Create stream files relative to a stream's current trace chunk
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/time.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer/consumer-timer.h>
47 #include <common/consumer/consumer.h>
48 #include <common/consumer/consumer-stream.h>
49 #include <common/consumer/consumer-testpoint.h>
50 #include <common/align.h>
51 #include <common/consumer/consumer-metadata-cache.h>
52 #include <common/trace-chunk.h>
53 #include <common/trace-chunk-registry.h>
54 #include <common/string-utils/format.h>
55
56 struct lttng_consumer_global_data consumer_data = {
57 .stream_count = 0,
58 .need_update = 1,
59 .type = LTTNG_CONSUMER_UNKNOWN,
60 };
61
62 enum consumer_channel_action {
63 CONSUMER_CHANNEL_ADD,
64 CONSUMER_CHANNEL_DEL,
65 CONSUMER_CHANNEL_QUIT,
66 };
67
68 struct consumer_channel_msg {
69 enum consumer_channel_action action;
70 struct lttng_consumer_channel *chan; /* add */
71 uint64_t key; /* del */
72 };
73
74 /* Flag used to temporarily pause data consumption from testpoints. */
75 int data_consumption_paused;
76
77 /*
78 * Flag to inform the polling thread to quit when all fd hung up. Updated by
79 * the consumer_thread_receive_fds when it notices that all fds has hung up.
80 * Also updated by the signal handler (consumer_should_exit()). Read by the
81 * polling threads.
82 */
83 int consumer_quit;
84
85 /*
86 * Global hash table containing respectively metadata and data streams. The
87 * stream element in this ht should only be updated by the metadata poll thread
88 * for the metadata and the data poll thread for the data.
89 */
90 static struct lttng_ht *metadata_ht;
91 static struct lttng_ht *data_ht;
92
93 /*
94 * Notify a thread lttng pipe to poll back again. This usually means that some
95 * global state has changed so we just send back the thread in a poll wait
96 * call.
97 */
98 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
99 {
100 struct lttng_consumer_stream *null_stream = NULL;
101
102 assert(pipe);
103
104 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
105 }
106
107 static void notify_health_quit_pipe(int *pipe)
108 {
109 ssize_t ret;
110
111 ret = lttng_write(pipe[1], "4", 1);
112 if (ret < 1) {
113 PERROR("write consumer health quit");
114 }
115 }
116
117 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel *chan,
119 uint64_t key,
120 enum consumer_channel_action action)
121 {
122 struct consumer_channel_msg msg;
123 ssize_t ret;
124
125 memset(&msg, 0, sizeof(msg));
126
127 msg.action = action;
128 msg.chan = chan;
129 msg.key = key;
130 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
131 if (ret < sizeof(msg)) {
132 PERROR("notify_channel_pipe write error");
133 }
134 }
135
136 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
137 uint64_t key)
138 {
139 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
140 }
141
142 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
143 struct lttng_consumer_channel **chan,
144 uint64_t *key,
145 enum consumer_channel_action *action)
146 {
147 struct consumer_channel_msg msg;
148 ssize_t ret;
149
150 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
151 if (ret < sizeof(msg)) {
152 ret = -1;
153 goto error;
154 }
155 *action = msg.action;
156 *chan = msg.chan;
157 *key = msg.key;
158 error:
159 return (int) ret;
160 }
161
162 /*
163 * Cleanup the stream list of a channel. Those streams are not yet globally
164 * visible
165 */
166 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
167 {
168 struct lttng_consumer_stream *stream, *stmp;
169
170 assert(channel);
171
172 /* Delete streams that might have been left in the stream list. */
173 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
174 send_node) {
175 cds_list_del(&stream->send_node);
176 /*
177 * Once a stream is added to this list, the buffers were created so we
178 * have a guarantee that this call will succeed. Setting the monitor
179 * mode to 0 so we don't lock nor try to delete the stream from the
180 * global hash table.
181 */
182 stream->monitor = 0;
183 consumer_stream_destroy(stream, NULL);
184 }
185 }
186
187 /*
188 * Find a stream. The consumer_data.lock must be locked during this
189 * call.
190 */
191 static struct lttng_consumer_stream *find_stream(uint64_t key,
192 struct lttng_ht *ht)
193 {
194 struct lttng_ht_iter iter;
195 struct lttng_ht_node_u64 *node;
196 struct lttng_consumer_stream *stream = NULL;
197
198 assert(ht);
199
200 /* -1ULL keys are lookup failures */
201 if (key == (uint64_t) -1ULL) {
202 return NULL;
203 }
204
205 rcu_read_lock();
206
207 lttng_ht_lookup(ht, &key, &iter);
208 node = lttng_ht_iter_get_node_u64(&iter);
209 if (node != NULL) {
210 stream = caa_container_of(node, struct lttng_consumer_stream, node);
211 }
212
213 rcu_read_unlock();
214
215 return stream;
216 }
217
218 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
219 {
220 struct lttng_consumer_stream *stream;
221
222 rcu_read_lock();
223 stream = find_stream(key, ht);
224 if (stream) {
225 stream->key = (uint64_t) -1ULL;
226 /*
227 * We don't want the lookup to match, but we still need
228 * to iterate on this stream when iterating over the hash table. Just
229 * change the node key.
230 */
231 stream->node.key = (uint64_t) -1ULL;
232 }
233 rcu_read_unlock();
234 }
235
236 /*
237 * Return a channel object for the given key.
238 *
239 * RCU read side lock MUST be acquired before calling this function and
240 * protects the channel ptr.
241 */
242 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
243 {
244 struct lttng_ht_iter iter;
245 struct lttng_ht_node_u64 *node;
246 struct lttng_consumer_channel *channel = NULL;
247
248 /* -1ULL keys are lookup failures */
249 if (key == (uint64_t) -1ULL) {
250 return NULL;
251 }
252
253 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
254 node = lttng_ht_iter_get_node_u64(&iter);
255 if (node != NULL) {
256 channel = caa_container_of(node, struct lttng_consumer_channel, node);
257 }
258
259 return channel;
260 }
261
262 /*
263 * There is a possibility that the consumer does not have enough time between
264 * the close of the channel on the session daemon and the cleanup in here thus
265 * once we have a channel add with an existing key, we know for sure that this
266 * channel will eventually get cleaned up by all streams being closed.
267 *
268 * This function just nullifies the already existing channel key.
269 */
270 static void steal_channel_key(uint64_t key)
271 {
272 struct lttng_consumer_channel *channel;
273
274 rcu_read_lock();
275 channel = consumer_find_channel(key);
276 if (channel) {
277 channel->key = (uint64_t) -1ULL;
278 /*
279 * We don't want the lookup to match, but we still need to iterate on
280 * this channel when iterating over the hash table. Just change the
281 * node key.
282 */
283 channel->node.key = (uint64_t) -1ULL;
284 }
285 rcu_read_unlock();
286 }
287
288 static void free_channel_rcu(struct rcu_head *head)
289 {
290 struct lttng_ht_node_u64 *node =
291 caa_container_of(head, struct lttng_ht_node_u64, head);
292 struct lttng_consumer_channel *channel =
293 caa_container_of(node, struct lttng_consumer_channel, node);
294
295 switch (consumer_data.type) {
296 case LTTNG_CONSUMER_KERNEL:
297 break;
298 case LTTNG_CONSUMER32_UST:
299 case LTTNG_CONSUMER64_UST:
300 lttng_ustconsumer_free_channel(channel);
301 break;
302 default:
303 ERR("Unknown consumer_data type");
304 abort();
305 }
306 free(channel);
307 }
308
309 /*
310 * RCU protected relayd socket pair free.
311 */
312 static void free_relayd_rcu(struct rcu_head *head)
313 {
314 struct lttng_ht_node_u64 *node =
315 caa_container_of(head, struct lttng_ht_node_u64, head);
316 struct consumer_relayd_sock_pair *relayd =
317 caa_container_of(node, struct consumer_relayd_sock_pair, node);
318
319 /*
320 * Close all sockets. This is done in the call RCU since we don't want the
321 * socket fds to be reassigned thus potentially creating bad state of the
322 * relayd object.
323 *
324 * We do not have to lock the control socket mutex here since at this stage
325 * there is no one referencing to this relayd object.
326 */
327 (void) relayd_close(&relayd->control_sock);
328 (void) relayd_close(&relayd->data_sock);
329
330 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
331 free(relayd);
332 }
333
334 /*
335 * Destroy and free relayd socket pair object.
336 */
337 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
338 {
339 int ret;
340 struct lttng_ht_iter iter;
341
342 if (relayd == NULL) {
343 return;
344 }
345
346 DBG("Consumer destroy and close relayd socket pair");
347
348 iter.iter.node = &relayd->node.node;
349 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
350 if (ret != 0) {
351 /* We assume the relayd is being or is destroyed */
352 return;
353 }
354
355 /* RCU free() call */
356 call_rcu(&relayd->node.head, free_relayd_rcu);
357 }
358
359 /*
360 * Remove a channel from the global list protected by a mutex. This function is
361 * also responsible for freeing its data structures.
362 */
363 void consumer_del_channel(struct lttng_consumer_channel *channel)
364 {
365 struct lttng_ht_iter iter;
366
367 DBG("Consumer delete channel key %" PRIu64, channel->key);
368
369 pthread_mutex_lock(&consumer_data.lock);
370 pthread_mutex_lock(&channel->lock);
371
372 /* Destroy streams that might have been left in the stream list. */
373 clean_channel_stream_list(channel);
374
375 if (channel->live_timer_enabled == 1) {
376 consumer_timer_live_stop(channel);
377 }
378 if (channel->monitor_timer_enabled == 1) {
379 consumer_timer_monitor_stop(channel);
380 }
381
382 switch (consumer_data.type) {
383 case LTTNG_CONSUMER_KERNEL:
384 break;
385 case LTTNG_CONSUMER32_UST:
386 case LTTNG_CONSUMER64_UST:
387 lttng_ustconsumer_del_channel(channel);
388 break;
389 default:
390 ERR("Unknown consumer_data type");
391 assert(0);
392 goto end;
393 }
394
395 lttng_trace_chunk_put(channel->trace_chunk);
396 channel->trace_chunk = NULL;
397
398 if (channel->is_published) {
399 int ret;
400
401 rcu_read_lock();
402 iter.iter.node = &channel->node.node;
403 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
404 assert(!ret);
405
406 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
407 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
408 &iter);
409 assert(!ret);
410 rcu_read_unlock();
411 }
412
413 call_rcu(&channel->node.head, free_channel_rcu);
414 end:
415 pthread_mutex_unlock(&channel->lock);
416 pthread_mutex_unlock(&consumer_data.lock);
417 }
418
419 /*
420 * Iterate over the relayd hash table and destroy each element. Finally,
421 * destroy the whole hash table.
422 */
423 static void cleanup_relayd_ht(void)
424 {
425 struct lttng_ht_iter iter;
426 struct consumer_relayd_sock_pair *relayd;
427
428 rcu_read_lock();
429
430 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
431 node.node) {
432 consumer_destroy_relayd(relayd);
433 }
434
435 rcu_read_unlock();
436
437 lttng_ht_destroy(consumer_data.relayd_ht);
438 }
439
440 /*
441 * Update the end point status of all streams having the given network sequence
442 * index (relayd index).
443 *
444 * It's atomically set without having the stream mutex locked which is fine
445 * because we handle the write/read race with a pipe wakeup for each thread.
446 */
447 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
448 enum consumer_endpoint_status status)
449 {
450 struct lttng_ht_iter iter;
451 struct lttng_consumer_stream *stream;
452
453 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
454
455 rcu_read_lock();
456
457 /* Let's begin with metadata */
458 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
459 if (stream->net_seq_idx == net_seq_idx) {
460 uatomic_set(&stream->endpoint_status, status);
461 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
462 }
463 }
464
465 /* Follow up by the data streams */
466 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
467 if (stream->net_seq_idx == net_seq_idx) {
468 uatomic_set(&stream->endpoint_status, status);
469 DBG("Delete flag set to data stream %d", stream->wait_fd);
470 }
471 }
472 rcu_read_unlock();
473 }
474
475 /*
476 * Cleanup a relayd object by flagging every associated streams for deletion,
477 * destroying the object meaning removing it from the relayd hash table,
478 * closing the sockets and freeing the memory in a RCU call.
479 *
480 * If a local data context is available, notify the threads that the streams'
481 * state have changed.
482 */
483 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
484 {
485 uint64_t netidx;
486
487 assert(relayd);
488
489 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
490
491 /* Save the net sequence index before destroying the object */
492 netidx = relayd->net_seq_idx;
493
494 /*
495 * Delete the relayd from the relayd hash table, close the sockets and free
496 * the object in a RCU call.
497 */
498 consumer_destroy_relayd(relayd);
499
500 /* Set inactive endpoint to all streams */
501 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
502
503 /*
504 * With a local data context, notify the threads that the streams' state
505 * have changed. The write() action on the pipe acts as an "implicit"
506 * memory barrier ordering the updates of the end point status from the
507 * read of this status which happens AFTER receiving this notify.
508 */
509 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
510 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
511 }
512
513 /*
514 * Flag a relayd socket pair for destruction. Destroy it if the refcount
515 * reaches zero.
516 *
517 * RCU read side lock MUST be aquired before calling this function.
518 */
519 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
520 {
521 assert(relayd);
522
523 /* Set destroy flag for this object */
524 uatomic_set(&relayd->destroy_flag, 1);
525
526 /* Destroy the relayd if refcount is 0 */
527 if (uatomic_read(&relayd->refcount) == 0) {
528 consumer_destroy_relayd(relayd);
529 }
530 }
531
532 /*
533 * Completly destroy stream from every visiable data structure and the given
534 * hash table if one.
535 *
536 * One this call returns, the stream object is not longer usable nor visible.
537 */
538 void consumer_del_stream(struct lttng_consumer_stream *stream,
539 struct lttng_ht *ht)
540 {
541 consumer_stream_destroy(stream, ht);
542 }
543
544 /*
545 * XXX naming of del vs destroy is all mixed up.
546 */
547 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
548 {
549 consumer_stream_destroy(stream, data_ht);
550 }
551
552 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
553 {
554 consumer_stream_destroy(stream, metadata_ht);
555 }
556
557 void consumer_stream_update_channel_attributes(
558 struct lttng_consumer_stream *stream,
559 struct lttng_consumer_channel *channel)
560 {
561 stream->channel_read_only_attributes.tracefile_size =
562 channel->tracefile_size;
563 }
564
565 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
566 uint64_t stream_key,
567 const char *channel_name,
568 uint64_t relayd_id,
569 uint64_t session_id,
570 struct lttng_trace_chunk *trace_chunk,
571 int cpu,
572 int *alloc_ret,
573 enum consumer_channel_type type,
574 unsigned int monitor)
575 {
576 int ret;
577 struct lttng_consumer_stream *stream;
578
579 stream = zmalloc(sizeof(*stream));
580 if (stream == NULL) {
581 PERROR("malloc struct lttng_consumer_stream");
582 ret = -ENOMEM;
583 goto end;
584 }
585
586 if (trace_chunk && !lttng_trace_chunk_get(trace_chunk)) {
587 ERR("Failed to acquire trace chunk reference during the creation of a stream");
588 ret = -1;
589 goto error;
590 }
591
592 rcu_read_lock();
593 stream->key = stream_key;
594 stream->trace_chunk = trace_chunk;
595 stream->out_fd = -1;
596 stream->out_fd_offset = 0;
597 stream->output_written = 0;
598 stream->net_seq_idx = relayd_id;
599 stream->session_id = session_id;
600 stream->monitor = monitor;
601 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
602 stream->index_file = NULL;
603 stream->last_sequence_number = -1ULL;
604 pthread_mutex_init(&stream->lock, NULL);
605 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
606
607 /* If channel is the metadata, flag this stream as metadata. */
608 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
609 stream->metadata_flag = 1;
610 /* Metadata is flat out. */
611 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
612 /* Live rendez-vous point. */
613 pthread_cond_init(&stream->metadata_rdv, NULL);
614 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
615 } else {
616 /* Format stream name to <channel_name>_<cpu_number> */
617 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
618 channel_name, cpu);
619 if (ret < 0) {
620 PERROR("snprintf stream name");
621 goto error;
622 }
623 }
624
625 /* Key is always the wait_fd for streams. */
626 lttng_ht_node_init_u64(&stream->node, stream->key);
627
628 /* Init node per channel id key */
629 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
630
631 /* Init session id node with the stream session id */
632 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
633
634 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
635 " relayd_id %" PRIu64 ", session_id %" PRIu64,
636 stream->name, stream->key, channel_key,
637 stream->net_seq_idx, stream->session_id);
638
639 rcu_read_unlock();
640 return stream;
641
642 error:
643 rcu_read_unlock();
644 lttng_trace_chunk_put(stream->trace_chunk);
645 free(stream);
646 end:
647 if (alloc_ret) {
648 *alloc_ret = ret;
649 }
650 return NULL;
651 }
652
653 /*
654 * Add a stream to the global list protected by a mutex.
655 */
656 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
657 {
658 struct lttng_ht *ht = data_ht;
659
660 assert(stream);
661 assert(ht);
662
663 DBG3("Adding consumer stream %" PRIu64, stream->key);
664
665 pthread_mutex_lock(&consumer_data.lock);
666 pthread_mutex_lock(&stream->chan->lock);
667 pthread_mutex_lock(&stream->chan->timer_lock);
668 pthread_mutex_lock(&stream->lock);
669 rcu_read_lock();
670
671 /* Steal stream identifier to avoid having streams with the same key */
672 steal_stream_key(stream->key, ht);
673
674 lttng_ht_add_unique_u64(ht, &stream->node);
675
676 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
677 &stream->node_channel_id);
678
679 /*
680 * Add stream to the stream_list_ht of the consumer data. No need to steal
681 * the key since the HT does not use it and we allow to add redundant keys
682 * into this table.
683 */
684 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
685
686 /*
687 * When nb_init_stream_left reaches 0, we don't need to trigger any action
688 * in terms of destroying the associated channel, because the action that
689 * causes the count to become 0 also causes a stream to be added. The
690 * channel deletion will thus be triggered by the following removal of this
691 * stream.
692 */
693 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
694 /* Increment refcount before decrementing nb_init_stream_left */
695 cmm_smp_wmb();
696 uatomic_dec(&stream->chan->nb_init_stream_left);
697 }
698
699 /* Update consumer data once the node is inserted. */
700 consumer_data.stream_count++;
701 consumer_data.need_update = 1;
702
703 rcu_read_unlock();
704 pthread_mutex_unlock(&stream->lock);
705 pthread_mutex_unlock(&stream->chan->timer_lock);
706 pthread_mutex_unlock(&stream->chan->lock);
707 pthread_mutex_unlock(&consumer_data.lock);
708 }
709
710 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
711 {
712 consumer_del_stream(stream, data_ht);
713 }
714
715 /*
716 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
717 * be acquired before calling this.
718 */
719 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
720 {
721 int ret = 0;
722 struct lttng_ht_node_u64 *node;
723 struct lttng_ht_iter iter;
724
725 assert(relayd);
726
727 lttng_ht_lookup(consumer_data.relayd_ht,
728 &relayd->net_seq_idx, &iter);
729 node = lttng_ht_iter_get_node_u64(&iter);
730 if (node != NULL) {
731 goto end;
732 }
733 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
734
735 end:
736 return ret;
737 }
738
739 /*
740 * Allocate and return a consumer relayd socket.
741 */
742 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
743 uint64_t net_seq_idx)
744 {
745 struct consumer_relayd_sock_pair *obj = NULL;
746
747 /* net sequence index of -1 is a failure */
748 if (net_seq_idx == (uint64_t) -1ULL) {
749 goto error;
750 }
751
752 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
753 if (obj == NULL) {
754 PERROR("zmalloc relayd sock");
755 goto error;
756 }
757
758 obj->net_seq_idx = net_seq_idx;
759 obj->refcount = 0;
760 obj->destroy_flag = 0;
761 obj->control_sock.sock.fd = -1;
762 obj->data_sock.sock.fd = -1;
763 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
764 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
765
766 error:
767 return obj;
768 }
769
770 /*
771 * Find a relayd socket pair in the global consumer data.
772 *
773 * Return the object if found else NULL.
774 * RCU read-side lock must be held across this call and while using the
775 * returned object.
776 */
777 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
778 {
779 struct lttng_ht_iter iter;
780 struct lttng_ht_node_u64 *node;
781 struct consumer_relayd_sock_pair *relayd = NULL;
782
783 /* Negative keys are lookup failures */
784 if (key == (uint64_t) -1ULL) {
785 goto error;
786 }
787
788 lttng_ht_lookup(consumer_data.relayd_ht, &key,
789 &iter);
790 node = lttng_ht_iter_get_node_u64(&iter);
791 if (node != NULL) {
792 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
793 }
794
795 error:
796 return relayd;
797 }
798
799 /*
800 * Find a relayd and send the stream
801 *
802 * Returns 0 on success, < 0 on error
803 */
804 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
805 char *path)
806 {
807 int ret = 0;
808 struct consumer_relayd_sock_pair *relayd;
809
810 assert(stream);
811 assert(stream->net_seq_idx != -1ULL);
812 assert(path);
813
814 /* The stream is not metadata. Get relayd reference if exists. */
815 rcu_read_lock();
816 relayd = consumer_find_relayd(stream->net_seq_idx);
817 if (relayd != NULL) {
818 /* Add stream on the relayd */
819 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
820 ret = relayd_add_stream(&relayd->control_sock, stream->name,
821 path, &stream->relayd_stream_id,
822 stream->chan->tracefile_size,
823 stream->chan->tracefile_count,
824 stream->trace_chunk);
825 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
826 if (ret < 0) {
827 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
828 lttng_consumer_cleanup_relayd(relayd);
829 goto end;
830 }
831
832 uatomic_inc(&relayd->refcount);
833 stream->sent_to_relayd = 1;
834 } else {
835 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
836 stream->key, stream->net_seq_idx);
837 ret = -1;
838 goto end;
839 }
840
841 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
842 stream->name, stream->key, stream->net_seq_idx);
843
844 end:
845 rcu_read_unlock();
846 return ret;
847 }
848
849 /*
850 * Find a relayd and send the streams sent message
851 *
852 * Returns 0 on success, < 0 on error
853 */
854 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
855 {
856 int ret = 0;
857 struct consumer_relayd_sock_pair *relayd;
858
859 assert(net_seq_idx != -1ULL);
860
861 /* The stream is not metadata. Get relayd reference if exists. */
862 rcu_read_lock();
863 relayd = consumer_find_relayd(net_seq_idx);
864 if (relayd != NULL) {
865 /* Add stream on the relayd */
866 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
867 ret = relayd_streams_sent(&relayd->control_sock);
868 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
869 if (ret < 0) {
870 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
871 lttng_consumer_cleanup_relayd(relayd);
872 goto end;
873 }
874 } else {
875 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
876 net_seq_idx);
877 ret = -1;
878 goto end;
879 }
880
881 ret = 0;
882 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
883
884 end:
885 rcu_read_unlock();
886 return ret;
887 }
888
889 /*
890 * Find a relayd and close the stream
891 */
892 void close_relayd_stream(struct lttng_consumer_stream *stream)
893 {
894 struct consumer_relayd_sock_pair *relayd;
895
896 /* The stream is not metadata. Get relayd reference if exists. */
897 rcu_read_lock();
898 relayd = consumer_find_relayd(stream->net_seq_idx);
899 if (relayd) {
900 consumer_stream_relayd_close(stream, relayd);
901 }
902 rcu_read_unlock();
903 }
904
905 /*
906 * Handle stream for relayd transmission if the stream applies for network
907 * streaming where the net sequence index is set.
908 *
909 * Return destination file descriptor or negative value on error.
910 */
911 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
912 size_t data_size, unsigned long padding,
913 struct consumer_relayd_sock_pair *relayd)
914 {
915 int outfd = -1, ret;
916 struct lttcomm_relayd_data_hdr data_hdr;
917
918 /* Safety net */
919 assert(stream);
920 assert(relayd);
921
922 /* Reset data header */
923 memset(&data_hdr, 0, sizeof(data_hdr));
924
925 if (stream->metadata_flag) {
926 /* Caller MUST acquire the relayd control socket lock */
927 ret = relayd_send_metadata(&relayd->control_sock, data_size);
928 if (ret < 0) {
929 goto error;
930 }
931
932 /* Metadata are always sent on the control socket. */
933 outfd = relayd->control_sock.sock.fd;
934 } else {
935 /* Set header with stream information */
936 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
937 data_hdr.data_size = htobe32(data_size);
938 data_hdr.padding_size = htobe32(padding);
939 /*
940 * Note that net_seq_num below is assigned with the *current* value of
941 * next_net_seq_num and only after that the next_net_seq_num will be
942 * increment. This is why when issuing a command on the relayd using
943 * this next value, 1 should always be substracted in order to compare
944 * the last seen sequence number on the relayd side to the last sent.
945 */
946 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
947 /* Other fields are zeroed previously */
948
949 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
950 sizeof(data_hdr));
951 if (ret < 0) {
952 goto error;
953 }
954
955 ++stream->next_net_seq_num;
956
957 /* Set to go on data socket */
958 outfd = relayd->data_sock.sock.fd;
959 }
960
961 error:
962 return outfd;
963 }
964
965 /*
966 * Trigger a dump of the metadata content. Following/during the succesful
967 * completion of this call, the metadata poll thread will start receiving
968 * metadata packets to consume.
969 *
970 * The caller must hold the channel and stream locks.
971 */
972 static
973 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
974 {
975 int ret;
976
977 ASSERT_LOCKED(stream->chan->lock);
978 ASSERT_LOCKED(stream->lock);
979 assert(stream->metadata_flag);
980 assert(stream->chan->trace_chunk);
981
982 switch (consumer_data.type) {
983 case LTTNG_CONSUMER_KERNEL:
984 /*
985 * Reset the position of what has been read from the
986 * metadata cache to 0 so we can dump it again.
987 */
988 ret = kernctl_metadata_cache_dump(stream->wait_fd);
989 break;
990 case LTTNG_CONSUMER32_UST:
991 case LTTNG_CONSUMER64_UST:
992 /*
993 * Reset the position pushed from the metadata cache so it
994 * will write from the beginning on the next push.
995 */
996 stream->ust_metadata_pushed = 0;
997 ret = consumer_metadata_wakeup_pipe(stream->chan);
998 break;
999 default:
1000 ERR("Unknown consumer_data type");
1001 abort();
1002 }
1003 if (ret < 0) {
1004 ERR("Failed to dump the metadata cache");
1005 }
1006 return ret;
1007 }
1008
1009 static
1010 int lttng_consumer_channel_set_trace_chunk(
1011 struct lttng_consumer_channel *channel,
1012 struct lttng_trace_chunk *new_trace_chunk)
1013 {
1014 int ret = 0;
1015 const bool is_local_trace = channel->relayd_id == -1ULL;
1016 bool update_stream_trace_chunk;
1017 struct cds_lfht_iter iter;
1018 struct lttng_consumer_stream *stream;
1019 unsigned long channel_hash;
1020
1021 pthread_mutex_lock(&channel->lock);
1022 /*
1023 * A stream can transition to a state where it and its channel
1024 * no longer belong to a trace chunk. For instance, this happens when
1025 * a session is rotated while it is inactive. After the rotation
1026 * of an inactive session completes, the channel and its streams no
1027 * longer belong to a trace chunk.
1028 *
1029 * However, if a session is stopped, rotated, and started again,
1030 * the session daemon will create a new chunk and send it to its peers.
1031 * In that case, the streams' transition to a new chunk can be performed
1032 * immediately.
1033 *
1034 * This trace chunk transition could also be performed lazily when
1035 * a buffer is consumed. However, creating the files here allows the
1036 * consumer daemon to report any creation error to the session daemon
1037 * and cause the start of the tracing session to fail.
1038 */
1039 update_stream_trace_chunk = !channel->trace_chunk && new_trace_chunk;
1040
1041 /*
1042 * The acquisition of the reference cannot fail (barring
1043 * a severe internal error) since a reference to the published
1044 * chunk is already held by the caller.
1045 */
1046 if (new_trace_chunk) {
1047 const bool acquired_reference = lttng_trace_chunk_get(
1048 new_trace_chunk);
1049
1050 assert(acquired_reference);
1051 }
1052
1053 lttng_trace_chunk_put(channel->trace_chunk);
1054 channel->trace_chunk = new_trace_chunk;
1055 if (!is_local_trace || !new_trace_chunk) {
1056 /* Not an error. */
1057 goto end;
1058 }
1059
1060 if (!update_stream_trace_chunk) {
1061 goto end;
1062 }
1063
1064 channel_hash = consumer_data.stream_per_chan_id_ht->hash_fct(
1065 &channel->key, lttng_ht_seed);
1066 rcu_read_lock();
1067 cds_lfht_for_each_entry_duplicate(consumer_data.stream_per_chan_id_ht->ht,
1068 channel_hash,
1069 consumer_data.stream_per_chan_id_ht->match_fct,
1070 &channel->key, &iter, stream, node_channel_id.node) {
1071 bool acquired_reference, should_regenerate_metadata = false;
1072
1073 acquired_reference = lttng_trace_chunk_get(channel->trace_chunk);
1074 assert(acquired_reference);
1075
1076 pthread_mutex_lock(&stream->lock);
1077
1078 /*
1079 * On a transition from "no-chunk" to a new chunk, a metadata
1080 * stream's content must be entirely dumped. This must occcur
1081 * _after_ the creation of the metadata stream's output files
1082 * as the consumption thread (not necessarily the one executing
1083 * this) may start to consume during the call to
1084 * consumer_metadata_stream_dump().
1085 */
1086 should_regenerate_metadata =
1087 stream->metadata_flag &&
1088 !stream->trace_chunk && channel->trace_chunk;
1089 stream->trace_chunk = channel->trace_chunk;
1090 ret = consumer_stream_create_output_files(stream, true);
1091 if (ret) {
1092 pthread_mutex_unlock(&stream->lock);
1093 goto end_rcu_unlock;
1094 }
1095 if (should_regenerate_metadata) {
1096 ret = consumer_metadata_stream_dump(stream);
1097 }
1098 pthread_mutex_unlock(&stream->lock);
1099 if (ret) {
1100 goto end_rcu_unlock;
1101 }
1102 }
1103 end_rcu_unlock:
1104 rcu_read_unlock();
1105 end:
1106 pthread_mutex_unlock(&channel->lock);
1107 return ret;
1108 }
1109
1110 /*
1111 * Allocate and return a new lttng_consumer_channel object using the given key
1112 * to initialize the hash table node.
1113 *
1114 * On error, return NULL.
1115 */
1116 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1117 uint64_t session_id,
1118 const uint64_t *chunk_id,
1119 const char *pathname,
1120 const char *name,
1121 uint64_t relayd_id,
1122 enum lttng_event_output output,
1123 uint64_t tracefile_size,
1124 uint64_t tracefile_count,
1125 uint64_t session_id_per_pid,
1126 unsigned int monitor,
1127 unsigned int live_timer_interval,
1128 const char *root_shm_path,
1129 const char *shm_path)
1130 {
1131 struct lttng_consumer_channel *channel = NULL;
1132 struct lttng_trace_chunk *trace_chunk = NULL;
1133
1134 if (chunk_id) {
1135 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1136 consumer_data.chunk_registry, session_id,
1137 *chunk_id);
1138 if (!trace_chunk) {
1139 ERR("Failed to find trace chunk reference during creation of channel");
1140 goto end;
1141 }
1142 }
1143
1144 channel = zmalloc(sizeof(*channel));
1145 if (channel == NULL) {
1146 PERROR("malloc struct lttng_consumer_channel");
1147 goto end;
1148 }
1149
1150 channel->key = key;
1151 channel->refcount = 0;
1152 channel->session_id = session_id;
1153 channel->session_id_per_pid = session_id_per_pid;
1154 channel->relayd_id = relayd_id;
1155 channel->tracefile_size = tracefile_size;
1156 channel->tracefile_count = tracefile_count;
1157 channel->monitor = monitor;
1158 channel->live_timer_interval = live_timer_interval;
1159 pthread_mutex_init(&channel->lock, NULL);
1160 pthread_mutex_init(&channel->timer_lock, NULL);
1161
1162 switch (output) {
1163 case LTTNG_EVENT_SPLICE:
1164 channel->output = CONSUMER_CHANNEL_SPLICE;
1165 break;
1166 case LTTNG_EVENT_MMAP:
1167 channel->output = CONSUMER_CHANNEL_MMAP;
1168 break;
1169 default:
1170 assert(0);
1171 free(channel);
1172 channel = NULL;
1173 goto end;
1174 }
1175
1176 /*
1177 * In monitor mode, the streams associated with the channel will be put in
1178 * a special list ONLY owned by this channel. So, the refcount is set to 1
1179 * here meaning that the channel itself has streams that are referenced.
1180 *
1181 * On a channel deletion, once the channel is no longer visible, the
1182 * refcount is decremented and checked for a zero value to delete it. With
1183 * streams in no monitor mode, it will now be safe to destroy the channel.
1184 */
1185 if (!channel->monitor) {
1186 channel->refcount = 1;
1187 }
1188
1189 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1190 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1191
1192 strncpy(channel->name, name, sizeof(channel->name));
1193 channel->name[sizeof(channel->name) - 1] = '\0';
1194
1195 if (root_shm_path) {
1196 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1197 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1198 }
1199 if (shm_path) {
1200 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1201 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1202 }
1203
1204 lttng_ht_node_init_u64(&channel->node, channel->key);
1205 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1206 channel->session_id);
1207
1208 channel->wait_fd = -1;
1209 CDS_INIT_LIST_HEAD(&channel->streams.head);
1210
1211 if (trace_chunk) {
1212 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1213 trace_chunk);
1214 if (ret) {
1215 goto error;
1216 }
1217 }
1218
1219 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1220
1221 end:
1222 lttng_trace_chunk_put(trace_chunk);
1223 return channel;
1224 error:
1225 consumer_del_channel(channel);
1226 channel = NULL;
1227 goto end;
1228 }
1229
1230 /*
1231 * Add a channel to the global list protected by a mutex.
1232 *
1233 * Always return 0 indicating success.
1234 */
1235 int consumer_add_channel(struct lttng_consumer_channel *channel,
1236 struct lttng_consumer_local_data *ctx)
1237 {
1238 pthread_mutex_lock(&consumer_data.lock);
1239 pthread_mutex_lock(&channel->lock);
1240 pthread_mutex_lock(&channel->timer_lock);
1241
1242 /*
1243 * This gives us a guarantee that the channel we are about to add to the
1244 * channel hash table will be unique. See this function comment on the why
1245 * we need to steel the channel key at this stage.
1246 */
1247 steal_channel_key(channel->key);
1248
1249 rcu_read_lock();
1250 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1251 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1252 &channel->channels_by_session_id_ht_node);
1253 rcu_read_unlock();
1254 channel->is_published = true;
1255
1256 pthread_mutex_unlock(&channel->timer_lock);
1257 pthread_mutex_unlock(&channel->lock);
1258 pthread_mutex_unlock(&consumer_data.lock);
1259
1260 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1261 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1262 }
1263
1264 return 0;
1265 }
1266
1267 /*
1268 * Allocate the pollfd structure and the local view of the out fds to avoid
1269 * doing a lookup in the linked list and concurrency issues when writing is
1270 * needed. Called with consumer_data.lock held.
1271 *
1272 * Returns the number of fds in the structures.
1273 */
1274 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1275 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1276 struct lttng_ht *ht, int *nb_inactive_fd)
1277 {
1278 int i = 0;
1279 struct lttng_ht_iter iter;
1280 struct lttng_consumer_stream *stream;
1281
1282 assert(ctx);
1283 assert(ht);
1284 assert(pollfd);
1285 assert(local_stream);
1286
1287 DBG("Updating poll fd array");
1288 *nb_inactive_fd = 0;
1289 rcu_read_lock();
1290 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1291 /*
1292 * Only active streams with an active end point can be added to the
1293 * poll set and local stream storage of the thread.
1294 *
1295 * There is a potential race here for endpoint_status to be updated
1296 * just after the check. However, this is OK since the stream(s) will
1297 * be deleted once the thread is notified that the end point state has
1298 * changed where this function will be called back again.
1299 *
1300 * We track the number of inactive FDs because they still need to be
1301 * closed by the polling thread after a wakeup on the data_pipe or
1302 * metadata_pipe.
1303 */
1304 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1305 (*nb_inactive_fd)++;
1306 continue;
1307 }
1308 /*
1309 * This clobbers way too much the debug output. Uncomment that if you
1310 * need it for debugging purposes.
1311 */
1312 (*pollfd)[i].fd = stream->wait_fd;
1313 (*pollfd)[i].events = POLLIN | POLLPRI;
1314 local_stream[i] = stream;
1315 i++;
1316 }
1317 rcu_read_unlock();
1318
1319 /*
1320 * Insert the consumer_data_pipe at the end of the array and don't
1321 * increment i so nb_fd is the number of real FD.
1322 */
1323 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1324 (*pollfd)[i].events = POLLIN | POLLPRI;
1325
1326 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1327 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1328 return i;
1329 }
1330
1331 /*
1332 * Poll on the should_quit pipe and the command socket return -1 on
1333 * error, 1 if should exit, 0 if data is available on the command socket
1334 */
1335 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1336 {
1337 int num_rdy;
1338
1339 restart:
1340 num_rdy = poll(consumer_sockpoll, 2, -1);
1341 if (num_rdy == -1) {
1342 /*
1343 * Restart interrupted system call.
1344 */
1345 if (errno == EINTR) {
1346 goto restart;
1347 }
1348 PERROR("Poll error");
1349 return -1;
1350 }
1351 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1352 DBG("consumer_should_quit wake up");
1353 return 1;
1354 }
1355 return 0;
1356 }
1357
1358 /*
1359 * Set the error socket.
1360 */
1361 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1362 int sock)
1363 {
1364 ctx->consumer_error_socket = sock;
1365 }
1366
1367 /*
1368 * Set the command socket path.
1369 */
1370 void lttng_consumer_set_command_sock_path(
1371 struct lttng_consumer_local_data *ctx, char *sock)
1372 {
1373 ctx->consumer_command_sock_path = sock;
1374 }
1375
1376 /*
1377 * Send return code to the session daemon.
1378 * If the socket is not defined, we return 0, it is not a fatal error
1379 */
1380 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1381 {
1382 if (ctx->consumer_error_socket > 0) {
1383 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1384 sizeof(enum lttcomm_sessiond_command));
1385 }
1386
1387 return 0;
1388 }
1389
1390 /*
1391 * Close all the tracefiles and stream fds and MUST be called when all
1392 * instances are destroyed i.e. when all threads were joined and are ended.
1393 */
1394 void lttng_consumer_cleanup(void)
1395 {
1396 struct lttng_ht_iter iter;
1397 struct lttng_consumer_channel *channel;
1398
1399 rcu_read_lock();
1400
1401 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1402 node.node) {
1403 consumer_del_channel(channel);
1404 }
1405
1406 rcu_read_unlock();
1407
1408 lttng_ht_destroy(consumer_data.channel_ht);
1409 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1410
1411 cleanup_relayd_ht();
1412
1413 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1414
1415 /*
1416 * This HT contains streams that are freed by either the metadata thread or
1417 * the data thread so we do *nothing* on the hash table and simply destroy
1418 * it.
1419 */
1420 lttng_ht_destroy(consumer_data.stream_list_ht);
1421
1422 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1423 }
1424
1425 /*
1426 * Called from signal handler.
1427 */
1428 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1429 {
1430 ssize_t ret;
1431
1432 CMM_STORE_SHARED(consumer_quit, 1);
1433 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1434 if (ret < 1) {
1435 PERROR("write consumer quit");
1436 }
1437
1438 DBG("Consumer flag that it should quit");
1439 }
1440
1441
1442 /*
1443 * Flush pending writes to trace output disk file.
1444 */
1445 static
1446 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1447 off_t orig_offset)
1448 {
1449 int ret;
1450 int outfd = stream->out_fd;
1451
1452 /*
1453 * This does a blocking write-and-wait on any page that belongs to the
1454 * subbuffer prior to the one we just wrote.
1455 * Don't care about error values, as these are just hints and ways to
1456 * limit the amount of page cache used.
1457 */
1458 if (orig_offset < stream->max_sb_size) {
1459 return;
1460 }
1461 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1462 stream->max_sb_size,
1463 SYNC_FILE_RANGE_WAIT_BEFORE
1464 | SYNC_FILE_RANGE_WRITE
1465 | SYNC_FILE_RANGE_WAIT_AFTER);
1466 /*
1467 * Give hints to the kernel about how we access the file:
1468 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1469 * we write it.
1470 *
1471 * We need to call fadvise again after the file grows because the
1472 * kernel does not seem to apply fadvise to non-existing parts of the
1473 * file.
1474 *
1475 * Call fadvise _after_ having waited for the page writeback to
1476 * complete because the dirty page writeback semantic is not well
1477 * defined. So it can be expected to lead to lower throughput in
1478 * streaming.
1479 */
1480 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1481 stream->max_sb_size, POSIX_FADV_DONTNEED);
1482 if (ret && ret != -ENOSYS) {
1483 errno = ret;
1484 PERROR("posix_fadvise on fd %i", outfd);
1485 }
1486 }
1487
1488 /*
1489 * Initialise the necessary environnement :
1490 * - create a new context
1491 * - create the poll_pipe
1492 * - create the should_quit pipe (for signal handler)
1493 * - create the thread pipe (for splice)
1494 *
1495 * Takes a function pointer as argument, this function is called when data is
1496 * available on a buffer. This function is responsible to do the
1497 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1498 * buffer configuration and then kernctl_put_next_subbuf at the end.
1499 *
1500 * Returns a pointer to the new context or NULL on error.
1501 */
1502 struct lttng_consumer_local_data *lttng_consumer_create(
1503 enum lttng_consumer_type type,
1504 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1505 struct lttng_consumer_local_data *ctx),
1506 int (*recv_channel)(struct lttng_consumer_channel *channel),
1507 int (*recv_stream)(struct lttng_consumer_stream *stream),
1508 int (*update_stream)(uint64_t stream_key, uint32_t state))
1509 {
1510 int ret;
1511 struct lttng_consumer_local_data *ctx;
1512
1513 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1514 consumer_data.type == type);
1515 consumer_data.type = type;
1516
1517 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1518 if (ctx == NULL) {
1519 PERROR("allocating context");
1520 goto error;
1521 }
1522
1523 ctx->consumer_error_socket = -1;
1524 ctx->consumer_metadata_socket = -1;
1525 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1526 /* assign the callbacks */
1527 ctx->on_buffer_ready = buffer_ready;
1528 ctx->on_recv_channel = recv_channel;
1529 ctx->on_recv_stream = recv_stream;
1530 ctx->on_update_stream = update_stream;
1531
1532 ctx->consumer_data_pipe = lttng_pipe_open(0);
1533 if (!ctx->consumer_data_pipe) {
1534 goto error_poll_pipe;
1535 }
1536
1537 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1538 if (!ctx->consumer_wakeup_pipe) {
1539 goto error_wakeup_pipe;
1540 }
1541
1542 ret = pipe(ctx->consumer_should_quit);
1543 if (ret < 0) {
1544 PERROR("Error creating recv pipe");
1545 goto error_quit_pipe;
1546 }
1547
1548 ret = pipe(ctx->consumer_channel_pipe);
1549 if (ret < 0) {
1550 PERROR("Error creating channel pipe");
1551 goto error_channel_pipe;
1552 }
1553
1554 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1555 if (!ctx->consumer_metadata_pipe) {
1556 goto error_metadata_pipe;
1557 }
1558
1559 ctx->channel_monitor_pipe = -1;
1560
1561 return ctx;
1562
1563 error_metadata_pipe:
1564 utils_close_pipe(ctx->consumer_channel_pipe);
1565 error_channel_pipe:
1566 utils_close_pipe(ctx->consumer_should_quit);
1567 error_quit_pipe:
1568 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1569 error_wakeup_pipe:
1570 lttng_pipe_destroy(ctx->consumer_data_pipe);
1571 error_poll_pipe:
1572 free(ctx);
1573 error:
1574 return NULL;
1575 }
1576
1577 /*
1578 * Iterate over all streams of the hashtable and free them properly.
1579 */
1580 static void destroy_data_stream_ht(struct lttng_ht *ht)
1581 {
1582 struct lttng_ht_iter iter;
1583 struct lttng_consumer_stream *stream;
1584
1585 if (ht == NULL) {
1586 return;
1587 }
1588
1589 rcu_read_lock();
1590 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1591 /*
1592 * Ignore return value since we are currently cleaning up so any error
1593 * can't be handled.
1594 */
1595 (void) consumer_del_stream(stream, ht);
1596 }
1597 rcu_read_unlock();
1598
1599 lttng_ht_destroy(ht);
1600 }
1601
1602 /*
1603 * Iterate over all streams of the metadata hashtable and free them
1604 * properly.
1605 */
1606 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1607 {
1608 struct lttng_ht_iter iter;
1609 struct lttng_consumer_stream *stream;
1610
1611 if (ht == NULL) {
1612 return;
1613 }
1614
1615 rcu_read_lock();
1616 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1617 /*
1618 * Ignore return value since we are currently cleaning up so any error
1619 * can't be handled.
1620 */
1621 (void) consumer_del_metadata_stream(stream, ht);
1622 }
1623 rcu_read_unlock();
1624
1625 lttng_ht_destroy(ht);
1626 }
1627
1628 /*
1629 * Close all fds associated with the instance and free the context.
1630 */
1631 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1632 {
1633 int ret;
1634
1635 DBG("Consumer destroying it. Closing everything.");
1636
1637 if (!ctx) {
1638 return;
1639 }
1640
1641 destroy_data_stream_ht(data_ht);
1642 destroy_metadata_stream_ht(metadata_ht);
1643
1644 ret = close(ctx->consumer_error_socket);
1645 if (ret) {
1646 PERROR("close");
1647 }
1648 ret = close(ctx->consumer_metadata_socket);
1649 if (ret) {
1650 PERROR("close");
1651 }
1652 utils_close_pipe(ctx->consumer_channel_pipe);
1653 lttng_pipe_destroy(ctx->consumer_data_pipe);
1654 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1655 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1656 utils_close_pipe(ctx->consumer_should_quit);
1657
1658 unlink(ctx->consumer_command_sock_path);
1659 free(ctx);
1660 }
1661
1662 /*
1663 * Write the metadata stream id on the specified file descriptor.
1664 */
1665 static int write_relayd_metadata_id(int fd,
1666 struct lttng_consumer_stream *stream,
1667 unsigned long padding)
1668 {
1669 ssize_t ret;
1670 struct lttcomm_relayd_metadata_payload hdr;
1671
1672 hdr.stream_id = htobe64(stream->relayd_stream_id);
1673 hdr.padding_size = htobe32(padding);
1674 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1675 if (ret < sizeof(hdr)) {
1676 /*
1677 * This error means that the fd's end is closed so ignore the PERROR
1678 * not to clubber the error output since this can happen in a normal
1679 * code path.
1680 */
1681 if (errno != EPIPE) {
1682 PERROR("write metadata stream id");
1683 }
1684 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1685 /*
1686 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1687 * handle writting the missing part so report that as an error and
1688 * don't lie to the caller.
1689 */
1690 ret = -1;
1691 goto end;
1692 }
1693 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1694 stream->relayd_stream_id, padding);
1695
1696 end:
1697 return (int) ret;
1698 }
1699
1700 /*
1701 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1702 * core function for writing trace buffers to either the local filesystem or
1703 * the network.
1704 *
1705 * It must be called with the stream and the channel lock held.
1706 *
1707 * Careful review MUST be put if any changes occur!
1708 *
1709 * Returns the number of bytes written
1710 */
1711 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1712 struct lttng_consumer_local_data *ctx,
1713 struct lttng_consumer_stream *stream, unsigned long len,
1714 unsigned long padding,
1715 struct ctf_packet_index *index)
1716 {
1717 unsigned long mmap_offset;
1718 void *mmap_base;
1719 ssize_t ret = 0;
1720 off_t orig_offset = stream->out_fd_offset;
1721 /* Default is on the disk */
1722 int outfd = stream->out_fd;
1723 struct consumer_relayd_sock_pair *relayd = NULL;
1724 unsigned int relayd_hang_up = 0;
1725
1726 /* RCU lock for the relayd pointer */
1727 rcu_read_lock();
1728
1729 assert(stream->chan->trace_chunk);
1730
1731 /* Flag that the current stream if set for network streaming. */
1732 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1733 relayd = consumer_find_relayd(stream->net_seq_idx);
1734 if (relayd == NULL) {
1735 ret = -EPIPE;
1736 goto end;
1737 }
1738 }
1739
1740 /* get the offset inside the fd to mmap */
1741 switch (consumer_data.type) {
1742 case LTTNG_CONSUMER_KERNEL:
1743 mmap_base = stream->mmap_base;
1744 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1745 if (ret < 0) {
1746 PERROR("tracer ctl get_mmap_read_offset");
1747 goto end;
1748 }
1749 break;
1750 case LTTNG_CONSUMER32_UST:
1751 case LTTNG_CONSUMER64_UST:
1752 mmap_base = lttng_ustctl_get_mmap_base(stream);
1753 if (!mmap_base) {
1754 ERR("read mmap get mmap base for stream %s", stream->name);
1755 ret = -EPERM;
1756 goto end;
1757 }
1758 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1759 if (ret != 0) {
1760 PERROR("tracer ctl get_mmap_read_offset");
1761 ret = -EINVAL;
1762 goto end;
1763 }
1764 break;
1765 default:
1766 ERR("Unknown consumer_data type");
1767 assert(0);
1768 }
1769
1770 /* Handle stream on the relayd if the output is on the network */
1771 if (relayd) {
1772 unsigned long netlen = len;
1773
1774 /*
1775 * Lock the control socket for the complete duration of the function
1776 * since from this point on we will use the socket.
1777 */
1778 if (stream->metadata_flag) {
1779 /* Metadata requires the control socket. */
1780 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1781 if (stream->reset_metadata_flag) {
1782 ret = relayd_reset_metadata(&relayd->control_sock,
1783 stream->relayd_stream_id,
1784 stream->metadata_version);
1785 if (ret < 0) {
1786 relayd_hang_up = 1;
1787 goto write_error;
1788 }
1789 stream->reset_metadata_flag = 0;
1790 }
1791 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1792 }
1793
1794 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1795 if (ret < 0) {
1796 relayd_hang_up = 1;
1797 goto write_error;
1798 }
1799 /* Use the returned socket. */
1800 outfd = ret;
1801
1802 /* Write metadata stream id before payload */
1803 if (stream->metadata_flag) {
1804 ret = write_relayd_metadata_id(outfd, stream, padding);
1805 if (ret < 0) {
1806 relayd_hang_up = 1;
1807 goto write_error;
1808 }
1809 }
1810 } else {
1811 /* No streaming, we have to set the len with the full padding */
1812 len += padding;
1813
1814 if (stream->metadata_flag && stream->reset_metadata_flag) {
1815 ret = utils_truncate_stream_file(stream->out_fd, 0);
1816 if (ret < 0) {
1817 ERR("Reset metadata file");
1818 goto end;
1819 }
1820 stream->reset_metadata_flag = 0;
1821 }
1822
1823 /*
1824 * Check if we need to change the tracefile before writing the packet.
1825 */
1826 if (stream->chan->tracefile_size > 0 &&
1827 (stream->tracefile_size_current + len) >
1828 stream->chan->tracefile_size) {
1829 ret = consumer_stream_rotate_output_files(stream);
1830 if (ret) {
1831 goto end;
1832 }
1833 outfd = stream->out_fd;
1834 orig_offset = 0;
1835 }
1836 stream->tracefile_size_current += len;
1837 if (index) {
1838 index->offset = htobe64(stream->out_fd_offset);
1839 }
1840 }
1841
1842 /*
1843 * This call guarantee that len or less is returned. It's impossible to
1844 * receive a ret value that is bigger than len.
1845 */
1846 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1847 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1848 if (ret < 0 || ((size_t) ret != len)) {
1849 /*
1850 * Report error to caller if nothing was written else at least send the
1851 * amount written.
1852 */
1853 if (ret < 0) {
1854 ret = -errno;
1855 }
1856 relayd_hang_up = 1;
1857
1858 /* Socket operation failed. We consider the relayd dead */
1859 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1860 /*
1861 * This is possible if the fd is closed on the other side
1862 * (outfd) or any write problem. It can be verbose a bit for a
1863 * normal execution if for instance the relayd is stopped
1864 * abruptly. This can happen so set this to a DBG statement.
1865 */
1866 DBG("Consumer mmap write detected relayd hang up");
1867 } else {
1868 /* Unhandled error, print it and stop function right now. */
1869 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1870 }
1871 goto write_error;
1872 }
1873 stream->output_written += ret;
1874
1875 /* This call is useless on a socket so better save a syscall. */
1876 if (!relayd) {
1877 /* This won't block, but will start writeout asynchronously */
1878 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1879 SYNC_FILE_RANGE_WRITE);
1880 stream->out_fd_offset += len;
1881 lttng_consumer_sync_trace_file(stream, orig_offset);
1882 }
1883
1884 write_error:
1885 /*
1886 * This is a special case that the relayd has closed its socket. Let's
1887 * cleanup the relayd object and all associated streams.
1888 */
1889 if (relayd && relayd_hang_up) {
1890 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1891 lttng_consumer_cleanup_relayd(relayd);
1892 }
1893
1894 end:
1895 /* Unlock only if ctrl socket used */
1896 if (relayd && stream->metadata_flag) {
1897 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1898 }
1899
1900 rcu_read_unlock();
1901 return ret;
1902 }
1903
1904 /*
1905 * Splice the data from the ring buffer to the tracefile.
1906 *
1907 * It must be called with the stream lock held.
1908 *
1909 * Returns the number of bytes spliced.
1910 */
1911 ssize_t lttng_consumer_on_read_subbuffer_splice(
1912 struct lttng_consumer_local_data *ctx,
1913 struct lttng_consumer_stream *stream, unsigned long len,
1914 unsigned long padding,
1915 struct ctf_packet_index *index)
1916 {
1917 ssize_t ret = 0, written = 0, ret_splice = 0;
1918 loff_t offset = 0;
1919 off_t orig_offset = stream->out_fd_offset;
1920 int fd = stream->wait_fd;
1921 /* Default is on the disk */
1922 int outfd = stream->out_fd;
1923 struct consumer_relayd_sock_pair *relayd = NULL;
1924 int *splice_pipe;
1925 unsigned int relayd_hang_up = 0;
1926
1927 switch (consumer_data.type) {
1928 case LTTNG_CONSUMER_KERNEL:
1929 break;
1930 case LTTNG_CONSUMER32_UST:
1931 case LTTNG_CONSUMER64_UST:
1932 /* Not supported for user space tracing */
1933 return -ENOSYS;
1934 default:
1935 ERR("Unknown consumer_data type");
1936 assert(0);
1937 }
1938
1939 /* RCU lock for the relayd pointer */
1940 rcu_read_lock();
1941
1942 /* Flag that the current stream if set for network streaming. */
1943 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1944 relayd = consumer_find_relayd(stream->net_seq_idx);
1945 if (relayd == NULL) {
1946 written = -ret;
1947 goto end;
1948 }
1949 }
1950 splice_pipe = stream->splice_pipe;
1951
1952 /* Write metadata stream id before payload */
1953 if (relayd) {
1954 unsigned long total_len = len;
1955
1956 if (stream->metadata_flag) {
1957 /*
1958 * Lock the control socket for the complete duration of the function
1959 * since from this point on we will use the socket.
1960 */
1961 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1962
1963 if (stream->reset_metadata_flag) {
1964 ret = relayd_reset_metadata(&relayd->control_sock,
1965 stream->relayd_stream_id,
1966 stream->metadata_version);
1967 if (ret < 0) {
1968 relayd_hang_up = 1;
1969 goto write_error;
1970 }
1971 stream->reset_metadata_flag = 0;
1972 }
1973 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1974 padding);
1975 if (ret < 0) {
1976 written = ret;
1977 relayd_hang_up = 1;
1978 goto write_error;
1979 }
1980
1981 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1982 }
1983
1984 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1985 if (ret < 0) {
1986 written = ret;
1987 relayd_hang_up = 1;
1988 goto write_error;
1989 }
1990 /* Use the returned socket. */
1991 outfd = ret;
1992 } else {
1993 /* No streaming, we have to set the len with the full padding */
1994 len += padding;
1995
1996 if (stream->metadata_flag && stream->reset_metadata_flag) {
1997 ret = utils_truncate_stream_file(stream->out_fd, 0);
1998 if (ret < 0) {
1999 ERR("Reset metadata file");
2000 goto end;
2001 }
2002 stream->reset_metadata_flag = 0;
2003 }
2004 /*
2005 * Check if we need to change the tracefile before writing the packet.
2006 */
2007 if (stream->chan->tracefile_size > 0 &&
2008 (stream->tracefile_size_current + len) >
2009 stream->chan->tracefile_size) {
2010 ret = consumer_stream_rotate_output_files(stream);
2011 if (ret < 0) {
2012 written = ret;
2013 goto end;
2014 }
2015 outfd = stream->out_fd;
2016 orig_offset = 0;
2017 }
2018 stream->tracefile_size_current += len;
2019 index->offset = htobe64(stream->out_fd_offset);
2020 }
2021
2022 while (len > 0) {
2023 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
2024 (unsigned long)offset, len, fd, splice_pipe[1]);
2025 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
2026 SPLICE_F_MOVE | SPLICE_F_MORE);
2027 DBG("splice chan to pipe, ret %zd", ret_splice);
2028 if (ret_splice < 0) {
2029 ret = errno;
2030 written = -ret;
2031 PERROR("Error in relay splice");
2032 goto splice_error;
2033 }
2034
2035 /* Handle stream on the relayd if the output is on the network */
2036 if (relayd && stream->metadata_flag) {
2037 size_t metadata_payload_size =
2038 sizeof(struct lttcomm_relayd_metadata_payload);
2039
2040 /* Update counter to fit the spliced data */
2041 ret_splice += metadata_payload_size;
2042 len += metadata_payload_size;
2043 /*
2044 * We do this so the return value can match the len passed as
2045 * argument to this function.
2046 */
2047 written -= metadata_payload_size;
2048 }
2049
2050 /* Splice data out */
2051 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
2052 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
2053 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
2054 outfd, ret_splice);
2055 if (ret_splice < 0) {
2056 ret = errno;
2057 written = -ret;
2058 relayd_hang_up = 1;
2059 goto write_error;
2060 } else if (ret_splice > len) {
2061 /*
2062 * We don't expect this code path to be executed but you never know
2063 * so this is an extra protection agains a buggy splice().
2064 */
2065 ret = errno;
2066 written += ret_splice;
2067 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
2068 len);
2069 goto splice_error;
2070 } else {
2071 /* All good, update current len and continue. */
2072 len -= ret_splice;
2073 }
2074
2075 /* This call is useless on a socket so better save a syscall. */
2076 if (!relayd) {
2077 /* This won't block, but will start writeout asynchronously */
2078 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
2079 SYNC_FILE_RANGE_WRITE);
2080 stream->out_fd_offset += ret_splice;
2081 }
2082 stream->output_written += ret_splice;
2083 written += ret_splice;
2084 }
2085 if (!relayd) {
2086 lttng_consumer_sync_trace_file(stream, orig_offset);
2087 }
2088 goto end;
2089
2090 write_error:
2091 /*
2092 * This is a special case that the relayd has closed its socket. Let's
2093 * cleanup the relayd object and all associated streams.
2094 */
2095 if (relayd && relayd_hang_up) {
2096 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
2097 lttng_consumer_cleanup_relayd(relayd);
2098 /* Skip splice error so the consumer does not fail */
2099 goto end;
2100 }
2101
2102 splice_error:
2103 /* send the appropriate error description to sessiond */
2104 switch (ret) {
2105 case EINVAL:
2106 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
2107 break;
2108 case ENOMEM:
2109 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
2110 break;
2111 case ESPIPE:
2112 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
2113 break;
2114 }
2115
2116 end:
2117 if (relayd && stream->metadata_flag) {
2118 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2119 }
2120
2121 rcu_read_unlock();
2122 return written;
2123 }
2124
2125 /*
2126 * Sample the snapshot positions for a specific fd
2127 *
2128 * Returns 0 on success, < 0 on error
2129 */
2130 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2131 {
2132 switch (consumer_data.type) {
2133 case LTTNG_CONSUMER_KERNEL:
2134 return lttng_kconsumer_sample_snapshot_positions(stream);
2135 case LTTNG_CONSUMER32_UST:
2136 case LTTNG_CONSUMER64_UST:
2137 return lttng_ustconsumer_sample_snapshot_positions(stream);
2138 default:
2139 ERR("Unknown consumer_data type");
2140 assert(0);
2141 return -ENOSYS;
2142 }
2143 }
2144 /*
2145 * Take a snapshot for a specific fd
2146 *
2147 * Returns 0 on success, < 0 on error
2148 */
2149 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2150 {
2151 switch (consumer_data.type) {
2152 case LTTNG_CONSUMER_KERNEL:
2153 return lttng_kconsumer_take_snapshot(stream);
2154 case LTTNG_CONSUMER32_UST:
2155 case LTTNG_CONSUMER64_UST:
2156 return lttng_ustconsumer_take_snapshot(stream);
2157 default:
2158 ERR("Unknown consumer_data type");
2159 assert(0);
2160 return -ENOSYS;
2161 }
2162 }
2163
2164 /*
2165 * Get the produced position
2166 *
2167 * Returns 0 on success, < 0 on error
2168 */
2169 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2170 unsigned long *pos)
2171 {
2172 switch (consumer_data.type) {
2173 case LTTNG_CONSUMER_KERNEL:
2174 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2175 case LTTNG_CONSUMER32_UST:
2176 case LTTNG_CONSUMER64_UST:
2177 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2178 default:
2179 ERR("Unknown consumer_data type");
2180 assert(0);
2181 return -ENOSYS;
2182 }
2183 }
2184
2185 /*
2186 * Get the consumed position (free-running counter position in bytes).
2187 *
2188 * Returns 0 on success, < 0 on error
2189 */
2190 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2191 unsigned long *pos)
2192 {
2193 switch (consumer_data.type) {
2194 case LTTNG_CONSUMER_KERNEL:
2195 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2196 case LTTNG_CONSUMER32_UST:
2197 case LTTNG_CONSUMER64_UST:
2198 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2199 default:
2200 ERR("Unknown consumer_data type");
2201 assert(0);
2202 return -ENOSYS;
2203 }
2204 }
2205
2206 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2207 int sock, struct pollfd *consumer_sockpoll)
2208 {
2209 switch (consumer_data.type) {
2210 case LTTNG_CONSUMER_KERNEL:
2211 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2212 case LTTNG_CONSUMER32_UST:
2213 case LTTNG_CONSUMER64_UST:
2214 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2215 default:
2216 ERR("Unknown consumer_data type");
2217 assert(0);
2218 return -ENOSYS;
2219 }
2220 }
2221
2222 void lttng_consumer_close_all_metadata(void)
2223 {
2224 switch (consumer_data.type) {
2225 case LTTNG_CONSUMER_KERNEL:
2226 /*
2227 * The Kernel consumer has a different metadata scheme so we don't
2228 * close anything because the stream will be closed by the session
2229 * daemon.
2230 */
2231 break;
2232 case LTTNG_CONSUMER32_UST:
2233 case LTTNG_CONSUMER64_UST:
2234 /*
2235 * Close all metadata streams. The metadata hash table is passed and
2236 * this call iterates over it by closing all wakeup fd. This is safe
2237 * because at this point we are sure that the metadata producer is
2238 * either dead or blocked.
2239 */
2240 lttng_ustconsumer_close_all_metadata(metadata_ht);
2241 break;
2242 default:
2243 ERR("Unknown consumer_data type");
2244 assert(0);
2245 }
2246 }
2247
2248 /*
2249 * Clean up a metadata stream and free its memory.
2250 */
2251 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2252 struct lttng_ht *ht)
2253 {
2254 struct lttng_consumer_channel *free_chan = NULL;
2255
2256 assert(stream);
2257 /*
2258 * This call should NEVER receive regular stream. It must always be
2259 * metadata stream and this is crucial for data structure synchronization.
2260 */
2261 assert(stream->metadata_flag);
2262
2263 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2264
2265 pthread_mutex_lock(&consumer_data.lock);
2266 pthread_mutex_lock(&stream->chan->lock);
2267 pthread_mutex_lock(&stream->lock);
2268 if (stream->chan->metadata_cache) {
2269 /* Only applicable to userspace consumers. */
2270 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2271 }
2272
2273 /* Remove any reference to that stream. */
2274 consumer_stream_delete(stream, ht);
2275
2276 /* Close down everything including the relayd if one. */
2277 consumer_stream_close(stream);
2278 /* Destroy tracer buffers of the stream. */
2279 consumer_stream_destroy_buffers(stream);
2280
2281 /* Atomically decrement channel refcount since other threads can use it. */
2282 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2283 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2284 /* Go for channel deletion! */
2285 free_chan = stream->chan;
2286 }
2287
2288 /*
2289 * Nullify the stream reference so it is not used after deletion. The
2290 * channel lock MUST be acquired before being able to check for a NULL
2291 * pointer value.
2292 */
2293 stream->chan->metadata_stream = NULL;
2294
2295 if (stream->chan->metadata_cache) {
2296 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2297 }
2298 pthread_mutex_unlock(&stream->lock);
2299 pthread_mutex_unlock(&stream->chan->lock);
2300 pthread_mutex_unlock(&consumer_data.lock);
2301
2302 if (free_chan) {
2303 consumer_del_channel(free_chan);
2304 }
2305
2306 lttng_trace_chunk_put(stream->trace_chunk);
2307 stream->trace_chunk = NULL;
2308 consumer_stream_free(stream);
2309 }
2310
2311 /*
2312 * Action done with the metadata stream when adding it to the consumer internal
2313 * data structures to handle it.
2314 */
2315 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2316 {
2317 struct lttng_ht *ht = metadata_ht;
2318 struct lttng_ht_iter iter;
2319 struct lttng_ht_node_u64 *node;
2320
2321 assert(stream);
2322 assert(ht);
2323
2324 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2325
2326 pthread_mutex_lock(&consumer_data.lock);
2327 pthread_mutex_lock(&stream->chan->lock);
2328 pthread_mutex_lock(&stream->chan->timer_lock);
2329 pthread_mutex_lock(&stream->lock);
2330
2331 /*
2332 * From here, refcounts are updated so be _careful_ when returning an error
2333 * after this point.
2334 */
2335
2336 rcu_read_lock();
2337
2338 /*
2339 * Lookup the stream just to make sure it does not exist in our internal
2340 * state. This should NEVER happen.
2341 */
2342 lttng_ht_lookup(ht, &stream->key, &iter);
2343 node = lttng_ht_iter_get_node_u64(&iter);
2344 assert(!node);
2345
2346 /*
2347 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2348 * in terms of destroying the associated channel, because the action that
2349 * causes the count to become 0 also causes a stream to be added. The
2350 * channel deletion will thus be triggered by the following removal of this
2351 * stream.
2352 */
2353 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2354 /* Increment refcount before decrementing nb_init_stream_left */
2355 cmm_smp_wmb();
2356 uatomic_dec(&stream->chan->nb_init_stream_left);
2357 }
2358
2359 lttng_ht_add_unique_u64(ht, &stream->node);
2360
2361 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2362 &stream->node_channel_id);
2363
2364 /*
2365 * Add stream to the stream_list_ht of the consumer data. No need to steal
2366 * the key since the HT does not use it and we allow to add redundant keys
2367 * into this table.
2368 */
2369 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2370
2371 rcu_read_unlock();
2372
2373 pthread_mutex_unlock(&stream->lock);
2374 pthread_mutex_unlock(&stream->chan->lock);
2375 pthread_mutex_unlock(&stream->chan->timer_lock);
2376 pthread_mutex_unlock(&consumer_data.lock);
2377 }
2378
2379 /*
2380 * Delete data stream that are flagged for deletion (endpoint_status).
2381 */
2382 static void validate_endpoint_status_data_stream(void)
2383 {
2384 struct lttng_ht_iter iter;
2385 struct lttng_consumer_stream *stream;
2386
2387 DBG("Consumer delete flagged data stream");
2388
2389 rcu_read_lock();
2390 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2391 /* Validate delete flag of the stream */
2392 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2393 continue;
2394 }
2395 /* Delete it right now */
2396 consumer_del_stream(stream, data_ht);
2397 }
2398 rcu_read_unlock();
2399 }
2400
2401 /*
2402 * Delete metadata stream that are flagged for deletion (endpoint_status).
2403 */
2404 static void validate_endpoint_status_metadata_stream(
2405 struct lttng_poll_event *pollset)
2406 {
2407 struct lttng_ht_iter iter;
2408 struct lttng_consumer_stream *stream;
2409
2410 DBG("Consumer delete flagged metadata stream");
2411
2412 assert(pollset);
2413
2414 rcu_read_lock();
2415 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2416 /* Validate delete flag of the stream */
2417 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2418 continue;
2419 }
2420 /*
2421 * Remove from pollset so the metadata thread can continue without
2422 * blocking on a deleted stream.
2423 */
2424 lttng_poll_del(pollset, stream->wait_fd);
2425
2426 /* Delete it right now */
2427 consumer_del_metadata_stream(stream, metadata_ht);
2428 }
2429 rcu_read_unlock();
2430 }
2431
2432 /*
2433 * Thread polls on metadata file descriptor and write them on disk or on the
2434 * network.
2435 */
2436 void *consumer_thread_metadata_poll(void *data)
2437 {
2438 int ret, i, pollfd, err = -1;
2439 uint32_t revents, nb_fd;
2440 struct lttng_consumer_stream *stream = NULL;
2441 struct lttng_ht_iter iter;
2442 struct lttng_ht_node_u64 *node;
2443 struct lttng_poll_event events;
2444 struct lttng_consumer_local_data *ctx = data;
2445 ssize_t len;
2446
2447 rcu_register_thread();
2448
2449 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2450
2451 if (testpoint(consumerd_thread_metadata)) {
2452 goto error_testpoint;
2453 }
2454
2455 health_code_update();
2456
2457 DBG("Thread metadata poll started");
2458
2459 /* Size is set to 1 for the consumer_metadata pipe */
2460 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2461 if (ret < 0) {
2462 ERR("Poll set creation failed");
2463 goto end_poll;
2464 }
2465
2466 ret = lttng_poll_add(&events,
2467 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2468 if (ret < 0) {
2469 goto end;
2470 }
2471
2472 /* Main loop */
2473 DBG("Metadata main loop started");
2474
2475 while (1) {
2476 restart:
2477 health_code_update();
2478 health_poll_entry();
2479 DBG("Metadata poll wait");
2480 ret = lttng_poll_wait(&events, -1);
2481 DBG("Metadata poll return from wait with %d fd(s)",
2482 LTTNG_POLL_GETNB(&events));
2483 health_poll_exit();
2484 DBG("Metadata event caught in thread");
2485 if (ret < 0) {
2486 if (errno == EINTR) {
2487 ERR("Poll EINTR caught");
2488 goto restart;
2489 }
2490 if (LTTNG_POLL_GETNB(&events) == 0) {
2491 err = 0; /* All is OK */
2492 }
2493 goto end;
2494 }
2495
2496 nb_fd = ret;
2497
2498 /* From here, the event is a metadata wait fd */
2499 for (i = 0; i < nb_fd; i++) {
2500 health_code_update();
2501
2502 revents = LTTNG_POLL_GETEV(&events, i);
2503 pollfd = LTTNG_POLL_GETFD(&events, i);
2504
2505 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2506 if (revents & LPOLLIN) {
2507 ssize_t pipe_len;
2508
2509 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2510 &stream, sizeof(stream));
2511 if (pipe_len < sizeof(stream)) {
2512 if (pipe_len < 0) {
2513 PERROR("read metadata stream");
2514 }
2515 /*
2516 * Remove the pipe from the poll set and continue the loop
2517 * since their might be data to consume.
2518 */
2519 lttng_poll_del(&events,
2520 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2521 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2522 continue;
2523 }
2524
2525 /* A NULL stream means that the state has changed. */
2526 if (stream == NULL) {
2527 /* Check for deleted streams. */
2528 validate_endpoint_status_metadata_stream(&events);
2529 goto restart;
2530 }
2531
2532 DBG("Adding metadata stream %d to poll set",
2533 stream->wait_fd);
2534
2535 /* Add metadata stream to the global poll events list */
2536 lttng_poll_add(&events, stream->wait_fd,
2537 LPOLLIN | LPOLLPRI | LPOLLHUP);
2538 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2539 DBG("Metadata thread pipe hung up");
2540 /*
2541 * Remove the pipe from the poll set and continue the loop
2542 * since their might be data to consume.
2543 */
2544 lttng_poll_del(&events,
2545 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2546 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2547 continue;
2548 } else {
2549 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2550 goto end;
2551 }
2552
2553 /* Handle other stream */
2554 continue;
2555 }
2556
2557 rcu_read_lock();
2558 {
2559 uint64_t tmp_id = (uint64_t) pollfd;
2560
2561 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2562 }
2563 node = lttng_ht_iter_get_node_u64(&iter);
2564 assert(node);
2565
2566 stream = caa_container_of(node, struct lttng_consumer_stream,
2567 node);
2568
2569 if (revents & (LPOLLIN | LPOLLPRI)) {
2570 /* Get the data out of the metadata file descriptor */
2571 DBG("Metadata available on fd %d", pollfd);
2572 assert(stream->wait_fd == pollfd);
2573
2574 do {
2575 health_code_update();
2576
2577 len = ctx->on_buffer_ready(stream, ctx);
2578 /*
2579 * We don't check the return value here since if we get
2580 * a negative len, it means an error occurred thus we
2581 * simply remove it from the poll set and free the
2582 * stream.
2583 */
2584 } while (len > 0);
2585
2586 /* It's ok to have an unavailable sub-buffer */
2587 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2588 /* Clean up stream from consumer and free it. */
2589 lttng_poll_del(&events, stream->wait_fd);
2590 consumer_del_metadata_stream(stream, metadata_ht);
2591 }
2592 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2593 DBG("Metadata fd %d is hup|err.", pollfd);
2594 if (!stream->hangup_flush_done
2595 && (consumer_data.type == LTTNG_CONSUMER32_UST
2596 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2597 DBG("Attempting to flush and consume the UST buffers");
2598 lttng_ustconsumer_on_stream_hangup(stream);
2599
2600 /* We just flushed the stream now read it. */
2601 do {
2602 health_code_update();
2603
2604 len = ctx->on_buffer_ready(stream, ctx);
2605 /*
2606 * We don't check the return value here since if we get
2607 * a negative len, it means an error occurred thus we
2608 * simply remove it from the poll set and free the
2609 * stream.
2610 */
2611 } while (len > 0);
2612 }
2613
2614 lttng_poll_del(&events, stream->wait_fd);
2615 /*
2616 * This call update the channel states, closes file descriptors
2617 * and securely free the stream.
2618 */
2619 consumer_del_metadata_stream(stream, metadata_ht);
2620 } else {
2621 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2622 rcu_read_unlock();
2623 goto end;
2624 }
2625 /* Release RCU lock for the stream looked up */
2626 rcu_read_unlock();
2627 }
2628 }
2629
2630 /* All is OK */
2631 err = 0;
2632 end:
2633 DBG("Metadata poll thread exiting");
2634
2635 lttng_poll_clean(&events);
2636 end_poll:
2637 error_testpoint:
2638 if (err) {
2639 health_error();
2640 ERR("Health error occurred in %s", __func__);
2641 }
2642 health_unregister(health_consumerd);
2643 rcu_unregister_thread();
2644 return NULL;
2645 }
2646
2647 /*
2648 * This thread polls the fds in the set to consume the data and write
2649 * it to tracefile if necessary.
2650 */
2651 void *consumer_thread_data_poll(void *data)
2652 {
2653 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2654 struct pollfd *pollfd = NULL;
2655 /* local view of the streams */
2656 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2657 /* local view of consumer_data.fds_count */
2658 int nb_fd = 0;
2659 /* 2 for the consumer_data_pipe and wake up pipe */
2660 const int nb_pipes_fd = 2;
2661 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2662 int nb_inactive_fd = 0;
2663 struct lttng_consumer_local_data *ctx = data;
2664 ssize_t len;
2665
2666 rcu_register_thread();
2667
2668 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2669
2670 if (testpoint(consumerd_thread_data)) {
2671 goto error_testpoint;
2672 }
2673
2674 health_code_update();
2675
2676 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2677 if (local_stream == NULL) {
2678 PERROR("local_stream malloc");
2679 goto end;
2680 }
2681
2682 while (1) {
2683 health_code_update();
2684
2685 high_prio = 0;
2686 num_hup = 0;
2687
2688 /*
2689 * the fds set has been updated, we need to update our
2690 * local array as well
2691 */
2692 pthread_mutex_lock(&consumer_data.lock);
2693 if (consumer_data.need_update) {
2694 free(pollfd);
2695 pollfd = NULL;
2696
2697 free(local_stream);
2698 local_stream = NULL;
2699
2700 /* Allocate for all fds */
2701 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2702 if (pollfd == NULL) {
2703 PERROR("pollfd malloc");
2704 pthread_mutex_unlock(&consumer_data.lock);
2705 goto end;
2706 }
2707
2708 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2709 sizeof(struct lttng_consumer_stream *));
2710 if (local_stream == NULL) {
2711 PERROR("local_stream malloc");
2712 pthread_mutex_unlock(&consumer_data.lock);
2713 goto end;
2714 }
2715 ret = update_poll_array(ctx, &pollfd, local_stream,
2716 data_ht, &nb_inactive_fd);
2717 if (ret < 0) {
2718 ERR("Error in allocating pollfd or local_outfds");
2719 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2720 pthread_mutex_unlock(&consumer_data.lock);
2721 goto end;
2722 }
2723 nb_fd = ret;
2724 consumer_data.need_update = 0;
2725 }
2726 pthread_mutex_unlock(&consumer_data.lock);
2727
2728 /* No FDs and consumer_quit, consumer_cleanup the thread */
2729 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2730 CMM_LOAD_SHARED(consumer_quit) == 1) {
2731 err = 0; /* All is OK */
2732 goto end;
2733 }
2734 /* poll on the array of fds */
2735 restart:
2736 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2737 if (testpoint(consumerd_thread_data_poll)) {
2738 goto end;
2739 }
2740 health_poll_entry();
2741 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2742 health_poll_exit();
2743 DBG("poll num_rdy : %d", num_rdy);
2744 if (num_rdy == -1) {
2745 /*
2746 * Restart interrupted system call.
2747 */
2748 if (errno == EINTR) {
2749 goto restart;
2750 }
2751 PERROR("Poll error");
2752 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2753 goto end;
2754 } else if (num_rdy == 0) {
2755 DBG("Polling thread timed out");
2756 goto end;
2757 }
2758
2759 if (caa_unlikely(data_consumption_paused)) {
2760 DBG("Data consumption paused, sleeping...");
2761 sleep(1);
2762 goto restart;
2763 }
2764
2765 /*
2766 * If the consumer_data_pipe triggered poll go directly to the
2767 * beginning of the loop to update the array. We want to prioritize
2768 * array update over low-priority reads.
2769 */
2770 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2771 ssize_t pipe_readlen;
2772
2773 DBG("consumer_data_pipe wake up");
2774 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2775 &new_stream, sizeof(new_stream));
2776 if (pipe_readlen < sizeof(new_stream)) {
2777 PERROR("Consumer data pipe");
2778 /* Continue so we can at least handle the current stream(s). */
2779 continue;
2780 }
2781
2782 /*
2783 * If the stream is NULL, just ignore it. It's also possible that
2784 * the sessiond poll thread changed the consumer_quit state and is
2785 * waking us up to test it.
2786 */
2787 if (new_stream == NULL) {
2788 validate_endpoint_status_data_stream();
2789 continue;
2790 }
2791
2792 /* Continue to update the local streams and handle prio ones */
2793 continue;
2794 }
2795
2796 /* Handle wakeup pipe. */
2797 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2798 char dummy;
2799 ssize_t pipe_readlen;
2800
2801 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2802 sizeof(dummy));
2803 if (pipe_readlen < 0) {
2804 PERROR("Consumer data wakeup pipe");
2805 }
2806 /* We've been awakened to handle stream(s). */
2807 ctx->has_wakeup = 0;
2808 }
2809
2810 /* Take care of high priority channels first. */
2811 for (i = 0; i < nb_fd; i++) {
2812 health_code_update();
2813
2814 if (local_stream[i] == NULL) {
2815 continue;
2816 }
2817 if (pollfd[i].revents & POLLPRI) {
2818 DBG("Urgent read on fd %d", pollfd[i].fd);
2819 high_prio = 1;
2820 len = ctx->on_buffer_ready(local_stream[i], ctx);
2821 /* it's ok to have an unavailable sub-buffer */
2822 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2823 /* Clean the stream and free it. */
2824 consumer_del_stream(local_stream[i], data_ht);
2825 local_stream[i] = NULL;
2826 } else if (len > 0) {
2827 local_stream[i]->data_read = 1;
2828 }
2829 }
2830 }
2831
2832 /*
2833 * If we read high prio channel in this loop, try again
2834 * for more high prio data.
2835 */
2836 if (high_prio) {
2837 continue;
2838 }
2839
2840 /* Take care of low priority channels. */
2841 for (i = 0; i < nb_fd; i++) {
2842 health_code_update();
2843
2844 if (local_stream[i] == NULL) {
2845 continue;
2846 }
2847 if ((pollfd[i].revents & POLLIN) ||
2848 local_stream[i]->hangup_flush_done ||
2849 local_stream[i]->has_data) {
2850 DBG("Normal read on fd %d", pollfd[i].fd);
2851 len = ctx->on_buffer_ready(local_stream[i], ctx);
2852 /* it's ok to have an unavailable sub-buffer */
2853 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2854 /* Clean the stream and free it. */
2855 consumer_del_stream(local_stream[i], data_ht);
2856 local_stream[i] = NULL;
2857 } else if (len > 0) {
2858 local_stream[i]->data_read = 1;
2859 }
2860 }
2861 }
2862
2863 /* Handle hangup and errors */
2864 for (i = 0; i < nb_fd; i++) {
2865 health_code_update();
2866
2867 if (local_stream[i] == NULL) {
2868 continue;
2869 }
2870 if (!local_stream[i]->hangup_flush_done
2871 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2872 && (consumer_data.type == LTTNG_CONSUMER32_UST
2873 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2874 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2875 pollfd[i].fd);
2876 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2877 /* Attempt read again, for the data we just flushed. */
2878 local_stream[i]->data_read = 1;
2879 }
2880 /*
2881 * If the poll flag is HUP/ERR/NVAL and we have
2882 * read no data in this pass, we can remove the
2883 * stream from its hash table.
2884 */
2885 if ((pollfd[i].revents & POLLHUP)) {
2886 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2887 if (!local_stream[i]->data_read) {
2888 consumer_del_stream(local_stream[i], data_ht);
2889 local_stream[i] = NULL;
2890 num_hup++;
2891 }
2892 } else if (pollfd[i].revents & POLLERR) {
2893 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2894 if (!local_stream[i]->data_read) {
2895 consumer_del_stream(local_stream[i], data_ht);
2896 local_stream[i] = NULL;
2897 num_hup++;
2898 }
2899 } else if (pollfd[i].revents & POLLNVAL) {
2900 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2901 if (!local_stream[i]->data_read) {
2902 consumer_del_stream(local_stream[i], data_ht);
2903 local_stream[i] = NULL;
2904 num_hup++;
2905 }
2906 }
2907 if (local_stream[i] != NULL) {
2908 local_stream[i]->data_read = 0;
2909 }
2910 }
2911 }
2912 /* All is OK */
2913 err = 0;
2914 end:
2915 DBG("polling thread exiting");
2916 free(pollfd);
2917 free(local_stream);
2918
2919 /*
2920 * Close the write side of the pipe so epoll_wait() in
2921 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2922 * read side of the pipe. If we close them both, epoll_wait strangely does
2923 * not return and could create a endless wait period if the pipe is the
2924 * only tracked fd in the poll set. The thread will take care of closing
2925 * the read side.
2926 */
2927 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2928
2929 error_testpoint:
2930 if (err) {
2931 health_error();
2932 ERR("Health error occurred in %s", __func__);
2933 }
2934 health_unregister(health_consumerd);
2935
2936 rcu_unregister_thread();
2937 return NULL;
2938 }
2939
2940 /*
2941 * Close wake-up end of each stream belonging to the channel. This will
2942 * allow the poll() on the stream read-side to detect when the
2943 * write-side (application) finally closes them.
2944 */
2945 static
2946 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2947 {
2948 struct lttng_ht *ht;
2949 struct lttng_consumer_stream *stream;
2950 struct lttng_ht_iter iter;
2951
2952 ht = consumer_data.stream_per_chan_id_ht;
2953
2954 rcu_read_lock();
2955 cds_lfht_for_each_entry_duplicate(ht->ht,
2956 ht->hash_fct(&channel->key, lttng_ht_seed),
2957 ht->match_fct, &channel->key,
2958 &iter.iter, stream, node_channel_id.node) {
2959 /*
2960 * Protect against teardown with mutex.
2961 */
2962 pthread_mutex_lock(&stream->lock);
2963 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2964 goto next;
2965 }
2966 switch (consumer_data.type) {
2967 case LTTNG_CONSUMER_KERNEL:
2968 break;
2969 case LTTNG_CONSUMER32_UST:
2970 case LTTNG_CONSUMER64_UST:
2971 if (stream->metadata_flag) {
2972 /* Safe and protected by the stream lock. */
2973 lttng_ustconsumer_close_metadata(stream->chan);
2974 } else {
2975 /*
2976 * Note: a mutex is taken internally within
2977 * liblttng-ust-ctl to protect timer wakeup_fd
2978 * use from concurrent close.
2979 */
2980 lttng_ustconsumer_close_stream_wakeup(stream);
2981 }
2982 break;
2983 default:
2984 ERR("Unknown consumer_data type");
2985 assert(0);
2986 }
2987 next:
2988 pthread_mutex_unlock(&stream->lock);
2989 }
2990 rcu_read_unlock();
2991 }
2992
2993 static void destroy_channel_ht(struct lttng_ht *ht)
2994 {
2995 struct lttng_ht_iter iter;
2996 struct lttng_consumer_channel *channel;
2997 int ret;
2998
2999 if (ht == NULL) {
3000 return;
3001 }
3002
3003 rcu_read_lock();
3004 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
3005 ret = lttng_ht_del(ht, &iter);
3006 assert(ret != 0);
3007 }
3008 rcu_read_unlock();
3009
3010 lttng_ht_destroy(ht);
3011 }
3012
3013 /*
3014 * This thread polls the channel fds to detect when they are being
3015 * closed. It closes all related streams if the channel is detected as
3016 * closed. It is currently only used as a shim layer for UST because the
3017 * consumerd needs to keep the per-stream wakeup end of pipes open for
3018 * periodical flush.
3019 */
3020 void *consumer_thread_channel_poll(void *data)
3021 {
3022 int ret, i, pollfd, err = -1;
3023 uint32_t revents, nb_fd;
3024 struct lttng_consumer_channel *chan = NULL;
3025 struct lttng_ht_iter iter;
3026 struct lttng_ht_node_u64 *node;
3027 struct lttng_poll_event events;
3028 struct lttng_consumer_local_data *ctx = data;
3029 struct lttng_ht *channel_ht;
3030
3031 rcu_register_thread();
3032
3033 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
3034
3035 if (testpoint(consumerd_thread_channel)) {
3036 goto error_testpoint;
3037 }
3038
3039 health_code_update();
3040
3041 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3042 if (!channel_ht) {
3043 /* ENOMEM at this point. Better to bail out. */
3044 goto end_ht;
3045 }
3046
3047 DBG("Thread channel poll started");
3048
3049 /* Size is set to 1 for the consumer_channel pipe */
3050 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
3051 if (ret < 0) {
3052 ERR("Poll set creation failed");
3053 goto end_poll;
3054 }
3055
3056 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3057 if (ret < 0) {
3058 goto end;
3059 }
3060
3061 /* Main loop */
3062 DBG("Channel main loop started");
3063
3064 while (1) {
3065 restart:
3066 health_code_update();
3067 DBG("Channel poll wait");
3068 health_poll_entry();
3069 ret = lttng_poll_wait(&events, -1);
3070 DBG("Channel poll return from wait with %d fd(s)",
3071 LTTNG_POLL_GETNB(&events));
3072 health_poll_exit();
3073 DBG("Channel event caught in thread");
3074 if (ret < 0) {
3075 if (errno == EINTR) {
3076 ERR("Poll EINTR caught");
3077 goto restart;
3078 }
3079 if (LTTNG_POLL_GETNB(&events) == 0) {
3080 err = 0; /* All is OK */
3081 }
3082 goto end;
3083 }
3084
3085 nb_fd = ret;
3086
3087 /* From here, the event is a channel wait fd */
3088 for (i = 0; i < nb_fd; i++) {
3089 health_code_update();
3090
3091 revents = LTTNG_POLL_GETEV(&events, i);
3092 pollfd = LTTNG_POLL_GETFD(&events, i);
3093
3094 if (pollfd == ctx->consumer_channel_pipe[0]) {
3095 if (revents & LPOLLIN) {
3096 enum consumer_channel_action action;
3097 uint64_t key;
3098
3099 ret = read_channel_pipe(ctx, &chan, &key, &action);
3100 if (ret <= 0) {
3101 if (ret < 0) {
3102 ERR("Error reading channel pipe");
3103 }
3104 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3105 continue;
3106 }
3107
3108 switch (action) {
3109 case CONSUMER_CHANNEL_ADD:
3110 DBG("Adding channel %d to poll set",
3111 chan->wait_fd);
3112
3113 lttng_ht_node_init_u64(&chan->wait_fd_node,
3114 chan->wait_fd);
3115 rcu_read_lock();
3116 lttng_ht_add_unique_u64(channel_ht,
3117 &chan->wait_fd_node);
3118 rcu_read_unlock();
3119 /* Add channel to the global poll events list */
3120 lttng_poll_add(&events, chan->wait_fd,
3121 LPOLLERR | LPOLLHUP);
3122 break;
3123 case CONSUMER_CHANNEL_DEL:
3124 {
3125 /*
3126 * This command should never be called if the channel
3127 * has streams monitored by either the data or metadata
3128 * thread. The consumer only notify this thread with a
3129 * channel del. command if it receives a destroy
3130 * channel command from the session daemon that send it
3131 * if a command prior to the GET_CHANNEL failed.
3132 */
3133
3134 rcu_read_lock();
3135 chan = consumer_find_channel(key);
3136 if (!chan) {
3137 rcu_read_unlock();
3138 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3139 break;
3140 }
3141 lttng_poll_del(&events, chan->wait_fd);
3142 iter.iter.node = &chan->wait_fd_node.node;
3143 ret = lttng_ht_del(channel_ht, &iter);
3144 assert(ret == 0);
3145
3146 switch (consumer_data.type) {
3147 case LTTNG_CONSUMER_KERNEL:
3148 break;
3149 case LTTNG_CONSUMER32_UST:
3150 case LTTNG_CONSUMER64_UST:
3151 health_code_update();
3152 /* Destroy streams that might have been left in the stream list. */
3153 clean_channel_stream_list(chan);
3154 break;
3155 default:
3156 ERR("Unknown consumer_data type");
3157 assert(0);
3158 }
3159
3160 /*
3161 * Release our own refcount. Force channel deletion even if
3162 * streams were not initialized.
3163 */
3164 if (!uatomic_sub_return(&chan->refcount, 1)) {
3165 consumer_del_channel(chan);
3166 }
3167 rcu_read_unlock();
3168 goto restart;
3169 }
3170 case CONSUMER_CHANNEL_QUIT:
3171 /*
3172 * Remove the pipe from the poll set and continue the loop
3173 * since their might be data to consume.
3174 */
3175 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3176 continue;
3177 default:
3178 ERR("Unknown action");
3179 break;
3180 }
3181 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3182 DBG("Channel thread pipe hung up");
3183 /*
3184 * Remove the pipe from the poll set and continue the loop
3185 * since their might be data to consume.
3186 */
3187 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3188 continue;
3189 } else {
3190 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3191 goto end;
3192 }
3193
3194 /* Handle other stream */
3195 continue;
3196 }
3197
3198 rcu_read_lock();
3199 {
3200 uint64_t tmp_id = (uint64_t) pollfd;
3201
3202 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3203 }
3204 node = lttng_ht_iter_get_node_u64(&iter);
3205 assert(node);
3206
3207 chan = caa_container_of(node, struct lttng_consumer_channel,
3208 wait_fd_node);
3209
3210 /* Check for error event */
3211 if (revents & (LPOLLERR | LPOLLHUP)) {
3212 DBG("Channel fd %d is hup|err.", pollfd);
3213
3214 lttng_poll_del(&events, chan->wait_fd);
3215 ret = lttng_ht_del(channel_ht, &iter);
3216 assert(ret == 0);
3217
3218 /*
3219 * This will close the wait fd for each stream associated to
3220 * this channel AND monitored by the data/metadata thread thus
3221 * will be clean by the right thread.
3222 */
3223 consumer_close_channel_streams(chan);
3224
3225 /* Release our own refcount */
3226 if (!uatomic_sub_return(&chan->refcount, 1)
3227 && !uatomic_read(&chan->nb_init_stream_left)) {
3228 consumer_del_channel(chan);
3229 }
3230 } else {
3231 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3232 rcu_read_unlock();
3233 goto end;
3234 }
3235
3236 /* Release RCU lock for the channel looked up */
3237 rcu_read_unlock();
3238 }
3239 }
3240
3241 /* All is OK */
3242 err = 0;
3243 end:
3244 lttng_poll_clean(&events);
3245 end_poll:
3246 destroy_channel_ht(channel_ht);
3247 end_ht:
3248 error_testpoint:
3249 DBG("Channel poll thread exiting");
3250 if (err) {
3251 health_error();
3252 ERR("Health error occurred in %s", __func__);
3253 }
3254 health_unregister(health_consumerd);
3255 rcu_unregister_thread();
3256 return NULL;
3257 }
3258
3259 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3260 struct pollfd *sockpoll, int client_socket)
3261 {
3262 int ret;
3263
3264 assert(ctx);
3265 assert(sockpoll);
3266
3267 ret = lttng_consumer_poll_socket(sockpoll);
3268 if (ret) {
3269 goto error;
3270 }
3271 DBG("Metadata connection on client_socket");
3272
3273 /* Blocking call, waiting for transmission */
3274 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3275 if (ctx->consumer_metadata_socket < 0) {
3276 WARN("On accept metadata");
3277 ret = -1;
3278 goto error;
3279 }
3280 ret = 0;
3281
3282 error:
3283 return ret;
3284 }
3285
3286 /*
3287 * This thread listens on the consumerd socket and receives the file
3288 * descriptors from the session daemon.
3289 */
3290 void *consumer_thread_sessiond_poll(void *data)
3291 {
3292 int sock = -1, client_socket, ret, err = -1;
3293 /*
3294 * structure to poll for incoming data on communication socket avoids
3295 * making blocking sockets.
3296 */
3297 struct pollfd consumer_sockpoll[2];
3298 struct lttng_consumer_local_data *ctx = data;
3299
3300 rcu_register_thread();
3301
3302 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3303
3304 if (testpoint(consumerd_thread_sessiond)) {
3305 goto error_testpoint;
3306 }
3307
3308 health_code_update();
3309
3310 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3311 unlink(ctx->consumer_command_sock_path);
3312 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3313 if (client_socket < 0) {
3314 ERR("Cannot create command socket");
3315 goto end;
3316 }
3317
3318 ret = lttcomm_listen_unix_sock(client_socket);
3319 if (ret < 0) {
3320 goto end;
3321 }
3322
3323 DBG("Sending ready command to lttng-sessiond");
3324 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3325 /* return < 0 on error, but == 0 is not fatal */
3326 if (ret < 0) {
3327 ERR("Error sending ready command to lttng-sessiond");
3328 goto end;
3329 }
3330
3331 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3332 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3333 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3334 consumer_sockpoll[1].fd = client_socket;
3335 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3336
3337 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3338 if (ret) {
3339 if (ret > 0) {
3340 /* should exit */
3341 err = 0;
3342 }
3343 goto end;
3344 }
3345 DBG("Connection on client_socket");
3346
3347 /* Blocking call, waiting for transmission */
3348 sock = lttcomm_accept_unix_sock(client_socket);
3349 if (sock < 0) {
3350 WARN("On accept");
3351 goto end;
3352 }
3353
3354 /*
3355 * Setup metadata socket which is the second socket connection on the
3356 * command unix socket.
3357 */
3358 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3359 if (ret) {
3360 if (ret > 0) {
3361 /* should exit */
3362 err = 0;
3363 }
3364 goto end;
3365 }
3366
3367 /* This socket is not useful anymore. */
3368 ret = close(client_socket);
3369 if (ret < 0) {
3370 PERROR("close client_socket");
3371 }
3372 client_socket = -1;
3373
3374 /* update the polling structure to poll on the established socket */
3375 consumer_sockpoll[1].fd = sock;
3376 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3377
3378 while (1) {
3379 health_code_update();
3380
3381 health_poll_entry();
3382 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3383 health_poll_exit();
3384 if (ret) {
3385 if (ret > 0) {
3386 /* should exit */
3387 err = 0;
3388 }
3389 goto end;
3390 }
3391 DBG("Incoming command on sock");
3392 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3393 if (ret <= 0) {
3394 /*
3395 * This could simply be a session daemon quitting. Don't output
3396 * ERR() here.
3397 */
3398 DBG("Communication interrupted on command socket");
3399 err = 0;
3400 goto end;
3401 }
3402 if (CMM_LOAD_SHARED(consumer_quit)) {
3403 DBG("consumer_thread_receive_fds received quit from signal");
3404 err = 0; /* All is OK */
3405 goto end;
3406 }
3407 DBG("received command on sock");
3408 }
3409 /* All is OK */
3410 err = 0;
3411
3412 end:
3413 DBG("Consumer thread sessiond poll exiting");
3414
3415 /*
3416 * Close metadata streams since the producer is the session daemon which
3417 * just died.
3418 *
3419 * NOTE: for now, this only applies to the UST tracer.
3420 */
3421 lttng_consumer_close_all_metadata();
3422
3423 /*
3424 * when all fds have hung up, the polling thread
3425 * can exit cleanly
3426 */
3427 CMM_STORE_SHARED(consumer_quit, 1);
3428
3429 /*
3430 * Notify the data poll thread to poll back again and test the
3431 * consumer_quit state that we just set so to quit gracefully.
3432 */
3433 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3434
3435 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3436
3437 notify_health_quit_pipe(health_quit_pipe);
3438
3439 /* Cleaning up possibly open sockets. */
3440 if (sock >= 0) {
3441 ret = close(sock);
3442 if (ret < 0) {
3443 PERROR("close sock sessiond poll");
3444 }
3445 }
3446 if (client_socket >= 0) {
3447 ret = close(client_socket);
3448 if (ret < 0) {
3449 PERROR("close client_socket sessiond poll");
3450 }
3451 }
3452
3453 error_testpoint:
3454 if (err) {
3455 health_error();
3456 ERR("Health error occurred in %s", __func__);
3457 }
3458 health_unregister(health_consumerd);
3459
3460 rcu_unregister_thread();
3461 return NULL;
3462 }
3463
3464 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3465 struct lttng_consumer_local_data *ctx)
3466 {
3467 ssize_t ret;
3468
3469 pthread_mutex_lock(&stream->chan->lock);
3470 pthread_mutex_lock(&stream->lock);
3471 if (stream->metadata_flag) {
3472 pthread_mutex_lock(&stream->metadata_rdv_lock);
3473 }
3474
3475 switch (consumer_data.type) {
3476 case LTTNG_CONSUMER_KERNEL:
3477 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3478 break;
3479 case LTTNG_CONSUMER32_UST:
3480 case LTTNG_CONSUMER64_UST:
3481 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3482 break;
3483 default:
3484 ERR("Unknown consumer_data type");
3485 assert(0);
3486 ret = -ENOSYS;
3487 break;
3488 }
3489
3490 if (stream->metadata_flag) {
3491 pthread_cond_broadcast(&stream->metadata_rdv);
3492 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3493 }
3494 pthread_mutex_unlock(&stream->lock);
3495 pthread_mutex_unlock(&stream->chan->lock);
3496
3497 return ret;
3498 }
3499
3500 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3501 {
3502 switch (consumer_data.type) {
3503 case LTTNG_CONSUMER_KERNEL:
3504 return lttng_kconsumer_on_recv_stream(stream);
3505 case LTTNG_CONSUMER32_UST:
3506 case LTTNG_CONSUMER64_UST:
3507 return lttng_ustconsumer_on_recv_stream(stream);
3508 default:
3509 ERR("Unknown consumer_data type");
3510 assert(0);
3511 return -ENOSYS;
3512 }
3513 }
3514
3515 /*
3516 * Allocate and set consumer data hash tables.
3517 */
3518 int lttng_consumer_init(void)
3519 {
3520 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3521 if (!consumer_data.channel_ht) {
3522 goto error;
3523 }
3524
3525 consumer_data.channels_by_session_id_ht =
3526 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3527 if (!consumer_data.channels_by_session_id_ht) {
3528 goto error;
3529 }
3530
3531 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3532 if (!consumer_data.relayd_ht) {
3533 goto error;
3534 }
3535
3536 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3537 if (!consumer_data.stream_list_ht) {
3538 goto error;
3539 }
3540
3541 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3542 if (!consumer_data.stream_per_chan_id_ht) {
3543 goto error;
3544 }
3545
3546 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3547 if (!data_ht) {
3548 goto error;
3549 }
3550
3551 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3552 if (!metadata_ht) {
3553 goto error;
3554 }
3555
3556 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3557 if (!consumer_data.chunk_registry) {
3558 goto error;
3559 }
3560
3561 return 0;
3562
3563 error:
3564 return -1;
3565 }
3566
3567 /*
3568 * Process the ADD_RELAYD command receive by a consumer.
3569 *
3570 * This will create a relayd socket pair and add it to the relayd hash table.
3571 * The caller MUST acquire a RCU read side lock before calling it.
3572 */
3573 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3574 struct lttng_consumer_local_data *ctx, int sock,
3575 struct pollfd *consumer_sockpoll,
3576 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3577 uint64_t relayd_session_id)
3578 {
3579 int fd = -1, ret = -1, relayd_created = 0;
3580 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3581 struct consumer_relayd_sock_pair *relayd = NULL;
3582
3583 assert(ctx);
3584 assert(relayd_sock);
3585
3586 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3587
3588 /* Get relayd reference if exists. */
3589 relayd = consumer_find_relayd(net_seq_idx);
3590 if (relayd == NULL) {
3591 assert(sock_type == LTTNG_STREAM_CONTROL);
3592 /* Not found. Allocate one. */
3593 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3594 if (relayd == NULL) {
3595 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3596 goto error;
3597 } else {
3598 relayd->sessiond_session_id = sessiond_id;
3599 relayd_created = 1;
3600 }
3601
3602 /*
3603 * This code path MUST continue to the consumer send status message to
3604 * we can notify the session daemon and continue our work without
3605 * killing everything.
3606 */
3607 } else {
3608 /*
3609 * relayd key should never be found for control socket.
3610 */
3611 assert(sock_type != LTTNG_STREAM_CONTROL);
3612 }
3613
3614 /* First send a status message before receiving the fds. */
3615 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3616 if (ret < 0) {
3617 /* Somehow, the session daemon is not responding anymore. */
3618 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3619 goto error_nosignal;
3620 }
3621
3622 /* Poll on consumer socket. */
3623 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3624 if (ret) {
3625 /* Needing to exit in the middle of a command: error. */
3626 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3627 goto error_nosignal;
3628 }
3629
3630 /* Get relayd socket from session daemon */
3631 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3632 if (ret != sizeof(fd)) {
3633 fd = -1; /* Just in case it gets set with an invalid value. */
3634
3635 /*
3636 * Failing to receive FDs might indicate a major problem such as
3637 * reaching a fd limit during the receive where the kernel returns a
3638 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3639 * don't take any chances and stop everything.
3640 *
3641 * XXX: Feature request #558 will fix that and avoid this possible
3642 * issue when reaching the fd limit.
3643 */
3644 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3645 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3646 goto error;
3647 }
3648
3649 /* Copy socket information and received FD */
3650 switch (sock_type) {
3651 case LTTNG_STREAM_CONTROL:
3652 /* Copy received lttcomm socket */
3653 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3654 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3655 /* Handle create_sock error. */
3656 if (ret < 0) {
3657 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3658 goto error;
3659 }
3660 /*
3661 * Close the socket created internally by
3662 * lttcomm_create_sock, so we can replace it by the one
3663 * received from sessiond.
3664 */
3665 if (close(relayd->control_sock.sock.fd)) {
3666 PERROR("close");
3667 }
3668
3669 /* Assign new file descriptor */
3670 relayd->control_sock.sock.fd = fd;
3671 /* Assign version values. */
3672 relayd->control_sock.major = relayd_sock->major;
3673 relayd->control_sock.minor = relayd_sock->minor;
3674
3675 relayd->relayd_session_id = relayd_session_id;
3676
3677 break;
3678 case LTTNG_STREAM_DATA:
3679 /* Copy received lttcomm socket */
3680 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3681 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3682 /* Handle create_sock error. */
3683 if (ret < 0) {
3684 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3685 goto error;
3686 }
3687 /*
3688 * Close the socket created internally by
3689 * lttcomm_create_sock, so we can replace it by the one
3690 * received from sessiond.
3691 */
3692 if (close(relayd->data_sock.sock.fd)) {
3693 PERROR("close");
3694 }
3695
3696 /* Assign new file descriptor */
3697 relayd->data_sock.sock.fd = fd;
3698 /* Assign version values. */
3699 relayd->data_sock.major = relayd_sock->major;
3700 relayd->data_sock.minor = relayd_sock->minor;
3701 break;
3702 default:
3703 ERR("Unknown relayd socket type (%d)", sock_type);
3704 ret_code = LTTCOMM_CONSUMERD_FATAL;
3705 goto error;
3706 }
3707
3708 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3709 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3710 relayd->net_seq_idx, fd);
3711 /*
3712 * We gave the ownership of the fd to the relayd structure. Set the
3713 * fd to -1 so we don't call close() on it in the error path below.
3714 */
3715 fd = -1;
3716
3717 /* We successfully added the socket. Send status back. */
3718 ret = consumer_send_status_msg(sock, ret_code);
3719 if (ret < 0) {
3720 /* Somehow, the session daemon is not responding anymore. */
3721 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3722 goto error_nosignal;
3723 }
3724
3725 /*
3726 * Add relayd socket pair to consumer data hashtable. If object already
3727 * exists or on error, the function gracefully returns.
3728 */
3729 relayd->ctx = ctx;
3730 add_relayd(relayd);
3731
3732 /* All good! */
3733 return;
3734
3735 error:
3736 if (consumer_send_status_msg(sock, ret_code) < 0) {
3737 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3738 }
3739
3740 error_nosignal:
3741 /* Close received socket if valid. */
3742 if (fd >= 0) {
3743 if (close(fd)) {
3744 PERROR("close received socket");
3745 }
3746 }
3747
3748 if (relayd_created) {
3749 free(relayd);
3750 }
3751 }
3752
3753 /*
3754 * Search for a relayd associated to the session id and return the reference.
3755 *
3756 * A rcu read side lock MUST be acquire before calling this function and locked
3757 * until the relayd object is no longer necessary.
3758 */
3759 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3760 {
3761 struct lttng_ht_iter iter;
3762 struct consumer_relayd_sock_pair *relayd = NULL;
3763
3764 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3765 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3766 node.node) {
3767 /*
3768 * Check by sessiond id which is unique here where the relayd session
3769 * id might not be when having multiple relayd.
3770 */
3771 if (relayd->sessiond_session_id == id) {
3772 /* Found the relayd. There can be only one per id. */
3773 goto found;
3774 }
3775 }
3776
3777 return NULL;
3778
3779 found:
3780 return relayd;
3781 }
3782
3783 /*
3784 * Check if for a given session id there is still data needed to be extract
3785 * from the buffers.
3786 *
3787 * Return 1 if data is pending or else 0 meaning ready to be read.
3788 */
3789 int consumer_data_pending(uint64_t id)
3790 {
3791 int ret;
3792 struct lttng_ht_iter iter;
3793 struct lttng_ht *ht;
3794 struct lttng_consumer_stream *stream;
3795 struct consumer_relayd_sock_pair *relayd = NULL;
3796 int (*data_pending)(struct lttng_consumer_stream *);
3797
3798 DBG("Consumer data pending command on session id %" PRIu64, id);
3799
3800 rcu_read_lock();
3801 pthread_mutex_lock(&consumer_data.lock);
3802
3803 switch (consumer_data.type) {
3804 case LTTNG_CONSUMER_KERNEL:
3805 data_pending = lttng_kconsumer_data_pending;
3806 break;
3807 case LTTNG_CONSUMER32_UST:
3808 case LTTNG_CONSUMER64_UST:
3809 data_pending = lttng_ustconsumer_data_pending;
3810 break;
3811 default:
3812 ERR("Unknown consumer data type");
3813 assert(0);
3814 }
3815
3816 /* Ease our life a bit */
3817 ht = consumer_data.stream_list_ht;
3818
3819 cds_lfht_for_each_entry_duplicate(ht->ht,
3820 ht->hash_fct(&id, lttng_ht_seed),
3821 ht->match_fct, &id,
3822 &iter.iter, stream, node_session_id.node) {
3823 pthread_mutex_lock(&stream->lock);
3824
3825 /*
3826 * A removed node from the hash table indicates that the stream has
3827 * been deleted thus having a guarantee that the buffers are closed
3828 * on the consumer side. However, data can still be transmitted
3829 * over the network so don't skip the relayd check.
3830 */
3831 ret = cds_lfht_is_node_deleted(&stream->node.node);
3832 if (!ret) {
3833 /* Check the stream if there is data in the buffers. */
3834 ret = data_pending(stream);
3835 if (ret == 1) {
3836 pthread_mutex_unlock(&stream->lock);
3837 goto data_pending;
3838 }
3839 }
3840
3841 pthread_mutex_unlock(&stream->lock);
3842 }
3843
3844 relayd = find_relayd_by_session_id(id);
3845 if (relayd) {
3846 unsigned int is_data_inflight = 0;
3847
3848 /* Send init command for data pending. */
3849 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3850 ret = relayd_begin_data_pending(&relayd->control_sock,
3851 relayd->relayd_session_id);
3852 if (ret < 0) {
3853 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3854 /* Communication error thus the relayd so no data pending. */
3855 goto data_not_pending;
3856 }
3857
3858 cds_lfht_for_each_entry_duplicate(ht->ht,
3859 ht->hash_fct(&id, lttng_ht_seed),
3860 ht->match_fct, &id,
3861 &iter.iter, stream, node_session_id.node) {
3862 if (stream->metadata_flag) {
3863 ret = relayd_quiescent_control(&relayd->control_sock,
3864 stream->relayd_stream_id);
3865 } else {
3866 ret = relayd_data_pending(&relayd->control_sock,
3867 stream->relayd_stream_id,
3868 stream->next_net_seq_num - 1);
3869 }
3870
3871 if (ret == 1) {
3872 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3873 goto data_pending;
3874 } else if (ret < 0) {
3875 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3876 lttng_consumer_cleanup_relayd(relayd);
3877 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3878 goto data_not_pending;
3879 }
3880 }
3881
3882 /* Send end command for data pending. */
3883 ret = relayd_end_data_pending(&relayd->control_sock,
3884 relayd->relayd_session_id, &is_data_inflight);
3885 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3886 if (ret < 0) {
3887 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3888 lttng_consumer_cleanup_relayd(relayd);
3889 goto data_not_pending;
3890 }
3891 if (is_data_inflight) {
3892 goto data_pending;
3893 }
3894 }
3895
3896 /*
3897 * Finding _no_ node in the hash table and no inflight data means that the
3898 * stream(s) have been removed thus data is guaranteed to be available for
3899 * analysis from the trace files.
3900 */
3901
3902 data_not_pending:
3903 /* Data is available to be read by a viewer. */
3904 pthread_mutex_unlock(&consumer_data.lock);
3905 rcu_read_unlock();
3906 return 0;
3907
3908 data_pending:
3909 /* Data is still being extracted from buffers. */
3910 pthread_mutex_unlock(&consumer_data.lock);
3911 rcu_read_unlock();
3912 return 1;
3913 }
3914
3915 /*
3916 * Send a ret code status message to the sessiond daemon.
3917 *
3918 * Return the sendmsg() return value.
3919 */
3920 int consumer_send_status_msg(int sock, int ret_code)
3921 {
3922 struct lttcomm_consumer_status_msg msg;
3923
3924 memset(&msg, 0, sizeof(msg));
3925 msg.ret_code = ret_code;
3926
3927 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3928 }
3929
3930 /*
3931 * Send a channel status message to the sessiond daemon.
3932 *
3933 * Return the sendmsg() return value.
3934 */
3935 int consumer_send_status_channel(int sock,
3936 struct lttng_consumer_channel *channel)
3937 {
3938 struct lttcomm_consumer_status_channel msg;
3939
3940 assert(sock >= 0);
3941
3942 memset(&msg, 0, sizeof(msg));
3943 if (!channel) {
3944 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3945 } else {
3946 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3947 msg.key = channel->key;
3948 msg.stream_count = channel->streams.count;
3949 }
3950
3951 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3952 }
3953
3954 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3955 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3956 uint64_t max_sb_size)
3957 {
3958 unsigned long start_pos;
3959
3960 if (!nb_packets_per_stream) {
3961 return consumed_pos; /* Grab everything */
3962 }
3963 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3964 start_pos -= max_sb_size * nb_packets_per_stream;
3965 if ((long) (start_pos - consumed_pos) < 0) {
3966 return consumed_pos; /* Grab everything */
3967 }
3968 return start_pos;
3969 }
3970
3971 static
3972 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3973 {
3974 int ret = 0;
3975
3976 switch (consumer_data.type) {
3977 case LTTNG_CONSUMER_KERNEL:
3978 ret = kernctl_buffer_flush(stream->wait_fd);
3979 if (ret < 0) {
3980 ERR("Failed to flush kernel stream");
3981 goto end;
3982 }
3983 break;
3984 case LTTNG_CONSUMER32_UST:
3985 case LTTNG_CONSUMER64_UST:
3986 lttng_ustctl_flush_buffer(stream, producer_active);
3987 break;
3988 default:
3989 ERR("Unknown consumer_data type");
3990 abort();
3991 }
3992
3993 end:
3994 return ret;
3995 }
3996
3997 /*
3998 * Sample the rotate position for all the streams of a channel. If a stream
3999 * is already at the rotate position (produced == consumed), we flag it as
4000 * ready for rotation. The rotation of ready streams occurs after we have
4001 * replied to the session daemon that we have finished sampling the positions.
4002 * Must be called with RCU read-side lock held to ensure existence of channel.
4003 *
4004 * Returns 0 on success, < 0 on error
4005 */
4006 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
4007 uint64_t key, uint64_t relayd_id, uint32_t metadata,
4008 struct lttng_consumer_local_data *ctx)
4009 {
4010 int ret;
4011 struct lttng_consumer_stream *stream;
4012 struct lttng_ht_iter iter;
4013 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4014
4015 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4016
4017 rcu_read_lock();
4018
4019 pthread_mutex_lock(&channel->lock);
4020
4021 cds_lfht_for_each_entry_duplicate(ht->ht,
4022 ht->hash_fct(&channel->key, lttng_ht_seed),
4023 ht->match_fct, &channel->key, &iter.iter,
4024 stream, node_channel_id.node) {
4025 unsigned long consumed_pos;
4026
4027 health_code_update();
4028
4029 /*
4030 * Lock stream because we are about to change its state.
4031 */
4032 pthread_mutex_lock(&stream->lock);
4033
4034 ret = lttng_consumer_sample_snapshot_positions(stream);
4035 if (ret < 0) {
4036 ERR("Failed to sample snapshot position during channel rotation");
4037 goto end_unlock_stream;
4038 }
4039
4040 ret = lttng_consumer_get_produced_snapshot(stream,
4041 &stream->rotate_position);
4042 if (ret < 0) {
4043 ERR("Failed to sample produced position during channel rotation");
4044 goto end_unlock_stream;
4045 }
4046
4047 lttng_consumer_get_consumed_snapshot(stream,
4048 &consumed_pos);
4049 if (consumed_pos == stream->rotate_position) {
4050 stream->rotate_ready = true;
4051 }
4052
4053 ret = consumer_flush_buffer(stream, 1);
4054 if (ret < 0) {
4055 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4056 stream->key);
4057 goto end_unlock_stream;
4058 }
4059
4060 pthread_mutex_unlock(&stream->lock);
4061 }
4062 pthread_mutex_unlock(&channel->lock);
4063
4064 ret = 0;
4065 goto end;
4066
4067 end_unlock_stream:
4068 pthread_mutex_unlock(&stream->lock);
4069 pthread_mutex_unlock(&channel->lock);
4070 end:
4071 rcu_read_unlock();
4072 return ret;
4073 }
4074
4075 /*
4076 * Check if a stream is ready to be rotated after extracting it.
4077 *
4078 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4079 * error. Stream lock must be held.
4080 */
4081 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4082 {
4083 int ret;
4084 unsigned long consumed_pos;
4085
4086 if (!stream->rotate_position && !stream->rotate_ready) {
4087 ret = 0;
4088 goto end;
4089 }
4090
4091 if (stream->rotate_ready) {
4092 ret = 1;
4093 goto end;
4094 }
4095
4096 /*
4097 * If we don't have the rotate_ready flag, check the consumed position
4098 * to determine if we need to rotate.
4099 */
4100 ret = lttng_consumer_sample_snapshot_positions(stream);
4101 if (ret < 0) {
4102 ERR("Taking snapshot positions");
4103 goto end;
4104 }
4105
4106 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4107 if (ret < 0) {
4108 ERR("Consumed snapshot position");
4109 goto end;
4110 }
4111
4112 /* Rotate position not reached yet (with check for overflow). */
4113 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4114 ret = 0;
4115 goto end;
4116 }
4117 ret = 1;
4118
4119 end:
4120 return ret;
4121 }
4122
4123 /*
4124 * Reset the state for a stream after a rotation occurred.
4125 */
4126 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4127 {
4128 stream->rotate_position = 0;
4129 stream->rotate_ready = false;
4130 }
4131
4132 /*
4133 * Perform the rotation a local stream file.
4134 */
4135 static
4136 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4137 struct lttng_consumer_stream *stream)
4138 {
4139 int ret = 0;
4140
4141 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4142 stream->key,
4143 stream->chan->key);
4144 stream->tracefile_size_current = 0;
4145 stream->tracefile_count_current = 0;
4146
4147 if (stream->out_fd >= 0) {
4148 ret = close(stream->out_fd);
4149 if (ret) {
4150 PERROR("Failed to close stream out_fd of channel \"%s\"",
4151 stream->chan->name);
4152 }
4153 stream->out_fd = -1;
4154 }
4155
4156 if (stream->index_file) {
4157 lttng_index_file_put(stream->index_file);
4158 stream->index_file = NULL;
4159 }
4160
4161 if (!stream->trace_chunk) {
4162 goto end;
4163 }
4164
4165 ret = consumer_stream_create_output_files(stream, true);
4166 end:
4167 return ret;
4168 }
4169
4170 /*
4171 * Perform the rotation a stream file on the relay.
4172 */
4173 int rotate_relay_stream(struct lttng_consumer_local_data *ctx,
4174 struct lttng_consumer_stream *stream)
4175 {
4176 int ret;
4177 struct consumer_relayd_sock_pair *relayd;
4178 uint64_t chunk_id;
4179 enum lttng_trace_chunk_status chunk_status;
4180
4181 DBG("Rotate relay stream");
4182 relayd = consumer_find_relayd(stream->net_seq_idx);
4183 if (!relayd) {
4184 ERR("Failed to find relayd");
4185 ret = -1;
4186 goto end;
4187 }
4188
4189 chunk_status = lttng_trace_chunk_get_id(stream->chan->trace_chunk,
4190 &chunk_id);
4191 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4192 ERR("Failed to retrieve the id of the current trace chunk of channel \"%s\"",
4193 stream->chan->name);
4194 ret = -1;
4195 goto end;
4196 }
4197
4198 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4199 ret = relayd_rotate_stream(&relayd->control_sock,
4200 stream->relayd_stream_id,
4201 chunk_id,
4202 stream->last_sequence_number);
4203 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4204 if (ret < 0) {
4205 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
4206 lttng_consumer_cleanup_relayd(relayd);
4207 }
4208 if (ret) {
4209 ERR("Rotate relay stream");
4210 }
4211
4212 end:
4213 return ret;
4214 }
4215
4216 /*
4217 * Performs the stream rotation for the rotate session feature if needed.
4218 * It must be called with the channel and stream locks held.
4219 *
4220 * Return 0 on success, a negative number of error.
4221 */
4222 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4223 struct lttng_consumer_stream *stream)
4224 {
4225 int ret;
4226
4227 DBG("Consumer rotate stream %" PRIu64, stream->key);
4228
4229 /*
4230 * Update the stream's 'current' chunk to the session's (channel)
4231 * now-current chunk.
4232 */
4233 lttng_trace_chunk_put(stream->trace_chunk);
4234 if (stream->chan->trace_chunk == stream->trace_chunk) {
4235 /*
4236 * A channel can be rotated and not have a "next" chunk
4237 * to transition to. In that case, the channel's "current chunk"
4238 * has not been closed yet, but it has not been updated to
4239 * a "next" trace chunk either. Hence, the stream, like its
4240 * parent channel, becomes part of no chunk and can't output
4241 * anything until a new trace chunk is created.
4242 */
4243 stream->trace_chunk = NULL;
4244 } else if (stream->chan->trace_chunk &&
4245 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4246 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4247 ret = -1;
4248 goto error;
4249 } else {
4250 /*
4251 * Update the stream's trace chunk to its parent channel's
4252 * current trace chunk.
4253 */
4254 stream->trace_chunk = stream->chan->trace_chunk;
4255 }
4256
4257 if (stream->net_seq_idx != (uint64_t) -1ULL) {
4258 ret = rotate_relay_stream(ctx, stream);
4259 } else {
4260 ret = rotate_local_stream(ctx, stream);
4261 }
4262 if (ret < 0) {
4263 ERR("Failed to rotate stream, ret = %i", ret);
4264 goto error;
4265 }
4266
4267 if (stream->metadata_flag && stream->trace_chunk) {
4268 /*
4269 * If the stream has transitioned to a new trace
4270 * chunk, the metadata should be re-dumped to the
4271 * newest chunk.
4272 *
4273 * However, it is possible for a stream to transition to
4274 * a "no-chunk" state. This can happen if a rotation
4275 * occurs on an inactive session. In such cases, the metadata
4276 * regeneration will happen when the next trace chunk is
4277 * created.
4278 */
4279 ret = consumer_metadata_stream_dump(stream);
4280 if (ret) {
4281 goto error;
4282 }
4283 }
4284 lttng_consumer_reset_stream_rotate_state(stream);
4285
4286 ret = 0;
4287
4288 error:
4289 return ret;
4290 }
4291
4292 /*
4293 * Rotate all the ready streams now.
4294 *
4295 * This is especially important for low throughput streams that have already
4296 * been consumed, we cannot wait for their next packet to perform the
4297 * rotation.
4298 * Need to be called with RCU read-side lock held to ensure existence of
4299 * channel.
4300 *
4301 * Returns 0 on success, < 0 on error
4302 */
4303 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4304 uint64_t key, struct lttng_consumer_local_data *ctx)
4305 {
4306 int ret;
4307 struct lttng_consumer_stream *stream;
4308 struct lttng_ht_iter iter;
4309 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4310
4311 rcu_read_lock();
4312
4313 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4314
4315 cds_lfht_for_each_entry_duplicate(ht->ht,
4316 ht->hash_fct(&channel->key, lttng_ht_seed),
4317 ht->match_fct, &channel->key, &iter.iter,
4318 stream, node_channel_id.node) {
4319 health_code_update();
4320
4321 pthread_mutex_lock(&stream->chan->lock);
4322 pthread_mutex_lock(&stream->lock);
4323
4324 if (!stream->rotate_ready) {
4325 pthread_mutex_unlock(&stream->lock);
4326 pthread_mutex_unlock(&stream->chan->lock);
4327 continue;
4328 }
4329 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4330
4331 ret = lttng_consumer_rotate_stream(ctx, stream);
4332 pthread_mutex_unlock(&stream->lock);
4333 pthread_mutex_unlock(&stream->chan->lock);
4334 if (ret) {
4335 goto end;
4336 }
4337 }
4338
4339 ret = 0;
4340
4341 end:
4342 rcu_read_unlock();
4343 return ret;
4344 }
4345
4346 enum lttcomm_return_code lttng_consumer_init_command(
4347 struct lttng_consumer_local_data *ctx,
4348 const lttng_uuid sessiond_uuid)
4349 {
4350 enum lttcomm_return_code ret;
4351 char uuid_str[UUID_STR_LEN];
4352
4353 if (ctx->sessiond_uuid.is_set) {
4354 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4355 goto end;
4356 }
4357
4358 ctx->sessiond_uuid.is_set = true;
4359 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4360 ret = LTTCOMM_CONSUMERD_SUCCESS;
4361 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4362 DBG("Received session daemon UUID: %s", uuid_str);
4363 end:
4364 return ret;
4365 }
4366
4367 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4368 const uint64_t *relayd_id, uint64_t session_id,
4369 uint64_t chunk_id,
4370 time_t chunk_creation_timestamp,
4371 const char *chunk_override_name,
4372 const struct lttng_credentials *credentials,
4373 struct lttng_directory_handle *chunk_directory_handle)
4374 {
4375 int ret;
4376 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4377 struct lttng_trace_chunk *created_chunk, *published_chunk;
4378 enum lttng_trace_chunk_status chunk_status;
4379 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4380 char creation_timestamp_buffer[ISO8601_STR_LEN];
4381 const char *relayd_id_str = "(none)";
4382 const char *creation_timestamp_str;
4383 struct lttng_ht_iter iter;
4384 struct lttng_consumer_channel *channel;
4385
4386 if (relayd_id) {
4387 /* Only used for logging purposes. */
4388 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4389 "%" PRIu64, *relayd_id);
4390 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4391 relayd_id_str = relayd_id_buffer;
4392 } else {
4393 relayd_id_str = "(formatting error)";
4394 }
4395 }
4396
4397 /* Local protocol error. */
4398 assert(chunk_creation_timestamp);
4399 ret = time_to_iso8601_str(chunk_creation_timestamp,
4400 creation_timestamp_buffer,
4401 sizeof(creation_timestamp_buffer));
4402 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4403 "(formatting error)";
4404
4405 DBG("Consumer create trace chunk command: relay_id = %s"
4406 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4407 ", chunk_override_name = %s"
4408 ", chunk_creation_timestamp = %s",
4409 relayd_id_str, session_id, chunk_id,
4410 chunk_override_name ? : "(none)",
4411 creation_timestamp_str);
4412
4413 /*
4414 * The trace chunk registry, as used by the consumer daemon, implicitly
4415 * owns the trace chunks. This is only needed in the consumer since
4416 * the consumer has no notion of a session beyond session IDs being
4417 * used to identify other objects.
4418 *
4419 * The lttng_trace_chunk_registry_publish() call below provides a
4420 * reference which is not released; it implicitly becomes the session
4421 * daemon's reference to the chunk in the consumer daemon.
4422 *
4423 * The lifetime of trace chunks in the consumer daemon is managed by
4424 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4425 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4426 */
4427 created_chunk = lttng_trace_chunk_create(chunk_id,
4428 chunk_creation_timestamp);
4429 if (!created_chunk) {
4430 ERR("Failed to create trace chunk");
4431 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4432 goto end;
4433 }
4434
4435 if (chunk_override_name) {
4436 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4437 chunk_override_name);
4438 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4439 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4440 goto end;
4441 }
4442 }
4443
4444 if (chunk_directory_handle) {
4445 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4446 credentials);
4447 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4448 ERR("Failed to set trace chunk credentials");
4449 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4450 goto end;
4451 }
4452 /*
4453 * The consumer daemon has no ownership of the chunk output
4454 * directory.
4455 */
4456 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4457 chunk_directory_handle);
4458 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4459 ERR("Failed to set trace chunk's directory handle");
4460 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4461 goto end;
4462 }
4463 }
4464
4465 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4466 consumer_data.chunk_registry, session_id,
4467 created_chunk);
4468 lttng_trace_chunk_put(created_chunk);
4469 created_chunk = NULL;
4470 if (!published_chunk) {
4471 ERR("Failed to publish trace chunk");
4472 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4473 goto end;
4474 }
4475
4476 rcu_read_lock();
4477 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4478 consumer_data.channels_by_session_id_ht->hash_fct(
4479 &session_id, lttng_ht_seed),
4480 consumer_data.channels_by_session_id_ht->match_fct,
4481 &session_id, &iter.iter, channel,
4482 channels_by_session_id_ht_node.node) {
4483 ret = lttng_consumer_channel_set_trace_chunk(channel,
4484 published_chunk);
4485 if (ret) {
4486 /*
4487 * Roll-back the creation of this chunk.
4488 *
4489 * This is important since the session daemon will
4490 * assume that the creation of this chunk failed and
4491 * will never ask for it to be closed, resulting
4492 * in a leak and an inconsistent state for some
4493 * channels.
4494 */
4495 enum lttcomm_return_code close_ret;
4496
4497 DBG("Failed to set new trace chunk on existing channels, rolling back");
4498 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4499 session_id, chunk_id,
4500 chunk_creation_timestamp);
4501 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4502 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4503 session_id, chunk_id);
4504 }
4505
4506 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4507 break;
4508 }
4509 }
4510 rcu_read_unlock();
4511
4512 /* Release the reference returned by the "publish" operation. */
4513 lttng_trace_chunk_put(published_chunk);
4514 end:
4515 return ret_code;
4516 }
4517
4518 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4519 const uint64_t *relayd_id, uint64_t session_id,
4520 uint64_t chunk_id, time_t chunk_close_timestamp)
4521 {
4522 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4523 struct lttng_trace_chunk *chunk;
4524 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4525 const char *relayd_id_str = "(none)";
4526 struct lttng_ht_iter iter;
4527 struct lttng_consumer_channel *channel;
4528 enum lttng_trace_chunk_status chunk_status;
4529
4530 if (relayd_id) {
4531 int ret;
4532
4533 /* Only used for logging purposes. */
4534 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4535 "%" PRIu64, *relayd_id);
4536 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4537 relayd_id_str = relayd_id_buffer;
4538 } else {
4539 relayd_id_str = "(formatting error)";
4540 }
4541 }
4542
4543 DBG("Consumer close trace chunk command: relayd_id = %s"
4544 ", session_id = %" PRIu64
4545 ", chunk_id = %" PRIu64, relayd_id_str,
4546 session_id, chunk_id);
4547 chunk = lttng_trace_chunk_registry_find_chunk(
4548 consumer_data.chunk_registry, session_id,
4549 chunk_id);
4550 if (!chunk) {
4551 ERR("Failed to find chunk: session_id = %" PRIu64
4552 ", chunk_id = %" PRIu64,
4553 session_id, chunk_id);
4554 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4555 goto end;
4556 }
4557
4558 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4559 chunk_close_timestamp);
4560 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4561 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4562 goto end;
4563 }
4564 /*
4565 * Release the reference returned by the "find" operation and
4566 * the session daemon's implicit reference to the chunk.
4567 */
4568 lttng_trace_chunk_put(chunk);
4569 lttng_trace_chunk_put(chunk);
4570
4571 /*
4572 * chunk is now invalid to access as we no longer hold a reference to
4573 * it; it is only kept around to compare it (by address) to the
4574 * current chunk found in the session's channels.
4575 */
4576 rcu_read_lock();
4577 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4578 channel, node.node) {
4579 int ret;
4580
4581 /*
4582 * Only change the channel's chunk to NULL if it still
4583 * references the chunk being closed. The channel may
4584 * reference a newer channel in the case of a session
4585 * rotation. When a session rotation occurs, the "next"
4586 * chunk is created before the "current" chunk is closed.
4587 */
4588 if (channel->trace_chunk != chunk) {
4589 continue;
4590 }
4591 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4592 if (ret) {
4593 /*
4594 * Attempt to close the chunk on as many channels as
4595 * possible.
4596 */
4597 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4598 }
4599 }
4600 rcu_read_unlock();
4601 end:
4602 return ret_code;
4603 }
4604
4605 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
4606 const uint64_t *relayd_id, uint64_t session_id,
4607 uint64_t chunk_id)
4608 {
4609 enum lttcomm_return_code ret_code;
4610 struct lttng_trace_chunk *chunk;
4611 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4612 const char *relayd_id_str = "(none)";
4613
4614 if (relayd_id) {
4615 int ret;
4616
4617 /* Only used for logging purposes. */
4618 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4619 "%" PRIu64, *relayd_id);
4620 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4621 relayd_id_str = relayd_id_buffer;
4622 } else {
4623 relayd_id_str = "(formatting error)";
4624 }
4625 }
4626
4627 DBG("Consumer trace chunk exists command: relayd_id = %s"
4628 ", session_id = %" PRIu64
4629 ", chunk_id = %" PRIu64, relayd_id_str,
4630 session_id, chunk_id);
4631 chunk = lttng_trace_chunk_registry_find_chunk(
4632 consumer_data.chunk_registry, session_id,
4633 chunk_id);
4634 DBG("Trace chunk %s locally", chunk ? "exists" : "does not exist");
4635 ret_code = chunk ? LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL :
4636 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4637
4638 lttng_trace_chunk_put(chunk);
4639 return ret_code;
4640 }
This page took 0.15693 seconds and 4 git commands to generate.