_ht_add_unique_u64(ht, &stream->node);
662
663 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
664 &stream->node_channel_id);
665
666 /*
667 * Add stream to the stream_list_ht of the consumer data. No need to steal
668 * the key since the HT does not use it and we allow to add redundant keys
669 * into this table.
670 */
671 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
672
673 /*
674 * When nb_init_stream_left reaches 0, we don't need to trigger any action
675 * in terms of destroying the associated channel, because the action that
676 * causes the count to become 0 also causes a stream to be added. The
677 * channel deletion will thus be triggered by the following removal of this
678 * stream.
679 */
680 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
681 /* Increment refcount before decrementing nb_init_stream_left */
682 cmm_smp_wmb();
683 uatomic_dec(&stream->chan->nb_init_stream_left);
684 }
685
686 /* Update consumer data once the node is inserted. */
687 consumer_data.stream_count++;
688 consumer_data.need_update = 1;
689
690 rcu_read_unlock();
691 pthread_mutex_unlock(&stream->lock);
692 pthread_mutex_unlock(&stream->chan->timer_lock);
693 pthread_mutex_unlock(&stream->chan->lock);
694 pthread_mutex_unlock(&consumer_data.lock);
695 }
696
697 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
698 {
699 consumer_del_stream(stream, data_ht);
700 }
701
702 /*
703 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
704 * be acquired before calling this.
705 */
706 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
707 {
708 int ret = 0;
709 struct lttng_ht_node_u64 *node;
710 struct lttng_ht_iter iter;
711
712 assert(relayd);
713
714 lttng_ht_lookup(consumer_data.relayd_ht,
715 &relayd->net_seq_idx, &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 goto end;
719 }
720 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
721
722 end:
723 return ret;
724 }
725
726 /*
727 * Allocate and return a consumer relayd socket.
728 */
729 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
730 uint64_t net_seq_idx)
731 {
732 struct consumer_relayd_sock_pair *obj = NULL;
733
734 /* net sequence index of -1 is a failure */
735 if (net_seq_idx == (uint64_t) -1ULL) {
736 goto error;
737 }
738
739 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
740 if (obj == NULL) {
741 PERROR("zmalloc relayd sock");
742 goto error;
743 }
744
745 obj->net_seq_idx = net_seq_idx;
746 obj->refcount = 0;
747 obj->destroy_flag = 0;
748 obj->control_sock.sock.fd = -1;
749 obj->data_sock.sock.fd = -1;
750 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
751 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
752
753 error:
754 return obj;
755 }
756
757 /*
758 * Find a relayd socket pair in the global consumer data.
759 *
760 * Return the object if found else NULL.
761 * RCU read-side lock must be held across this call and while using the
762 * returned object.
763 */
764 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
765 {
766 struct lttng_ht_iter iter;
767 struct lttng_ht_node_u64 *node;
768 struct consumer_relayd_sock_pair *relayd = NULL;
769
770 /* Negative keys are lookup failures */
771 if (key == (uint64_t) -1ULL) {
772 goto error;
773 }
774
775 lttng_ht_lookup(consumer_data.relayd_ht, &key,
776 &iter);
777 node = lttng_ht_iter_get_node_u64(&iter);
778 if (node != NULL) {
779 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
780 }
781
782 error:
783 return relayd;
784 }
785
786 /*
787 * Find a relayd and send the stream
788 *
789 * Returns 0 on success, < 0 on error
790 */
791 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
792 char *path)
793 {
794 int ret = 0;
795 struct consumer_relayd_sock_pair *relayd;
796
797 assert(stream);
798 assert(stream->net_seq_idx != -1ULL);
799 assert(path);
800
801 /* The stream is not metadata. Get relayd reference if exists. */
802 rcu_read_lock();
803 relayd = consumer_find_relayd(stream->net_seq_idx);
804 if (relayd != NULL) {
805 /* Add stream on the relayd */
806 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
807 ret = relayd_add_stream(&relayd->control_sock, stream->name,
808 path, &stream->relayd_stream_id,
809 stream->chan->tracefile_size, stream->chan->tracefile_count);
810 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
811 if (ret < 0) {
812 goto end;
813 }
814
815 uatomic_inc(&relayd->refcount);
816 stream->sent_to_relayd = 1;
817 } else {
818 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
819 stream->key, stream->net_seq_idx);
820 ret = -1;
821 goto end;
822 }
823
824 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
825 stream->name, stream->key, stream->net_seq_idx);
826
827 end:
828 rcu_read_unlock();
829 return ret;
830 }
831
832 /*
833 * Find a relayd and send the streams sent message
834 *
835 * Returns 0 on success, < 0 on error
836 */
837 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
838 {
839 int ret = 0;
840 struct consumer_relayd_sock_pair *relayd;
841
842 assert(net_seq_idx != -1ULL);
843
844 /* The stream is not metadata. Get relayd reference if exists. */
845 rcu_read_lock();
846 relayd = consumer_find_relayd(net_seq_idx);
847 if (relayd != NULL) {
848 /* Add stream on the relayd */
849 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
850 ret = relayd_streams_sent(&relayd->control_sock);
851 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
852 if (ret < 0) {
853 goto end;
854 }
855 } else {
856 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
857 net_seq_idx);
858 ret = -1;
859 goto end;
860 }
861
862 ret = 0;
863 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
864
865 end:
866 rcu_read_unlock();
867 return ret;
868 }
869
870 /*
871 * Find a relayd and close the stream
872 */
873 void close_relayd_stream(struct lttng_consumer_stream *stream)
874 {
875 struct consumer_relayd_sock_pair *relayd;
876
877 /* The stream is not metadata. Get relayd reference if exists. */
878 rcu_read_lock();
879 relayd = consumer_find_relayd(stream->net_seq_idx);
880 if (relayd) {
881 consumer_stream_relayd_close(stream, relayd);
882 }
883 rcu_read_unlock();
884 }
885
886 /*
887 * Handle stream for relayd transmission if the stream applies for network
888 * streaming where the net sequence index is set.
889 *
890 * Return destination file descriptor or negative value on error.
891 */
892 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
893 size_t data_size, unsigned long padding,
894 struct consumer_relayd_sock_pair *relayd)
895 {
896 int outfd = -1, ret;
897 struct lttcomm_relayd_data_hdr data_hdr;
898
899 /* Safety net */
900 assert(stream);
901 assert(relayd);
902
903 /* Reset data header */
904 memset(&data_hdr, 0, sizeof(data_hdr));
905
906 if (stream->metadata_flag) {
907 /* Caller MUST acquire the relayd control socket lock */
908 ret = relayd_send_metadata(&relayd->control_sock, data_size);
909 if (ret < 0) {
910 goto error;
911 }
912
913 /* Metadata are always sent on the control socket. */
914 outfd = relayd->control_sock.sock.fd;
915 } else {
916 /* Set header with stream information */
917 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
918 data_hdr.data_size = htobe32(data_size);
919 data_hdr.padding_size = htobe32(padding);
920 /*
921 * Note that net_seq_num below is assigned with the *current* value of
922 * next_net_seq_num and only after that the next_net_seq_num will be
923 * increment. This is why when issuing a command on the relayd using
924 * this next value, 1 should always be substracted in order to compare
925 * the last seen sequence number on the relayd side to the last sent.
926 */
927 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
928 /* Other fields are zeroed previously */
929
930 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
931 sizeof(data_hdr));
932 if (ret < 0) {
933 goto error;
934 }
935
936 ++stream->next_net_seq_num;
937
938 /* Set to go on data socket */
939 outfd = relayd->data_sock.sock.fd;
940 }
941
942 error:
943 return outfd;
944 }
945
946 /*
947 * Allocate and return a new lttng_consumer_channel object using the given key
948 * to initialize the hash table node.
949 *
950 * On error, return NULL.
951 */
952 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
953 uint64_t session_id,
954 const char *pathname,
955 const char *name,
956 uid_t uid,
957 gid_t gid,
958 uint64_t relayd_id,
959 enum lttng_event_output output,
960 uint64_t tracefile_size,
961 uint64_t tracefile_count,
962 uint64_t session_id_per_pid,
963 unsigned int monitor,
964 unsigned int live_timer_interval,
965 const char *root_shm_path,
966 const char *shm_path)
967 {
968 struct lttng_consumer_channel *channel;
969
970 channel = zmalloc(sizeof(*channel));
971 if (channel == NULL) {
972 PERROR("malloc struct lttng_consumer_channel");
973 goto end;
974 }
975
976 channel->key = key;
977 channel->refcount = 0;
978 channel->session_id = session_id;
979 channel->session_id_per_pid = session_id_per_pid;
980 channel->uid = uid;
981 channel->gid = gid;
982 channel->relayd_id = relayd_id;
983 channel->tracefile_size = tracefile_size;
984 channel->tracefile_count = tracefile_count;
985 channel->monitor = monitor;
986 channel->live_timer_interval = live_timer_interval;
987 pthread_mutex_init(&channel->lock, NULL);
988 pthread_mutex_init(&channel->timer_lock, NULL);
989
990 switch (output) {
991 case LTTNG_EVENT_SPLICE:
992 channel->output = CONSUMER_CHANNEL_SPLICE;
993 break;
994 case LTTNG_EVENT_MMAP:
995 channel->output = CONSUMER_CHANNEL_MMAP;
996 break;
997 default:
998 assert(0);
999 free(channel);
1000 channel = NULL;
1001 goto end;
1002 }
1003
1004 /*
1005 * In monitor mode, the streams associated with the channel will be put in
1006 * a special list ONLY owned by this channel. So, the refcount is set to 1
1007 * here meaning that the channel itself has streams that are referenced.
1008 *
1009 * On a channel deletion, once the channel is no longer visible, the
1010 * refcount is decremented and checked for a zero value to delete it. With
1011 * streams in no monitor mode, it will now be safe to destroy the channel.
1012 */
1013 if (!channel->monitor) {
1014 channel->refcount = 1;
1015 }
1016
1017 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1018 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1019
1020 strncpy(channel->name, name, sizeof(channel->name));
1021 channel->name[sizeof(channel->name) - 1] = '\0';
1022
1023 if (root_shm_path) {
1024 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1025 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1026 }
1027 if (shm_path) {
1028 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1029 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1030 }
1031
1032 lttng_ht_node_init_u64(&channel->node, channel->key);
1033
1034 channel->wait_fd = -1;
1035
1036 CDS_INIT_LIST_HEAD(&channel->streams.head);
1037
1038 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1039
1040 end:
1041 return channel;
1042 }
1043
1044 /*
1045 * Add a channel to the global list protected by a mutex.
1046 *
1047 * Always return 0 indicating success.
1048 */
1049 int consumer_add_channel(struct lttng_consumer_channel *channel,
1050 struct lttng_consumer_local_data *ctx)
1051 {
1052 pthread_mutex_lock(&consumer_data.lock);
1053 pthread_mutex_lock(&channel->lock);
1054 pthread_mutex_lock(&channel->timer_lock);
1055
1056 /*
1057 * This gives us a guarantee that the channel we are about to add to the
1058 * channel hash table will be unique. See this function comment on the why
1059 * we need to steel the channel key at this stage.
1060 */
1061 steal_channel_key(channel->key);
1062
1063 rcu_read_lock();
1064 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1065 rcu_read_unlock();
1066
1067 pthread_mutex_unlock(&channel->timer_lock);
1068 pthread_mutex_unlock(&channel->lock);
1069 pthread_mutex_unlock(&consumer_data.lock);
1070
1071 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1072 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1073 }
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * Allocate the pollfd structure and the local view of the out fds to avoid
1080 * doing a lookup in the linked list and concurrency issues when writing is
1081 * needed. Called with consumer_data.lock held.
1082 *
1083 * Returns the number of fds in the structures.
1084 */
1085 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1086 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1087 struct lttng_ht *ht, int *nb_inactive_fd)
1088 {
1089 int i = 0;
1090 struct lttng_ht_iter iter;
1091 struct lttng_consumer_stream *stream;
1092
1093 assert(ctx);
1094 assert(ht);
1095 assert(pollfd);
1096 assert(local_stream);
1097
1098 DBG("Updating poll fd array");
1099 *nb_inactive_fd = 0;
1100 rcu_read_lock();
1101 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1102 /*
1103 * Only active streams with an active end point can be added to the
1104 * poll set and local stream storage of the thread.
1105 *
1106 * There is a potential race here for endpoint_status to be updated
1107 * just after the check. However, this is OK since the stream(s) will
1108 * be deleted once the thread is notified that the end point state has
1109 * changed where this function will be called back again.
1110 *
1111 * We track the number of inactive FDs because they still need to be
1112 * closed by the polling thread after a wakeup on the data_pipe or
1113 * metadata_pipe.
1114 */
1115 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1116 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1117 (*nb_inactive_fd)++;
1118 continue;
1119 }
1120 /*
1121 * This clobbers way too much the debug output. Uncomment that if you
1122 * need it for debugging purposes.
1123 *
1124 * DBG("Active FD %d", stream->wait_fd);
1125 */
1126 (*pollfd)[i].fd = stream->wait_fd;
1127 (*pollfd)[i].events = POLLIN | POLLPRI;
1128 local_stream[i] = stream;
1129 i++;
1130 }
1131 rcu_read_unlock();
1132
1133 /*
1134 * Insert the consumer_data_pipe at the end of the array and don't
1135 * increment i so nb_fd is the number of real FD.
1136 */
1137 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1138 (*pollfd)[i].events = POLLIN | POLLPRI;
1139
1140 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1141 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1142 return i;
1143 }
1144
1145 /*
1146 * Poll on the should_quit pipe and the command socket return -1 on
1147 * error, 1 if should exit, 0 if data is available on the command socket
1148 */
1149 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1150 {
1151 int num_rdy;
1152
1153 restart:
1154 num_rdy = poll(consumer_sockpoll, 2, -1);
1155 if (num_rdy == -1) {
1156 /*
1157 * Restart interrupted system call.
1158 */
1159 if (errno == EINTR) {
1160 goto restart;
1161 }
1162 PERROR("Poll error");
1163 return -1;
1164 }
1165 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1166 DBG("consumer_should_quit wake up");
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 /*
1173 * Set the error socket.
1174 */
1175 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1176 int sock)
1177 {
1178 ctx->consumer_error_socket = sock;
1179 }
1180
1181 /*
1182 * Set the command socket path.
1183 */
1184 void lttng_consumer_set_command_sock_path(
1185 struct lttng_consumer_local_data *ctx, char *sock)
1186 {
1187 ctx->consumer_command_sock_path = sock;
1188 }
1189
1190 /*
1191 * Send return code to the session daemon.
1192 * If the socket is not defined, we return 0, it is not a fatal error
1193 */
1194 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1195 {
1196 if (ctx->consumer_error_socket > 0) {
1197 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1198 sizeof(enum lttcomm_sessiond_command));
1199 }
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * Close all the tracefiles and stream fds and MUST be called when all
1206 * instances are destroyed i.e. when all threads were joined and are ended.
1207 */
1208 void lttng_consumer_cleanup(void)
1209 {
1210 struct lttng_ht_iter iter;
1211 struct lttng_consumer_channel *channel;
1212
1213 rcu_read_lock();
1214
1215 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1216 node.node) {
1217 consumer_del_channel(channel);
1218 }
1219
1220 rcu_read_unlock();
1221
1222 lttng_ht_destroy(consumer_data.channel_ht);
1223
1224 cleanup_relayd_ht();
1225
1226 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1227
1228 /*
1229 * This HT contains streams that are freed by either the metadata thread or
1230 * the data thread so we do *nothing* on the hash table and simply destroy
1231 * it.
1232 */
1233 lttng_ht_destroy(consumer_data.stream_list_ht);
1234 }
1235
1236 /*
1237 * Called from signal handler.
1238 */
1239 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1240 {
1241 ssize_t ret;
1242
1243 CMM_STORE_SHARED(consumer_quit, 1);
1244 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1245 if (ret < 1) {
1246 PERROR("write consumer quit");
1247 }
1248
1249 DBG("Consumer flag that it should quit");
1250 }
1251
1252
1253 /*
1254 * Flush pending writes to trace output disk file.
1255 */
1256 static
1257 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1258 off_t orig_offset)
1259 {
1260 int ret;
1261 int outfd = stream->out_fd;
1262
1263 /*
1264 * This does a blocking write-and-wait on any page that belongs to the
1265 * subbuffer prior to the one we just wrote.
1266 * Don't care about error values, as these are just hints and ways to
1267 * limit the amount of page cache used.
1268 */
1269 if (orig_offset < stream->max_sb_size) {
1270 return;
1271 }
1272 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1273 stream->max_sb_size,
1274 SYNC_FILE_RANGE_WAIT_BEFORE
1275 | SYNC_FILE_RANGE_WRITE
1276 | SYNC_FILE_RANGE_WAIT_AFTER);
1277 /*
1278 * Give hints to the kernel about how we access the file:
1279 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1280 * we write it.
1281 *
1282 * We need to call fadvise again after the file grows because the
1283 * kernel does not seem to apply fadvise to non-existing parts of the
1284 * file.
1285 *
1286 * Call fadvise _after_ having waited for the page writeback to
1287 * complete because the dirty page writeback semantic is not well
1288 * defined. So it can be expected to lead to lower throughput in
1289 * streaming.
1290 */
1291 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1292 stream->max_sb_size, POSIX_FADV_DONTNEED);
1293 if (ret && ret != -ENOSYS) {
1294 errno = ret;
1295 PERROR("posix_fadvise on fd %i", outfd);
1296 }
1297 }
1298
1299 /*
1300 * Initialise the necessary environnement :
1301 * - create a new context
1302 * - create the poll_pipe
1303 * - create the should_quit pipe (for signal handler)
1304 * - create the thread pipe (for splice)
1305 *
1306 * Takes a function pointer as argument, this function is called when data is
1307 * available on a buffer. This function is responsible to do the
1308 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1309 * buffer configuration and then kernctl_put_next_subbuf at the end.
1310 *
1311 * Returns a pointer to the new context or NULL on error.
1312 */
1313 struct lttng_consumer_local_data *lttng_consumer_create(
1314 enum lttng_consumer_type type,
1315 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1316 struct lttng_consumer_local_data *ctx),
1317 int (*recv_channel)(struct lttng_consumer_channel *channel),
1318 int (*recv_stream)(struct lttng_consumer_stream *stream),
1319 int (*update_stream)(uint64_t stream_key, uint32_t state))
1320 {
1321 int ret;
1322 struct lttng_consumer_local_data *ctx;
1323
1324 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1325 consumer_data.type == type);
1326 consumer_data.type = type;
1327
1328 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1329 if (ctx == NULL) {
1330 PERROR("allocating context");
1331 goto error;
1332 }
1333
1334 ctx->consumer_error_socket = -1;
1335 ctx->consumer_metadata_socket = -1;
1336 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1337 /* assign the callbacks */
1338 ctx->on_buffer_ready = buffer_ready;
1339 ctx->on_recv_channel = recv_channel;
1340 ctx->on_recv_stream = recv_stream;
1341 ctx->on_update_stream = update_stream;
1342
1343 ctx->consumer_data_pipe = lttng_pipe_open(0);
1344 if (!ctx->consumer_data_pipe) {
1345 goto error_poll_pipe;
1346 }
1347
1348 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1349 if (!ctx->consumer_wakeup_pipe) {
1350 goto error_wakeup_pipe;
1351 }
1352
1353 ret = pipe(ctx->consumer_should_quit);
1354 if (ret < 0) {
1355 PERROR("Error creating recv pipe");
1356 goto error_quit_pipe;
1357 }
1358
1359 ret = pipe(ctx->consumer_channel_pipe);
1360 if (ret < 0) {
1361 PERROR("Error creating channel pipe");
1362 goto error_channel_pipe;
1363 }
1364
1365 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1366 if (!ctx->consumer_metadata_pipe) {
1367 goto error_metadata_pipe;
1368 }
1369
1370 ctx->channel_monitor_pipe = -1;
1371
1372 return ctx;
1373
1374 error_metadata_pipe:
1375 utils_close_pipe(ctx->consumer_channel_pipe);
1376 error_channel_pipe:
1377 utils_close_pipe(ctx->consumer_should_quit);
1378 error_quit_pipe:
1379 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1380 error_wakeup_pipe:
1381 lttng_pipe_destroy(ctx->consumer_data_pipe);
1382 error_poll_pipe:
1383 free(ctx);
1384 error:
1385 return NULL;
1386 }
1387
1388 /*
1389 * Iterate over all streams of the hashtable and free them properly.
1390 */
1391 static void destroy_data_stream_ht(struct lttng_ht *ht)
1392 {
1393 struct lttng_ht_iter iter;
1394 struct lttng_consumer_stream *stream;
1395
1396 if (ht == NULL) {
1397 return;
1398 }
1399
1400 rcu_read_lock();
1401 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1402 /*
1403 * Ignore return value since we are currently cleaning up so any error
1404 * can't be handled.
1405 */
1406 (void) consumer_del_stream(stream, ht);
1407 }
1408 rcu_read_unlock();
1409
1410 lttng_ht_destroy(ht);
1411 }
1412
1413 /*
1414 * Iterate over all streams of the metadata hashtable and free them
1415 * properly.
1416 */
1417 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1418 {
1419 struct lttng_ht_iter iter;
1420 struct lttng_consumer_stream *stream;
1421
1422 if (ht == NULL) {
1423 return;
1424 }
1425
1426 rcu_read_lock();
1427 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1428 /*
1429 * Ignore return value since we are currently cleaning up so any error
1430 * can't be handled.
1431 */
1432 (void) consumer_del_metadata_stream(stream, ht);
1433 }
1434 rcu_read_unlock();
1435
1436 lttng_ht_destroy(ht);
1437 }
1438
1439 /*
1440 * Close all fds associated with the instance and free the context.
1441 */
1442 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1443 {
1444 int ret;
1445
1446 DBG("Consumer destroying it. Closing everything.");
1447
1448 if (!ctx) {
1449 return;
1450 }
1451
1452 destroy_data_stream_ht(data_ht);
1453 destroy_metadata_stream_ht(metadata_ht);
1454
1455 ret = close(ctx->consumer_error_socket);
1456 if (ret) {
1457 PERROR("close");
1458 }
1459 ret = close(ctx->consumer_metadata_socket);
1460 if (ret) {
1461 PERROR("close");
1462 }
1463 utils_close_pipe(ctx->consumer_channel_pipe);
1464 lttng_pipe_destroy(ctx->consumer_data_pipe);
1465 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1466 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1467 utils_close_pipe(ctx->consumer_should_quit);
1468
1469 unlink(ctx->consumer_command_sock_path);
1470 free(ctx);
1471 }
1472
1473 /*
1474 * Write the metadata stream id on the specified file descriptor.
1475 */
1476 static int write_relayd_metadata_id(int fd,
1477 struct lttng_consumer_stream *stream,
1478 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1479 {
1480 ssize_t ret;
1481 struct lttcomm_relayd_metadata_payload hdr;
1482
1483 hdr.stream_id = htobe64(stream->relayd_stream_id);
1484 hdr.padding_size = htobe32(padding);
1485 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1486 if (ret < sizeof(hdr)) {
1487 /*
1488 * This error means that the fd's end is closed so ignore the PERROR
1489 * not to clubber the error output since this can happen in a normal
1490 * code path.
1491 */
1492 if (errno != EPIPE) {
1493 PERROR("write metadata stream id");
1494 }
1495 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1496 /*
1497 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1498 * handle writting the missing part so report that as an error and
1499 * don't lie to the caller.
1500 */
1501 ret = -1;
1502 goto end;
1503 }
1504 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1505 stream->relayd_stream_id, padding);
1506
1507 end:
1508 return (int) ret;
1509 }
1510
1511 /*
1512 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1513 * core function for writing trace buffers to either the local filesystem or
1514 * the network.
1515 *
1516 * It must be called with the stream lock held.
1517 *
1518 * Careful review MUST be put if any changes occur!
1519 *
1520 * Returns the number of bytes written
1521 */
1522 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1523 struct lttng_consumer_local_data *ctx,
1524 struct lttng_consumer_stream *stream, unsigned long len,
1525 unsigned long padding,
1526 struct ctf_packet_index *index)
1527 {
1528 unsigned long mmap_offset;
1529 void *mmap_base;
1530 ssize_t ret = 0;
1531 off_t orig_offset = stream->out_fd_offset;
1532 /* Default is on the disk */
1533 int outfd = stream->out_fd;
1534 struct consumer_relayd_sock_pair *relayd = NULL;
1535 unsigned int relayd_hang_up = 0;
1536
1537 /* RCU lock for the relayd pointer */
1538 rcu_read_lock();
1539
1540 /* Flag that the current stream if set for network streaming. */
1541 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1542 relayd = consumer_find_relayd(stream->net_seq_idx);
1543 if (relayd == NULL) {
1544 ret = -EPIPE;
1545 goto end;
1546 }
1547 }
1548
1549 /* get the offset inside the fd to mmap */
1550 switch (consumer_data.type) {
1551 case LTTNG_CONSUMER_KERNEL:
1552 mmap_base = stream->mmap_base;
1553 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1554 if (ret < 0) {
1555 PERROR("tracer ctl get_mmap_read_offset");
1556 goto end;
1557 }
1558 break;
1559 case LTTNG_CONSUMER32_UST:
1560 case LTTNG_CONSUMER64_UST:
1561 mmap_base = lttng_ustctl_get_mmap_base(stream);
1562 if (!mmap_base) {
1563 ERR("read mmap get mmap base for stream %s", stream->name);
1564 ret = -EPERM;
1565 goto end;
1566 }
1567 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1568 if (ret != 0) {
1569 PERROR("tracer ctl get_mmap_read_offset");
1570 ret = -EINVAL;
1571 goto end;
1572 }
1573 break;
1574 default:
1575 ERR("Unknown consumer_data type");
1576 assert(0);
1577 }
1578
1579 /* Handle stream on the relayd if the output is on the network */
1580 if (relayd) {
1581 unsigned long netlen = len;
1582
1583 /*
1584 * Lock the control socket for the complete duration of the function
1585 * since from this point on we will use the socket.
1586 */
1587 if (stream->metadata_flag) {
1588 /* Metadata requires the control socket. */
1589 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1590 if (stream->reset_metadata_flag) {
1591 ret = relayd_reset_metadata(&relayd->control_sock,
1592 stream->relayd_stream_id,
1593 stream->metadata_version);
1594 if (ret < 0) {
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 stream->reset_metadata_flag = 0;
1599 }
1600 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1601 }
1602
1603 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1604 if (ret < 0) {
1605 relayd_hang_up = 1;
1606 goto write_error;
1607 }
1608 /* Use the returned socket. */
1609 outfd = ret;
1610
1611 /* Write metadata stream id before payload */
1612 if (stream->metadata_flag) {
1613 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1614 if (ret < 0) {
1615 relayd_hang_up = 1;
1616 goto write_error;
1617 }
1618 }
1619 } else {
1620 /* No streaming, we have to set the len with the full padding */
1621 len += padding;
1622
1623 if (stream->metadata_flag && stream->reset_metadata_flag) {
1624 ret = utils_truncate_stream_file(stream->out_fd, 0);
1625 if (ret < 0) {
1626 ERR("Reset metadata file");
1627 goto end;
1628 }
1629 stream->reset_metadata_flag = 0;
1630 }
1631
1632 /*
1633 * Check if we need to change the tracefile before writing the packet.
1634 */
1635 if (stream->chan->tracefile_size > 0 &&
1636 (stream->tracefile_size_current + len) >
1637 stream->chan->tracefile_size) {
1638 ret = utils_rotate_stream_file(stream->chan->pathname,
1639 stream->name, stream->chan->tracefile_size,
1640 stream->chan->tracefile_count, stream->uid, stream->gid,
1641 stream->out_fd, &(stream->tracefile_count_current),
1642 &stream->out_fd);
1643 if (ret < 0) {
1644 ERR("Rotating output file");
1645 goto end;
1646 }
1647 outfd = stream->out_fd;
1648
1649 if (stream->index_file) {
1650 lttng_index_file_put(stream->index_file);
1651 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1652 stream->name, stream->uid, stream->gid,
1653 stream->chan->tracefile_size,
1654 stream->tracefile_count_current,
1655 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1656 if (!stream->index_file) {
1657 goto end;
1658 }
1659 }
1660
1661 /* Reset current size because we just perform a rotation. */
1662 stream->tracefile_size_current = 0;
1663 stream->out_fd_offset = 0;
1664 orig_offset = 0;
1665 }
1666 stream->tracefile_size_current += len;
1667 if (index) {
1668 index->offset = htobe64(stream->out_fd_offset);
1669 }
1670 }
1671
1672 /*
1673 * This call guarantee that len or less is returned. It's impossible to
1674 * receive a ret value that is bigger than len.
1675 */
1676 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1677 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1678 if (ret < 0 || ((size_t) ret != len)) {
1679 /*
1680 * Report error to caller if nothing was written else at least send the
1681 * amount written.
1682 */
1683 if (ret < 0) {
1684 ret = -errno;
1685 }
1686 relayd_hang_up = 1;
1687
1688 /* Socket operation failed. We consider the relayd dead */
1689 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1690 /*
1691 * This is possible if the fd is closed on the other side
1692 * (outfd) or any write problem. It can be verbose a bit for a
1693 * normal execution if for instance the relayd is stopped
1694 * abruptly. This can happen so set this to a DBG statement.
1695 */
1696 DBG("Consumer mmap write detected relayd hang up");
1697 } else {
1698 /* Unhandled error, print it and stop function right now. */
1699 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1700 }
1701 goto write_error;
1702 }
1703 stream->output_written += ret;
1704
1705 /* This call is useless on a socket so better save a syscall. */
1706 if (!relayd) {
1707 /* This won't block, but will start writeout asynchronously */
1708 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1709 SYNC_FILE_RANGE_WRITE);
1710 stream->out_fd_offset += len;
1711 lttng_consumer_sync_trace_file(stream, orig_offset);
1712 }
1713
1714 write_error:
1715 /*
1716 * This is a special case that the relayd has closed its socket. Let's
1717 * cleanup the relayd object and all associated streams.
1718 */
1719 if (relayd && relayd_hang_up) {
1720 cleanup_relayd(relayd, ctx);
1721 }
1722
1723 end:
1724 /* Unlock only if ctrl socket used */
1725 if (relayd && stream->metadata_flag) {
1726 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1727 }
1728
1729 rcu_read_unlock();
1730 return ret;
1731 }
1732
1733 /*
1734 * Splice the data from the ring buffer to the tracefile.
1735 *
1736 * It must be called with the stream lock held.
1737 *
1738 * Returns the number of bytes spliced.
1739 */
1740 ssize_t lttng_consumer_on_read_subbuffer_splice(
1741 struct lttng_consumer_local_data *ctx,
1742 struct lttng_consumer_stream *stream, unsigned long len,
1743 unsigned long padding,
1744 struct ctf_packet_index *index)
1745 {
1746 ssize_t ret = 0, written = 0, ret_splice = 0;
1747 loff_t offset = 0;
1748 off_t orig_offset = stream->out_fd_offset;
1749 int fd = stream->wait_fd;
1750 /* Default is on the disk */
1751 int outfd = stream->out_fd;
1752 struct consumer_relayd_sock_pair *relayd = NULL;
1753 int *splice_pipe;
1754 unsigned int relayd_hang_up = 0;
1755
1756 switch (consumer_data.type) {
1757 case LTTNG_CONSUMER_KERNEL:
1758 break;
1759 case LTTNG_CONSUMER32_UST:
1760 case LTTNG_CONSUMER64_UST:
1761 /* Not supported for user space tracing */
1762 return -ENOSYS;
1763 default:
1764 ERR("Unknown consumer_data type");
1765 assert(0);
1766 }
1767
1768 /* RCU lock for the relayd pointer */
1769 rcu_read_lock();
1770
1771 /* Flag that the current stream if set for network streaming. */
1772 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1773 relayd = consumer_find_relayd(stream->net_seq_idx);
1774 if (relayd == NULL) {
1775 written = -ret;
1776 goto end;
1777 }
1778 }
1779 splice_pipe = stream->splice_pipe;
1780
1781 /* Write metadata stream id before payload */
1782 if (relayd) {
1783 unsigned long total_len = len;
1784
1785 if (stream->metadata_flag) {
1786 /*
1787 * Lock the control socket for the complete duration of the function
1788 * since from this point on we will use the socket.
1789 */
1790 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1791
1792 if (stream->reset_metadata_flag) {
1793 ret = relayd_reset_metadata(&relayd->control_sock,
1794 stream->relayd_stream_id,
1795 stream->metadata_version);
1796 if (ret < 0) {
1797 relayd_hang_up = 1;
1798 goto write_error;
1799 }
1800 stream->reset_metadata_flag = 0;
1801 }
1802 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1803 padding);
1804 if (ret < 0) {
1805 written = ret;
1806 relayd_hang_up = 1;
1807 goto write_error;
1808 }
1809
1810 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1811 }
1812
1813 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1814 if (ret < 0) {
1815 written = ret;
1816 relayd_hang_up = 1;
1817 goto write_error;
1818 }
1819 /* Use the returned socket. */
1820 outfd = ret;
1821 } else {
1822 /* No streaming, we have to set the len with the full padding */
1823 len += padding;
1824
1825 if (stream->metadata_flag && stream->reset_metadata_flag) {
1826 ret = utils_truncate_stream_file(stream->out_fd, 0);
1827 if (ret < 0) {
1828 ERR("Reset metadata file");
1829 goto end;
1830 }
1831 stream->reset_metadata_flag = 0;
1832 }
1833 /*
1834 * Check if we need to change the tracefile before writing the packet.
1835 */
1836 if (stream->chan->tracefile_size > 0 &&
1837 (stream->tracefile_size_current + len) >
1838 stream->chan->tracefile_size) {
1839 ret = utils_rotate_stream_file(stream->chan->pathname,
1840 stream->name, stream->chan->tracefile_size,
1841 stream->chan->tracefile_count, stream->uid, stream->gid,
1842 stream->out_fd, &(stream->tracefile_count_current),
1843 &stream->out_fd);
1844 if (ret < 0) {
1845 written = ret;
1846 ERR("Rotating output file");
1847 goto end;
1848 }
1849 outfd = stream->out_fd;
1850
1851 if (stream->index_file) {
1852 lttng_index_file_put(stream->index_file);
1853 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1854 stream->name, stream->uid, stream->gid,
1855 stream->chan->tracefile_size,
1856 stream->tracefile_count_current,
1857 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1858 if (!stream->index_file) {
1859 goto end;
1860 }
1861 }
1862
1863 /* Reset current size because we just perform a rotation. */
1864 stream->tracefile_size_current = 0;
1865 stream->out_fd_offset = 0;
1866 orig_offset = 0;
1867 }
1868 stream->tracefile_size_current += len;
1869 index->offset = htobe64(stream->out_fd_offset);
1870 }
1871
1872 while (len > 0) {
1873 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1874 (unsigned long)offset, len, fd, splice_pipe[1]);
1875 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1876 SPLICE_F_MOVE | SPLICE_F_MORE);
1877 DBG("splice chan to pipe, ret %zd", ret_splice);
1878 if (ret_splice < 0) {
1879 ret = errno;
1880 written = -ret;
1881 PERROR("Error in relay splice");
1882 goto splice_error;
1883 }
1884
1885 /* Handle stream on the relayd if the output is on the network */
1886 if (relayd && stream->metadata_flag) {
1887 size_t metadata_payload_size =
1888 sizeof(struct lttcomm_relayd_metadata_payload);
1889
1890 /* Update counter to fit the spliced data */
1891 ret_splice += metadata_payload_size;
1892 len += metadata_payload_size;
1893 /*
1894 * We do this so the return value can match the len passed as
1895 * argument to this function.
1896 */
1897 written -= metadata_payload_size;
1898 }
1899
1900 /* Splice data out */
1901 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1902 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1903 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1904 outfd, ret_splice);
1905 if (ret_splice < 0) {
1906 ret = errno;
1907 written = -ret;
1908 relayd_hang_up = 1;
1909 goto write_error;
1910 } else if (ret_splice > len) {
1911 /*
1912 * We don't expect this code path to be executed but you never know
1913 * so this is an extra protection agains a buggy splice().
1914 */
1915 ret = errno;
1916 written += ret_splice;
1917 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1918 len);
1919 goto splice_error;
1920 } else {
1921 /* All good, update current len and continue. */
1922 len -= ret_splice;
1923 }
1924
1925 /* This call is useless on a socket so better save a syscall. */
1926 if (!relayd) {
1927 /* This won't block, but will start writeout asynchronously */
1928 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1929 SYNC_FILE_RANGE_WRITE);
1930 stream->out_fd_offset += ret_splice;
1931 }
1932 stream->output_written += ret_splice;
1933 written += ret_splice;
1934 }
1935 if (!relayd) {
1936 lttng_consumer_sync_trace_file(stream, orig_offset);
1937 }
1938 goto end;
1939
1940 write_error:
1941 /*
1942 * This is a special case that the relayd has closed its socket. Let's
1943 * cleanup the relayd object and all associated streams.
1944 */
1945 if (relayd && relayd_hang_up) {
1946 cleanup_relayd(relayd, ctx);
1947 /* Skip splice error so the consumer does not fail */
1948 goto end;
1949 }
1950
1951 splice_error:
1952 /* send the appropriate error description to sessiond */
1953 switch (ret) {
1954 case EINVAL:
1955 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1956 break;
1957 case ENOMEM:
1958 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1959 break;
1960 case ESPIPE:
1961 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1962 break;
1963 }
1964
1965 end:
1966 if (relayd && stream->metadata_flag) {
1967 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1968 }
1969
1970 rcu_read_unlock();
1971 return written;
1972 }
1973
1974 /*
1975 * Take a snapshot for a specific fd
1976 *
1977 * Returns 0 on success, < 0 on error
1978 */
1979 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1980 {
1981 switch (consumer_data.type) {
1982 case LTTNG_CONSUMER_KERNEL:
1983 return lttng_kconsumer_take_snapshot(stream);
1984 case LTTNG_CONSUMER32_UST:
1985 case LTTNG_CONSUMER64_UST:
1986 return lttng_ustconsumer_take_snapshot(stream);
1987 default:
1988 ERR("Unknown consumer_data type");
1989 assert(0);
1990 return -ENOSYS;
1991 }
1992 }
1993
1994 /*
1995 * Get the produced position
1996 *
1997 * Returns 0 on success, < 0 on error
1998 */
1999 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2000 unsigned long *pos)
2001 {
2002 switch (consumer_data.type) {
2003 case LTTNG_CONSUMER_KERNEL:
2004 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2005 case LTTNG_CONSUMER32_UST:
2006 case LTTNG_CONSUMER64_UST:
2007 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2008 default:
2009 ERR("Unknown consumer_data type");
2010 assert(0);
2011 return -ENOSYS;
2012 }
2013 }
2014
2015 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2016 int sock, struct pollfd *consumer_sockpoll)
2017 {
2018 switch (consumer_data.type) {
2019 case LTTNG_CONSUMER_KERNEL:
2020 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2021 case LTTNG_CONSUMER32_UST:
2022 case LTTNG_CONSUMER64_UST:
2023 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2024 default:
2025 ERR("Unknown consumer_data type");
2026 assert(0);
2027 return -ENOSYS;
2028 }
2029 }
2030
2031 void lttng_consumer_close_all_metadata(void)
2032 {
2033 switch (consumer_data.type) {
2034 case LTTNG_CONSUMER_KERNEL:
2035 /*
2036 * The Kernel consumer has a different metadata scheme so we don't
2037 * close anything because the stream will be closed by the session
2038 * daemon.
2039 */
2040 break;
2041 case LTTNG_CONSUMER32_UST:
2042 case LTTNG_CONSUMER64_UST:
2043 /*
2044 * Close all metadata streams. The metadata hash table is passed and
2045 * this call iterates over it by closing all wakeup fd. This is safe
2046 * because at this point we are sure that the metadata producer is
2047 * either dead or blocked.
2048 */
2049 lttng_ustconsumer_close_all_metadata(metadata_ht);
2050 break;
2051 default:
2052 ERR("Unknown consumer_data type");
2053 assert(0);
2054 }
2055 }
2056
2057 /*
2058 * Clean up a metadata stream and free its memory.
2059 */
2060 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2061 struct lttng_ht *ht)
2062 {
2063 struct lttng_consumer_channel *free_chan = NULL;
2064
2065 assert(stream);
2066 /*
2067 * This call should NEVER receive regular stream. It must always be
2068 * metadata stream and this is crucial for data structure synchronization.
2069 */
2070 assert(stream->metadata_flag);
2071
2072 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2073
2074 pthread_mutex_lock(&consumer_data.lock);
2075 pthread_mutex_lock(&stream->chan->lock);
2076 pthread_mutex_lock(&stream->lock);
2077 if (stream->chan->metadata_cache) {
2078 /* Only applicable to userspace consumers. */
2079 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2080 }
2081
2082 /* Remove any reference to that stream. */
2083 consumer_stream_delete(stream, ht);
2084
2085 /* Close down everything including the relayd if one. */
2086 consumer_stream_close(stream);
2087 /* Destroy tracer buffers of the stream. */
2088 consumer_stream_destroy_buffers(stream);
2089
2090 /* Atomically decrement channel refcount since other threads can use it. */
2091 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2092 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2093 /* Go for channel deletion! */
2094 free_chan = stream->chan;
2095 }
2096
2097 /*
2098 * Nullify the stream reference so it is not used after deletion. The
2099 * channel lock MUST be acquired before being able to check for a NULL
2100 * pointer value.
2101 */
2102 stream->chan->metadata_stream = NULL;
2103
2104 if (stream->chan->metadata_cache) {
2105 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2106 }
2107 pthread_mutex_unlock(&stream->lock);
2108 pthread_mutex_unlock(&stream->chan->lock);
2109 pthread_mutex_unlock(&consumer_data.lock);
2110
2111 if (free_chan) {
2112 consumer_del_channel(free_chan);
2113 }
2114
2115 consumer_stream_free(stream);
2116 }
2117
2118 /*
2119 * Action done with the metadata stream when adding it to the consumer internal
2120 * data structures to handle it.
2121 */
2122 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2123 {
2124 struct lttng_ht *ht = metadata_ht;
2125 struct lttng_ht_iter iter;
2126 struct lttng_ht_node_u64 *node;
2127
2128 assert(stream);
2129 assert(ht);
2130
2131 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2132
2133 pthread_mutex_lock(&consumer_data.lock);
2134 pthread_mutex_lock(&stream->chan->lock);
2135 pthread_mutex_lock(&stream->chan->timer_lock);
2136 pthread_mutex_lock(&stream->lock);
2137
2138 /*
2139 * From here, refcounts are updated so be _careful_ when returning an error
2140 * after this point.
2141 */
2142
2143 rcu_read_lock();
2144
2145 /*
2146 * Lookup the stream just to make sure it does not exist in our internal
2147 * state. This should NEVER happen.
2148 */
2149 lttng_ht_lookup(ht, &stream->key, &iter);
2150 node = lttng_ht_iter_get_node_u64(&iter);
2151 assert(!node);
2152
2153 /*
2154 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2155 * in terms of destroying the associated channel, because the action that
2156 * causes the count to become 0 also causes a stream to be added. The
2157 * channel deletion will thus be triggered by the following removal of this
2158 * stream.
2159 */
2160 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2161 /* Increment refcount before decrementing nb_init_stream_left */
2162 cmm_smp_wmb();
2163 uatomic_dec(&stream->chan->nb_init_stream_left);
2164 }
2165
2166 lttng_ht_add_unique_u64(ht, &stream->node);
2167
2168 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2169 &stream->node_channel_id);
2170
2171 /*
2172 * Add stream to the stream_list_ht of the consumer data. No need to steal
2173 * the key since the HT does not use it and we allow to add redundant keys
2174 * into this table.
2175 */
2176 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2177
2178 rcu_read_unlock();
2179
2180 pthread_mutex_unlock(&stream->lock);
2181 pthread_mutex_unlock(&stream->chan->lock);
2182 pthread_mutex_unlock(&stream->chan->timer_lock);
2183 pthread_mutex_unlock(&consumer_data.lock);
2184 }
2185
2186 /*
2187 * Delete data stream that are flagged for deletion (endpoint_status).
2188 */
2189 static void validate_endpoint_status_data_stream(void)
2190 {
2191 struct lttng_ht_iter iter;
2192 struct lttng_consumer_stream *stream;
2193
2194 DBG("Consumer delete flagged data stream");
2195
2196 rcu_read_lock();
2197 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2198 /* Validate delete flag of the stream */
2199 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2200 continue;
2201 }
2202 /* Delete it right now */
2203 consumer_del_stream(stream, data_ht);
2204 }
2205 rcu_read_unlock();
2206 }
2207
2208 /*
2209 * Delete metadata stream that are flagged for deletion (endpoint_status).
2210 */
2211 static void validate_endpoint_status_metadata_stream(
2212 struct lttng_poll_event *pollset)
2213 {
2214 struct lttng_ht_iter iter;
2215 struct lttng_consumer_stream *stream;
2216
2217 DBG("Consumer delete flagged metadata stream");
2218
2219 assert(pollset);
2220
2221 rcu_read_lock();
2222 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2223 /* Validate delete flag of the stream */
2224 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2225 continue;
2226 }
2227 /*
2228 * Remove from pollset so the metadata thread can continue without
2229 * blocking on a deleted stream.
2230 */
2231 lttng_poll_del(pollset, stream->wait_fd);
2232
2233 /* Delete it right now */
2234 consumer_del_metadata_stream(stream, metadata_ht);
2235 }
2236 rcu_read_unlock();
2237 }
2238
2239 /*
2240 * Thread polls on metadata file descriptor and write them on disk or on the
2241 * network.
2242 */
2243 void *consumer_thread_metadata_poll(void *data)
2244 {
2245 int ret, i, pollfd, err = -1;
2246 uint32_t revents, nb_fd;
2247 struct lttng_consumer_stream *stream = NULL;
2248 struct lttng_ht_iter iter;
2249 struct lttng_ht_node_u64 *node;
2250 struct lttng_poll_event events;
2251 struct lttng_consumer_local_data *ctx = data;
2252 ssize_t len;
2253
2254 rcu_register_thread();
2255
2256 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2257
2258 if (testpoint(consumerd_thread_metadata)) {
2259 goto error_testpoint;
2260 }
2261
2262 health_code_update();
2263
2264 DBG("Thread metadata poll started");
2265
2266 /* Size is set to 1 for the consumer_metadata pipe */
2267 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2268 if (ret < 0) {
2269 ERR("Poll set creation failed");
2270 goto end_poll;
2271 }
2272
2273 ret = lttng_poll_add(&events,
2274 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2275 if (ret < 0) {
2276 goto end;
2277 }
2278
2279 /* Main loop */
2280 DBG("Metadata main loop started");
2281
2282 while (1) {
2283 restart:
2284 health_code_update();
2285 health_poll_entry();
2286 DBG("Metadata poll wait");
2287 ret = lttng_poll_wait(&events, -1);
2288 DBG("Metadata poll return from wait with %d fd(s)",
2289 LTTNG_POLL_GETNB(&events));
2290 health_poll_exit();
2291 DBG("Metadata event caught in thread");
2292 if (ret < 0) {
2293 if (errno == EINTR) {
2294 ERR("Poll EINTR caught");
2295 goto restart;
2296 }
2297 if (LTTNG_POLL_GETNB(&events) == 0) {
2298 err = 0; /* All is OK */
2299 }
2300 goto end;
2301 }
2302
2303 nb_fd = ret;
2304
2305 /* From here, the event is a metadata wait fd */
2306 for (i = 0; i < nb_fd; i++) {
2307 health_code_update();
2308
2309 revents = LTTNG_POLL_GETEV(&events, i);
2310 pollfd = LTTNG_POLL_GETFD(&events, i);
2311
2312 if (!revents) {
2313 /* No activity for this FD (poll implementation). */
2314 continue;
2315 }
2316
2317 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2318 if (revents & LPOLLIN) {
2319 ssize_t pipe_len;
2320
2321 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2322 &stream, sizeof(stream));
2323 if (pipe_len < sizeof(stream)) {
2324 if (pipe_len < 0) {
2325 PERROR("read metadata stream");
2326 }
2327 /*
2328 * Remove the pipe from the poll set and continue the loop
2329 * since their might be data to consume.
2330 */
2331 lttng_poll_del(&events,
2332 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2333 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2334 continue;
2335 }
2336
2337 /* A NULL stream means that the state has changed. */
2338 if (stream == NULL) {
2339 /* Check for deleted streams. */
2340 validate_endpoint_status_metadata_stream(&events);
2341 goto restart;
2342 }
2343
2344 DBG("Adding metadata stream %d to poll set",
2345 stream->wait_fd);
2346
2347 /* Add metadata stream to the global poll events list */
2348 lttng_poll_add(&events, stream->wait_fd,
2349 LPOLLIN | LPOLLPRI | LPOLLHUP);
2350 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2351 DBG("Metadata thread pipe hung up");
2352 /*
2353 * Remove the pipe from the poll set and continue the loop
2354 * since their might be data to consume.
2355 */
2356 lttng_poll_del(&events,
2357 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2358 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2359 continue;
2360 } else {
2361 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2362 goto end;
2363 }
2364
2365 /* Handle other stream */
2366 continue;
2367 }
2368
2369 rcu_read_lock();
2370 {
2371 uint64_t tmp_id = (uint64_t) pollfd;
2372
2373 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2374 }
2375 node = lttng_ht_iter_get_node_u64(&iter);
2376 assert(node);
2377
2378 stream = caa_container_of(node, struct lttng_consumer_stream,
2379 node);
2380
2381 if (revents & (LPOLLIN | LPOLLPRI)) {
2382 /* Get the data out of the metadata file descriptor */
2383 DBG("Metadata available on fd %d", pollfd);
2384 assert(stream->wait_fd == pollfd);
2385
2386 do {
2387 health_code_update();
2388
2389 len = ctx->on_buffer_ready(stream, ctx);
2390 /*
2391 * We don't check the return value here since if we get
2392 * a negative len, it means an error occurred thus we
2393 * simply remove it from the poll set and free the
2394 * stream.
2395 */
2396 } while (len > 0);
2397
2398 /* It's ok to have an unavailable sub-buffer */
2399 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2400 /* Clean up stream from consumer and free it. */
2401 lttng_poll_del(&events, stream->wait_fd);
2402 consumer_del_metadata_stream(stream, metadata_ht);
2403 }
2404 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2405 DBG("Metadata fd %d is hup|err.", pollfd);
2406 if (!stream->hangup_flush_done
2407 && (consumer_data.type == LTTNG_CONSUMER32_UST
2408 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2409 DBG("Attempting to flush and consume the UST buffers");
2410 lttng_ustconsumer_on_stream_hangup(stream);
2411
2412 /* We just flushed the stream now read it. */
2413 do {
2414 health_code_update();
2415
2416 len = ctx->on_buffer_ready(stream, ctx);
2417 /*
2418 * We don't check the return value here since if we get
2419 * a negative len, it means an error occurred thus we
2420 * simply remove it from the poll set and free the
2421 * stream.
2422 */
2423 } while (len > 0);
2424 }
2425
2426 lttng_poll_del(&events, stream->wait_fd);
2427 /*
2428 * This call update the channel states, closes file descriptors
2429 * and securely free the stream.
2430 */
2431 consumer_del_metadata_stream(stream, metadata_ht);
2432 } else {
2433 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2434 rcu_read_unlock();
2435 goto end;
2436 }
2437 /* Release RCU lock for the stream looked up */
2438 rcu_read_unlock();
2439 }
2440 }
2441
2442 /* All is OK */
2443 err = 0;
2444 end:
2445 DBG("Metadata poll thread exiting");
2446
2447 lttng_poll_clean(&events);
2448 end_poll:
2449 error_testpoint:
2450 if (err) {
2451 health_error();
2452 ERR("Health error occurred in %s", __func__);
2453 }
2454 health_unregister(health_consumerd);
2455 rcu_unregister_thread();
2456 return NULL;
2457 }
2458
2459 /*
2460 * This thread polls the fds in the set to consume the data and write
2461 * it to tracefile if necessary.
2462 */
2463 void *consumer_thread_data_poll(void *data)
2464 {
2465 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2466 struct pollfd *pollfd = NULL;
2467 /* local view of the streams */
2468 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2469 /* local view of consumer_data.fds_count */
2470 int nb_fd = 0, nb_pipes_fd;
2471 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2472 int nb_inactive_fd = 0;
2473 struct lttng_consumer_local_data *ctx = data;
2474 ssize_t len;
2475
2476 rcu_register_thread();
2477
2478 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2479
2480 if (testpoint(consumerd_thread_data)) {
2481 goto error_testpoint;
2482 }
2483
2484 health_code_update();
2485
2486 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2487 if (local_stream == NULL) {
2488 PERROR("local_stream malloc");
2489 goto end;
2490 }
2491
2492 while (1) {
2493 health_code_update();
2494
2495 high_prio = 0;
2496 num_hup = 0;
2497
2498 /*
2499 * the fds set has been updated, we need to update our
2500 * local array as well
2501 */
2502 pthread_mutex_lock(&consumer_data.lock);
2503 if (consumer_data.need_update) {
2504 free(pollfd);
2505 pollfd = NULL;
2506
2507 free(local_stream);
2508 local_stream = NULL;
2509
2510 /*
2511 * Allocate for all fds + 2:
2512 * +1 for the consumer_data_pipe
2513 * +1 for wake up pipe
2514 */
2515 nb_pipes_fd = 2;
2516 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2517 if (pollfd == NULL) {
2518 PERROR("pollfd malloc");
2519 pthread_mutex_unlock(&consumer_data.lock);
2520 goto end;
2521 }
2522
2523 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2524 sizeof(struct lttng_consumer_stream *));
2525 if (local_stream == NULL) {
2526 PERROR("local_stream malloc");
2527 pthread_mutex_unlock(&consumer_data.lock);
2528 goto end;
2529 }
2530 ret = update_poll_array(ctx, &pollfd, local_stream,
2531 data_ht, &nb_inactive_fd);
2532 if (ret < 0) {
2533 ERR("Error in allocating pollfd or local_outfds");
2534 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2535 pthread_mutex_unlock(&consumer_data.lock);
2536 goto end;
2537 }
2538 nb_fd = ret;
2539 consumer_data.need_update = 0;
2540 }
2541 pthread_mutex_unlock(&consumer_data.lock);
2542
2543 /* No FDs and consumer_quit, consumer_cleanup the thread */
2544 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2545 CMM_LOAD_SHARED(consumer_quit) == 1) {
2546 err = 0; /* All is OK */
2547 goto end;
2548 }
2549 /* poll on the array of fds */
2550 restart:
2551 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2552 if (testpoint(consumerd_thread_data_poll)) {
2553 goto end;
2554 }
2555 health_poll_entry();
2556 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2557 health_poll_exit();
2558 DBG("poll num_rdy : %d", num_rdy);
2559 if (num_rdy == -1) {
2560 /*
2561 * Restart interrupted system call.
2562 */
2563 if (errno == EINTR) {
2564 goto restart;
2565 }
2566 PERROR("Poll error");
2567 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2568 goto end;
2569 } else if (num_rdy == 0) {
2570 DBG("Polling thread timed out");
2571 goto end;
2572 }
2573
2574 if (caa_unlikely(data_consumption_paused)) {
2575 DBG("Data consumption paused, sleeping...");
2576 sleep(1);
2577 goto restart;
2578 }
2579
2580 /*
2581 * If the consumer_data_pipe triggered poll go directly to the
2582 * beginning of the loop to update the array. We want to prioritize
2583 * array update over low-priority reads.
2584 */
2585 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2586 ssize_t pipe_readlen;
2587
2588 DBG("consumer_data_pipe wake up");
2589 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2590 &new_stream, sizeof(new_stream));
2591 if (pipe_readlen < sizeof(new_stream)) {
2592 PERROR("Consumer data pipe");
2593 /* Continue so we can at least handle the current stream(s). */
2594 continue;
2595 }
2596
2597 /*
2598 * If the stream is NULL, just ignore it. It's also possible that
2599 * the sessiond poll thread changed the consumer_quit state and is
2600 * waking us up to test it.
2601 */
2602 if (new_stream == NULL) {
2603 validate_endpoint_status_data_stream();
2604 continue;
2605 }
2606
2607 /* Continue to update the local streams and handle prio ones */
2608 continue;
2609 }
2610
2611 /* Handle wakeup pipe. */
2612 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2613 char dummy;
2614 ssize_t pipe_readlen;
2615
2616 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2617 sizeof(dummy));
2618 if (pipe_readlen < 0) {
2619 PERROR("Consumer data wakeup pipe");
2620 }
2621 /* We've been awakened to handle stream(s). */
2622 ctx->has_wakeup = 0;
2623 }
2624
2625 /* Take care of high priority channels first. */
2626 for (i = 0; i < nb_fd; i++) {
2627 health_code_update();
2628
2629 if (local_stream[i] == NULL) {
2630 continue;
2631 }
2632 if (pollfd[i].revents & POLLPRI) {
2633 DBG("Urgent read on fd %d", pollfd[i].fd);
2634 high_prio = 1;
2635 len = ctx->on_buffer_ready(local_stream[i], ctx);
2636 /* it's ok to have an unavailable sub-buffer */
2637 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2638 /* Clean the stream and free it. */
2639 consumer_del_stream(local_stream[i], data_ht);
2640 local_stream[i] = NULL;
2641 } else if (len > 0) {
2642 local_stream[i]->data_read = 1;
2643 }
2644 }
2645 }
2646
2647 /*
2648 * If we read high prio channel in this loop, try again
2649 * for more high prio data.
2650 */
2651 if (high_prio) {
2652 continue;
2653 }
2654
2655 /* Take care of low priority channels. */
2656 for (i = 0; i < nb_fd; i++) {
2657 health_code_update();
2658
2659 if (local_stream[i] == NULL) {
2660 continue;
2661 }
2662 if ((pollfd[i].revents & POLLIN) ||
2663 local_stream[i]->hangup_flush_done ||
2664 local_stream[i]->has_data) {
2665 DBG("Normal read on fd %d", pollfd[i].fd);
2666 len = ctx->on_buffer_ready(local_stream[i], ctx);
2667 /* it's ok to have an unavailable sub-buffer */
2668 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2669 /* Clean the stream and free it. */
2670 consumer_del_stream(local_stream[i], data_ht);
2671 local_stream[i] = NULL;
2672 } else if (len > 0) {
2673 local_stream[i]->data_read = 1;
2674 }
2675 }
2676 }
2677
2678 /* Handle hangup and errors */
2679 for (i = 0; i < nb_fd; i++) {
2680 health_code_update();
2681
2682 if (local_stream[i] == NULL) {
2683 continue;
2684 }
2685 if (!local_stream[i]->hangup_flush_done
2686 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2687 && (consumer_data.type == LTTNG_CONSUMER32_UST
2688 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2689 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2690 pollfd[i].fd);
2691 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2692 /* Attempt read again, for the data we just flushed. */
2693 local_stream[i]->data_read = 1;
2694 }
2695 /*
2696 * If the poll flag is HUP/ERR/NVAL and we have
2697 * read no data in this pass, we can remove the
2698 * stream from its hash table.
2699 */
2700 if ((pollfd[i].revents & POLLHUP)) {
2701 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2702 if (!local_stream[i]->data_read) {
2703 consumer_del_stream(local_stream[i], data_ht);
2704 local_stream[i] = NULL;
2705 num_hup++;
2706 }
2707 } else if (pollfd[i].revents & POLLERR) {
2708 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2709 if (!local_stream[i]->data_read) {
2710 consumer_del_stream(local_stream[i], data_ht);
2711 local_stream[i] = NULL;
2712 num_hup++;
2713 }
2714 } else if (pollfd[i].revents & POLLNVAL) {
2715 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2716 if (!local_stream[i]->data_read) {
2717 consumer_del_stream(local_stream[i], data_ht);
2718 local_stream[i] = NULL;
2719 num_hup++;
2720 }
2721 }
2722 if (local_stream[i] != NULL) {
2723 local_stream[i]->data_read = 0;
2724 }
2725 }
2726 }
2727 /* All is OK */
2728 err = 0;
2729 end:
2730 DBG("polling thread exiting");
2731 free(pollfd);
2732 free(local_stream);
2733
2734 /*
2735 * Close the write side of the pipe so epoll_wait() in
2736 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2737 * read side of the pipe. If we close them both, epoll_wait strangely does
2738 * not return and could create a endless wait period if the pipe is the
2739 * only tracked fd in the poll set. The thread will take care of closing
2740 * the read side.
2741 */
2742 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2743
2744 error_testpoint:
2745 if (err) {
2746 health_error();
2747 ERR("Health error occurred in %s", __func__);
2748 }
2749 health_unregister(health_consumerd);
2750
2751 rcu_unregister_thread();
2752 return NULL;
2753 }
2754
2755 /*
2756 * Close wake-up end of each stream belonging to the channel. This will
2757 * allow the poll() on the stream read-side to detect when the
2758 * write-side (application) finally closes them.
2759 */
2760 static
2761 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2762 {
2763 struct lttng_ht *ht;
2764 struct lttng_consumer_stream *stream;
2765 struct lttng_ht_iter iter;
2766
2767 ht = consumer_data.stream_per_chan_id_ht;
2768
2769 rcu_read_lock();
2770 cds_lfht_for_each_entry_duplicate(ht->ht,
2771 ht->hash_fct(&channel->key, lttng_ht_seed),
2772 ht->match_fct, &channel->key,
2773 &iter.iter, stream, node_channel_id.node) {
2774 /*
2775 * Protect against teardown with mutex.
2776 */
2777 pthread_mutex_lock(&stream->lock);
2778 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2779 goto next;
2780 }
2781 switch (consumer_data.type) {
2782 case LTTNG_CONSUMER_KERNEL:
2783 break;
2784 case LTTNG_CONSUMER32_UST:
2785 case LTTNG_CONSUMER64_UST:
2786 if (stream->metadata_flag) {
2787 /* Safe and protected by the stream lock. */
2788 lttng_ustconsumer_close_metadata(stream->chan);
2789 } else {
2790 /*
2791 * Note: a mutex is taken internally within
2792 * liblttng-ust-ctl to protect timer wakeup_fd
2793 * use from concurrent close.
2794 */
2795 lttng_ustconsumer_close_stream_wakeup(stream);
2796 }
2797 break;
2798 default:
2799 ERR("Unknown consumer_data type");
2800 assert(0);
2801 }
2802 next:
2803 pthread_mutex_unlock(&stream->lock);
2804 }
2805 rcu_read_unlock();
2806 }
2807
2808 static void destroy_channel_ht(struct lttng_ht *ht)
2809 {
2810 struct lttng_ht_iter iter;
2811 struct lttng_consumer_channel *channel;
2812 int ret;
2813
2814 if (ht == NULL) {
2815 return;
2816 }
2817
2818 rcu_read_lock();
2819 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2820 ret = lttng_ht_del(ht, &iter);
2821 assert(ret != 0);
2822 }
2823 rcu_read_unlock();
2824
2825 lttng_ht_destroy(ht);
2826 }
2827
2828 /*
2829 * This thread polls the channel fds to detect when they are being
2830 * closed. It closes all related streams if the channel is detected as
2831 * closed. It is currently only used as a shim layer for UST because the
2832 * consumerd needs to keep the per-stream wakeup end of pipes open for
2833 * periodical flush.
2834 */
2835 void *consumer_thread_channel_poll(void *data)
2836 {
2837 int ret, i, pollfd, err = -1;
2838 uint32_t revents, nb_fd;
2839 struct lttng_consumer_channel *chan = NULL;
2840 struct lttng_ht_iter iter;
2841 struct lttng_ht_node_u64 *node;
2842 struct lttng_poll_event events;
2843 struct lttng_consumer_local_data *ctx = data;
2844 struct lttng_ht *channel_ht;
2845
2846 rcu_register_thread();
2847
2848 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2849
2850 if (testpoint(consumerd_thread_channel)) {
2851 goto error_testpoint;
2852 }
2853
2854 health_code_update();
2855
2856 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2857 if (!channel_ht) {
2858 /* ENOMEM at this point. Better to bail out. */
2859 goto end_ht;
2860 }
2861
2862 DBG("Thread channel poll started");
2863
2864 /* Size is set to 1 for the consumer_channel pipe */
2865 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2866 if (ret < 0) {
2867 ERR("Poll set creation failed");
2868 goto end_poll;
2869 }
2870
2871 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2872 if (ret < 0) {
2873 goto end;
2874 }
2875
2876 /* Main loop */
2877 DBG("Channel main loop started");
2878
2879 while (1) {
2880 restart:
2881 health_code_update();
2882 DBG("Channel poll wait");
2883 health_poll_entry();
2884 ret = lttng_poll_wait(&events, -1);
2885 DBG("Channel poll return from wait with %d fd(s)",
2886 LTTNG_POLL_GETNB(&events));
2887 health_poll_exit();
2888 DBG("Channel event caught in thread");
2889 if (ret < 0) {
2890 if (errno == EINTR) {
2891 ERR("Poll EINTR caught");
2892 goto restart;
2893 }
2894 if (LTTNG_POLL_GETNB(&events) == 0) {
2895 err = 0; /* All is OK */
2896 }
2897 goto end;
2898 }
2899
2900 nb_fd = ret;
2901
2902 /* From here, the event is a channel wait fd */
2903 for (i = 0; i < nb_fd; i++) {
2904 health_code_update();
2905
2906 revents = LTTNG_POLL_GETEV(&events, i);
2907 pollfd = LTTNG_POLL_GETFD(&events, i);
2908
2909 if (!revents) {
2910 /* No activity for this FD (poll implementation). */
2911 continue;
2912 }
2913
2914 if (pollfd == ctx->consumer_channel_pipe[0]) {
2915 if (revents & LPOLLIN) {
2916 enum consumer_channel_action action;
2917 uint64_t key;
2918
2919 ret = read_channel_pipe(ctx, &chan, &key, &action);
2920 if (ret <= 0) {
2921 if (ret < 0) {
2922 ERR("Error reading channel pipe");
2923 }
2924 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2925 continue;
2926 }
2927
2928 switch (action) {
2929 case CONSUMER_CHANNEL_ADD:
2930 DBG("Adding channel %d to poll set",
2931 chan->wait_fd);
2932
2933 lttng_ht_node_init_u64(&chan->wait_fd_node,
2934 chan->wait_fd);
2935 rcu_read_lock();
2936 lttng_ht_add_unique_u64(channel_ht,
2937 &chan->wait_fd_node);
2938 rcu_read_unlock();
2939 /* Add channel to the global poll events list */
2940 lttng_poll_add(&events, chan->wait_fd,
2941 LPOLLERR | LPOLLHUP);
2942 break;
2943 case CONSUMER_CHANNEL_DEL:
2944 {
2945 /*
2946 * This command should never be called if the channel
2947 * has streams monitored by either the data or metadata
2948 * thread. The consumer only notify this thread with a
2949 * channel del. command if it receives a destroy
2950 * channel command from the session daemon that send it
2951 * if a command prior to the GET_CHANNEL failed.
2952 */
2953
2954 rcu_read_lock();
2955 chan = consumer_find_channel(key);
2956 if (!chan) {
2957 rcu_read_unlock();
2958 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2959 break;
2960 }
2961 lttng_poll_del(&events, chan->wait_fd);
2962 iter.iter.node = &chan->wait_fd_node.node;
2963 ret = lttng_ht_del(channel_ht, &iter);
2964 assert(ret == 0);
2965
2966 switch (consumer_data.type) {
2967 case LTTNG_CONSUMER_KERNEL:
2968 break;
2969 case LTTNG_CONSUMER32_UST:
2970 case LTTNG_CONSUMER64_UST:
2971 health_code_update();
2972 /* Destroy streams that might have been left in the stream list. */
2973 clean_channel_stream_list(chan);
2974 break;
2975 default:
2976 ERR("Unknown consumer_data type");
2977 assert(0);
2978 }
2979
2980 /*
2981 * Release our own refcount. Force channel deletion even if
2982 * streams were not initialized.
2983 */
2984 if (!uatomic_sub_return(&chan->refcount, 1)) {
2985 consumer_del_channel(chan);
2986 }
2987 rcu_read_unlock();
2988 goto restart;
2989 }
2990 case CONSUMER_CHANNEL_QUIT:
2991 /*
2992 * Remove the pipe from the poll set and continue the loop
2993 * since their might be data to consume.
2994 */
2995 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2996 continue;
2997 default:
2998 ERR("Unknown action");
2999 break;
3000 }
3001 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3002 DBG("Channel thread pipe hung up");
3003 /*
3004 * Remove the pipe from the poll set and continue the loop
3005 * since their might be data to consume.
3006 */
3007 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3008 continue;
3009 } else {
3010 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3011 goto end;
3012 }
3013
3014 /* Handle other stream */
3015 continue;
3016 }
3017
3018 rcu_read_lock();
3019 {
3020 uint64_t tmp_id = (uint64_t) pollfd;
3021
3022 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3023 }
3024 node = lttng_ht_iter_get_node_u64(&iter);
3025 assert(node);
3026
3027 chan = caa_container_of(node, struct lttng_consumer_channel,
3028 wait_fd_node);
3029
3030 /* Check for error event */
3031 if (revents & (LPOLLERR | LPOLLHUP)) {
3032 DBG("Channel fd %d is hup|err.", pollfd);
3033
3034 lttng_poll_del(&events, chan->wait_fd);
3035 ret = lttng_ht_del(channel_ht, &iter);
3036 assert(ret == 0);
3037
3038 /*
3039 * This will close the wait fd for each stream associated to
3040 * this channel AND monitored by the data/metadata thread thus
3041 * will be clean by the right thread.
3042 */
3043 consumer_close_channel_streams(chan);
3044
3045 /* Release our own refcount */
3046 if (!uatomic_sub_return(&chan->refcount, 1)
3047 && !uatomic_read(&chan->nb_init_stream_left)) {
3048 consumer_del_channel(chan);
3049 }
3050 } else {
3051 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3052 rcu_read_unlock();
3053 goto end;
3054 }
3055
3056 /* Release RCU lock for the channel looked up */
3057 rcu_read_unlock();
3058 }
3059 }
3060
3061 /* All is OK */
3062 err = 0;
3063 end:
3064 lttng_poll_clean(&events);
3065 end_poll:
3066 destroy_channel_ht(channel_ht);
3067 end_ht:
3068 error_testpoint:
3069 DBG("Channel poll thread exiting");
3070 if (err) {
3071 health_error();
3072 ERR("Health error occurred in %s", __func__);
3073 }
3074 health_unregister(health_consumerd);
3075 rcu_unregister_thread();
3076 return NULL;
3077 }
3078
3079 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3080 struct pollfd *sockpoll, int client_socket)
3081 {
3082 int ret;
3083
3084 assert(ctx);
3085 assert(sockpoll);
3086
3087 ret = lttng_consumer_poll_socket(sockpoll);
3088 if (ret) {
3089 goto error;
3090 }
3091 DBG("Metadata connection on client_socket");
3092
3093 /* Blocking call, waiting for transmission */
3094 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3095 if (ctx->consumer_metadata_socket < 0) {
3096 WARN("On accept metadata");
3097 ret = -1;
3098 goto error;
3099 }
3100 ret = 0;
3101
3102 error:
3103 return ret;
3104 }
3105
3106 /*
3107 * This thread listens on the consumerd socket and receives the file
3108 * descriptors from the session daemon.
3109 */
3110 void *consumer_thread_sessiond_poll(void *data)
3111 {
3112 int sock = -1, client_socket, ret, err = -1;
3113 /*
3114 * structure to poll for incoming data on communication socket avoids
3115 * making blocking sockets.
3116 */
3117 struct pollfd consumer_sockpoll[2];
3118 struct lttng_consumer_local_data *ctx = data;
3119
3120 rcu_register_thread();
3121
3122 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3123
3124 if (testpoint(consumerd_thread_sessiond)) {
3125 goto error_testpoint;
3126 }
3127
3128 health_code_update();
3129
3130 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3131 unlink(ctx->consumer_command_sock_path);
3132 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3133 if (client_socket < 0) {
3134 ERR("Cannot create command socket");
3135 goto end;
3136 }
3137
3138 ret = lttcomm_listen_unix_sock(client_socket);
3139 if (ret < 0) {
3140 goto end;
3141 }
3142
3143 DBG("Sending ready command to lttng-sessiond");
3144 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3145 /* return < 0 on error, but == 0 is not fatal */
3146 if (ret < 0) {
3147 ERR("Error sending ready command to lttng-sessiond");
3148 goto end;
3149 }
3150
3151 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3152 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3153 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3154 consumer_sockpoll[1].fd = client_socket;
3155 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3156
3157 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3158 if (ret) {
3159 if (ret > 0) {
3160 /* should exit */
3161 err = 0;
3162 }
3163 goto end;
3164 }
3165 DBG("Connection on client_socket");
3166
3167 /* Blocking call, waiting for transmission */
3168 sock = lttcomm_accept_unix_sock(client_socket);
3169 if (sock < 0) {
3170 WARN("On accept");
3171 goto end;
3172 }
3173
3174 /*
3175 * Setup metadata socket which is the second socket connection on the
3176 * command unix socket.
3177 */
3178 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3179 if (ret) {
3180 if (ret > 0) {
3181 /* should exit */
3182 err = 0;
3183 }
3184 goto end;
3185 }
3186
3187 /* This socket is not useful anymore. */
3188 ret = close(client_socket);
3189 if (ret < 0) {
3190 PERROR("close client_socket");
3191 }
3192 client_socket = -1;
3193
3194 /* update the polling structure to poll on the established socket */
3195 consumer_sockpoll[1].fd = sock;
3196 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3197
3198 while (1) {
3199 health_code_update();
3200
3201 health_poll_entry();
3202 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3203 health_poll_exit();
3204 if (ret) {
3205 if (ret > 0) {
3206 /* should exit */
3207 err = 0;
3208 }
3209 goto end;
3210 }
3211 DBG("Incoming command on sock");
3212 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3213 if (ret <= 0) {
3214 /*
3215 * This could simply be a session daemon quitting. Don't output
3216 * ERR() here.
3217 */
3218 DBG("Communication interrupted on command socket");
3219 err = 0;
3220 goto end;
3221 }
3222 if (CMM_LOAD_SHARED(consumer_quit)) {
3223 DBG("consumer_thread_receive_fds received quit from signal");
3224 err = 0; /* All is OK */
3225 goto end;
3226 }
3227 DBG("received command on sock");
3228 }
3229 /* All is OK */
3230 err = 0;
3231
3232 end:
3233 DBG("Consumer thread sessiond poll exiting");
3234
3235 /*
3236 * Close metadata streams since the producer is the session daemon which
3237 * just died.
3238 *
3239 * NOTE: for now, this only applies to the UST tracer.
3240 */
3241 lttng_consumer_close_all_metadata();
3242
3243 /*
3244 * when all fds have hung up, the polling thread
3245 * can exit cleanly
3246 */
3247 CMM_STORE_SHARED(consumer_quit, 1);
3248
3249 /*
3250 * Notify the data poll thread to poll back again and test the
3251 * consumer_quit state that we just set so to quit gracefully.
3252 */
3253 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3254
3255 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3256
3257 notify_health_quit_pipe(health_quit_pipe);
3258
3259 /* Cleaning up possibly open sockets. */
3260 if (sock >= 0) {
3261 ret = close(sock);
3262 if (ret < 0) {
3263 PERROR("close sock sessiond poll");
3264 }
3265 }
3266 if (client_socket >= 0) {
3267 ret = close(client_socket);
3268 if (ret < 0) {
3269 PERROR("close client_socket sessiond poll");
3270 }
3271 }
3272
3273 error_testpoint:
3274 if (err) {
3275 health_error();
3276 ERR("Health error occurred in %s", __func__);
3277 }
3278 health_unregister(health_consumerd);
3279
3280 rcu_unregister_thread();
3281 return NULL;
3282 }
3283
3284 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3285 struct lttng_consumer_local_data *ctx)
3286 {
3287 ssize_t ret;
3288
3289 pthread_mutex_lock(&stream->lock);
3290 if (stream->metadata_flag) {
3291 pthread_mutex_lock(&stream->metadata_rdv_lock);
3292 }
3293
3294 switch (consumer_data.type) {
3295 case LTTNG_CONSUMER_KERNEL:
3296 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3297 break;
3298 case LTTNG_CONSUMER32_UST:
3299 case LTTNG_CONSUMER64_UST:
3300 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3301 break;
3302 default:
3303 ERR("Unknown consumer_data type");
3304 assert(0);
3305 ret = -ENOSYS;
3306 break;
3307 }
3308
3309 if (stream->metadata_flag) {
3310 pthread_cond_broadcast(&stream->metadata_rdv);
3311 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3312 }
3313 pthread_mutex_unlock(&stream->lock);
3314 return ret;
3315 }
3316
3317 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3318 {
3319 switch (consumer_data.type) {
3320 case LTTNG_CONSUMER_KERNEL:
3321 return lttng_kconsumer_on_recv_stream(stream);
3322 case LTTNG_CONSUMER32_UST:
3323 case LTTNG_CONSUMER64_UST:
3324 return lttng_ustconsumer_on_recv_stream(stream);
3325 default:
3326 ERR("Unknown consumer_data type");
3327 assert(0);
3328 return -ENOSYS;
3329 }
3330 }
3331
3332 /*
3333 * Allocate and set consumer data hash tables.
3334 */
3335 int lttng_consumer_init(void)
3336 {
3337 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3338 if (!consumer_data.channel_ht) {
3339 goto error;
3340 }
3341
3342 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3343 if (!consumer_data.relayd_ht) {
3344 goto error;
3345 }
3346
3347 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3348 if (!consumer_data.stream_list_ht) {
3349 goto error;
3350 }
3351
3352 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3353 if (!consumer_data.stream_per_chan_id_ht) {
3354 goto error;
3355 }
3356
3357 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3358 if (!data_ht) {
3359 goto error;
3360 }
3361
3362 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3363 if (!metadata_ht) {
3364 goto error;
3365 }
3366
3367 return 0;
3368
3369 error:
3370 return -1;
3371 }
3372
3373 /*
3374 * Process the ADD_RELAYD command receive by a consumer.
3375 *
3376 * This will create a relayd socket pair and add it to the relayd hash table.
3377 * The caller MUST acquire a RCU read side lock before calling it.
3378 */
3379 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3380 struct lttng_consumer_local_data *ctx, int sock,
3381 struct pollfd *consumer_sockpoll,
3382 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3383 uint64_t relayd_session_id)
3384 {
3385 int fd = -1, ret = -1, relayd_created = 0;
3386 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3387 struct consumer_relayd_sock_pair *relayd = NULL;
3388
3389 assert(ctx);
3390 assert(relayd_sock);
3391
3392 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3393
3394 /* Get relayd reference if exists. */
3395 relayd = consumer_find_relayd(net_seq_idx);
3396 if (relayd == NULL) {
3397 assert(sock_type == LTTNG_STREAM_CONTROL);
3398 /* Not found. Allocate one. */
3399 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3400 if (relayd == NULL) {
3401 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3402 goto error;
3403 } else {
3404 relayd->sessiond_session_id = sessiond_id;
3405 relayd_created = 1;
3406 }
3407
3408 /*
3409 * This code path MUST continue to the consumer send status message to
3410 * we can notify the session daemon and continue our work without
3411 * killing everything.
3412 */
3413 } else {
3414 /*
3415 * relayd key should never be found for control socket.
3416 */
3417 assert(sock_type != LTTNG_STREAM_CONTROL);
3418 }
3419
3420 /* First send a status message before receiving the fds. */
3421 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3422 if (ret < 0) {
3423 /* Somehow, the session daemon is not responding anymore. */
3424 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3425 goto error_nosignal;
3426 }
3427
3428 /* Poll on consumer socket. */
3429 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3430 if (ret) {
3431 /* Needing to exit in the middle of a command: error. */
3432 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3433 goto error_nosignal;
3434 }
3435
3436 /* Get relayd socket from session daemon */
3437 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3438 if (ret != sizeof(fd)) {
3439 fd = -1; /* Just in case it gets set with an invalid value. */
3440
3441 /*
3442 * Failing to receive FDs might indicate a major problem such as
3443 * reaching a fd limit during the receive where the kernel returns a
3444 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3445 * don't take any chances and stop everything.
3446 *
3447 * XXX: Feature request #558 will fix that and avoid this possible
3448 * issue when reaching the fd limit.
3449 */
3450 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3451 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3452 goto error;
3453 }
3454
3455 /* Copy socket information and received FD */
3456 switch (sock_type) {
3457 case LTTNG_STREAM_CONTROL:
3458 /* Copy received lttcomm socket */
3459 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3460 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3461 /* Handle create_sock error. */
3462 if (ret < 0) {
3463 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3464 goto error;
3465 }
3466 /*
3467 * Close the socket created internally by
3468 * lttcomm_create_sock, so we can replace it by the one
3469 * received from sessiond.
3470 */
3471 if (close(relayd->control_sock.sock.fd)) {
3472 PERROR("close");
3473 }
3474
3475 /* Assign new file descriptor */
3476 relayd->control_sock.sock.fd = fd;
3477 fd = -1; /* For error path */
3478 /* Assign version values. */
3479 relayd->control_sock.major = relayd_sock->major;
3480 relayd->control_sock.minor = relayd_sock->minor;
3481
3482 relayd->relayd_session_id = relayd_session_id;
3483
3484 break;
3485 case LTTNG_STREAM_DATA:
3486 /* Copy received lttcomm socket */
3487 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3488 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3489 /* Handle create_sock error. */
3490 if (ret < 0) {
3491 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3492 goto error;
3493 }
3494 /*
3495 * Close the socket created internally by
3496 * lttcomm_create_sock, so we can replace it by the one
3497 * received from sessiond.
3498 */
3499 if (close(relayd->data_sock.sock.fd)) {
3500 PERROR("close");
3501 }
3502
3503 /* Assign new file descriptor */
3504 relayd->data_sock.sock.fd = fd;
3505 fd = -1; /* for eventual error paths */
3506 /* Assign version values. */
3507 relayd->data_sock.major = relayd_sock->major;
3508 relayd->data_sock.minor = relayd_sock->minor;
3509 break;
3510 default:
3511 ERR("Unknown relayd socket type (%d)", sock_type);
3512 ret_code = LTTCOMM_CONSUMERD_FATAL;
3513 goto error;
3514 }
3515
3516 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3517 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3518 relayd->net_seq_idx, fd);
3519
3520 /* We successfully added the socket. Send status back. */
3521 ret = consumer_send_status_msg(sock, ret_code);
3522 if (ret < 0) {
3523 /* Somehow, the session daemon is not responding anymore. */
3524 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3525 goto error_nosignal;
3526 }
3527
3528 /*
3529 * Add relayd socket pair to consumer data hashtable. If object already
3530 * exists or on error, the function gracefully returns.
3531 */
3532 add_relayd(relayd);
3533
3534 /* All good! */
3535 return;
3536
3537 error:
3538 if (consumer_send_status_msg(sock, ret_code) < 0) {
3539 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3540 }
3541
3542 error_nosignal:
3543 /* Close received socket if valid. */
3544 if (fd >= 0) {
3545 if (close(fd)) {
3546 PERROR("close received socket");
3547 }
3548 }
3549
3550 if (relayd_created) {
3551 free(relayd);
3552 }
3553 }
3554
3555 /*
3556 * Try to lock the stream mutex.
3557 *
3558 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3559 */
3560 static int stream_try_lock(struct lttng_consumer_stream *stream)
3561 {
3562 int ret;
3563
3564 assert(stream);
3565
3566 /*
3567 * Try to lock the stream mutex. On failure, we know that the stream is
3568 * being used else where hence there is data still being extracted.
3569 */
3570 ret = pthread_mutex_trylock(&stream->lock);
3571 if (ret) {
3572 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3573 ret = 0;
3574 goto end;
3575 }
3576
3577 ret = 1;
3578
3579 end:
3580 return ret;
3581 }
3582
3583 /*
3584 * Search for a relayd associated to the session id and return the reference.
3585 *
3586 * A rcu read side lock MUST be acquire before calling this function and locked
3587 * until the relayd object is no longer necessary.
3588 */
3589 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3590 {
3591 struct lttng_ht_iter iter;
3592 struct consumer_relayd_sock_pair *relayd = NULL;
3593
3594 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3595 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3596 node.node) {
3597 /*
3598 * Check by sessiond id which is unique here where the relayd session
3599 * id might not be when having multiple relayd.
3600 */
3601 if (relayd->sessiond_session_id == id) {
3602 /* Found the relayd. There can be only one per id. */
3603 goto found;
3604 }
3605 }
3606
3607 return NULL;
3608
3609 found:
3610 return relayd;
3611 }
3612
3613 /*
3614 * Check if for a given session id there is still data needed to be extract
3615 * from the buffers.
3616 *
3617 * Return 1 if data is pending or else 0 meaning ready to be read.
3618 */
3619 int consumer_data_pending(uint64_t id)
3620 {
3621 int ret;
3622 struct lttng_ht_iter iter;
3623 struct lttng_ht *ht;
3624 struct lttng_consumer_stream *stream;
3625 struct consumer_relayd_sock_pair *relayd = NULL;
3626 int (*data_pending)(struct lttng_consumer_stream *);
3627
3628 DBG("Consumer data pending command on session id %" PRIu64, id);
3629
3630 rcu_read_lock();
3631 pthread_mutex_lock(&consumer_data.lock);
3632
3633 switch (consumer_data.type) {
3634 case LTTNG_CONSUMER_KERNEL:
3635 data_pending = lttng_kconsumer_data_pending;
3636 break;
3637 case LTTNG_CONSUMER32_UST:
3638 case LTTNG_CONSUMER64_UST:
3639 data_pending = lttng_ustconsumer_data_pending;
3640 break;
3641 default:
3642 ERR("Unknown consumer data type");
3643 assert(0);
3644 }
3645
3646 /* Ease our life a bit */
3647 ht = consumer_data.stream_list_ht;
3648
3649 relayd = find_relayd_by_session_id(id);
3650 if (relayd) {
3651 /* Send init command for data pending. */
3652 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3653 ret = relayd_begin_data_pending(&relayd->control_sock,
3654 relayd->relayd_session_id);
3655 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3656 if (ret < 0) {
3657 /* Communication error thus the relayd so no data pending. */
3658 goto data_not_pending;
3659 }
3660 }
3661
3662 cds_lfht_for_each_entry_duplicate(ht->ht,
3663 ht->hash_fct(&id, lttng_ht_seed),
3664 ht->match_fct, &id,
3665 &iter.iter, stream, node_session_id.node) {
3666 /* If this call fails, the stream is being used hence data pending. */
3667 ret = stream_try_lock(stream);
3668 if (!ret) {
3669 goto data_pending;
3670 }
3671
3672 /*
3673 * A removed node from the hash table indicates that the stream has
3674 * been deleted thus having a guarantee that the buffers are closed
3675 * on the consumer side. However, data can still be transmitted
3676 * over the network so don't skip the relayd check.
3677 */
3678 ret = cds_lfht_is_node_deleted(&stream->node.node);
3679 if (!ret) {
3680 /* Check the stream if there is data in the buffers. */
3681 ret = data_pending(stream);
3682 if (ret == 1) {
3683 pthread_mutex_unlock(&stream->lock);
3684 goto data_pending;
3685 }
3686 }
3687
3688 /* Relayd check */
3689 if (relayd) {
3690 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3691 if (stream->metadata_flag) {
3692 ret = relayd_quiescent_control(&relayd->control_sock,
3693 stream->relayd_stream_id);
3694 } else {
3695 ret = relayd_data_pending(&relayd->control_sock,
3696 stream->relayd_stream_id,
3697 stream->next_net_seq_num - 1);
3698 }
3699 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3700 if (ret == 1) {
3701 pthread_mutex_unlock(&stream->lock);
3702 goto data_pending;
3703 }
3704 }
3705 pthread_mutex_unlock(&stream->lock);
3706 }
3707
3708 if (relayd) {
3709 unsigned int is_data_inflight = 0;
3710
3711 /* Send init command for data pending. */
3712 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3713 ret = relayd_end_data_pending(&relayd->control_sock,
3714 relayd->relayd_session_id, &is_data_inflight);
3715 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3716 if (ret < 0) {
3717 goto data_not_pending;
3718 }
3719 if (is_data_inflight) {
3720 goto data_pending;
3721 }
3722 }
3723
3724 /*
3725 * Finding _no_ node in the hash table and no inflight data means that the
3726 * stream(s) have been removed thus data is guaranteed to be available for
3727 * analysis from the trace files.
3728 */
3729
3730 data_not_pending:
3731 /* Data is available to be read by a viewer. */
3732 pthread_mutex_unlock(&consumer_data.lock);
3733 rcu_read_unlock();
3734 return 0;
3735
3736 data_pending:
3737 /* Data is still being extracted from buffers. */
3738 pthread_mutex_unlock(&consumer_data.lock);
3739 rcu_read_unlock();
3740 return 1;
3741 }
3742
3743 /*
3744 * Send a ret code status message to the sessiond daemon.
3745 *
3746 * Return the sendmsg() return value.
3747 */
3748 int consumer_send_status_msg(int sock, int ret_code)
3749 {
3750 struct lttcomm_consumer_status_msg msg;
3751
3752 memset(&msg, 0, sizeof(msg));
3753 msg.ret_code = ret_code;
3754
3755 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3756 }
3757
3758 /*
3759 * Send a channel status message to the sessiond daemon.
3760 *
3761 * Return the sendmsg() return value.
3762 */
3763 int consumer_send_status_channel(int sock,
3764 struct lttng_consumer_channel *channel)
3765 {
3766 struct lttcomm_consumer_status_channel msg;
3767
3768 assert(sock >= 0);
3769
3770 memset(&msg, 0, sizeof(msg));
3771 if (!channel) {
3772 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3773 } else {
3774 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3775 msg.key = channel->key;
3776 msg.stream_count = channel->streams.count;
3777 }
3778
3779 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3780 }
3781
3782 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3783 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3784 uint64_t max_sb_size)
3785 {
3786 unsigned long start_pos;
3787
3788 if (!nb_packets_per_stream) {
3789 return consumed_pos; /* Grab everything */
3790 }
3791 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3792 start_pos -= max_sb_size * nb_packets_per_stream;
3793 if ((long) (start_pos - consumed_pos) < 0) {
3794 return consumed_pos; /* Grab everything */
3795 }
3796 return start_pos;
3797 }
3798
3799 static
3800 int rotate_rename_local(const char *old_path, const char *new_path,
3801 uid_t uid, gid_t gid)
3802 {
3803 int ret;
3804
3805 assert(old_path);
3806 assert(new_path);
3807
3808 ret = utils_mkdir_recursive(new_path, S_IRWXU | S_IRWXG, uid, gid);
3809 if (ret < 0) {
3810 ERR("Create directory on rotate");
3811 goto end;
3812 }
3813
3814 ret = rename(old_path, new_path);
3815 if (ret < 0 && errno != ENOENT) {
3816 PERROR("Rename completed rotation chunk");
3817 goto end;
3818 }
3819
3820 ret = 0;
3821 end:
3822 return ret;
3823 }
3824
3825 static
3826 int rotate_rename_relay(const char *old_path, const char *new_path,
3827 uint64_t relayd_id)
3828 {
3829 int ret;
3830 struct consumer_relayd_sock_pair *relayd;
3831
3832 relayd = consumer_find_relayd(relayd_id);
3833 if (!relayd) {
3834 ERR("Failed to find relayd while running rotate_rename_relay command");
3835 ret = -1;
3836 goto end;
3837 }
3838
3839 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3840 ret = relayd_rotate_rename(&relayd->control_sock, old_path, new_path);
3841 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3842 end:
3843 return ret;
3844 }
3845
3846 int lttng_consumer_rotate_rename(const char *old_path, const char *new_path,
3847 uid_t uid, gid_t gid, uint64_t relayd_id)
3848 {
3849 if (relayd_id != -1ULL) {
3850 return rotate_rename_relay(old_path, new_path, relayd_id);
3851 } else {
3852 return rotate_rename_local(old_path, new_path, uid, gid);
3853 }
3854 }
3855
3856 static
3857 int mkdir_local(const char *path, uid_t uid, gid_t gid)
3858 {
3859 int ret;
3860
3861 ret = utils_mkdir_recursive(path, S_IRWXU | S_IRWXG, uid, gid);
3862 if (ret < 0) {
3863 /* utils_mkdir_recursive logs an error. */
3864 goto end;
3865 }
3866
3867 ret = 0;
3868 end:
3869 return ret;
3870 }
3871
3872 static
3873 int mkdir_relay(const char *path, uint64_t relayd_id)
3874 {
3875 int ret;
3876 struct consumer_relayd_sock_pair *relayd;
3877
3878 relayd = consumer_find_relayd(relayd_id);
3879 if (!relayd) {
3880 ERR("Failed to find relayd");
3881 ret = -1;
3882 goto end;
3883 }
3884
3885 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3886 ret = relayd_mkdir(&relayd->control_sock, path);
3887 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3888
3889 end:
3890 return ret;
3891
3892 }
3893
3894 int lttng_consumer_mkdir(const char *path, uid_t uid, gid_t gid,
3895 uint64_t relayd_id)
3896 {
3897 if (relayd_id != -1ULL) {
3898 return mkdir_relay(path, relayd_id);
3899 } else {
3900 return mkdir_local(path, uid, gid);
3901 }
3902 }
This page took 0.15677 seconds and 5 git commands to generate.