2 * Copyright (C) 2011 Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Copyright (C) 2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
6 * SPDX-License-Identifier: GPL-2.0-only
10 #include "common/index/ctf-index.h"
17 #include <sys/socket.h>
18 #include <sys/types.h>
23 #include <bin/lttng-consumerd/health-consumerd.h>
24 #include <common/common.h>
25 #include <common/utils.h>
26 #include <common/time.h>
27 #include <common/compat/poll.h>
28 #include <common/compat/endian.h>
29 #include <common/index/index.h>
30 #include <common/kernel-ctl/kernel-ctl.h>
31 #include <common/sessiond-comm/relayd.h>
32 #include <common/sessiond-comm/sessiond-comm.h>
33 #include <common/kernel-consumer/kernel-consumer.h>
34 #include <common/relayd/relayd.h>
35 #include <common/ust-consumer/ust-consumer.h>
36 #include <common/consumer/consumer-timer.h>
37 #include <common/consumer/consumer.h>
38 #include <common/consumer/consumer-stream.h>
39 #include <common/consumer/consumer-testpoint.h>
40 #include <common/align.h>
41 #include <common/consumer/consumer-metadata-cache.h>
42 #include <common/trace-chunk.h>
43 #include <common/trace-chunk-registry.h>
44 #include <common/string-utils/format.h>
45 #include <common/dynamic-array.h>
47 struct lttng_consumer_global_data the_consumer_data
= {
50 .type
= LTTNG_CONSUMER_UNKNOWN
,
53 enum consumer_channel_action
{
56 CONSUMER_CHANNEL_QUIT
,
59 struct consumer_channel_msg
{
60 enum consumer_channel_action action
;
61 struct lttng_consumer_channel
*chan
; /* add */
62 uint64_t key
; /* del */
65 /* Flag used to temporarily pause data consumption from testpoints. */
66 int data_consumption_paused
;
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
81 static struct lttng_ht
*metadata_ht
;
82 static struct lttng_ht
*data_ht
;
84 static const char *get_consumer_domain(void)
86 switch (the_consumer_data
.type
) {
87 case LTTNG_CONSUMER_KERNEL
:
88 return DEFAULT_KERNEL_TRACE_DIR
;
89 case LTTNG_CONSUMER64_UST
:
91 case LTTNG_CONSUMER32_UST
:
92 return DEFAULT_UST_TRACE_DIR
;
99 * Notify a thread lttng pipe to poll back again. This usually means that some
100 * global state has changed so we just send back the thread in a poll wait
103 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
105 struct lttng_consumer_stream
*null_stream
= NULL
;
109 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
112 static void notify_health_quit_pipe(int *pipe
)
116 ret
= lttng_write(pipe
[1], "4", 1);
118 PERROR("write consumer health quit");
122 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
123 struct lttng_consumer_channel
*chan
,
125 enum consumer_channel_action action
)
127 struct consumer_channel_msg msg
;
130 memset(&msg
, 0, sizeof(msg
));
135 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
136 if (ret
< sizeof(msg
)) {
137 PERROR("notify_channel_pipe write error");
141 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
144 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
147 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
148 struct lttng_consumer_channel
**chan
,
150 enum consumer_channel_action
*action
)
152 struct consumer_channel_msg msg
;
155 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
156 if (ret
< sizeof(msg
)) {
160 *action
= msg
.action
;
168 * Cleanup the stream list of a channel. Those streams are not yet globally
171 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
173 struct lttng_consumer_stream
*stream
, *stmp
;
175 LTTNG_ASSERT(channel
);
177 /* Delete streams that might have been left in the stream list. */
178 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
180 cds_list_del(&stream
->send_node
);
182 * Once a stream is added to this list, the buffers were created so we
183 * have a guarantee that this call will succeed. Setting the monitor
184 * mode to 0 so we don't lock nor try to delete the stream from the
188 consumer_stream_destroy(stream
, NULL
);
193 * Find a stream. The consumer_data.lock must be locked during this
196 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
199 struct lttng_ht_iter iter
;
200 struct lttng_ht_node_u64
*node
;
201 struct lttng_consumer_stream
*stream
= NULL
;
205 /* -1ULL keys are lookup failures */
206 if (key
== (uint64_t) -1ULL) {
212 lttng_ht_lookup(ht
, &key
, &iter
);
213 node
= lttng_ht_iter_get_node_u64(&iter
);
215 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
223 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
225 struct lttng_consumer_stream
*stream
;
228 stream
= find_stream(key
, ht
);
230 stream
->key
= (uint64_t) -1ULL;
232 * We don't want the lookup to match, but we still need
233 * to iterate on this stream when iterating over the hash table. Just
234 * change the node key.
236 stream
->node
.key
= (uint64_t) -1ULL;
242 * Return a channel object for the given key.
244 * RCU read side lock MUST be acquired before calling this function and
245 * protects the channel ptr.
247 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
249 struct lttng_ht_iter iter
;
250 struct lttng_ht_node_u64
*node
;
251 struct lttng_consumer_channel
*channel
= NULL
;
253 /* -1ULL keys are lookup failures */
254 if (key
== (uint64_t) -1ULL) {
258 lttng_ht_lookup(the_consumer_data
.channel_ht
, &key
, &iter
);
259 node
= lttng_ht_iter_get_node_u64(&iter
);
261 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
268 * There is a possibility that the consumer does not have enough time between
269 * the close of the channel on the session daemon and the cleanup in here thus
270 * once we have a channel add with an existing key, we know for sure that this
271 * channel will eventually get cleaned up by all streams being closed.
273 * This function just nullifies the already existing channel key.
275 static void steal_channel_key(uint64_t key
)
277 struct lttng_consumer_channel
*channel
;
280 channel
= consumer_find_channel(key
);
282 channel
->key
= (uint64_t) -1ULL;
284 * We don't want the lookup to match, but we still need to iterate on
285 * this channel when iterating over the hash table. Just change the
288 channel
->node
.key
= (uint64_t) -1ULL;
293 static void free_channel_rcu(struct rcu_head
*head
)
295 struct lttng_ht_node_u64
*node
=
296 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
297 struct lttng_consumer_channel
*channel
=
298 caa_container_of(node
, struct lttng_consumer_channel
, node
);
300 switch (the_consumer_data
.type
) {
301 case LTTNG_CONSUMER_KERNEL
:
303 case LTTNG_CONSUMER32_UST
:
304 case LTTNG_CONSUMER64_UST
:
305 lttng_ustconsumer_free_channel(channel
);
308 ERR("Unknown consumer_data type");
315 * RCU protected relayd socket pair free.
317 static void free_relayd_rcu(struct rcu_head
*head
)
319 struct lttng_ht_node_u64
*node
=
320 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
321 struct consumer_relayd_sock_pair
*relayd
=
322 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
325 * Close all sockets. This is done in the call RCU since we don't want the
326 * socket fds to be reassigned thus potentially creating bad state of the
329 * We do not have to lock the control socket mutex here since at this stage
330 * there is no one referencing to this relayd object.
332 (void) relayd_close(&relayd
->control_sock
);
333 (void) relayd_close(&relayd
->data_sock
);
335 pthread_mutex_destroy(&relayd
->ctrl_sock_mutex
);
340 * Destroy and free relayd socket pair object.
342 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
345 struct lttng_ht_iter iter
;
347 if (relayd
== NULL
) {
351 DBG("Consumer destroy and close relayd socket pair");
353 iter
.iter
.node
= &relayd
->node
.node
;
354 ret
= lttng_ht_del(the_consumer_data
.relayd_ht
, &iter
);
356 /* We assume the relayd is being or is destroyed */
360 /* RCU free() call */
361 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
365 * Remove a channel from the global list protected by a mutex. This function is
366 * also responsible for freeing its data structures.
368 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
370 struct lttng_ht_iter iter
;
372 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
374 pthread_mutex_lock(&the_consumer_data
.lock
);
375 pthread_mutex_lock(&channel
->lock
);
377 /* Destroy streams that might have been left in the stream list. */
378 clean_channel_stream_list(channel
);
380 if (channel
->live_timer_enabled
== 1) {
381 consumer_timer_live_stop(channel
);
383 if (channel
->monitor_timer_enabled
== 1) {
384 consumer_timer_monitor_stop(channel
);
387 switch (the_consumer_data
.type
) {
388 case LTTNG_CONSUMER_KERNEL
:
390 case LTTNG_CONSUMER32_UST
:
391 case LTTNG_CONSUMER64_UST
:
392 lttng_ustconsumer_del_channel(channel
);
395 ERR("Unknown consumer_data type");
400 lttng_trace_chunk_put(channel
->trace_chunk
);
401 channel
->trace_chunk
= NULL
;
403 if (channel
->is_published
) {
407 iter
.iter
.node
= &channel
->node
.node
;
408 ret
= lttng_ht_del(the_consumer_data
.channel_ht
, &iter
);
411 iter
.iter
.node
= &channel
->channels_by_session_id_ht_node
.node
;
412 ret
= lttng_ht_del(the_consumer_data
.channels_by_session_id_ht
,
418 channel
->is_deleted
= true;
419 call_rcu(&channel
->node
.head
, free_channel_rcu
);
421 pthread_mutex_unlock(&channel
->lock
);
422 pthread_mutex_unlock(&the_consumer_data
.lock
);
426 * Iterate over the relayd hash table and destroy each element. Finally,
427 * destroy the whole hash table.
429 static void cleanup_relayd_ht(void)
431 struct lttng_ht_iter iter
;
432 struct consumer_relayd_sock_pair
*relayd
;
436 cds_lfht_for_each_entry(the_consumer_data
.relayd_ht
->ht
, &iter
.iter
,
438 consumer_destroy_relayd(relayd
);
443 lttng_ht_destroy(the_consumer_data
.relayd_ht
);
447 * Update the end point status of all streams having the given network sequence
448 * index (relayd index).
450 * It's atomically set without having the stream mutex locked which is fine
451 * because we handle the write/read race with a pipe wakeup for each thread.
453 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
454 enum consumer_endpoint_status status
)
456 struct lttng_ht_iter iter
;
457 struct lttng_consumer_stream
*stream
;
459 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
463 /* Let's begin with metadata */
464 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
465 if (stream
->net_seq_idx
== net_seq_idx
) {
466 uatomic_set(&stream
->endpoint_status
, status
);
467 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
471 /* Follow up by the data streams */
472 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
473 if (stream
->net_seq_idx
== net_seq_idx
) {
474 uatomic_set(&stream
->endpoint_status
, status
);
475 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
482 * Cleanup a relayd object by flagging every associated streams for deletion,
483 * destroying the object meaning removing it from the relayd hash table,
484 * closing the sockets and freeing the memory in a RCU call.
486 * If a local data context is available, notify the threads that the streams'
487 * state have changed.
489 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
)
493 LTTNG_ASSERT(relayd
);
495 DBG("Cleaning up relayd object ID %"PRIu64
, relayd
->net_seq_idx
);
497 /* Save the net sequence index before destroying the object */
498 netidx
= relayd
->net_seq_idx
;
501 * Delete the relayd from the relayd hash table, close the sockets and free
502 * the object in a RCU call.
504 consumer_destroy_relayd(relayd
);
506 /* Set inactive endpoint to all streams */
507 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
510 * With a local data context, notify the threads that the streams' state
511 * have changed. The write() action on the pipe acts as an "implicit"
512 * memory barrier ordering the updates of the end point status from the
513 * read of this status which happens AFTER receiving this notify.
515 notify_thread_lttng_pipe(relayd
->ctx
->consumer_data_pipe
);
516 notify_thread_lttng_pipe(relayd
->ctx
->consumer_metadata_pipe
);
520 * Flag a relayd socket pair for destruction. Destroy it if the refcount
523 * RCU read side lock MUST be aquired before calling this function.
525 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
527 LTTNG_ASSERT(relayd
);
529 /* Set destroy flag for this object */
530 uatomic_set(&relayd
->destroy_flag
, 1);
532 /* Destroy the relayd if refcount is 0 */
533 if (uatomic_read(&relayd
->refcount
) == 0) {
534 consumer_destroy_relayd(relayd
);
539 * Completly destroy stream from every visiable data structure and the given
542 * One this call returns, the stream object is not longer usable nor visible.
544 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
547 consumer_stream_destroy(stream
, ht
);
551 * XXX naming of del vs destroy is all mixed up.
553 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
555 consumer_stream_destroy(stream
, data_ht
);
558 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
560 consumer_stream_destroy(stream
, metadata_ht
);
563 void consumer_stream_update_channel_attributes(
564 struct lttng_consumer_stream
*stream
,
565 struct lttng_consumer_channel
*channel
)
567 stream
->channel_read_only_attributes
.tracefile_size
=
568 channel
->tracefile_size
;
572 * Add a stream to the global list protected by a mutex.
574 void consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
576 struct lttng_ht
*ht
= data_ht
;
578 LTTNG_ASSERT(stream
);
581 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
583 pthread_mutex_lock(&the_consumer_data
.lock
);
584 pthread_mutex_lock(&stream
->chan
->lock
);
585 pthread_mutex_lock(&stream
->chan
->timer_lock
);
586 pthread_mutex_lock(&stream
->lock
);
589 /* Steal stream identifier to avoid having streams with the same key */
590 steal_stream_key(stream
->key
, ht
);
592 lttng_ht_add_unique_u64(ht
, &stream
->node
);
594 lttng_ht_add_u64(the_consumer_data
.stream_per_chan_id_ht
,
595 &stream
->node_channel_id
);
598 * Add stream to the stream_list_ht of the consumer data. No need to steal
599 * the key since the HT does not use it and we allow to add redundant keys
602 lttng_ht_add_u64(the_consumer_data
.stream_list_ht
,
603 &stream
->node_session_id
);
606 * When nb_init_stream_left reaches 0, we don't need to trigger any action
607 * in terms of destroying the associated channel, because the action that
608 * causes the count to become 0 also causes a stream to be added. The
609 * channel deletion will thus be triggered by the following removal of this
612 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
613 /* Increment refcount before decrementing nb_init_stream_left */
615 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
618 /* Update consumer data once the node is inserted. */
619 the_consumer_data
.stream_count
++;
620 the_consumer_data
.need_update
= 1;
623 pthread_mutex_unlock(&stream
->lock
);
624 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
625 pthread_mutex_unlock(&stream
->chan
->lock
);
626 pthread_mutex_unlock(&the_consumer_data
.lock
);
630 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
631 * be acquired before calling this.
633 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
636 struct lttng_ht_node_u64
*node
;
637 struct lttng_ht_iter iter
;
639 LTTNG_ASSERT(relayd
);
641 lttng_ht_lookup(the_consumer_data
.relayd_ht
, &relayd
->net_seq_idx
,
643 node
= lttng_ht_iter_get_node_u64(&iter
);
647 lttng_ht_add_unique_u64(the_consumer_data
.relayd_ht
, &relayd
->node
);
654 * Allocate and return a consumer relayd socket.
656 static struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
657 uint64_t net_seq_idx
)
659 struct consumer_relayd_sock_pair
*obj
= NULL
;
661 /* net sequence index of -1 is a failure */
662 if (net_seq_idx
== (uint64_t) -1ULL) {
666 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
668 PERROR("zmalloc relayd sock");
672 obj
->net_seq_idx
= net_seq_idx
;
674 obj
->destroy_flag
= 0;
675 obj
->control_sock
.sock
.fd
= -1;
676 obj
->data_sock
.sock
.fd
= -1;
677 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
678 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
685 * Find a relayd socket pair in the global consumer data.
687 * Return the object if found else NULL.
688 * RCU read-side lock must be held across this call and while using the
691 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
693 struct lttng_ht_iter iter
;
694 struct lttng_ht_node_u64
*node
;
695 struct consumer_relayd_sock_pair
*relayd
= NULL
;
697 /* Negative keys are lookup failures */
698 if (key
== (uint64_t) -1ULL) {
702 lttng_ht_lookup(the_consumer_data
.relayd_ht
, &key
, &iter
);
703 node
= lttng_ht_iter_get_node_u64(&iter
);
705 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
713 * Find a relayd and send the stream
715 * Returns 0 on success, < 0 on error
717 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
721 struct consumer_relayd_sock_pair
*relayd
;
723 LTTNG_ASSERT(stream
);
724 LTTNG_ASSERT(stream
->net_seq_idx
!= -1ULL);
727 /* The stream is not metadata. Get relayd reference if exists. */
729 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
730 if (relayd
!= NULL
) {
731 /* Add stream on the relayd */
732 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
733 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
734 get_consumer_domain(), path
, &stream
->relayd_stream_id
,
735 stream
->chan
->tracefile_size
,
736 stream
->chan
->tracefile_count
,
737 stream
->trace_chunk
);
738 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
740 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
741 lttng_consumer_cleanup_relayd(relayd
);
745 uatomic_inc(&relayd
->refcount
);
746 stream
->sent_to_relayd
= 1;
748 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
749 stream
->key
, stream
->net_seq_idx
);
754 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
755 stream
->name
, stream
->key
, stream
->net_seq_idx
);
763 * Find a relayd and send the streams sent message
765 * Returns 0 on success, < 0 on error
767 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
770 struct consumer_relayd_sock_pair
*relayd
;
772 LTTNG_ASSERT(net_seq_idx
!= -1ULL);
774 /* The stream is not metadata. Get relayd reference if exists. */
776 relayd
= consumer_find_relayd(net_seq_idx
);
777 if (relayd
!= NULL
) {
778 /* Add stream on the relayd */
779 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
780 ret
= relayd_streams_sent(&relayd
->control_sock
);
781 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
783 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
784 lttng_consumer_cleanup_relayd(relayd
);
788 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
795 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
803 * Find a relayd and close the stream
805 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
807 struct consumer_relayd_sock_pair
*relayd
;
809 /* The stream is not metadata. Get relayd reference if exists. */
811 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
813 consumer_stream_relayd_close(stream
, relayd
);
819 * Handle stream for relayd transmission if the stream applies for network
820 * streaming where the net sequence index is set.
822 * Return destination file descriptor or negative value on error.
824 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
825 size_t data_size
, unsigned long padding
,
826 struct consumer_relayd_sock_pair
*relayd
)
829 struct lttcomm_relayd_data_hdr data_hdr
;
832 LTTNG_ASSERT(stream
);
833 LTTNG_ASSERT(relayd
);
835 /* Reset data header */
836 memset(&data_hdr
, 0, sizeof(data_hdr
));
838 if (stream
->metadata_flag
) {
839 /* Caller MUST acquire the relayd control socket lock */
840 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
845 /* Metadata are always sent on the control socket. */
846 outfd
= relayd
->control_sock
.sock
.fd
;
848 /* Set header with stream information */
849 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
850 data_hdr
.data_size
= htobe32(data_size
);
851 data_hdr
.padding_size
= htobe32(padding
);
854 * Note that net_seq_num below is assigned with the *current* value of
855 * next_net_seq_num and only after that the next_net_seq_num will be
856 * increment. This is why when issuing a command on the relayd using
857 * this next value, 1 should always be substracted in order to compare
858 * the last seen sequence number on the relayd side to the last sent.
860 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
861 /* Other fields are zeroed previously */
863 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
869 ++stream
->next_net_seq_num
;
871 /* Set to go on data socket */
872 outfd
= relayd
->data_sock
.sock
.fd
;
880 * Write a character on the metadata poll pipe to wake the metadata thread.
881 * Returns 0 on success, -1 on error.
883 int consumer_metadata_wakeup_pipe(const struct lttng_consumer_channel
*channel
)
887 DBG("Waking up metadata poll thread (writing to pipe): channel name = '%s'",
889 if (channel
->monitor
&& channel
->metadata_stream
) {
890 const char dummy
= 'c';
891 const ssize_t write_ret
= lttng_write(
892 channel
->metadata_stream
->ust_metadata_poll_pipe
[1],
896 if (errno
== EWOULDBLOCK
) {
898 * This is fine, the metadata poll thread
899 * is having a hard time keeping-up, but
900 * it will eventually wake-up and consume
901 * the available data.
905 PERROR("Failed to write to UST metadata pipe while attempting to wake-up the metadata poll thread");
917 * Trigger a dump of the metadata content. Following/during the succesful
918 * completion of this call, the metadata poll thread will start receiving
919 * metadata packets to consume.
921 * The caller must hold the channel and stream locks.
924 int consumer_metadata_stream_dump(struct lttng_consumer_stream
*stream
)
928 ASSERT_LOCKED(stream
->chan
->lock
);
929 ASSERT_LOCKED(stream
->lock
);
930 LTTNG_ASSERT(stream
->metadata_flag
);
931 LTTNG_ASSERT(stream
->chan
->trace_chunk
);
933 switch (the_consumer_data
.type
) {
934 case LTTNG_CONSUMER_KERNEL
:
936 * Reset the position of what has been read from the
937 * metadata cache to 0 so we can dump it again.
939 ret
= kernctl_metadata_cache_dump(stream
->wait_fd
);
941 case LTTNG_CONSUMER32_UST
:
942 case LTTNG_CONSUMER64_UST
:
944 * Reset the position pushed from the metadata cache so it
945 * will write from the beginning on the next push.
947 stream
->ust_metadata_pushed
= 0;
948 ret
= consumer_metadata_wakeup_pipe(stream
->chan
);
951 ERR("Unknown consumer_data type");
955 ERR("Failed to dump the metadata cache");
961 int lttng_consumer_channel_set_trace_chunk(
962 struct lttng_consumer_channel
*channel
,
963 struct lttng_trace_chunk
*new_trace_chunk
)
965 pthread_mutex_lock(&channel
->lock
);
966 if (channel
->is_deleted
) {
968 * The channel has been logically deleted and should no longer
969 * be used. It has released its reference to its current trace
970 * chunk and should not acquire a new one.
972 * Return success as there is nothing for the caller to do.
978 * The acquisition of the reference cannot fail (barring
979 * a severe internal error) since a reference to the published
980 * chunk is already held by the caller.
982 if (new_trace_chunk
) {
983 const bool acquired_reference
= lttng_trace_chunk_get(
986 LTTNG_ASSERT(acquired_reference
);
989 lttng_trace_chunk_put(channel
->trace_chunk
);
990 channel
->trace_chunk
= new_trace_chunk
;
992 pthread_mutex_unlock(&channel
->lock
);
997 * Allocate and return a new lttng_consumer_channel object using the given key
998 * to initialize the hash table node.
1000 * On error, return NULL.
1002 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
1003 uint64_t session_id
,
1004 const uint64_t *chunk_id
,
1005 const char *pathname
,
1008 enum lttng_event_output output
,
1009 uint64_t tracefile_size
,
1010 uint64_t tracefile_count
,
1011 uint64_t session_id_per_pid
,
1012 unsigned int monitor
,
1013 unsigned int live_timer_interval
,
1014 bool is_in_live_session
,
1015 const char *root_shm_path
,
1016 const char *shm_path
)
1018 struct lttng_consumer_channel
*channel
= NULL
;
1019 struct lttng_trace_chunk
*trace_chunk
= NULL
;
1022 trace_chunk
= lttng_trace_chunk_registry_find_chunk(
1023 the_consumer_data
.chunk_registry
, session_id
,
1026 ERR("Failed to find trace chunk reference during creation of channel");
1031 channel
= zmalloc(sizeof(*channel
));
1032 if (channel
== NULL
) {
1033 PERROR("malloc struct lttng_consumer_channel");
1038 channel
->refcount
= 0;
1039 channel
->session_id
= session_id
;
1040 channel
->session_id_per_pid
= session_id_per_pid
;
1041 channel
->relayd_id
= relayd_id
;
1042 channel
->tracefile_size
= tracefile_size
;
1043 channel
->tracefile_count
= tracefile_count
;
1044 channel
->monitor
= monitor
;
1045 channel
->live_timer_interval
= live_timer_interval
;
1046 channel
->is_live
= is_in_live_session
;
1047 pthread_mutex_init(&channel
->lock
, NULL
);
1048 pthread_mutex_init(&channel
->timer_lock
, NULL
);
1051 case LTTNG_EVENT_SPLICE
:
1052 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
1054 case LTTNG_EVENT_MMAP
:
1055 channel
->output
= CONSUMER_CHANNEL_MMAP
;
1065 * In monitor mode, the streams associated with the channel will be put in
1066 * a special list ONLY owned by this channel. So, the refcount is set to 1
1067 * here meaning that the channel itself has streams that are referenced.
1069 * On a channel deletion, once the channel is no longer visible, the
1070 * refcount is decremented and checked for a zero value to delete it. With
1071 * streams in no monitor mode, it will now be safe to destroy the channel.
1073 if (!channel
->monitor
) {
1074 channel
->refcount
= 1;
1077 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
1078 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
1080 strncpy(channel
->name
, name
, sizeof(channel
->name
));
1081 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
1083 if (root_shm_path
) {
1084 strncpy(channel
->root_shm_path
, root_shm_path
, sizeof(channel
->root_shm_path
));
1085 channel
->root_shm_path
[sizeof(channel
->root_shm_path
) - 1] = '\0';
1088 strncpy(channel
->shm_path
, shm_path
, sizeof(channel
->shm_path
));
1089 channel
->shm_path
[sizeof(channel
->shm_path
) - 1] = '\0';
1092 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
1093 lttng_ht_node_init_u64(&channel
->channels_by_session_id_ht_node
,
1094 channel
->session_id
);
1096 channel
->wait_fd
= -1;
1097 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
1100 int ret
= lttng_consumer_channel_set_trace_chunk(channel
,
1107 DBG("Allocated channel (key %" PRIu64
")", channel
->key
);
1110 lttng_trace_chunk_put(trace_chunk
);
1113 consumer_del_channel(channel
);
1119 * Add a channel to the global list protected by a mutex.
1121 * Always return 0 indicating success.
1123 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1124 struct lttng_consumer_local_data
*ctx
)
1126 pthread_mutex_lock(&the_consumer_data
.lock
);
1127 pthread_mutex_lock(&channel
->lock
);
1128 pthread_mutex_lock(&channel
->timer_lock
);
1131 * This gives us a guarantee that the channel we are about to add to the
1132 * channel hash table will be unique. See this function comment on the why
1133 * we need to steel the channel key at this stage.
1135 steal_channel_key(channel
->key
);
1138 lttng_ht_add_unique_u64(the_consumer_data
.channel_ht
, &channel
->node
);
1139 lttng_ht_add_u64(the_consumer_data
.channels_by_session_id_ht
,
1140 &channel
->channels_by_session_id_ht_node
);
1142 channel
->is_published
= true;
1144 pthread_mutex_unlock(&channel
->timer_lock
);
1145 pthread_mutex_unlock(&channel
->lock
);
1146 pthread_mutex_unlock(&the_consumer_data
.lock
);
1148 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1149 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1156 * Allocate the pollfd structure and the local view of the out fds to avoid
1157 * doing a lookup in the linked list and concurrency issues when writing is
1158 * needed. Called with consumer_data.lock held.
1160 * Returns the number of fds in the structures.
1162 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1163 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1164 struct lttng_ht
*ht
, int *nb_inactive_fd
)
1167 struct lttng_ht_iter iter
;
1168 struct lttng_consumer_stream
*stream
;
1172 LTTNG_ASSERT(pollfd
);
1173 LTTNG_ASSERT(local_stream
);
1175 DBG("Updating poll fd array");
1176 *nb_inactive_fd
= 0;
1178 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1180 * Only active streams with an active end point can be added to the
1181 * poll set and local stream storage of the thread.
1183 * There is a potential race here for endpoint_status to be updated
1184 * just after the check. However, this is OK since the stream(s) will
1185 * be deleted once the thread is notified that the end point state has
1186 * changed where this function will be called back again.
1188 * We track the number of inactive FDs because they still need to be
1189 * closed by the polling thread after a wakeup on the data_pipe or
1192 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1193 (*nb_inactive_fd
)++;
1197 * This clobbers way too much the debug output. Uncomment that if you
1198 * need it for debugging purposes.
1200 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1201 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1202 local_stream
[i
] = stream
;
1208 * Insert the consumer_data_pipe at the end of the array and don't
1209 * increment i so nb_fd is the number of real FD.
1211 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1212 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1214 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1215 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1220 * Poll on the should_quit pipe and the command socket return -1 on
1221 * error, 1 if should exit, 0 if data is available on the command socket
1223 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1228 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1229 if (num_rdy
== -1) {
1231 * Restart interrupted system call.
1233 if (errno
== EINTR
) {
1236 PERROR("Poll error");
1239 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1240 DBG("consumer_should_quit wake up");
1247 * Set the error socket.
1249 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1252 ctx
->consumer_error_socket
= sock
;
1256 * Set the command socket path.
1258 void lttng_consumer_set_command_sock_path(
1259 struct lttng_consumer_local_data
*ctx
, char *sock
)
1261 ctx
->consumer_command_sock_path
= sock
;
1265 * Send return code to the session daemon.
1266 * If the socket is not defined, we return 0, it is not a fatal error
1268 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1270 if (ctx
->consumer_error_socket
> 0) {
1271 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1272 sizeof(enum lttcomm_sessiond_command
));
1279 * Close all the tracefiles and stream fds and MUST be called when all
1280 * instances are destroyed i.e. when all threads were joined and are ended.
1282 void lttng_consumer_cleanup(void)
1284 struct lttng_ht_iter iter
;
1285 struct lttng_consumer_channel
*channel
;
1286 unsigned int trace_chunks_left
;
1290 cds_lfht_for_each_entry(the_consumer_data
.channel_ht
->ht
, &iter
.iter
,
1291 channel
, node
.node
) {
1292 consumer_del_channel(channel
);
1297 lttng_ht_destroy(the_consumer_data
.channel_ht
);
1298 lttng_ht_destroy(the_consumer_data
.channels_by_session_id_ht
);
1300 cleanup_relayd_ht();
1302 lttng_ht_destroy(the_consumer_data
.stream_per_chan_id_ht
);
1305 * This HT contains streams that are freed by either the metadata thread or
1306 * the data thread so we do *nothing* on the hash table and simply destroy
1309 lttng_ht_destroy(the_consumer_data
.stream_list_ht
);
1312 * Trace chunks in the registry may still exist if the session
1313 * daemon has encountered an internal error and could not
1314 * tear down its sessions and/or trace chunks properly.
1316 * Release the session daemon's implicit reference to any remaining
1317 * trace chunk and print an error if any trace chunk was found. Note
1318 * that there are _no_ legitimate cases for trace chunks to be left,
1319 * it is a leak. However, it can happen following a crash of the
1320 * session daemon and not emptying the registry would cause an assertion
1323 trace_chunks_left
= lttng_trace_chunk_registry_put_each_chunk(
1324 the_consumer_data
.chunk_registry
);
1325 if (trace_chunks_left
) {
1326 ERR("%u trace chunks are leaked by lttng-consumerd. "
1327 "This can be caused by an internal error of the session daemon.",
1330 /* Run all callbacks freeing each chunk. */
1332 lttng_trace_chunk_registry_destroy(the_consumer_data
.chunk_registry
);
1336 * Called from signal handler.
1338 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1342 CMM_STORE_SHARED(consumer_quit
, 1);
1343 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1345 PERROR("write consumer quit");
1348 DBG("Consumer flag that it should quit");
1353 * Flush pending writes to trace output disk file.
1356 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1360 int outfd
= stream
->out_fd
;
1363 * This does a blocking write-and-wait on any page that belongs to the
1364 * subbuffer prior to the one we just wrote.
1365 * Don't care about error values, as these are just hints and ways to
1366 * limit the amount of page cache used.
1368 if (orig_offset
< stream
->max_sb_size
) {
1371 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1372 stream
->max_sb_size
,
1373 SYNC_FILE_RANGE_WAIT_BEFORE
1374 | SYNC_FILE_RANGE_WRITE
1375 | SYNC_FILE_RANGE_WAIT_AFTER
);
1377 * Give hints to the kernel about how we access the file:
1378 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1381 * We need to call fadvise again after the file grows because the
1382 * kernel does not seem to apply fadvise to non-existing parts of the
1385 * Call fadvise _after_ having waited for the page writeback to
1386 * complete because the dirty page writeback semantic is not well
1387 * defined. So it can be expected to lead to lower throughput in
1390 ret
= posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1391 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1392 if (ret
&& ret
!= -ENOSYS
) {
1394 PERROR("posix_fadvise on fd %i", outfd
);
1399 * Initialise the necessary environnement :
1400 * - create a new context
1401 * - create the poll_pipe
1402 * - create the should_quit pipe (for signal handler)
1403 * - create the thread pipe (for splice)
1405 * Takes a function pointer as argument, this function is called when data is
1406 * available on a buffer. This function is responsible to do the
1407 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1408 * buffer configuration and then kernctl_put_next_subbuf at the end.
1410 * Returns a pointer to the new context or NULL on error.
1412 struct lttng_consumer_local_data
*lttng_consumer_create(
1413 enum lttng_consumer_type type
,
1414 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1415 struct lttng_consumer_local_data
*ctx
, bool locked_by_caller
),
1416 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1417 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1418 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1421 struct lttng_consumer_local_data
*ctx
;
1423 LTTNG_ASSERT(the_consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1424 the_consumer_data
.type
== type
);
1425 the_consumer_data
.type
= type
;
1427 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1429 PERROR("allocating context");
1433 ctx
->consumer_error_socket
= -1;
1434 ctx
->consumer_metadata_socket
= -1;
1435 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1436 /* assign the callbacks */
1437 ctx
->on_buffer_ready
= buffer_ready
;
1438 ctx
->on_recv_channel
= recv_channel
;
1439 ctx
->on_recv_stream
= recv_stream
;
1440 ctx
->on_update_stream
= update_stream
;
1442 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1443 if (!ctx
->consumer_data_pipe
) {
1444 goto error_poll_pipe
;
1447 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1448 if (!ctx
->consumer_wakeup_pipe
) {
1449 goto error_wakeup_pipe
;
1452 ret
= pipe(ctx
->consumer_should_quit
);
1454 PERROR("Error creating recv pipe");
1455 goto error_quit_pipe
;
1458 ret
= pipe(ctx
->consumer_channel_pipe
);
1460 PERROR("Error creating channel pipe");
1461 goto error_channel_pipe
;
1464 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1465 if (!ctx
->consumer_metadata_pipe
) {
1466 goto error_metadata_pipe
;
1469 ctx
->channel_monitor_pipe
= -1;
1473 error_metadata_pipe
:
1474 utils_close_pipe(ctx
->consumer_channel_pipe
);
1476 utils_close_pipe(ctx
->consumer_should_quit
);
1478 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1480 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1488 * Iterate over all streams of the hashtable and free them properly.
1490 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1492 struct lttng_ht_iter iter
;
1493 struct lttng_consumer_stream
*stream
;
1500 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1502 * Ignore return value since we are currently cleaning up so any error
1505 (void) consumer_del_stream(stream
, ht
);
1509 lttng_ht_destroy(ht
);
1513 * Iterate over all streams of the metadata hashtable and free them
1516 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1518 struct lttng_ht_iter iter
;
1519 struct lttng_consumer_stream
*stream
;
1526 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1528 * Ignore return value since we are currently cleaning up so any error
1531 (void) consumer_del_metadata_stream(stream
, ht
);
1535 lttng_ht_destroy(ht
);
1539 * Close all fds associated with the instance and free the context.
1541 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1545 DBG("Consumer destroying it. Closing everything.");
1551 destroy_data_stream_ht(data_ht
);
1552 destroy_metadata_stream_ht(metadata_ht
);
1554 ret
= close(ctx
->consumer_error_socket
);
1558 ret
= close(ctx
->consumer_metadata_socket
);
1562 utils_close_pipe(ctx
->consumer_channel_pipe
);
1563 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1564 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1565 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1566 utils_close_pipe(ctx
->consumer_should_quit
);
1568 unlink(ctx
->consumer_command_sock_path
);
1573 * Write the metadata stream id on the specified file descriptor.
1575 static int write_relayd_metadata_id(int fd
,
1576 struct lttng_consumer_stream
*stream
,
1577 unsigned long padding
)
1580 struct lttcomm_relayd_metadata_payload hdr
;
1582 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1583 hdr
.padding_size
= htobe32(padding
);
1584 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1585 if (ret
< sizeof(hdr
)) {
1587 * This error means that the fd's end is closed so ignore the PERROR
1588 * not to clubber the error output since this can happen in a normal
1591 if (errno
!= EPIPE
) {
1592 PERROR("write metadata stream id");
1594 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1596 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1597 * handle writting the missing part so report that as an error and
1598 * don't lie to the caller.
1603 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1604 stream
->relayd_stream_id
, padding
);
1611 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1612 * core function for writing trace buffers to either the local filesystem or
1615 * It must be called with the stream and the channel lock held.
1617 * Careful review MUST be put if any changes occur!
1619 * Returns the number of bytes written
1621 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1622 struct lttng_consumer_stream
*stream
,
1623 const struct lttng_buffer_view
*buffer
,
1624 unsigned long padding
)
1627 off_t orig_offset
= stream
->out_fd_offset
;
1628 /* Default is on the disk */
1629 int outfd
= stream
->out_fd
;
1630 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1631 unsigned int relayd_hang_up
= 0;
1632 const size_t subbuf_content_size
= buffer
->size
- padding
;
1635 /* RCU lock for the relayd pointer */
1637 LTTNG_ASSERT(stream
->net_seq_idx
!= (uint64_t) -1ULL ||
1638 stream
->trace_chunk
);
1640 /* Flag that the current stream if set for network streaming. */
1641 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1642 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1643 if (relayd
== NULL
) {
1649 /* Handle stream on the relayd if the output is on the network */
1651 unsigned long netlen
= subbuf_content_size
;
1654 * Lock the control socket for the complete duration of the function
1655 * since from this point on we will use the socket.
1657 if (stream
->metadata_flag
) {
1658 /* Metadata requires the control socket. */
1659 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1660 if (stream
->reset_metadata_flag
) {
1661 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1662 stream
->relayd_stream_id
,
1663 stream
->metadata_version
);
1668 stream
->reset_metadata_flag
= 0;
1670 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1673 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1678 /* Use the returned socket. */
1681 /* Write metadata stream id before payload */
1682 if (stream
->metadata_flag
) {
1683 ret
= write_relayd_metadata_id(outfd
, stream
, padding
);
1690 write_len
= subbuf_content_size
;
1692 /* No streaming; we have to write the full padding. */
1693 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1694 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1696 ERR("Reset metadata file");
1699 stream
->reset_metadata_flag
= 0;
1703 * Check if we need to change the tracefile before writing the packet.
1705 if (stream
->chan
->tracefile_size
> 0 &&
1706 (stream
->tracefile_size_current
+ buffer
->size
) >
1707 stream
->chan
->tracefile_size
) {
1708 ret
= consumer_stream_rotate_output_files(stream
);
1712 outfd
= stream
->out_fd
;
1715 stream
->tracefile_size_current
+= buffer
->size
;
1716 write_len
= buffer
->size
;
1720 * This call guarantee that len or less is returned. It's impossible to
1721 * receive a ret value that is bigger than len.
1723 ret
= lttng_write(outfd
, buffer
->data
, write_len
);
1724 DBG("Consumer mmap write() ret %zd (len %zu)", ret
, write_len
);
1725 if (ret
< 0 || ((size_t) ret
!= write_len
)) {
1727 * Report error to caller if nothing was written else at least send the
1735 /* Socket operation failed. We consider the relayd dead */
1736 if (errno
== EPIPE
) {
1738 * This is possible if the fd is closed on the other side
1739 * (outfd) or any write problem. It can be verbose a bit for a
1740 * normal execution if for instance the relayd is stopped
1741 * abruptly. This can happen so set this to a DBG statement.
1743 DBG("Consumer mmap write detected relayd hang up");
1745 /* Unhandled error, print it and stop function right now. */
1746 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret
,
1751 stream
->output_written
+= ret
;
1753 /* This call is useless on a socket so better save a syscall. */
1755 /* This won't block, but will start writeout asynchronously */
1756 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, write_len
,
1757 SYNC_FILE_RANGE_WRITE
);
1758 stream
->out_fd_offset
+= write_len
;
1759 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1764 * This is a special case that the relayd has closed its socket. Let's
1765 * cleanup the relayd object and all associated streams.
1767 if (relayd
&& relayd_hang_up
) {
1768 ERR("Relayd hangup. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
1769 lttng_consumer_cleanup_relayd(relayd
);
1773 /* Unlock only if ctrl socket used */
1774 if (relayd
&& stream
->metadata_flag
) {
1775 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1783 * Splice the data from the ring buffer to the tracefile.
1785 * It must be called with the stream lock held.
1787 * Returns the number of bytes spliced.
1789 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1790 struct lttng_consumer_local_data
*ctx
,
1791 struct lttng_consumer_stream
*stream
, unsigned long len
,
1792 unsigned long padding
)
1794 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1796 off_t orig_offset
= stream
->out_fd_offset
;
1797 int fd
= stream
->wait_fd
;
1798 /* Default is on the disk */
1799 int outfd
= stream
->out_fd
;
1800 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1802 unsigned int relayd_hang_up
= 0;
1804 switch (the_consumer_data
.type
) {
1805 case LTTNG_CONSUMER_KERNEL
:
1807 case LTTNG_CONSUMER32_UST
:
1808 case LTTNG_CONSUMER64_UST
:
1809 /* Not supported for user space tracing */
1812 ERR("Unknown consumer_data type");
1816 /* RCU lock for the relayd pointer */
1819 /* Flag that the current stream if set for network streaming. */
1820 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1821 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1822 if (relayd
== NULL
) {
1827 splice_pipe
= stream
->splice_pipe
;
1829 /* Write metadata stream id before payload */
1831 unsigned long total_len
= len
;
1833 if (stream
->metadata_flag
) {
1835 * Lock the control socket for the complete duration of the function
1836 * since from this point on we will use the socket.
1838 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1840 if (stream
->reset_metadata_flag
) {
1841 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1842 stream
->relayd_stream_id
,
1843 stream
->metadata_version
);
1848 stream
->reset_metadata_flag
= 0;
1850 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
,
1858 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1861 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1867 /* Use the returned socket. */
1870 /* No streaming, we have to set the len with the full padding */
1873 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1874 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1876 ERR("Reset metadata file");
1879 stream
->reset_metadata_flag
= 0;
1882 * Check if we need to change the tracefile before writing the packet.
1884 if (stream
->chan
->tracefile_size
> 0 &&
1885 (stream
->tracefile_size_current
+ len
) >
1886 stream
->chan
->tracefile_size
) {
1887 ret
= consumer_stream_rotate_output_files(stream
);
1892 outfd
= stream
->out_fd
;
1895 stream
->tracefile_size_current
+= len
;
1899 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1900 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1901 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1902 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1903 DBG("splice chan to pipe, ret %zd", ret_splice
);
1904 if (ret_splice
< 0) {
1907 PERROR("Error in relay splice");
1911 /* Handle stream on the relayd if the output is on the network */
1912 if (relayd
&& stream
->metadata_flag
) {
1913 size_t metadata_payload_size
=
1914 sizeof(struct lttcomm_relayd_metadata_payload
);
1916 /* Update counter to fit the spliced data */
1917 ret_splice
+= metadata_payload_size
;
1918 len
+= metadata_payload_size
;
1920 * We do this so the return value can match the len passed as
1921 * argument to this function.
1923 written
-= metadata_payload_size
;
1926 /* Splice data out */
1927 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1928 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1929 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1931 if (ret_splice
< 0) {
1936 } else if (ret_splice
> len
) {
1938 * We don't expect this code path to be executed but you never know
1939 * so this is an extra protection agains a buggy splice().
1942 written
+= ret_splice
;
1943 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
1947 /* All good, update current len and continue. */
1951 /* This call is useless on a socket so better save a syscall. */
1953 /* This won't block, but will start writeout asynchronously */
1954 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1955 SYNC_FILE_RANGE_WRITE
);
1956 stream
->out_fd_offset
+= ret_splice
;
1958 stream
->output_written
+= ret_splice
;
1959 written
+= ret_splice
;
1962 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1968 * This is a special case that the relayd has closed its socket. Let's
1969 * cleanup the relayd object and all associated streams.
1971 if (relayd
&& relayd_hang_up
) {
1972 ERR("Relayd hangup. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
1973 lttng_consumer_cleanup_relayd(relayd
);
1974 /* Skip splice error so the consumer does not fail */
1979 /* send the appropriate error description to sessiond */
1982 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1985 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1988 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1993 if (relayd
&& stream
->metadata_flag
) {
1994 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2002 * Sample the snapshot positions for a specific fd
2004 * Returns 0 on success, < 0 on error
2006 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream
*stream
)
2008 switch (the_consumer_data
.type
) {
2009 case LTTNG_CONSUMER_KERNEL
:
2010 return lttng_kconsumer_sample_snapshot_positions(stream
);
2011 case LTTNG_CONSUMER32_UST
:
2012 case LTTNG_CONSUMER64_UST
:
2013 return lttng_ustconsumer_sample_snapshot_positions(stream
);
2015 ERR("Unknown consumer_data type");
2021 * Take a snapshot for a specific fd
2023 * Returns 0 on success, < 0 on error
2025 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
2027 switch (the_consumer_data
.type
) {
2028 case LTTNG_CONSUMER_KERNEL
:
2029 return lttng_kconsumer_take_snapshot(stream
);
2030 case LTTNG_CONSUMER32_UST
:
2031 case LTTNG_CONSUMER64_UST
:
2032 return lttng_ustconsumer_take_snapshot(stream
);
2034 ERR("Unknown consumer_data type");
2041 * Get the produced position
2043 * Returns 0 on success, < 0 on error
2045 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
2048 switch (the_consumer_data
.type
) {
2049 case LTTNG_CONSUMER_KERNEL
:
2050 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
2051 case LTTNG_CONSUMER32_UST
:
2052 case LTTNG_CONSUMER64_UST
:
2053 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
2055 ERR("Unknown consumer_data type");
2062 * Get the consumed position (free-running counter position in bytes).
2064 * Returns 0 on success, < 0 on error
2066 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream
*stream
,
2069 switch (the_consumer_data
.type
) {
2070 case LTTNG_CONSUMER_KERNEL
:
2071 return lttng_kconsumer_get_consumed_snapshot(stream
, pos
);
2072 case LTTNG_CONSUMER32_UST
:
2073 case LTTNG_CONSUMER64_UST
:
2074 return lttng_ustconsumer_get_consumed_snapshot(stream
, pos
);
2076 ERR("Unknown consumer_data type");
2082 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
2083 int sock
, struct pollfd
*consumer_sockpoll
)
2085 switch (the_consumer_data
.type
) {
2086 case LTTNG_CONSUMER_KERNEL
:
2087 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2088 case LTTNG_CONSUMER32_UST
:
2089 case LTTNG_CONSUMER64_UST
:
2090 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2092 ERR("Unknown consumer_data type");
2099 void lttng_consumer_close_all_metadata(void)
2101 switch (the_consumer_data
.type
) {
2102 case LTTNG_CONSUMER_KERNEL
:
2104 * The Kernel consumer has a different metadata scheme so we don't
2105 * close anything because the stream will be closed by the session
2109 case LTTNG_CONSUMER32_UST
:
2110 case LTTNG_CONSUMER64_UST
:
2112 * Close all metadata streams. The metadata hash table is passed and
2113 * this call iterates over it by closing all wakeup fd. This is safe
2114 * because at this point we are sure that the metadata producer is
2115 * either dead or blocked.
2117 lttng_ustconsumer_close_all_metadata(metadata_ht
);
2120 ERR("Unknown consumer_data type");
2126 * Clean up a metadata stream and free its memory.
2128 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
2129 struct lttng_ht
*ht
)
2131 struct lttng_consumer_channel
*channel
= NULL
;
2132 bool free_channel
= false;
2134 LTTNG_ASSERT(stream
);
2136 * This call should NEVER receive regular stream. It must always be
2137 * metadata stream and this is crucial for data structure synchronization.
2139 LTTNG_ASSERT(stream
->metadata_flag
);
2141 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2143 pthread_mutex_lock(&the_consumer_data
.lock
);
2145 * Note that this assumes that a stream's channel is never changed and
2146 * that the stream's lock doesn't need to be taken to sample its
2149 channel
= stream
->chan
;
2150 pthread_mutex_lock(&channel
->lock
);
2151 pthread_mutex_lock(&stream
->lock
);
2152 if (channel
->metadata_cache
) {
2153 /* Only applicable to userspace consumers. */
2154 pthread_mutex_lock(&channel
->metadata_cache
->lock
);
2157 /* Remove any reference to that stream. */
2158 consumer_stream_delete(stream
, ht
);
2160 /* Close down everything including the relayd if one. */
2161 consumer_stream_close(stream
);
2162 /* Destroy tracer buffers of the stream. */
2163 consumer_stream_destroy_buffers(stream
);
2165 /* Atomically decrement channel refcount since other threads can use it. */
2166 if (!uatomic_sub_return(&channel
->refcount
, 1)
2167 && !uatomic_read(&channel
->nb_init_stream_left
)) {
2168 /* Go for channel deletion! */
2169 free_channel
= true;
2171 stream
->chan
= NULL
;
2174 * Nullify the stream reference so it is not used after deletion. The
2175 * channel lock MUST be acquired before being able to check for a NULL
2178 channel
->metadata_stream
= NULL
;
2180 if (channel
->metadata_cache
) {
2181 pthread_mutex_unlock(&channel
->metadata_cache
->lock
);
2183 pthread_mutex_unlock(&stream
->lock
);
2184 pthread_mutex_unlock(&channel
->lock
);
2185 pthread_mutex_unlock(&the_consumer_data
.lock
);
2188 consumer_del_channel(channel
);
2191 lttng_trace_chunk_put(stream
->trace_chunk
);
2192 stream
->trace_chunk
= NULL
;
2193 consumer_stream_free(stream
);
2197 * Action done with the metadata stream when adding it to the consumer internal
2198 * data structures to handle it.
2200 void consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2202 struct lttng_ht
*ht
= metadata_ht
;
2203 struct lttng_ht_iter iter
;
2204 struct lttng_ht_node_u64
*node
;
2206 LTTNG_ASSERT(stream
);
2209 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2211 pthread_mutex_lock(&the_consumer_data
.lock
);
2212 pthread_mutex_lock(&stream
->chan
->lock
);
2213 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2214 pthread_mutex_lock(&stream
->lock
);
2217 * From here, refcounts are updated so be _careful_ when returning an error
2224 * Lookup the stream just to make sure it does not exist in our internal
2225 * state. This should NEVER happen.
2227 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2228 node
= lttng_ht_iter_get_node_u64(&iter
);
2229 LTTNG_ASSERT(!node
);
2232 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2233 * in terms of destroying the associated channel, because the action that
2234 * causes the count to become 0 also causes a stream to be added. The
2235 * channel deletion will thus be triggered by the following removal of this
2238 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2239 /* Increment refcount before decrementing nb_init_stream_left */
2241 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2244 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2246 lttng_ht_add_u64(the_consumer_data
.stream_per_chan_id_ht
,
2247 &stream
->node_channel_id
);
2250 * Add stream to the stream_list_ht of the consumer data. No need to steal
2251 * the key since the HT does not use it and we allow to add redundant keys
2254 lttng_ht_add_u64(the_consumer_data
.stream_list_ht
,
2255 &stream
->node_session_id
);
2259 pthread_mutex_unlock(&stream
->lock
);
2260 pthread_mutex_unlock(&stream
->chan
->lock
);
2261 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2262 pthread_mutex_unlock(&the_consumer_data
.lock
);
2266 * Delete data stream that are flagged for deletion (endpoint_status).
2268 static void validate_endpoint_status_data_stream(void)
2270 struct lttng_ht_iter iter
;
2271 struct lttng_consumer_stream
*stream
;
2273 DBG("Consumer delete flagged data stream");
2276 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2277 /* Validate delete flag of the stream */
2278 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2281 /* Delete it right now */
2282 consumer_del_stream(stream
, data_ht
);
2288 * Delete metadata stream that are flagged for deletion (endpoint_status).
2290 static void validate_endpoint_status_metadata_stream(
2291 struct lttng_poll_event
*pollset
)
2293 struct lttng_ht_iter iter
;
2294 struct lttng_consumer_stream
*stream
;
2296 DBG("Consumer delete flagged metadata stream");
2298 LTTNG_ASSERT(pollset
);
2301 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2302 /* Validate delete flag of the stream */
2303 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2307 * Remove from pollset so the metadata thread can continue without
2308 * blocking on a deleted stream.
2310 lttng_poll_del(pollset
, stream
->wait_fd
);
2312 /* Delete it right now */
2313 consumer_del_metadata_stream(stream
, metadata_ht
);
2319 * Thread polls on metadata file descriptor and write them on disk or on the
2322 void *consumer_thread_metadata_poll(void *data
)
2324 int ret
, i
, pollfd
, err
= -1;
2325 uint32_t revents
, nb_fd
;
2326 struct lttng_consumer_stream
*stream
= NULL
;
2327 struct lttng_ht_iter iter
;
2328 struct lttng_ht_node_u64
*node
;
2329 struct lttng_poll_event events
;
2330 struct lttng_consumer_local_data
*ctx
= data
;
2333 rcu_register_thread();
2335 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2337 if (testpoint(consumerd_thread_metadata
)) {
2338 goto error_testpoint
;
2341 health_code_update();
2343 DBG("Thread metadata poll started");
2345 /* Size is set to 1 for the consumer_metadata pipe */
2346 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2348 ERR("Poll set creation failed");
2352 ret
= lttng_poll_add(&events
,
2353 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2359 DBG("Metadata main loop started");
2363 health_code_update();
2364 health_poll_entry();
2365 DBG("Metadata poll wait");
2366 ret
= lttng_poll_wait(&events
, -1);
2367 DBG("Metadata poll return from wait with %d fd(s)",
2368 LTTNG_POLL_GETNB(&events
));
2370 DBG("Metadata event caught in thread");
2372 if (errno
== EINTR
) {
2373 ERR("Poll EINTR caught");
2376 if (LTTNG_POLL_GETNB(&events
) == 0) {
2377 err
= 0; /* All is OK */
2384 /* From here, the event is a metadata wait fd */
2385 for (i
= 0; i
< nb_fd
; i
++) {
2386 health_code_update();
2388 revents
= LTTNG_POLL_GETEV(&events
, i
);
2389 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2391 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2392 if (revents
& LPOLLIN
) {
2395 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2396 &stream
, sizeof(stream
));
2397 if (pipe_len
< sizeof(stream
)) {
2399 PERROR("read metadata stream");
2402 * Remove the pipe from the poll set and continue the loop
2403 * since their might be data to consume.
2405 lttng_poll_del(&events
,
2406 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2407 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2411 /* A NULL stream means that the state has changed. */
2412 if (stream
== NULL
) {
2413 /* Check for deleted streams. */
2414 validate_endpoint_status_metadata_stream(&events
);
2418 DBG("Adding metadata stream %d to poll set",
2421 /* Add metadata stream to the global poll events list */
2422 lttng_poll_add(&events
, stream
->wait_fd
,
2423 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2424 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2425 DBG("Metadata thread pipe hung up");
2427 * Remove the pipe from the poll set and continue the loop
2428 * since their might be data to consume.
2430 lttng_poll_del(&events
,
2431 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2432 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2435 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2439 /* Handle other stream */
2445 uint64_t tmp_id
= (uint64_t) pollfd
;
2447 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2449 node
= lttng_ht_iter_get_node_u64(&iter
);
2452 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2455 if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2456 /* Get the data out of the metadata file descriptor */
2457 DBG("Metadata available on fd %d", pollfd
);
2458 LTTNG_ASSERT(stream
->wait_fd
== pollfd
);
2461 health_code_update();
2463 len
= ctx
->on_buffer_ready(stream
, ctx
, false);
2465 * We don't check the return value here since if we get
2466 * a negative len, it means an error occurred thus we
2467 * simply remove it from the poll set and free the
2472 /* It's ok to have an unavailable sub-buffer */
2473 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2474 /* Clean up stream from consumer and free it. */
2475 lttng_poll_del(&events
, stream
->wait_fd
);
2476 consumer_del_metadata_stream(stream
, metadata_ht
);
2478 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2479 DBG("Metadata fd %d is hup|err.", pollfd
);
2480 if (!stream
->hangup_flush_done
&&
2481 (the_consumer_data
.type
== LTTNG_CONSUMER32_UST
||
2482 the_consumer_data
.type
==
2483 LTTNG_CONSUMER64_UST
)) {
2484 DBG("Attempting to flush and consume the UST buffers");
2485 lttng_ustconsumer_on_stream_hangup(stream
);
2487 /* We just flushed the stream now read it. */
2489 health_code_update();
2491 len
= ctx
->on_buffer_ready(stream
, ctx
, false);
2493 * We don't check the return value here since if we get
2494 * a negative len, it means an error occurred thus we
2495 * simply remove it from the poll set and free the
2501 lttng_poll_del(&events
, stream
->wait_fd
);
2503 * This call update the channel states, closes file descriptors
2504 * and securely free the stream.
2506 consumer_del_metadata_stream(stream
, metadata_ht
);
2508 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2512 /* Release RCU lock for the stream looked up */
2520 DBG("Metadata poll thread exiting");
2522 lttng_poll_clean(&events
);
2527 ERR("Health error occurred in %s", __func__
);
2529 health_unregister(health_consumerd
);
2530 rcu_unregister_thread();
2535 * This thread polls the fds in the set to consume the data and write
2536 * it to tracefile if necessary.
2538 void *consumer_thread_data_poll(void *data
)
2540 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2541 struct pollfd
*pollfd
= NULL
;
2542 /* local view of the streams */
2543 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2544 /* local view of consumer_data.fds_count */
2546 /* 2 for the consumer_data_pipe and wake up pipe */
2547 const int nb_pipes_fd
= 2;
2548 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2549 int nb_inactive_fd
= 0;
2550 struct lttng_consumer_local_data
*ctx
= data
;
2553 rcu_register_thread();
2555 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2557 if (testpoint(consumerd_thread_data
)) {
2558 goto error_testpoint
;
2561 health_code_update();
2563 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2564 if (local_stream
== NULL
) {
2565 PERROR("local_stream malloc");
2570 health_code_update();
2576 * the fds set has been updated, we need to update our
2577 * local array as well
2579 pthread_mutex_lock(&the_consumer_data
.lock
);
2580 if (the_consumer_data
.need_update
) {
2585 local_stream
= NULL
;
2587 /* Allocate for all fds */
2588 pollfd
= zmalloc((the_consumer_data
.stream_count
+
2590 sizeof(struct pollfd
));
2591 if (pollfd
== NULL
) {
2592 PERROR("pollfd malloc");
2593 pthread_mutex_unlock(&the_consumer_data
.lock
);
2597 local_stream
= zmalloc((the_consumer_data
.stream_count
+
2599 sizeof(struct lttng_consumer_stream
*));
2600 if (local_stream
== NULL
) {
2601 PERROR("local_stream malloc");
2602 pthread_mutex_unlock(&the_consumer_data
.lock
);
2605 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2606 data_ht
, &nb_inactive_fd
);
2608 ERR("Error in allocating pollfd or local_outfds");
2609 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2610 pthread_mutex_unlock(&the_consumer_data
.lock
);
2614 the_consumer_data
.need_update
= 0;
2616 pthread_mutex_unlock(&the_consumer_data
.lock
);
2618 /* No FDs and consumer_quit, consumer_cleanup the thread */
2619 if (nb_fd
== 0 && nb_inactive_fd
== 0 &&
2620 CMM_LOAD_SHARED(consumer_quit
) == 1) {
2621 err
= 0; /* All is OK */
2624 /* poll on the array of fds */
2626 DBG("polling on %d fd", nb_fd
+ nb_pipes_fd
);
2627 if (testpoint(consumerd_thread_data_poll
)) {
2630 health_poll_entry();
2631 num_rdy
= poll(pollfd
, nb_fd
+ nb_pipes_fd
, -1);
2633 DBG("poll num_rdy : %d", num_rdy
);
2634 if (num_rdy
== -1) {
2636 * Restart interrupted system call.
2638 if (errno
== EINTR
) {
2641 PERROR("Poll error");
2642 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2644 } else if (num_rdy
== 0) {
2645 DBG("Polling thread timed out");
2649 if (caa_unlikely(data_consumption_paused
)) {
2650 DBG("Data consumption paused, sleeping...");
2656 * If the consumer_data_pipe triggered poll go directly to the
2657 * beginning of the loop to update the array. We want to prioritize
2658 * array update over low-priority reads.
2660 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2661 ssize_t pipe_readlen
;
2663 DBG("consumer_data_pipe wake up");
2664 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2665 &new_stream
, sizeof(new_stream
));
2666 if (pipe_readlen
< sizeof(new_stream
)) {
2667 PERROR("Consumer data pipe");
2668 /* Continue so we can at least handle the current stream(s). */
2673 * If the stream is NULL, just ignore it. It's also possible that
2674 * the sessiond poll thread changed the consumer_quit state and is
2675 * waking us up to test it.
2677 if (new_stream
== NULL
) {
2678 validate_endpoint_status_data_stream();
2682 /* Continue to update the local streams and handle prio ones */
2686 /* Handle wakeup pipe. */
2687 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2689 ssize_t pipe_readlen
;
2691 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2693 if (pipe_readlen
< 0) {
2694 PERROR("Consumer data wakeup pipe");
2696 /* We've been awakened to handle stream(s). */
2697 ctx
->has_wakeup
= 0;
2700 /* Take care of high priority channels first. */
2701 for (i
= 0; i
< nb_fd
; i
++) {
2702 health_code_update();
2704 if (local_stream
[i
] == NULL
) {
2707 if (pollfd
[i
].revents
& POLLPRI
) {
2708 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2710 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
, false);
2711 /* it's ok to have an unavailable sub-buffer */
2712 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2713 /* Clean the stream and free it. */
2714 consumer_del_stream(local_stream
[i
], data_ht
);
2715 local_stream
[i
] = NULL
;
2716 } else if (len
> 0) {
2717 local_stream
[i
]->data_read
= 1;
2723 * If we read high prio channel in this loop, try again
2724 * for more high prio data.
2730 /* Take care of low priority channels. */
2731 for (i
= 0; i
< nb_fd
; i
++) {
2732 health_code_update();
2734 if (local_stream
[i
] == NULL
) {
2737 if ((pollfd
[i
].revents
& POLLIN
) ||
2738 local_stream
[i
]->hangup_flush_done
||
2739 local_stream
[i
]->has_data
) {
2740 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2741 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
, false);
2742 /* it's ok to have an unavailable sub-buffer */
2743 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2744 /* Clean the stream and free it. */
2745 consumer_del_stream(local_stream
[i
], data_ht
);
2746 local_stream
[i
] = NULL
;
2747 } else if (len
> 0) {
2748 local_stream
[i
]->data_read
= 1;
2753 /* Handle hangup and errors */
2754 for (i
= 0; i
< nb_fd
; i
++) {
2755 health_code_update();
2757 if (local_stream
[i
] == NULL
) {
2760 if (!local_stream
[i
]->hangup_flush_done
2761 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2762 && (the_consumer_data
.type
== LTTNG_CONSUMER32_UST
2763 || the_consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2764 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2766 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2767 /* Attempt read again, for the data we just flushed. */
2768 local_stream
[i
]->data_read
= 1;
2771 * If the poll flag is HUP/ERR/NVAL and we have
2772 * read no data in this pass, we can remove the
2773 * stream from its hash table.
2775 if ((pollfd
[i
].revents
& POLLHUP
)) {
2776 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2777 if (!local_stream
[i
]->data_read
) {
2778 consumer_del_stream(local_stream
[i
], data_ht
);
2779 local_stream
[i
] = NULL
;
2782 } else if (pollfd
[i
].revents
& POLLERR
) {
2783 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2784 if (!local_stream
[i
]->data_read
) {
2785 consumer_del_stream(local_stream
[i
], data_ht
);
2786 local_stream
[i
] = NULL
;
2789 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2790 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2791 if (!local_stream
[i
]->data_read
) {
2792 consumer_del_stream(local_stream
[i
], data_ht
);
2793 local_stream
[i
] = NULL
;
2797 if (local_stream
[i
] != NULL
) {
2798 local_stream
[i
]->data_read
= 0;
2805 DBG("polling thread exiting");
2810 * Close the write side of the pipe so epoll_wait() in
2811 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2812 * read side of the pipe. If we close them both, epoll_wait strangely does
2813 * not return and could create a endless wait period if the pipe is the
2814 * only tracked fd in the poll set. The thread will take care of closing
2817 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2822 ERR("Health error occurred in %s", __func__
);
2824 health_unregister(health_consumerd
);
2826 rcu_unregister_thread();
2831 * Close wake-up end of each stream belonging to the channel. This will
2832 * allow the poll() on the stream read-side to detect when the
2833 * write-side (application) finally closes them.
2836 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2838 struct lttng_ht
*ht
;
2839 struct lttng_consumer_stream
*stream
;
2840 struct lttng_ht_iter iter
;
2842 ht
= the_consumer_data
.stream_per_chan_id_ht
;
2845 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2846 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2847 ht
->match_fct
, &channel
->key
,
2848 &iter
.iter
, stream
, node_channel_id
.node
) {
2850 * Protect against teardown with mutex.
2852 pthread_mutex_lock(&stream
->lock
);
2853 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2856 switch (the_consumer_data
.type
) {
2857 case LTTNG_CONSUMER_KERNEL
:
2859 case LTTNG_CONSUMER32_UST
:
2860 case LTTNG_CONSUMER64_UST
:
2861 if (stream
->metadata_flag
) {
2862 /* Safe and protected by the stream lock. */
2863 lttng_ustconsumer_close_metadata(stream
->chan
);
2866 * Note: a mutex is taken internally within
2867 * liblttng-ust-ctl to protect timer wakeup_fd
2868 * use from concurrent close.
2870 lttng_ustconsumer_close_stream_wakeup(stream
);
2874 ERR("Unknown consumer_data type");
2878 pthread_mutex_unlock(&stream
->lock
);
2883 static void destroy_channel_ht(struct lttng_ht
*ht
)
2885 struct lttng_ht_iter iter
;
2886 struct lttng_consumer_channel
*channel
;
2894 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2895 ret
= lttng_ht_del(ht
, &iter
);
2896 LTTNG_ASSERT(ret
!= 0);
2900 lttng_ht_destroy(ht
);
2904 * This thread polls the channel fds to detect when they are being
2905 * closed. It closes all related streams if the channel is detected as
2906 * closed. It is currently only used as a shim layer for UST because the
2907 * consumerd needs to keep the per-stream wakeup end of pipes open for
2910 void *consumer_thread_channel_poll(void *data
)
2912 int ret
, i
, pollfd
, err
= -1;
2913 uint32_t revents
, nb_fd
;
2914 struct lttng_consumer_channel
*chan
= NULL
;
2915 struct lttng_ht_iter iter
;
2916 struct lttng_ht_node_u64
*node
;
2917 struct lttng_poll_event events
;
2918 struct lttng_consumer_local_data
*ctx
= data
;
2919 struct lttng_ht
*channel_ht
;
2921 rcu_register_thread();
2923 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2925 if (testpoint(consumerd_thread_channel
)) {
2926 goto error_testpoint
;
2929 health_code_update();
2931 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2933 /* ENOMEM at this point. Better to bail out. */
2937 DBG("Thread channel poll started");
2939 /* Size is set to 1 for the consumer_channel pipe */
2940 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2942 ERR("Poll set creation failed");
2946 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2952 DBG("Channel main loop started");
2956 health_code_update();
2957 DBG("Channel poll wait");
2958 health_poll_entry();
2959 ret
= lttng_poll_wait(&events
, -1);
2960 DBG("Channel poll return from wait with %d fd(s)",
2961 LTTNG_POLL_GETNB(&events
));
2963 DBG("Channel event caught in thread");
2965 if (errno
== EINTR
) {
2966 ERR("Poll EINTR caught");
2969 if (LTTNG_POLL_GETNB(&events
) == 0) {
2970 err
= 0; /* All is OK */
2977 /* From here, the event is a channel wait fd */
2978 for (i
= 0; i
< nb_fd
; i
++) {
2979 health_code_update();
2981 revents
= LTTNG_POLL_GETEV(&events
, i
);
2982 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2984 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2985 if (revents
& LPOLLIN
) {
2986 enum consumer_channel_action action
;
2989 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2992 ERR("Error reading channel pipe");
2994 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2999 case CONSUMER_CHANNEL_ADD
:
3000 DBG("Adding channel %d to poll set",
3003 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
3006 lttng_ht_add_unique_u64(channel_ht
,
3007 &chan
->wait_fd_node
);
3009 /* Add channel to the global poll events list */
3010 lttng_poll_add(&events
, chan
->wait_fd
,
3011 LPOLLERR
| LPOLLHUP
);
3013 case CONSUMER_CHANNEL_DEL
:
3016 * This command should never be called if the channel
3017 * has streams monitored by either the data or metadata
3018 * thread. The consumer only notify this thread with a
3019 * channel del. command if it receives a destroy
3020 * channel command from the session daemon that send it
3021 * if a command prior to the GET_CHANNEL failed.
3025 chan
= consumer_find_channel(key
);
3028 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
3031 lttng_poll_del(&events
, chan
->wait_fd
);
3032 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
3033 ret
= lttng_ht_del(channel_ht
, &iter
);
3034 LTTNG_ASSERT(ret
== 0);
3036 switch (the_consumer_data
.type
) {
3037 case LTTNG_CONSUMER_KERNEL
:
3039 case LTTNG_CONSUMER32_UST
:
3040 case LTTNG_CONSUMER64_UST
:
3041 health_code_update();
3042 /* Destroy streams that might have been left in the stream list. */
3043 clean_channel_stream_list(chan
);
3046 ERR("Unknown consumer_data type");
3051 * Release our own refcount. Force channel deletion even if
3052 * streams were not initialized.
3054 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
3055 consumer_del_channel(chan
);
3060 case CONSUMER_CHANNEL_QUIT
:
3062 * Remove the pipe from the poll set and continue the loop
3063 * since their might be data to consume.
3065 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3068 ERR("Unknown action");
3071 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3072 DBG("Channel thread pipe hung up");
3074 * Remove the pipe from the poll set and continue the loop
3075 * since their might be data to consume.
3077 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3080 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3084 /* Handle other stream */
3090 uint64_t tmp_id
= (uint64_t) pollfd
;
3092 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
3094 node
= lttng_ht_iter_get_node_u64(&iter
);
3097 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
3100 /* Check for error event */
3101 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3102 DBG("Channel fd %d is hup|err.", pollfd
);
3104 lttng_poll_del(&events
, chan
->wait_fd
);
3105 ret
= lttng_ht_del(channel_ht
, &iter
);
3106 LTTNG_ASSERT(ret
== 0);
3109 * This will close the wait fd for each stream associated to
3110 * this channel AND monitored by the data/metadata thread thus
3111 * will be clean by the right thread.
3113 consumer_close_channel_streams(chan
);
3115 /* Release our own refcount */
3116 if (!uatomic_sub_return(&chan
->refcount
, 1)
3117 && !uatomic_read(&chan
->nb_init_stream_left
)) {
3118 consumer_del_channel(chan
);
3121 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3126 /* Release RCU lock for the channel looked up */
3134 lttng_poll_clean(&events
);
3136 destroy_channel_ht(channel_ht
);
3139 DBG("Channel poll thread exiting");
3142 ERR("Health error occurred in %s", __func__
);
3144 health_unregister(health_consumerd
);
3145 rcu_unregister_thread();
3149 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
3150 struct pollfd
*sockpoll
, int client_socket
)
3155 LTTNG_ASSERT(sockpoll
);
3157 ret
= lttng_consumer_poll_socket(sockpoll
);
3161 DBG("Metadata connection on client_socket");
3163 /* Blocking call, waiting for transmission */
3164 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
3165 if (ctx
->consumer_metadata_socket
< 0) {
3166 WARN("On accept metadata");
3177 * This thread listens on the consumerd socket and receives the file
3178 * descriptors from the session daemon.
3180 void *consumer_thread_sessiond_poll(void *data
)
3182 int sock
= -1, client_socket
, ret
, err
= -1;
3184 * structure to poll for incoming data on communication socket avoids
3185 * making blocking sockets.
3187 struct pollfd consumer_sockpoll
[2];
3188 struct lttng_consumer_local_data
*ctx
= data
;
3190 rcu_register_thread();
3192 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3194 if (testpoint(consumerd_thread_sessiond
)) {
3195 goto error_testpoint
;
3198 health_code_update();
3200 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3201 unlink(ctx
->consumer_command_sock_path
);
3202 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3203 if (client_socket
< 0) {
3204 ERR("Cannot create command socket");
3208 ret
= lttcomm_listen_unix_sock(client_socket
);
3213 DBG("Sending ready command to lttng-sessiond");
3214 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3215 /* return < 0 on error, but == 0 is not fatal */
3217 ERR("Error sending ready command to lttng-sessiond");
3221 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3222 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3223 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3224 consumer_sockpoll
[1].fd
= client_socket
;
3225 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3227 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3235 DBG("Connection on client_socket");
3237 /* Blocking call, waiting for transmission */