Fix: grab more than one packet for snapshots
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 free(channel);
290 }
291
292 /*
293 * RCU protected relayd socket pair free.
294 */
295 static void free_relayd_rcu(struct rcu_head *head)
296 {
297 struct lttng_ht_node_u64 *node =
298 caa_container_of(head, struct lttng_ht_node_u64, head);
299 struct consumer_relayd_sock_pair *relayd =
300 caa_container_of(node, struct consumer_relayd_sock_pair, node);
301
302 /*
303 * Close all sockets. This is done in the call RCU since we don't want the
304 * socket fds to be reassigned thus potentially creating bad state of the
305 * relayd object.
306 *
307 * We do not have to lock the control socket mutex here since at this stage
308 * there is no one referencing to this relayd object.
309 */
310 (void) relayd_close(&relayd->control_sock);
311 (void) relayd_close(&relayd->data_sock);
312
313 free(relayd);
314 }
315
316 /*
317 * Destroy and free relayd socket pair object.
318 */
319 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
320 {
321 int ret;
322 struct lttng_ht_iter iter;
323
324 if (relayd == NULL) {
325 return;
326 }
327
328 DBG("Consumer destroy and close relayd socket pair");
329
330 iter.iter.node = &relayd->node.node;
331 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
332 if (ret != 0) {
333 /* We assume the relayd is being or is destroyed */
334 return;
335 }
336
337 /* RCU free() call */
338 call_rcu(&relayd->node.head, free_relayd_rcu);
339 }
340
341 /*
342 * Remove a channel from the global list protected by a mutex. This function is
343 * also responsible for freeing its data structures.
344 */
345 void consumer_del_channel(struct lttng_consumer_channel *channel)
346 {
347 int ret;
348 struct lttng_ht_iter iter;
349
350 DBG("Consumer delete channel key %" PRIu64, channel->key);
351
352 pthread_mutex_lock(&consumer_data.lock);
353 pthread_mutex_lock(&channel->lock);
354
355 /* Destroy streams that might have been left in the stream list. */
356 clean_channel_stream_list(channel);
357
358 if (channel->live_timer_enabled == 1) {
359 consumer_timer_live_stop(channel);
360 }
361
362 switch (consumer_data.type) {
363 case LTTNG_CONSUMER_KERNEL:
364 break;
365 case LTTNG_CONSUMER32_UST:
366 case LTTNG_CONSUMER64_UST:
367 lttng_ustconsumer_del_channel(channel);
368 break;
369 default:
370 ERR("Unknown consumer_data type");
371 assert(0);
372 goto end;
373 }
374
375 rcu_read_lock();
376 iter.iter.node = &channel->node.node;
377 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
378 assert(!ret);
379 rcu_read_unlock();
380
381 call_rcu(&channel->node.head, free_channel_rcu);
382 end:
383 pthread_mutex_unlock(&channel->lock);
384 pthread_mutex_unlock(&consumer_data.lock);
385 }
386
387 /*
388 * Iterate over the relayd hash table and destroy each element. Finally,
389 * destroy the whole hash table.
390 */
391 static void cleanup_relayd_ht(void)
392 {
393 struct lttng_ht_iter iter;
394 struct consumer_relayd_sock_pair *relayd;
395
396 rcu_read_lock();
397
398 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
399 node.node) {
400 consumer_destroy_relayd(relayd);
401 }
402
403 rcu_read_unlock();
404
405 lttng_ht_destroy(consumer_data.relayd_ht);
406 }
407
408 /*
409 * Update the end point status of all streams having the given network sequence
410 * index (relayd index).
411 *
412 * It's atomically set without having the stream mutex locked which is fine
413 * because we handle the write/read race with a pipe wakeup for each thread.
414 */
415 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
416 enum consumer_endpoint_status status)
417 {
418 struct lttng_ht_iter iter;
419 struct lttng_consumer_stream *stream;
420
421 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
422
423 rcu_read_lock();
424
425 /* Let's begin with metadata */
426 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
427 if (stream->net_seq_idx == net_seq_idx) {
428 uatomic_set(&stream->endpoint_status, status);
429 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
430 }
431 }
432
433 /* Follow up by the data streams */
434 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
435 if (stream->net_seq_idx == net_seq_idx) {
436 uatomic_set(&stream->endpoint_status, status);
437 DBG("Delete flag set to data stream %d", stream->wait_fd);
438 }
439 }
440 rcu_read_unlock();
441 }
442
443 /*
444 * Cleanup a relayd object by flagging every associated streams for deletion,
445 * destroying the object meaning removing it from the relayd hash table,
446 * closing the sockets and freeing the memory in a RCU call.
447 *
448 * If a local data context is available, notify the threads that the streams'
449 * state have changed.
450 */
451 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
452 struct lttng_consumer_local_data *ctx)
453 {
454 uint64_t netidx;
455
456 assert(relayd);
457
458 DBG("Cleaning up relayd sockets");
459
460 /* Save the net sequence index before destroying the object */
461 netidx = relayd->net_seq_idx;
462
463 /*
464 * Delete the relayd from the relayd hash table, close the sockets and free
465 * the object in a RCU call.
466 */
467 consumer_destroy_relayd(relayd);
468
469 /* Set inactive endpoint to all streams */
470 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
471
472 /*
473 * With a local data context, notify the threads that the streams' state
474 * have changed. The write() action on the pipe acts as an "implicit"
475 * memory barrier ordering the updates of the end point status from the
476 * read of this status which happens AFTER receiving this notify.
477 */
478 if (ctx) {
479 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
480 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
481 }
482 }
483
484 /*
485 * Flag a relayd socket pair for destruction. Destroy it if the refcount
486 * reaches zero.
487 *
488 * RCU read side lock MUST be aquired before calling this function.
489 */
490 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
491 {
492 assert(relayd);
493
494 /* Set destroy flag for this object */
495 uatomic_set(&relayd->destroy_flag, 1);
496
497 /* Destroy the relayd if refcount is 0 */
498 if (uatomic_read(&relayd->refcount) == 0) {
499 consumer_destroy_relayd(relayd);
500 }
501 }
502
503 /*
504 * Completly destroy stream from every visiable data structure and the given
505 * hash table if one.
506 *
507 * One this call returns, the stream object is not longer usable nor visible.
508 */
509 void consumer_del_stream(struct lttng_consumer_stream *stream,
510 struct lttng_ht *ht)
511 {
512 consumer_stream_destroy(stream, ht);
513 }
514
515 /*
516 * XXX naming of del vs destroy is all mixed up.
517 */
518 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
519 {
520 consumer_stream_destroy(stream, data_ht);
521 }
522
523 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
524 {
525 consumer_stream_destroy(stream, metadata_ht);
526 }
527
528 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
529 uint64_t stream_key,
530 enum lttng_consumer_stream_state state,
531 const char *channel_name,
532 uid_t uid,
533 gid_t gid,
534 uint64_t relayd_id,
535 uint64_t session_id,
536 int cpu,
537 int *alloc_ret,
538 enum consumer_channel_type type,
539 unsigned int monitor)
540 {
541 int ret;
542 struct lttng_consumer_stream *stream;
543
544 stream = zmalloc(sizeof(*stream));
545 if (stream == NULL) {
546 PERROR("malloc struct lttng_consumer_stream");
547 ret = -ENOMEM;
548 goto end;
549 }
550
551 rcu_read_lock();
552
553 stream->key = stream_key;
554 stream->out_fd = -1;
555 stream->out_fd_offset = 0;
556 stream->output_written = 0;
557 stream->state = state;
558 stream->uid = uid;
559 stream->gid = gid;
560 stream->net_seq_idx = relayd_id;
561 stream->session_id = session_id;
562 stream->monitor = monitor;
563 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
564 stream->index_fd = -1;
565 pthread_mutex_init(&stream->lock, NULL);
566
567 /* If channel is the metadata, flag this stream as metadata. */
568 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
569 stream->metadata_flag = 1;
570 /* Metadata is flat out. */
571 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
572 /* Live rendez-vous point. */
573 pthread_cond_init(&stream->metadata_rdv, NULL);
574 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
575 } else {
576 /* Format stream name to <channel_name>_<cpu_number> */
577 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
578 channel_name, cpu);
579 if (ret < 0) {
580 PERROR("snprintf stream name");
581 goto error;
582 }
583 }
584
585 /* Key is always the wait_fd for streams. */
586 lttng_ht_node_init_u64(&stream->node, stream->key);
587
588 /* Init node per channel id key */
589 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
590
591 /* Init session id node with the stream session id */
592 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
593
594 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
595 " relayd_id %" PRIu64 ", session_id %" PRIu64,
596 stream->name, stream->key, channel_key,
597 stream->net_seq_idx, stream->session_id);
598
599 rcu_read_unlock();
600 return stream;
601
602 error:
603 rcu_read_unlock();
604 free(stream);
605 end:
606 if (alloc_ret) {
607 *alloc_ret = ret;
608 }
609 return NULL;
610 }
611
612 /*
613 * Add a stream to the global list protected by a mutex.
614 */
615 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
616 {
617 struct lttng_ht *ht = data_ht;
618 int ret = 0;
619
620 assert(stream);
621 assert(ht);
622
623 DBG3("Adding consumer stream %" PRIu64, stream->key);
624
625 pthread_mutex_lock(&consumer_data.lock);
626 pthread_mutex_lock(&stream->chan->lock);
627 pthread_mutex_lock(&stream->chan->timer_lock);
628 pthread_mutex_lock(&stream->lock);
629 rcu_read_lock();
630
631 /* Steal stream identifier to avoid having streams with the same key */
632 steal_stream_key(stream->key, ht);
633
634 lttng_ht_add_unique_u64(ht, &stream->node);
635
636 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
637 &stream->node_channel_id);
638
639 /*
640 * Add stream to the stream_list_ht of the consumer data. No need to steal
641 * the key since the HT does not use it and we allow to add redundant keys
642 * into this table.
643 */
644 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
645
646 /*
647 * When nb_init_stream_left reaches 0, we don't need to trigger any action
648 * in terms of destroying the associated channel, because the action that
649 * causes the count to become 0 also causes a stream to be added. The
650 * channel deletion will thus be triggered by the following removal of this
651 * stream.
652 */
653 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
654 /* Increment refcount before decrementing nb_init_stream_left */
655 cmm_smp_wmb();
656 uatomic_dec(&stream->chan->nb_init_stream_left);
657 }
658
659 /* Update consumer data once the node is inserted. */
660 consumer_data.stream_count++;
661 consumer_data.need_update = 1;
662
663 rcu_read_unlock();
664 pthread_mutex_unlock(&stream->lock);
665 pthread_mutex_unlock(&stream->chan->timer_lock);
666 pthread_mutex_unlock(&stream->chan->lock);
667 pthread_mutex_unlock(&consumer_data.lock);
668
669 return ret;
670 }
671
672 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
673 {
674 consumer_del_stream(stream, data_ht);
675 }
676
677 /*
678 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
679 * be acquired before calling this.
680 */
681 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
682 {
683 int ret = 0;
684 struct lttng_ht_node_u64 *node;
685 struct lttng_ht_iter iter;
686
687 assert(relayd);
688
689 lttng_ht_lookup(consumer_data.relayd_ht,
690 &relayd->net_seq_idx, &iter);
691 node = lttng_ht_iter_get_node_u64(&iter);
692 if (node != NULL) {
693 goto end;
694 }
695 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
696
697 end:
698 return ret;
699 }
700
701 /*
702 * Allocate and return a consumer relayd socket.
703 */
704 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
705 uint64_t net_seq_idx)
706 {
707 struct consumer_relayd_sock_pair *obj = NULL;
708
709 /* net sequence index of -1 is a failure */
710 if (net_seq_idx == (uint64_t) -1ULL) {
711 goto error;
712 }
713
714 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
715 if (obj == NULL) {
716 PERROR("zmalloc relayd sock");
717 goto error;
718 }
719
720 obj->net_seq_idx = net_seq_idx;
721 obj->refcount = 0;
722 obj->destroy_flag = 0;
723 obj->control_sock.sock.fd = -1;
724 obj->data_sock.sock.fd = -1;
725 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
726 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
727
728 error:
729 return obj;
730 }
731
732 /*
733 * Find a relayd socket pair in the global consumer data.
734 *
735 * Return the object if found else NULL.
736 * RCU read-side lock must be held across this call and while using the
737 * returned object.
738 */
739 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
740 {
741 struct lttng_ht_iter iter;
742 struct lttng_ht_node_u64 *node;
743 struct consumer_relayd_sock_pair *relayd = NULL;
744
745 /* Negative keys are lookup failures */
746 if (key == (uint64_t) -1ULL) {
747 goto error;
748 }
749
750 lttng_ht_lookup(consumer_data.relayd_ht, &key,
751 &iter);
752 node = lttng_ht_iter_get_node_u64(&iter);
753 if (node != NULL) {
754 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
755 }
756
757 error:
758 return relayd;
759 }
760
761 /*
762 * Find a relayd and send the stream
763 *
764 * Returns 0 on success, < 0 on error
765 */
766 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
767 char *path)
768 {
769 int ret = 0;
770 struct consumer_relayd_sock_pair *relayd;
771
772 assert(stream);
773 assert(stream->net_seq_idx != -1ULL);
774 assert(path);
775
776 /* The stream is not metadata. Get relayd reference if exists. */
777 rcu_read_lock();
778 relayd = consumer_find_relayd(stream->net_seq_idx);
779 if (relayd != NULL) {
780 /* Add stream on the relayd */
781 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
782 ret = relayd_add_stream(&relayd->control_sock, stream->name,
783 path, &stream->relayd_stream_id,
784 stream->chan->tracefile_size, stream->chan->tracefile_count);
785 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
786 if (ret < 0) {
787 goto end;
788 }
789
790 uatomic_inc(&relayd->refcount);
791 stream->sent_to_relayd = 1;
792 } else {
793 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
794 stream->key, stream->net_seq_idx);
795 ret = -1;
796 goto end;
797 }
798
799 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
800 stream->name, stream->key, stream->net_seq_idx);
801
802 end:
803 rcu_read_unlock();
804 return ret;
805 }
806
807 /*
808 * Find a relayd and send the streams sent message
809 *
810 * Returns 0 on success, < 0 on error
811 */
812 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
813 {
814 int ret = 0;
815 struct consumer_relayd_sock_pair *relayd;
816
817 assert(net_seq_idx != -1ULL);
818
819 /* The stream is not metadata. Get relayd reference if exists. */
820 rcu_read_lock();
821 relayd = consumer_find_relayd(net_seq_idx);
822 if (relayd != NULL) {
823 /* Add stream on the relayd */
824 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
825 ret = relayd_streams_sent(&relayd->control_sock);
826 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
827 if (ret < 0) {
828 goto end;
829 }
830 } else {
831 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
832 net_seq_idx);
833 ret = -1;
834 goto end;
835 }
836
837 ret = 0;
838 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
839
840 end:
841 rcu_read_unlock();
842 return ret;
843 }
844
845 /*
846 * Find a relayd and close the stream
847 */
848 void close_relayd_stream(struct lttng_consumer_stream *stream)
849 {
850 struct consumer_relayd_sock_pair *relayd;
851
852 /* The stream is not metadata. Get relayd reference if exists. */
853 rcu_read_lock();
854 relayd = consumer_find_relayd(stream->net_seq_idx);
855 if (relayd) {
856 consumer_stream_relayd_close(stream, relayd);
857 }
858 rcu_read_unlock();
859 }
860
861 /*
862 * Handle stream for relayd transmission if the stream applies for network
863 * streaming where the net sequence index is set.
864 *
865 * Return destination file descriptor or negative value on error.
866 */
867 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
868 size_t data_size, unsigned long padding,
869 struct consumer_relayd_sock_pair *relayd)
870 {
871 int outfd = -1, ret;
872 struct lttcomm_relayd_data_hdr data_hdr;
873
874 /* Safety net */
875 assert(stream);
876 assert(relayd);
877
878 /* Reset data header */
879 memset(&data_hdr, 0, sizeof(data_hdr));
880
881 if (stream->metadata_flag) {
882 /* Caller MUST acquire the relayd control socket lock */
883 ret = relayd_send_metadata(&relayd->control_sock, data_size);
884 if (ret < 0) {
885 goto error;
886 }
887
888 /* Metadata are always sent on the control socket. */
889 outfd = relayd->control_sock.sock.fd;
890 } else {
891 /* Set header with stream information */
892 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
893 data_hdr.data_size = htobe32(data_size);
894 data_hdr.padding_size = htobe32(padding);
895 /*
896 * Note that net_seq_num below is assigned with the *current* value of
897 * next_net_seq_num and only after that the next_net_seq_num will be
898 * increment. This is why when issuing a command on the relayd using
899 * this next value, 1 should always be substracted in order to compare
900 * the last seen sequence number on the relayd side to the last sent.
901 */
902 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
903 /* Other fields are zeroed previously */
904
905 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
906 sizeof(data_hdr));
907 if (ret < 0) {
908 goto error;
909 }
910
911 ++stream->next_net_seq_num;
912
913 /* Set to go on data socket */
914 outfd = relayd->data_sock.sock.fd;
915 }
916
917 error:
918 return outfd;
919 }
920
921 /*
922 * Allocate and return a new lttng_consumer_channel object using the given key
923 * to initialize the hash table node.
924 *
925 * On error, return NULL.
926 */
927 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
928 uint64_t session_id,
929 const char *pathname,
930 const char *name,
931 uid_t uid,
932 gid_t gid,
933 uint64_t relayd_id,
934 enum lttng_event_output output,
935 uint64_t tracefile_size,
936 uint64_t tracefile_count,
937 uint64_t session_id_per_pid,
938 unsigned int monitor,
939 unsigned int live_timer_interval)
940 {
941 struct lttng_consumer_channel *channel;
942
943 channel = zmalloc(sizeof(*channel));
944 if (channel == NULL) {
945 PERROR("malloc struct lttng_consumer_channel");
946 goto end;
947 }
948
949 channel->key = key;
950 channel->refcount = 0;
951 channel->session_id = session_id;
952 channel->session_id_per_pid = session_id_per_pid;
953 channel->uid = uid;
954 channel->gid = gid;
955 channel->relayd_id = relayd_id;
956 channel->tracefile_size = tracefile_size;
957 channel->tracefile_count = tracefile_count;
958 channel->monitor = monitor;
959 channel->live_timer_interval = live_timer_interval;
960 pthread_mutex_init(&channel->lock, NULL);
961 pthread_mutex_init(&channel->timer_lock, NULL);
962
963 switch (output) {
964 case LTTNG_EVENT_SPLICE:
965 channel->output = CONSUMER_CHANNEL_SPLICE;
966 break;
967 case LTTNG_EVENT_MMAP:
968 channel->output = CONSUMER_CHANNEL_MMAP;
969 break;
970 default:
971 assert(0);
972 free(channel);
973 channel = NULL;
974 goto end;
975 }
976
977 /*
978 * In monitor mode, the streams associated with the channel will be put in
979 * a special list ONLY owned by this channel. So, the refcount is set to 1
980 * here meaning that the channel itself has streams that are referenced.
981 *
982 * On a channel deletion, once the channel is no longer visible, the
983 * refcount is decremented and checked for a zero value to delete it. With
984 * streams in no monitor mode, it will now be safe to destroy the channel.
985 */
986 if (!channel->monitor) {
987 channel->refcount = 1;
988 }
989
990 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
991 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
992
993 strncpy(channel->name, name, sizeof(channel->name));
994 channel->name[sizeof(channel->name) - 1] = '\0';
995
996 lttng_ht_node_init_u64(&channel->node, channel->key);
997
998 channel->wait_fd = -1;
999
1000 CDS_INIT_LIST_HEAD(&channel->streams.head);
1001
1002 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1003
1004 end:
1005 return channel;
1006 }
1007
1008 /*
1009 * Add a channel to the global list protected by a mutex.
1010 *
1011 * Always return 0 indicating success.
1012 */
1013 int consumer_add_channel(struct lttng_consumer_channel *channel,
1014 struct lttng_consumer_local_data *ctx)
1015 {
1016 pthread_mutex_lock(&consumer_data.lock);
1017 pthread_mutex_lock(&channel->lock);
1018 pthread_mutex_lock(&channel->timer_lock);
1019
1020 /*
1021 * This gives us a guarantee that the channel we are about to add to the
1022 * channel hash table will be unique. See this function comment on the why
1023 * we need to steel the channel key at this stage.
1024 */
1025 steal_channel_key(channel->key);
1026
1027 rcu_read_lock();
1028 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1029 rcu_read_unlock();
1030
1031 pthread_mutex_unlock(&channel->timer_lock);
1032 pthread_mutex_unlock(&channel->lock);
1033 pthread_mutex_unlock(&consumer_data.lock);
1034
1035 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1036 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1037 }
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Allocate the pollfd structure and the local view of the out fds to avoid
1044 * doing a lookup in the linked list and concurrency issues when writing is
1045 * needed. Called with consumer_data.lock held.
1046 *
1047 * Returns the number of fds in the structures.
1048 */
1049 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1050 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1051 struct lttng_ht *ht)
1052 {
1053 int i = 0;
1054 struct lttng_ht_iter iter;
1055 struct lttng_consumer_stream *stream;
1056
1057 assert(ctx);
1058 assert(ht);
1059 assert(pollfd);
1060 assert(local_stream);
1061
1062 DBG("Updating poll fd array");
1063 rcu_read_lock();
1064 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1065 /*
1066 * Only active streams with an active end point can be added to the
1067 * poll set and local stream storage of the thread.
1068 *
1069 * There is a potential race here for endpoint_status to be updated
1070 * just after the check. However, this is OK since the stream(s) will
1071 * be deleted once the thread is notified that the end point state has
1072 * changed where this function will be called back again.
1073 */
1074 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1075 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1076 continue;
1077 }
1078 /*
1079 * This clobbers way too much the debug output. Uncomment that if you
1080 * need it for debugging purposes.
1081 *
1082 * DBG("Active FD %d", stream->wait_fd);
1083 */
1084 (*pollfd)[i].fd = stream->wait_fd;
1085 (*pollfd)[i].events = POLLIN | POLLPRI;
1086 local_stream[i] = stream;
1087 i++;
1088 }
1089 rcu_read_unlock();
1090
1091 /*
1092 * Insert the consumer_data_pipe at the end of the array and don't
1093 * increment i so nb_fd is the number of real FD.
1094 */
1095 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1096 (*pollfd)[i].events = POLLIN | POLLPRI;
1097
1098 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1099 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1100 return i;
1101 }
1102
1103 /*
1104 * Poll on the should_quit pipe and the command socket return -1 on
1105 * error, 1 if should exit, 0 if data is available on the command socket
1106 */
1107 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1108 {
1109 int num_rdy;
1110
1111 restart:
1112 num_rdy = poll(consumer_sockpoll, 2, -1);
1113 if (num_rdy == -1) {
1114 /*
1115 * Restart interrupted system call.
1116 */
1117 if (errno == EINTR) {
1118 goto restart;
1119 }
1120 PERROR("Poll error");
1121 return -1;
1122 }
1123 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1124 DBG("consumer_should_quit wake up");
1125 return 1;
1126 }
1127 return 0;
1128 }
1129
1130 /*
1131 * Set the error socket.
1132 */
1133 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1134 int sock)
1135 {
1136 ctx->consumer_error_socket = sock;
1137 }
1138
1139 /*
1140 * Set the command socket path.
1141 */
1142 void lttng_consumer_set_command_sock_path(
1143 struct lttng_consumer_local_data *ctx, char *sock)
1144 {
1145 ctx->consumer_command_sock_path = sock;
1146 }
1147
1148 /*
1149 * Send return code to the session daemon.
1150 * If the socket is not defined, we return 0, it is not a fatal error
1151 */
1152 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1153 {
1154 if (ctx->consumer_error_socket > 0) {
1155 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1156 sizeof(enum lttcomm_sessiond_command));
1157 }
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * Close all the tracefiles and stream fds and MUST be called when all
1164 * instances are destroyed i.e. when all threads were joined and are ended.
1165 */
1166 void lttng_consumer_cleanup(void)
1167 {
1168 struct lttng_ht_iter iter;
1169 struct lttng_consumer_channel *channel;
1170
1171 rcu_read_lock();
1172
1173 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1174 node.node) {
1175 consumer_del_channel(channel);
1176 }
1177
1178 rcu_read_unlock();
1179
1180 lttng_ht_destroy(consumer_data.channel_ht);
1181
1182 cleanup_relayd_ht();
1183
1184 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1185
1186 /*
1187 * This HT contains streams that are freed by either the metadata thread or
1188 * the data thread so we do *nothing* on the hash table and simply destroy
1189 * it.
1190 */
1191 lttng_ht_destroy(consumer_data.stream_list_ht);
1192 }
1193
1194 /*
1195 * Called from signal handler.
1196 */
1197 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1198 {
1199 ssize_t ret;
1200
1201 consumer_quit = 1;
1202 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1203 if (ret < 1) {
1204 PERROR("write consumer quit");
1205 }
1206
1207 DBG("Consumer flag that it should quit");
1208 }
1209
1210 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1211 off_t orig_offset)
1212 {
1213 int outfd = stream->out_fd;
1214
1215 /*
1216 * This does a blocking write-and-wait on any page that belongs to the
1217 * subbuffer prior to the one we just wrote.
1218 * Don't care about error values, as these are just hints and ways to
1219 * limit the amount of page cache used.
1220 */
1221 if (orig_offset < stream->max_sb_size) {
1222 return;
1223 }
1224 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1225 stream->max_sb_size,
1226 SYNC_FILE_RANGE_WAIT_BEFORE
1227 | SYNC_FILE_RANGE_WRITE
1228 | SYNC_FILE_RANGE_WAIT_AFTER);
1229 /*
1230 * Give hints to the kernel about how we access the file:
1231 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1232 * we write it.
1233 *
1234 * We need to call fadvise again after the file grows because the
1235 * kernel does not seem to apply fadvise to non-existing parts of the
1236 * file.
1237 *
1238 * Call fadvise _after_ having waited for the page writeback to
1239 * complete because the dirty page writeback semantic is not well
1240 * defined. So it can be expected to lead to lower throughput in
1241 * streaming.
1242 */
1243 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1244 stream->max_sb_size, POSIX_FADV_DONTNEED);
1245 }
1246
1247 /*
1248 * Initialise the necessary environnement :
1249 * - create a new context
1250 * - create the poll_pipe
1251 * - create the should_quit pipe (for signal handler)
1252 * - create the thread pipe (for splice)
1253 *
1254 * Takes a function pointer as argument, this function is called when data is
1255 * available on a buffer. This function is responsible to do the
1256 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1257 * buffer configuration and then kernctl_put_next_subbuf at the end.
1258 *
1259 * Returns a pointer to the new context or NULL on error.
1260 */
1261 struct lttng_consumer_local_data *lttng_consumer_create(
1262 enum lttng_consumer_type type,
1263 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1264 struct lttng_consumer_local_data *ctx),
1265 int (*recv_channel)(struct lttng_consumer_channel *channel),
1266 int (*recv_stream)(struct lttng_consumer_stream *stream),
1267 int (*update_stream)(uint64_t stream_key, uint32_t state))
1268 {
1269 int ret;
1270 struct lttng_consumer_local_data *ctx;
1271
1272 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1273 consumer_data.type == type);
1274 consumer_data.type = type;
1275
1276 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1277 if (ctx == NULL) {
1278 PERROR("allocating context");
1279 goto error;
1280 }
1281
1282 ctx->consumer_error_socket = -1;
1283 ctx->consumer_metadata_socket = -1;
1284 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1285 /* assign the callbacks */
1286 ctx->on_buffer_ready = buffer_ready;
1287 ctx->on_recv_channel = recv_channel;
1288 ctx->on_recv_stream = recv_stream;
1289 ctx->on_update_stream = update_stream;
1290
1291 ctx->consumer_data_pipe = lttng_pipe_open(0);
1292 if (!ctx->consumer_data_pipe) {
1293 goto error_poll_pipe;
1294 }
1295
1296 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1297 if (!ctx->consumer_wakeup_pipe) {
1298 goto error_wakeup_pipe;
1299 }
1300
1301 ret = pipe(ctx->consumer_should_quit);
1302 if (ret < 0) {
1303 PERROR("Error creating recv pipe");
1304 goto error_quit_pipe;
1305 }
1306
1307 ret = pipe(ctx->consumer_channel_pipe);
1308 if (ret < 0) {
1309 PERROR("Error creating channel pipe");
1310 goto error_channel_pipe;
1311 }
1312
1313 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1314 if (!ctx->consumer_metadata_pipe) {
1315 goto error_metadata_pipe;
1316 }
1317
1318 return ctx;
1319
1320 error_metadata_pipe:
1321 utils_close_pipe(ctx->consumer_channel_pipe);
1322 error_channel_pipe:
1323 utils_close_pipe(ctx->consumer_should_quit);
1324 error_quit_pipe:
1325 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1326 error_wakeup_pipe:
1327 lttng_pipe_destroy(ctx->consumer_data_pipe);
1328 error_poll_pipe:
1329 free(ctx);
1330 error:
1331 return NULL;
1332 }
1333
1334 /*
1335 * Iterate over all streams of the hashtable and free them properly.
1336 */
1337 static void destroy_data_stream_ht(struct lttng_ht *ht)
1338 {
1339 struct lttng_ht_iter iter;
1340 struct lttng_consumer_stream *stream;
1341
1342 if (ht == NULL) {
1343 return;
1344 }
1345
1346 rcu_read_lock();
1347 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1348 /*
1349 * Ignore return value since we are currently cleaning up so any error
1350 * can't be handled.
1351 */
1352 (void) consumer_del_stream(stream, ht);
1353 }
1354 rcu_read_unlock();
1355
1356 lttng_ht_destroy(ht);
1357 }
1358
1359 /*
1360 * Iterate over all streams of the metadata hashtable and free them
1361 * properly.
1362 */
1363 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1364 {
1365 struct lttng_ht_iter iter;
1366 struct lttng_consumer_stream *stream;
1367
1368 if (ht == NULL) {
1369 return;
1370 }
1371
1372 rcu_read_lock();
1373 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1374 /*
1375 * Ignore return value since we are currently cleaning up so any error
1376 * can't be handled.
1377 */
1378 (void) consumer_del_metadata_stream(stream, ht);
1379 }
1380 rcu_read_unlock();
1381
1382 lttng_ht_destroy(ht);
1383 }
1384
1385 /*
1386 * Close all fds associated with the instance and free the context.
1387 */
1388 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1389 {
1390 int ret;
1391
1392 DBG("Consumer destroying it. Closing everything.");
1393
1394 if (!ctx) {
1395 return;
1396 }
1397
1398 destroy_data_stream_ht(data_ht);
1399 destroy_metadata_stream_ht(metadata_ht);
1400
1401 ret = close(ctx->consumer_error_socket);
1402 if (ret) {
1403 PERROR("close");
1404 }
1405 ret = close(ctx->consumer_metadata_socket);
1406 if (ret) {
1407 PERROR("close");
1408 }
1409 utils_close_pipe(ctx->consumer_channel_pipe);
1410 lttng_pipe_destroy(ctx->consumer_data_pipe);
1411 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1412 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1413 utils_close_pipe(ctx->consumer_should_quit);
1414
1415 unlink(ctx->consumer_command_sock_path);
1416 free(ctx);
1417 }
1418
1419 /*
1420 * Write the metadata stream id on the specified file descriptor.
1421 */
1422 static int write_relayd_metadata_id(int fd,
1423 struct lttng_consumer_stream *stream,
1424 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1425 {
1426 ssize_t ret;
1427 struct lttcomm_relayd_metadata_payload hdr;
1428
1429 hdr.stream_id = htobe64(stream->relayd_stream_id);
1430 hdr.padding_size = htobe32(padding);
1431 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1432 if (ret < sizeof(hdr)) {
1433 /*
1434 * This error means that the fd's end is closed so ignore the PERROR
1435 * not to clubber the error output since this can happen in a normal
1436 * code path.
1437 */
1438 if (errno != EPIPE) {
1439 PERROR("write metadata stream id");
1440 }
1441 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1442 /*
1443 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1444 * handle writting the missing part so report that as an error and
1445 * don't lie to the caller.
1446 */
1447 ret = -1;
1448 goto end;
1449 }
1450 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1451 stream->relayd_stream_id, padding);
1452
1453 end:
1454 return (int) ret;
1455 }
1456
1457 /*
1458 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1459 * core function for writing trace buffers to either the local filesystem or
1460 * the network.
1461 *
1462 * It must be called with the stream lock held.
1463 *
1464 * Careful review MUST be put if any changes occur!
1465 *
1466 * Returns the number of bytes written
1467 */
1468 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1469 struct lttng_consumer_local_data *ctx,
1470 struct lttng_consumer_stream *stream, unsigned long len,
1471 unsigned long padding,
1472 struct ctf_packet_index *index)
1473 {
1474 unsigned long mmap_offset;
1475 void *mmap_base;
1476 ssize_t ret = 0;
1477 off_t orig_offset = stream->out_fd_offset;
1478 /* Default is on the disk */
1479 int outfd = stream->out_fd;
1480 struct consumer_relayd_sock_pair *relayd = NULL;
1481 unsigned int relayd_hang_up = 0;
1482
1483 /* RCU lock for the relayd pointer */
1484 rcu_read_lock();
1485
1486 /* Flag that the current stream if set for network streaming. */
1487 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1488 relayd = consumer_find_relayd(stream->net_seq_idx);
1489 if (relayd == NULL) {
1490 ret = -EPIPE;
1491 goto end;
1492 }
1493 }
1494
1495 /* get the offset inside the fd to mmap */
1496 switch (consumer_data.type) {
1497 case LTTNG_CONSUMER_KERNEL:
1498 mmap_base = stream->mmap_base;
1499 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1500 if (ret < 0) {
1501 ret = -errno;
1502 PERROR("tracer ctl get_mmap_read_offset");
1503 goto end;
1504 }
1505 break;
1506 case LTTNG_CONSUMER32_UST:
1507 case LTTNG_CONSUMER64_UST:
1508 mmap_base = lttng_ustctl_get_mmap_base(stream);
1509 if (!mmap_base) {
1510 ERR("read mmap get mmap base for stream %s", stream->name);
1511 ret = -EPERM;
1512 goto end;
1513 }
1514 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1515 if (ret != 0) {
1516 PERROR("tracer ctl get_mmap_read_offset");
1517 ret = -EINVAL;
1518 goto end;
1519 }
1520 break;
1521 default:
1522 ERR("Unknown consumer_data type");
1523 assert(0);
1524 }
1525
1526 /* Handle stream on the relayd if the output is on the network */
1527 if (relayd) {
1528 unsigned long netlen = len;
1529
1530 /*
1531 * Lock the control socket for the complete duration of the function
1532 * since from this point on we will use the socket.
1533 */
1534 if (stream->metadata_flag) {
1535 /* Metadata requires the control socket. */
1536 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1537 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1538 }
1539
1540 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1541 if (ret < 0) {
1542 relayd_hang_up = 1;
1543 goto write_error;
1544 }
1545 /* Use the returned socket. */
1546 outfd = ret;
1547
1548 /* Write metadata stream id before payload */
1549 if (stream->metadata_flag) {
1550 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1551 if (ret < 0) {
1552 relayd_hang_up = 1;
1553 goto write_error;
1554 }
1555 }
1556 } else {
1557 /* No streaming, we have to set the len with the full padding */
1558 len += padding;
1559
1560 /*
1561 * Check if we need to change the tracefile before writing the packet.
1562 */
1563 if (stream->chan->tracefile_size > 0 &&
1564 (stream->tracefile_size_current + len) >
1565 stream->chan->tracefile_size) {
1566 ret = utils_rotate_stream_file(stream->chan->pathname,
1567 stream->name, stream->chan->tracefile_size,
1568 stream->chan->tracefile_count, stream->uid, stream->gid,
1569 stream->out_fd, &(stream->tracefile_count_current),
1570 &stream->out_fd);
1571 if (ret < 0) {
1572 ERR("Rotating output file");
1573 goto end;
1574 }
1575 outfd = stream->out_fd;
1576
1577 if (stream->index_fd >= 0) {
1578 ret = index_create_file(stream->chan->pathname,
1579 stream->name, stream->uid, stream->gid,
1580 stream->chan->tracefile_size,
1581 stream->tracefile_count_current);
1582 if (ret < 0) {
1583 goto end;
1584 }
1585 stream->index_fd = ret;
1586 }
1587
1588 /* Reset current size because we just perform a rotation. */
1589 stream->tracefile_size_current = 0;
1590 stream->out_fd_offset = 0;
1591 orig_offset = 0;
1592 }
1593 stream->tracefile_size_current += len;
1594 if (index) {
1595 index->offset = htobe64(stream->out_fd_offset);
1596 }
1597 }
1598
1599 /*
1600 * This call guarantee that len or less is returned. It's impossible to
1601 * receive a ret value that is bigger than len.
1602 */
1603 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1604 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1605 if (ret < 0 || ((size_t) ret != len)) {
1606 /*
1607 * Report error to caller if nothing was written else at least send the
1608 * amount written.
1609 */
1610 if (ret < 0) {
1611 ret = -errno;
1612 }
1613 relayd_hang_up = 1;
1614
1615 /* Socket operation failed. We consider the relayd dead */
1616 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1617 /*
1618 * This is possible if the fd is closed on the other side
1619 * (outfd) or any write problem. It can be verbose a bit for a
1620 * normal execution if for instance the relayd is stopped
1621 * abruptly. This can happen so set this to a DBG statement.
1622 */
1623 DBG("Consumer mmap write detected relayd hang up");
1624 } else {
1625 /* Unhandled error, print it and stop function right now. */
1626 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1627 }
1628 goto write_error;
1629 }
1630 stream->output_written += ret;
1631
1632 /* This call is useless on a socket so better save a syscall. */
1633 if (!relayd) {
1634 /* This won't block, but will start writeout asynchronously */
1635 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1636 SYNC_FILE_RANGE_WRITE);
1637 stream->out_fd_offset += len;
1638 }
1639 lttng_consumer_sync_trace_file(stream, orig_offset);
1640
1641 write_error:
1642 /*
1643 * This is a special case that the relayd has closed its socket. Let's
1644 * cleanup the relayd object and all associated streams.
1645 */
1646 if (relayd && relayd_hang_up) {
1647 cleanup_relayd(relayd, ctx);
1648 }
1649
1650 end:
1651 /* Unlock only if ctrl socket used */
1652 if (relayd && stream->metadata_flag) {
1653 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1654 }
1655
1656 rcu_read_unlock();
1657 return ret;
1658 }
1659
1660 /*
1661 * Splice the data from the ring buffer to the tracefile.
1662 *
1663 * It must be called with the stream lock held.
1664 *
1665 * Returns the number of bytes spliced.
1666 */
1667 ssize_t lttng_consumer_on_read_subbuffer_splice(
1668 struct lttng_consumer_local_data *ctx,
1669 struct lttng_consumer_stream *stream, unsigned long len,
1670 unsigned long padding,
1671 struct ctf_packet_index *index)
1672 {
1673 ssize_t ret = 0, written = 0, ret_splice = 0;
1674 loff_t offset = 0;
1675 off_t orig_offset = stream->out_fd_offset;
1676 int fd = stream->wait_fd;
1677 /* Default is on the disk */
1678 int outfd = stream->out_fd;
1679 struct consumer_relayd_sock_pair *relayd = NULL;
1680 int *splice_pipe;
1681 unsigned int relayd_hang_up = 0;
1682
1683 switch (consumer_data.type) {
1684 case LTTNG_CONSUMER_KERNEL:
1685 break;
1686 case LTTNG_CONSUMER32_UST:
1687 case LTTNG_CONSUMER64_UST:
1688 /* Not supported for user space tracing */
1689 return -ENOSYS;
1690 default:
1691 ERR("Unknown consumer_data type");
1692 assert(0);
1693 }
1694
1695 /* RCU lock for the relayd pointer */
1696 rcu_read_lock();
1697
1698 /* Flag that the current stream if set for network streaming. */
1699 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1700 relayd = consumer_find_relayd(stream->net_seq_idx);
1701 if (relayd == NULL) {
1702 written = -ret;
1703 goto end;
1704 }
1705 }
1706 splice_pipe = stream->splice_pipe;
1707
1708 /* Write metadata stream id before payload */
1709 if (relayd) {
1710 unsigned long total_len = len;
1711
1712 if (stream->metadata_flag) {
1713 /*
1714 * Lock the control socket for the complete duration of the function
1715 * since from this point on we will use the socket.
1716 */
1717 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1718
1719 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1720 padding);
1721 if (ret < 0) {
1722 written = ret;
1723 relayd_hang_up = 1;
1724 goto write_error;
1725 }
1726
1727 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1728 }
1729
1730 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1731 if (ret < 0) {
1732 written = ret;
1733 relayd_hang_up = 1;
1734 goto write_error;
1735 }
1736 /* Use the returned socket. */
1737 outfd = ret;
1738 } else {
1739 /* No streaming, we have to set the len with the full padding */
1740 len += padding;
1741
1742 /*
1743 * Check if we need to change the tracefile before writing the packet.
1744 */
1745 if (stream->chan->tracefile_size > 0 &&
1746 (stream->tracefile_size_current + len) >
1747 stream->chan->tracefile_size) {
1748 ret = utils_rotate_stream_file(stream->chan->pathname,
1749 stream->name, stream->chan->tracefile_size,
1750 stream->chan->tracefile_count, stream->uid, stream->gid,
1751 stream->out_fd, &(stream->tracefile_count_current),
1752 &stream->out_fd);
1753 if (ret < 0) {
1754 written = ret;
1755 ERR("Rotating output file");
1756 goto end;
1757 }
1758 outfd = stream->out_fd;
1759
1760 if (stream->index_fd >= 0) {
1761 ret = index_create_file(stream->chan->pathname,
1762 stream->name, stream->uid, stream->gid,
1763 stream->chan->tracefile_size,
1764 stream->tracefile_count_current);
1765 if (ret < 0) {
1766 written = ret;
1767 goto end;
1768 }
1769 stream->index_fd = ret;
1770 }
1771
1772 /* Reset current size because we just perform a rotation. */
1773 stream->tracefile_size_current = 0;
1774 stream->out_fd_offset = 0;
1775 orig_offset = 0;
1776 }
1777 stream->tracefile_size_current += len;
1778 index->offset = htobe64(stream->out_fd_offset);
1779 }
1780
1781 while (len > 0) {
1782 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1783 (unsigned long)offset, len, fd, splice_pipe[1]);
1784 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1785 SPLICE_F_MOVE | SPLICE_F_MORE);
1786 DBG("splice chan to pipe, ret %zd", ret_splice);
1787 if (ret_splice < 0) {
1788 ret = errno;
1789 written = -ret;
1790 PERROR("Error in relay splice");
1791 goto splice_error;
1792 }
1793
1794 /* Handle stream on the relayd if the output is on the network */
1795 if (relayd && stream->metadata_flag) {
1796 size_t metadata_payload_size =
1797 sizeof(struct lttcomm_relayd_metadata_payload);
1798
1799 /* Update counter to fit the spliced data */
1800 ret_splice += metadata_payload_size;
1801 len += metadata_payload_size;
1802 /*
1803 * We do this so the return value can match the len passed as
1804 * argument to this function.
1805 */
1806 written -= metadata_payload_size;
1807 }
1808
1809 /* Splice data out */
1810 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1811 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1812 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1813 outfd, ret_splice);
1814 if (ret_splice < 0) {
1815 ret = errno;
1816 written = -ret;
1817 relayd_hang_up = 1;
1818 goto write_error;
1819 } else if (ret_splice > len) {
1820 /*
1821 * We don't expect this code path to be executed but you never know
1822 * so this is an extra protection agains a buggy splice().
1823 */
1824 ret = errno;
1825 written += ret_splice;
1826 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1827 len);
1828 goto splice_error;
1829 } else {
1830 /* All good, update current len and continue. */
1831 len -= ret_splice;
1832 }
1833
1834 /* This call is useless on a socket so better save a syscall. */
1835 if (!relayd) {
1836 /* This won't block, but will start writeout asynchronously */
1837 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1838 SYNC_FILE_RANGE_WRITE);
1839 stream->out_fd_offset += ret_splice;
1840 }
1841 stream->output_written += ret_splice;
1842 written += ret_splice;
1843 }
1844 lttng_consumer_sync_trace_file(stream, orig_offset);
1845 goto end;
1846
1847 write_error:
1848 /*
1849 * This is a special case that the relayd has closed its socket. Let's
1850 * cleanup the relayd object and all associated streams.
1851 */
1852 if (relayd && relayd_hang_up) {
1853 cleanup_relayd(relayd, ctx);
1854 /* Skip splice error so the consumer does not fail */
1855 goto end;
1856 }
1857
1858 splice_error:
1859 /* send the appropriate error description to sessiond */
1860 switch (ret) {
1861 case EINVAL:
1862 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1863 break;
1864 case ENOMEM:
1865 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1866 break;
1867 case ESPIPE:
1868 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1869 break;
1870 }
1871
1872 end:
1873 if (relayd && stream->metadata_flag) {
1874 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1875 }
1876
1877 rcu_read_unlock();
1878 return written;
1879 }
1880
1881 /*
1882 * Take a snapshot for a specific fd
1883 *
1884 * Returns 0 on success, < 0 on error
1885 */
1886 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1887 {
1888 switch (consumer_data.type) {
1889 case LTTNG_CONSUMER_KERNEL:
1890 return lttng_kconsumer_take_snapshot(stream);
1891 case LTTNG_CONSUMER32_UST:
1892 case LTTNG_CONSUMER64_UST:
1893 return lttng_ustconsumer_take_snapshot(stream);
1894 default:
1895 ERR("Unknown consumer_data type");
1896 assert(0);
1897 return -ENOSYS;
1898 }
1899 }
1900
1901 /*
1902 * Get the produced position
1903 *
1904 * Returns 0 on success, < 0 on error
1905 */
1906 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1907 unsigned long *pos)
1908 {
1909 switch (consumer_data.type) {
1910 case LTTNG_CONSUMER_KERNEL:
1911 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1912 case LTTNG_CONSUMER32_UST:
1913 case LTTNG_CONSUMER64_UST:
1914 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1915 default:
1916 ERR("Unknown consumer_data type");
1917 assert(0);
1918 return -ENOSYS;
1919 }
1920 }
1921
1922 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1923 int sock, struct pollfd *consumer_sockpoll)
1924 {
1925 switch (consumer_data.type) {
1926 case LTTNG_CONSUMER_KERNEL:
1927 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1928 case LTTNG_CONSUMER32_UST:
1929 case LTTNG_CONSUMER64_UST:
1930 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1931 default:
1932 ERR("Unknown consumer_data type");
1933 assert(0);
1934 return -ENOSYS;
1935 }
1936 }
1937
1938 void lttng_consumer_close_all_metadata(void)
1939 {
1940 switch (consumer_data.type) {
1941 case LTTNG_CONSUMER_KERNEL:
1942 /*
1943 * The Kernel consumer has a different metadata scheme so we don't
1944 * close anything because the stream will be closed by the session
1945 * daemon.
1946 */
1947 break;
1948 case LTTNG_CONSUMER32_UST:
1949 case LTTNG_CONSUMER64_UST:
1950 /*
1951 * Close all metadata streams. The metadata hash table is passed and
1952 * this call iterates over it by closing all wakeup fd. This is safe
1953 * because at this point we are sure that the metadata producer is
1954 * either dead or blocked.
1955 */
1956 lttng_ustconsumer_close_all_metadata(metadata_ht);
1957 break;
1958 default:
1959 ERR("Unknown consumer_data type");
1960 assert(0);
1961 }
1962 }
1963
1964 /*
1965 * Clean up a metadata stream and free its memory.
1966 */
1967 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1968 struct lttng_ht *ht)
1969 {
1970 struct lttng_consumer_channel *free_chan = NULL;
1971
1972 assert(stream);
1973 /*
1974 * This call should NEVER receive regular stream. It must always be
1975 * metadata stream and this is crucial for data structure synchronization.
1976 */
1977 assert(stream->metadata_flag);
1978
1979 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1980
1981 pthread_mutex_lock(&consumer_data.lock);
1982 pthread_mutex_lock(&stream->chan->lock);
1983 pthread_mutex_lock(&stream->lock);
1984
1985 /* Remove any reference to that stream. */
1986 consumer_stream_delete(stream, ht);
1987
1988 /* Close down everything including the relayd if one. */
1989 consumer_stream_close(stream);
1990 /* Destroy tracer buffers of the stream. */
1991 consumer_stream_destroy_buffers(stream);
1992
1993 /* Atomically decrement channel refcount since other threads can use it. */
1994 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1995 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1996 /* Go for channel deletion! */
1997 free_chan = stream->chan;
1998 }
1999
2000 /*
2001 * Nullify the stream reference so it is not used after deletion. The
2002 * channel lock MUST be acquired before being able to check for a NULL
2003 * pointer value.
2004 */
2005 stream->chan->metadata_stream = NULL;
2006
2007 pthread_mutex_unlock(&stream->lock);
2008 pthread_mutex_unlock(&stream->chan->lock);
2009 pthread_mutex_unlock(&consumer_data.lock);
2010
2011 if (free_chan) {
2012 consumer_del_channel(free_chan);
2013 }
2014
2015 consumer_stream_free(stream);
2016 }
2017
2018 /*
2019 * Action done with the metadata stream when adding it to the consumer internal
2020 * data structures to handle it.
2021 */
2022 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2023 {
2024 struct lttng_ht *ht = metadata_ht;
2025 int ret = 0;
2026 struct lttng_ht_iter iter;
2027 struct lttng_ht_node_u64 *node;
2028
2029 assert(stream);
2030 assert(ht);
2031
2032 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2033
2034 pthread_mutex_lock(&consumer_data.lock);
2035 pthread_mutex_lock(&stream->chan->lock);
2036 pthread_mutex_lock(&stream->chan->timer_lock);
2037 pthread_mutex_lock(&stream->lock);
2038
2039 /*
2040 * From here, refcounts are updated so be _careful_ when returning an error
2041 * after this point.
2042 */
2043
2044 rcu_read_lock();
2045
2046 /*
2047 * Lookup the stream just to make sure it does not exist in our internal
2048 * state. This should NEVER happen.
2049 */
2050 lttng_ht_lookup(ht, &stream->key, &iter);
2051 node = lttng_ht_iter_get_node_u64(&iter);
2052 assert(!node);
2053
2054 /*
2055 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2056 * in terms of destroying the associated channel, because the action that
2057 * causes the count to become 0 also causes a stream to be added. The
2058 * channel deletion will thus be triggered by the following removal of this
2059 * stream.
2060 */
2061 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2062 /* Increment refcount before decrementing nb_init_stream_left */
2063 cmm_smp_wmb();
2064 uatomic_dec(&stream->chan->nb_init_stream_left);
2065 }
2066
2067 lttng_ht_add_unique_u64(ht, &stream->node);
2068
2069 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2070 &stream->node_channel_id);
2071
2072 /*
2073 * Add stream to the stream_list_ht of the consumer data. No need to steal
2074 * the key since the HT does not use it and we allow to add redundant keys
2075 * into this table.
2076 */
2077 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2078
2079 rcu_read_unlock();
2080
2081 pthread_mutex_unlock(&stream->lock);
2082 pthread_mutex_unlock(&stream->chan->lock);
2083 pthread_mutex_unlock(&stream->chan->timer_lock);
2084 pthread_mutex_unlock(&consumer_data.lock);
2085 return ret;
2086 }
2087
2088 /*
2089 * Delete data stream that are flagged for deletion (endpoint_status).
2090 */
2091 static void validate_endpoint_status_data_stream(void)
2092 {
2093 struct lttng_ht_iter iter;
2094 struct lttng_consumer_stream *stream;
2095
2096 DBG("Consumer delete flagged data stream");
2097
2098 rcu_read_lock();
2099 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2100 /* Validate delete flag of the stream */
2101 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2102 continue;
2103 }
2104 /* Delete it right now */
2105 consumer_del_stream(stream, data_ht);
2106 }
2107 rcu_read_unlock();
2108 }
2109
2110 /*
2111 * Delete metadata stream that are flagged for deletion (endpoint_status).
2112 */
2113 static void validate_endpoint_status_metadata_stream(
2114 struct lttng_poll_event *pollset)
2115 {
2116 struct lttng_ht_iter iter;
2117 struct lttng_consumer_stream *stream;
2118
2119 DBG("Consumer delete flagged metadata stream");
2120
2121 assert(pollset);
2122
2123 rcu_read_lock();
2124 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2125 /* Validate delete flag of the stream */
2126 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2127 continue;
2128 }
2129 /*
2130 * Remove from pollset so the metadata thread can continue without
2131 * blocking on a deleted stream.
2132 */
2133 lttng_poll_del(pollset, stream->wait_fd);
2134
2135 /* Delete it right now */
2136 consumer_del_metadata_stream(stream, metadata_ht);
2137 }
2138 rcu_read_unlock();
2139 }
2140
2141 /*
2142 * Thread polls on metadata file descriptor and write them on disk or on the
2143 * network.
2144 */
2145 void *consumer_thread_metadata_poll(void *data)
2146 {
2147 int ret, i, pollfd, err = -1;
2148 uint32_t revents, nb_fd;
2149 struct lttng_consumer_stream *stream = NULL;
2150 struct lttng_ht_iter iter;
2151 struct lttng_ht_node_u64 *node;
2152 struct lttng_poll_event events;
2153 struct lttng_consumer_local_data *ctx = data;
2154 ssize_t len;
2155
2156 rcu_register_thread();
2157
2158 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2159
2160 if (testpoint(consumerd_thread_metadata)) {
2161 goto error_testpoint;
2162 }
2163
2164 health_code_update();
2165
2166 DBG("Thread metadata poll started");
2167
2168 /* Size is set to 1 for the consumer_metadata pipe */
2169 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2170 if (ret < 0) {
2171 ERR("Poll set creation failed");
2172 goto end_poll;
2173 }
2174
2175 ret = lttng_poll_add(&events,
2176 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2177 if (ret < 0) {
2178 goto end;
2179 }
2180
2181 /* Main loop */
2182 DBG("Metadata main loop started");
2183
2184 while (1) {
2185 restart:
2186 health_code_update();
2187 health_poll_entry();
2188 DBG("Metadata poll wait");
2189 ret = lttng_poll_wait(&events, -1);
2190 DBG("Metadata poll return from wait with %d fd(s)",
2191 LTTNG_POLL_GETNB(&events));
2192 health_poll_exit();
2193 DBG("Metadata event catched in thread");
2194 if (ret < 0) {
2195 if (errno == EINTR) {
2196 ERR("Poll EINTR catched");
2197 goto restart;
2198 }
2199 if (LTTNG_POLL_GETNB(&events) == 0) {
2200 err = 0; /* All is OK */
2201 }
2202 goto end;
2203 }
2204
2205 nb_fd = ret;
2206
2207 /* From here, the event is a metadata wait fd */
2208 for (i = 0; i < nb_fd; i++) {
2209 health_code_update();
2210
2211 revents = LTTNG_POLL_GETEV(&events, i);
2212 pollfd = LTTNG_POLL_GETFD(&events, i);
2213
2214 if (!revents) {
2215 /* No activity for this FD (poll implementation). */
2216 continue;
2217 }
2218
2219 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2220 if (revents & (LPOLLERR | LPOLLHUP )) {
2221 DBG("Metadata thread pipe hung up");
2222 /*
2223 * Remove the pipe from the poll set and continue the loop
2224 * since their might be data to consume.
2225 */
2226 lttng_poll_del(&events,
2227 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2228 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2229 continue;
2230 } else if (revents & LPOLLIN) {
2231 ssize_t pipe_len;
2232
2233 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2234 &stream, sizeof(stream));
2235 if (pipe_len < sizeof(stream)) {
2236 PERROR("read metadata stream");
2237 /*
2238 * Continue here to handle the rest of the streams.
2239 */
2240 continue;
2241 }
2242
2243 /* A NULL stream means that the state has changed. */
2244 if (stream == NULL) {
2245 /* Check for deleted streams. */
2246 validate_endpoint_status_metadata_stream(&events);
2247 goto restart;
2248 }
2249
2250 DBG("Adding metadata stream %d to poll set",
2251 stream->wait_fd);
2252
2253 /* Add metadata stream to the global poll events list */
2254 lttng_poll_add(&events, stream->wait_fd,
2255 LPOLLIN | LPOLLPRI | LPOLLHUP);
2256 }
2257
2258 /* Handle other stream */
2259 continue;
2260 }
2261
2262 rcu_read_lock();
2263 {
2264 uint64_t tmp_id = (uint64_t) pollfd;
2265
2266 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2267 }
2268 node = lttng_ht_iter_get_node_u64(&iter);
2269 assert(node);
2270
2271 stream = caa_container_of(node, struct lttng_consumer_stream,
2272 node);
2273
2274 /* Check for error event */
2275 if (revents & (LPOLLERR | LPOLLHUP)) {
2276 DBG("Metadata fd %d is hup|err.", pollfd);
2277 if (!stream->hangup_flush_done
2278 && (consumer_data.type == LTTNG_CONSUMER32_UST
2279 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2280 DBG("Attempting to flush and consume the UST buffers");
2281 lttng_ustconsumer_on_stream_hangup(stream);
2282
2283 /* We just flushed the stream now read it. */
2284 do {
2285 health_code_update();
2286
2287 len = ctx->on_buffer_ready(stream, ctx);
2288 /*
2289 * We don't check the return value here since if we get
2290 * a negative len, it means an error occured thus we
2291 * simply remove it from the poll set and free the
2292 * stream.
2293 */
2294 } while (len > 0);
2295 }
2296
2297 lttng_poll_del(&events, stream->wait_fd);
2298 /*
2299 * This call update the channel states, closes file descriptors
2300 * and securely free the stream.
2301 */
2302 consumer_del_metadata_stream(stream, metadata_ht);
2303 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2304 /* Get the data out of the metadata file descriptor */
2305 DBG("Metadata available on fd %d", pollfd);
2306 assert(stream->wait_fd == pollfd);
2307
2308 do {
2309 health_code_update();
2310
2311 len = ctx->on_buffer_ready(stream, ctx);
2312 /*
2313 * We don't check the return value here since if we get
2314 * a negative len, it means an error occured thus we
2315 * simply remove it from the poll set and free the
2316 * stream.
2317 */
2318 } while (len > 0);
2319
2320 /* It's ok to have an unavailable sub-buffer */
2321 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2322 /* Clean up stream from consumer and free it. */
2323 lttng_poll_del(&events, stream->wait_fd);
2324 consumer_del_metadata_stream(stream, metadata_ht);
2325 }
2326 }
2327
2328 /* Release RCU lock for the stream looked up */
2329 rcu_read_unlock();
2330 }
2331 }
2332
2333 /* All is OK */
2334 err = 0;
2335 end:
2336 DBG("Metadata poll thread exiting");
2337
2338 lttng_poll_clean(&events);
2339 end_poll:
2340 error_testpoint:
2341 if (err) {
2342 health_error();
2343 ERR("Health error occurred in %s", __func__);
2344 }
2345 health_unregister(health_consumerd);
2346 rcu_unregister_thread();
2347 return NULL;
2348 }
2349
2350 /*
2351 * This thread polls the fds in the set to consume the data and write
2352 * it to tracefile if necessary.
2353 */
2354 void *consumer_thread_data_poll(void *data)
2355 {
2356 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2357 struct pollfd *pollfd = NULL;
2358 /* local view of the streams */
2359 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2360 /* local view of consumer_data.fds_count */
2361 int nb_fd = 0;
2362 struct lttng_consumer_local_data *ctx = data;
2363 ssize_t len;
2364
2365 rcu_register_thread();
2366
2367 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2368
2369 if (testpoint(consumerd_thread_data)) {
2370 goto error_testpoint;
2371 }
2372
2373 health_code_update();
2374
2375 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2376 if (local_stream == NULL) {
2377 PERROR("local_stream malloc");
2378 goto end;
2379 }
2380
2381 while (1) {
2382 health_code_update();
2383
2384 high_prio = 0;
2385 num_hup = 0;
2386
2387 /*
2388 * the fds set has been updated, we need to update our
2389 * local array as well
2390 */
2391 pthread_mutex_lock(&consumer_data.lock);
2392 if (consumer_data.need_update) {
2393 free(pollfd);
2394 pollfd = NULL;
2395
2396 free(local_stream);
2397 local_stream = NULL;
2398
2399 /*
2400 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2401 * wake up pipe.
2402 */
2403 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2404 if (pollfd == NULL) {
2405 PERROR("pollfd malloc");
2406 pthread_mutex_unlock(&consumer_data.lock);
2407 goto end;
2408 }
2409
2410 local_stream = zmalloc((consumer_data.stream_count + 2) *
2411 sizeof(struct lttng_consumer_stream *));
2412 if (local_stream == NULL) {
2413 PERROR("local_stream malloc");
2414 pthread_mutex_unlock(&consumer_data.lock);
2415 goto end;
2416 }
2417 ret = update_poll_array(ctx, &pollfd, local_stream,
2418 data_ht);
2419 if (ret < 0) {
2420 ERR("Error in allocating pollfd or local_outfds");
2421 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2422 pthread_mutex_unlock(&consumer_data.lock);
2423 goto end;
2424 }
2425 nb_fd = ret;
2426 consumer_data.need_update = 0;
2427 }
2428 pthread_mutex_unlock(&consumer_data.lock);
2429
2430 /* No FDs and consumer_quit, consumer_cleanup the thread */
2431 if (nb_fd == 0 && consumer_quit == 1) {
2432 err = 0; /* All is OK */
2433 goto end;
2434 }
2435 /* poll on the array of fds */
2436 restart:
2437 DBG("polling on %d fd", nb_fd + 2);
2438 health_poll_entry();
2439 num_rdy = poll(pollfd, nb_fd + 2, -1);
2440 health_poll_exit();
2441 DBG("poll num_rdy : %d", num_rdy);
2442 if (num_rdy == -1) {
2443 /*
2444 * Restart interrupted system call.
2445 */
2446 if (errno == EINTR) {
2447 goto restart;
2448 }
2449 PERROR("Poll error");
2450 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2451 goto end;
2452 } else if (num_rdy == 0) {
2453 DBG("Polling thread timed out");
2454 goto end;
2455 }
2456
2457 /*
2458 * If the consumer_data_pipe triggered poll go directly to the
2459 * beginning of the loop to update the array. We want to prioritize
2460 * array update over low-priority reads.
2461 */
2462 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2463 ssize_t pipe_readlen;
2464
2465 DBG("consumer_data_pipe wake up");
2466 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2467 &new_stream, sizeof(new_stream));
2468 if (pipe_readlen < sizeof(new_stream)) {
2469 PERROR("Consumer data pipe");
2470 /* Continue so we can at least handle the current stream(s). */
2471 continue;
2472 }
2473
2474 /*
2475 * If the stream is NULL, just ignore it. It's also possible that
2476 * the sessiond poll thread changed the consumer_quit state and is
2477 * waking us up to test it.
2478 */
2479 if (new_stream == NULL) {
2480 validate_endpoint_status_data_stream();
2481 continue;
2482 }
2483
2484 /* Continue to update the local streams and handle prio ones */
2485 continue;
2486 }
2487
2488 /* Handle wakeup pipe. */
2489 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2490 char dummy;
2491 ssize_t pipe_readlen;
2492
2493 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2494 sizeof(dummy));
2495 if (pipe_readlen < 0) {
2496 PERROR("Consumer data wakeup pipe");
2497 }
2498 /* We've been awakened to handle stream(s). */
2499 ctx->has_wakeup = 0;
2500 }
2501
2502 /* Take care of high priority channels first. */
2503 for (i = 0; i < nb_fd; i++) {
2504 health_code_update();
2505
2506 if (local_stream[i] == NULL) {
2507 continue;
2508 }
2509 if (pollfd[i].revents & POLLPRI) {
2510 DBG("Urgent read on fd %d", pollfd[i].fd);
2511 high_prio = 1;
2512 len = ctx->on_buffer_ready(local_stream[i], ctx);
2513 /* it's ok to have an unavailable sub-buffer */
2514 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2515 /* Clean the stream and free it. */
2516 consumer_del_stream(local_stream[i], data_ht);
2517 local_stream[i] = NULL;
2518 } else if (len > 0) {
2519 local_stream[i]->data_read = 1;
2520 }
2521 }
2522 }
2523
2524 /*
2525 * If we read high prio channel in this loop, try again
2526 * for more high prio data.
2527 */
2528 if (high_prio) {
2529 continue;
2530 }
2531
2532 /* Take care of low priority channels. */
2533 for (i = 0; i < nb_fd; i++) {
2534 health_code_update();
2535
2536 if (local_stream[i] == NULL) {
2537 continue;
2538 }
2539 if ((pollfd[i].revents & POLLIN) ||
2540 local_stream[i]->hangup_flush_done ||
2541 local_stream[i]->has_data) {
2542 DBG("Normal read on fd %d", pollfd[i].fd);
2543 len = ctx->on_buffer_ready(local_stream[i], ctx);
2544 /* it's ok to have an unavailable sub-buffer */
2545 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2546 /* Clean the stream and free it. */
2547 consumer_del_stream(local_stream[i], data_ht);
2548 local_stream[i] = NULL;
2549 } else if (len > 0) {
2550 local_stream[i]->data_read = 1;
2551 }
2552 }
2553 }
2554
2555 /* Handle hangup and errors */
2556 for (i = 0; i < nb_fd; i++) {
2557 health_code_update();
2558
2559 if (local_stream[i] == NULL) {
2560 continue;
2561 }
2562 if (!local_stream[i]->hangup_flush_done
2563 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2564 && (consumer_data.type == LTTNG_CONSUMER32_UST
2565 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2566 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2567 pollfd[i].fd);
2568 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2569 /* Attempt read again, for the data we just flushed. */
2570 local_stream[i]->data_read = 1;
2571 }
2572 /*
2573 * If the poll flag is HUP/ERR/NVAL and we have
2574 * read no data in this pass, we can remove the
2575 * stream from its hash table.
2576 */
2577 if ((pollfd[i].revents & POLLHUP)) {
2578 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2579 if (!local_stream[i]->data_read) {
2580 consumer_del_stream(local_stream[i], data_ht);
2581 local_stream[i] = NULL;
2582 num_hup++;
2583 }
2584 } else if (pollfd[i].revents & POLLERR) {
2585 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2586 if (!local_stream[i]->data_read) {
2587 consumer_del_stream(local_stream[i], data_ht);
2588 local_stream[i] = NULL;
2589 num_hup++;
2590 }
2591 } else if (pollfd[i].revents & POLLNVAL) {
2592 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2593 if (!local_stream[i]->data_read) {
2594 consumer_del_stream(local_stream[i], data_ht);
2595 local_stream[i] = NULL;
2596 num_hup++;
2597 }
2598 }
2599 if (local_stream[i] != NULL) {
2600 local_stream[i]->data_read = 0;
2601 }
2602 }
2603 }
2604 /* All is OK */
2605 err = 0;
2606 end:
2607 DBG("polling thread exiting");
2608 free(pollfd);
2609 free(local_stream);
2610
2611 /*
2612 * Close the write side of the pipe so epoll_wait() in
2613 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2614 * read side of the pipe. If we close them both, epoll_wait strangely does
2615 * not return and could create a endless wait period if the pipe is the
2616 * only tracked fd in the poll set. The thread will take care of closing
2617 * the read side.
2618 */
2619 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2620
2621 error_testpoint:
2622 if (err) {
2623 health_error();
2624 ERR("Health error occurred in %s", __func__);
2625 }
2626 health_unregister(health_consumerd);
2627
2628 rcu_unregister_thread();
2629 return NULL;
2630 }
2631
2632 /*
2633 * Close wake-up end of each stream belonging to the channel. This will
2634 * allow the poll() on the stream read-side to detect when the
2635 * write-side (application) finally closes them.
2636 */
2637 static
2638 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2639 {
2640 struct lttng_ht *ht;
2641 struct lttng_consumer_stream *stream;
2642 struct lttng_ht_iter iter;
2643
2644 ht = consumer_data.stream_per_chan_id_ht;
2645
2646 rcu_read_lock();
2647 cds_lfht_for_each_entry_duplicate(ht->ht,
2648 ht->hash_fct(&channel->key, lttng_ht_seed),
2649 ht->match_fct, &channel->key,
2650 &iter.iter, stream, node_channel_id.node) {
2651 /*
2652 * Protect against teardown with mutex.
2653 */
2654 pthread_mutex_lock(&stream->lock);
2655 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2656 goto next;
2657 }
2658 switch (consumer_data.type) {
2659 case LTTNG_CONSUMER_KERNEL:
2660 break;
2661 case LTTNG_CONSUMER32_UST:
2662 case LTTNG_CONSUMER64_UST:
2663 if (stream->metadata_flag) {
2664 /* Safe and protected by the stream lock. */
2665 lttng_ustconsumer_close_metadata(stream->chan);
2666 } else {
2667 /*
2668 * Note: a mutex is taken internally within
2669 * liblttng-ust-ctl to protect timer wakeup_fd
2670 * use from concurrent close.
2671 */
2672 lttng_ustconsumer_close_stream_wakeup(stream);
2673 }
2674 break;
2675 default:
2676 ERR("Unknown consumer_data type");
2677 assert(0);
2678 }
2679 next:
2680 pthread_mutex_unlock(&stream->lock);
2681 }
2682 rcu_read_unlock();
2683 }
2684
2685 static void destroy_channel_ht(struct lttng_ht *ht)
2686 {
2687 struct lttng_ht_iter iter;
2688 struct lttng_consumer_channel *channel;
2689 int ret;
2690
2691 if (ht == NULL) {
2692 return;
2693 }
2694
2695 rcu_read_lock();
2696 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2697 ret = lttng_ht_del(ht, &iter);
2698 assert(ret != 0);
2699 }
2700 rcu_read_unlock();
2701
2702 lttng_ht_destroy(ht);
2703 }
2704
2705 /*
2706 * This thread polls the channel fds to detect when they are being
2707 * closed. It closes all related streams if the channel is detected as
2708 * closed. It is currently only used as a shim layer for UST because the
2709 * consumerd needs to keep the per-stream wakeup end of pipes open for
2710 * periodical flush.
2711 */
2712 void *consumer_thread_channel_poll(void *data)
2713 {
2714 int ret, i, pollfd, err = -1;
2715 uint32_t revents, nb_fd;
2716 struct lttng_consumer_channel *chan = NULL;
2717 struct lttng_ht_iter iter;
2718 struct lttng_ht_node_u64 *node;
2719 struct lttng_poll_event events;
2720 struct lttng_consumer_local_data *ctx = data;
2721 struct lttng_ht *channel_ht;
2722
2723 rcu_register_thread();
2724
2725 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2726
2727 if (testpoint(consumerd_thread_channel)) {
2728 goto error_testpoint;
2729 }
2730
2731 health_code_update();
2732
2733 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2734 if (!channel_ht) {
2735 /* ENOMEM at this point. Better to bail out. */
2736 goto end_ht;
2737 }
2738
2739 DBG("Thread channel poll started");
2740
2741 /* Size is set to 1 for the consumer_channel pipe */
2742 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2743 if (ret < 0) {
2744 ERR("Poll set creation failed");
2745 goto end_poll;
2746 }
2747
2748 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2749 if (ret < 0) {
2750 goto end;
2751 }
2752
2753 /* Main loop */
2754 DBG("Channel main loop started");
2755
2756 while (1) {
2757 restart:
2758 health_code_update();
2759 DBG("Channel poll wait");
2760 health_poll_entry();
2761 ret = lttng_poll_wait(&events, -1);
2762 DBG("Channel poll return from wait with %d fd(s)",
2763 LTTNG_POLL_GETNB(&events));
2764 health_poll_exit();
2765 DBG("Channel event catched in thread");
2766 if (ret < 0) {
2767 if (errno == EINTR) {
2768 ERR("Poll EINTR catched");
2769 goto restart;
2770 }
2771 if (LTTNG_POLL_GETNB(&events) == 0) {
2772 err = 0; /* All is OK */
2773 }
2774 goto end;
2775 }
2776
2777 nb_fd = ret;
2778
2779 /* From here, the event is a channel wait fd */
2780 for (i = 0; i < nb_fd; i++) {
2781 health_code_update();
2782
2783 revents = LTTNG_POLL_GETEV(&events, i);
2784 pollfd = LTTNG_POLL_GETFD(&events, i);
2785
2786 if (!revents) {
2787 /* No activity for this FD (poll implementation). */
2788 continue;
2789 }
2790
2791 if (pollfd == ctx->consumer_channel_pipe[0]) {
2792 if (revents & (LPOLLERR | LPOLLHUP)) {
2793 DBG("Channel thread pipe hung up");
2794 /*
2795 * Remove the pipe from the poll set and continue the loop
2796 * since their might be data to consume.
2797 */
2798 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2799 continue;
2800 } else if (revents & LPOLLIN) {
2801 enum consumer_channel_action action;
2802 uint64_t key;
2803
2804 ret = read_channel_pipe(ctx, &chan, &key, &action);
2805 if (ret <= 0) {
2806 ERR("Error reading channel pipe");
2807 continue;
2808 }
2809
2810 switch (action) {
2811 case CONSUMER_CHANNEL_ADD:
2812 DBG("Adding channel %d to poll set",
2813 chan->wait_fd);
2814
2815 lttng_ht_node_init_u64(&chan->wait_fd_node,
2816 chan->wait_fd);
2817 rcu_read_lock();
2818 lttng_ht_add_unique_u64(channel_ht,
2819 &chan->wait_fd_node);
2820 rcu_read_unlock();
2821 /* Add channel to the global poll events list */
2822 lttng_poll_add(&events, chan->wait_fd,
2823 LPOLLIN | LPOLLPRI);
2824 break;
2825 case CONSUMER_CHANNEL_DEL:
2826 {
2827 /*
2828 * This command should never be called if the channel
2829 * has streams monitored by either the data or metadata
2830 * thread. The consumer only notify this thread with a
2831 * channel del. command if it receives a destroy
2832 * channel command from the session daemon that send it
2833 * if a command prior to the GET_CHANNEL failed.
2834 */
2835
2836 rcu_read_lock();
2837 chan = consumer_find_channel(key);
2838 if (!chan) {
2839 rcu_read_unlock();
2840 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2841 break;
2842 }
2843 lttng_poll_del(&events, chan->wait_fd);
2844 iter.iter.node = &chan->wait_fd_node.node;
2845 ret = lttng_ht_del(channel_ht, &iter);
2846 assert(ret == 0);
2847
2848 switch (consumer_data.type) {
2849 case LTTNG_CONSUMER_KERNEL:
2850 break;
2851 case LTTNG_CONSUMER32_UST:
2852 case LTTNG_CONSUMER64_UST:
2853 health_code_update();
2854 /* Destroy streams that might have been left in the stream list. */
2855 clean_channel_stream_list(chan);
2856 break;
2857 default:
2858 ERR("Unknown consumer_data type");
2859 assert(0);
2860 }
2861
2862 /*
2863 * Release our own refcount. Force channel deletion even if
2864 * streams were not initialized.
2865 */
2866 if (!uatomic_sub_return(&chan->refcount, 1)) {
2867 consumer_del_channel(chan);
2868 }
2869 rcu_read_unlock();
2870 goto restart;
2871 }
2872 case CONSUMER_CHANNEL_QUIT:
2873 /*
2874 * Remove the pipe from the poll set and continue the loop
2875 * since their might be data to consume.
2876 */
2877 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2878 continue;
2879 default:
2880 ERR("Unknown action");
2881 break;
2882 }
2883 }
2884
2885 /* Handle other stream */
2886 continue;
2887 }
2888
2889 rcu_read_lock();
2890 {
2891 uint64_t tmp_id = (uint64_t) pollfd;
2892
2893 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2894 }
2895 node = lttng_ht_iter_get_node_u64(&iter);
2896 assert(node);
2897
2898 chan = caa_container_of(node, struct lttng_consumer_channel,
2899 wait_fd_node);
2900
2901 /* Check for error event */
2902 if (revents & (LPOLLERR | LPOLLHUP)) {
2903 DBG("Channel fd %d is hup|err.", pollfd);
2904
2905 lttng_poll_del(&events, chan->wait_fd);
2906 ret = lttng_ht_del(channel_ht, &iter);
2907 assert(ret == 0);
2908
2909 /*
2910 * This will close the wait fd for each stream associated to
2911 * this channel AND monitored by the data/metadata thread thus
2912 * will be clean by the right thread.
2913 */
2914 consumer_close_channel_streams(chan);
2915
2916 /* Release our own refcount */
2917 if (!uatomic_sub_return(&chan->refcount, 1)
2918 && !uatomic_read(&chan->nb_init_stream_left)) {
2919 consumer_del_channel(chan);
2920 }
2921 }
2922
2923 /* Release RCU lock for the channel looked up */
2924 rcu_read_unlock();
2925 }
2926 }
2927
2928 /* All is OK */
2929 err = 0;
2930 end:
2931 lttng_poll_clean(&events);
2932 end_poll:
2933 destroy_channel_ht(channel_ht);
2934 end_ht:
2935 error_testpoint:
2936 DBG("Channel poll thread exiting");
2937 if (err) {
2938 health_error();
2939 ERR("Health error occurred in %s", __func__);
2940 }
2941 health_unregister(health_consumerd);
2942 rcu_unregister_thread();
2943 return NULL;
2944 }
2945
2946 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2947 struct pollfd *sockpoll, int client_socket)
2948 {
2949 int ret;
2950
2951 assert(ctx);
2952 assert(sockpoll);
2953
2954 ret = lttng_consumer_poll_socket(sockpoll);
2955 if (ret) {
2956 goto error;
2957 }
2958 DBG("Metadata connection on client_socket");
2959
2960 /* Blocking call, waiting for transmission */
2961 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2962 if (ctx->consumer_metadata_socket < 0) {
2963 WARN("On accept metadata");
2964 ret = -1;
2965 goto error;
2966 }
2967 ret = 0;
2968
2969 error:
2970 return ret;
2971 }
2972
2973 /*
2974 * This thread listens on the consumerd socket and receives the file
2975 * descriptors from the session daemon.
2976 */
2977 void *consumer_thread_sessiond_poll(void *data)
2978 {
2979 int sock = -1, client_socket, ret, err = -1;
2980 /*
2981 * structure to poll for incoming data on communication socket avoids
2982 * making blocking sockets.
2983 */
2984 struct pollfd consumer_sockpoll[2];
2985 struct lttng_consumer_local_data *ctx = data;
2986
2987 rcu_register_thread();
2988
2989 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
2990
2991 if (testpoint(consumerd_thread_sessiond)) {
2992 goto error_testpoint;
2993 }
2994
2995 health_code_update();
2996
2997 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2998 unlink(ctx->consumer_command_sock_path);
2999 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3000 if (client_socket < 0) {
3001 ERR("Cannot create command socket");
3002 goto end;
3003 }
3004
3005 ret = lttcomm_listen_unix_sock(client_socket);
3006 if (ret < 0) {
3007 goto end;
3008 }
3009
3010 DBG("Sending ready command to lttng-sessiond");
3011 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3012 /* return < 0 on error, but == 0 is not fatal */
3013 if (ret < 0) {
3014 ERR("Error sending ready command to lttng-sessiond");
3015 goto end;
3016 }
3017
3018 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3019 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3020 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3021 consumer_sockpoll[1].fd = client_socket;
3022 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3023
3024 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3025 if (ret) {
3026 if (ret > 0) {
3027 /* should exit */
3028 err = 0;
3029 }
3030 goto end;
3031 }
3032 DBG("Connection on client_socket");
3033
3034 /* Blocking call, waiting for transmission */
3035 sock = lttcomm_accept_unix_sock(client_socket);
3036 if (sock < 0) {
3037 WARN("On accept");
3038 goto end;
3039 }
3040
3041 /*
3042 * Setup metadata socket which is the second socket connection on the
3043 * command unix socket.
3044 */
3045 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3046 if (ret) {
3047 if (ret > 0) {
3048 /* should exit */
3049 err = 0;
3050 }
3051 goto end;
3052 }
3053
3054 /* This socket is not useful anymore. */
3055 ret = close(client_socket);
3056 if (ret < 0) {
3057 PERROR("close client_socket");
3058 }
3059 client_socket = -1;
3060
3061 /* update the polling structure to poll on the established socket */
3062 consumer_sockpoll[1].fd = sock;
3063 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3064
3065 while (1) {
3066 health_code_update();
3067
3068 health_poll_entry();
3069 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3070 health_poll_exit();
3071 if (ret) {
3072 if (ret > 0) {
3073 /* should exit */
3074 err = 0;
3075 }
3076 goto end;
3077 }
3078 DBG("Incoming command on sock");
3079 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3080 if (ret <= 0) {
3081 /*
3082 * This could simply be a session daemon quitting. Don't output
3083 * ERR() here.
3084 */
3085 DBG("Communication interrupted on command socket");
3086 err = 0;
3087 goto end;
3088 }
3089 if (consumer_quit) {
3090 DBG("consumer_thread_receive_fds received quit from signal");
3091 err = 0; /* All is OK */
3092 goto end;
3093 }
3094 DBG("received command on sock");
3095 }
3096 /* All is OK */
3097 err = 0;
3098
3099 end:
3100 DBG("Consumer thread sessiond poll exiting");
3101
3102 /*
3103 * Close metadata streams since the producer is the session daemon which
3104 * just died.
3105 *
3106 * NOTE: for now, this only applies to the UST tracer.
3107 */
3108 lttng_consumer_close_all_metadata();
3109
3110 /*
3111 * when all fds have hung up, the polling thread
3112 * can exit cleanly
3113 */
3114 consumer_quit = 1;
3115
3116 /*
3117 * Notify the data poll thread to poll back again and test the
3118 * consumer_quit state that we just set so to quit gracefully.
3119 */
3120 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3121
3122 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3123
3124 notify_health_quit_pipe(health_quit_pipe);
3125
3126 /* Cleaning up possibly open sockets. */
3127 if (sock >= 0) {
3128 ret = close(sock);
3129 if (ret < 0) {
3130 PERROR("close sock sessiond poll");
3131 }
3132 }
3133 if (client_socket >= 0) {
3134 ret = close(client_socket);
3135 if (ret < 0) {
3136 PERROR("close client_socket sessiond poll");
3137 }
3138 }
3139
3140 error_testpoint:
3141 if (err) {
3142 health_error();
3143 ERR("Health error occurred in %s", __func__);
3144 }
3145 health_unregister(health_consumerd);
3146
3147 rcu_unregister_thread();
3148 return NULL;
3149 }
3150
3151 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3152 struct lttng_consumer_local_data *ctx)
3153 {
3154 ssize_t ret;
3155
3156 pthread_mutex_lock(&stream->lock);
3157 if (stream->metadata_flag) {
3158 pthread_mutex_lock(&stream->metadata_rdv_lock);
3159 }
3160
3161 switch (consumer_data.type) {
3162 case LTTNG_CONSUMER_KERNEL:
3163 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3164 break;
3165 case LTTNG_CONSUMER32_UST:
3166 case LTTNG_CONSUMER64_UST:
3167 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3168 break;
3169 default:
3170 ERR("Unknown consumer_data type");
3171 assert(0);
3172 ret = -ENOSYS;
3173 break;
3174 }
3175
3176 if (stream->metadata_flag) {
3177 pthread_cond_broadcast(&stream->metadata_rdv);
3178 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3179 }
3180 pthread_mutex_unlock(&stream->lock);
3181 return ret;
3182 }
3183
3184 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3185 {
3186 switch (consumer_data.type) {
3187 case LTTNG_CONSUMER_KERNEL:
3188 return lttng_kconsumer_on_recv_stream(stream);
3189 case LTTNG_CONSUMER32_UST:
3190 case LTTNG_CONSUMER64_UST:
3191 return lttng_ustconsumer_on_recv_stream(stream);
3192 default:
3193 ERR("Unknown consumer_data type");
3194 assert(0);
3195 return -ENOSYS;
3196 }
3197 }
3198
3199 /*
3200 * Allocate and set consumer data hash tables.
3201 */
3202 int lttng_consumer_init(void)
3203 {
3204 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3205 if (!consumer_data.channel_ht) {
3206 goto error;
3207 }
3208
3209 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3210 if (!consumer_data.relayd_ht) {
3211 goto error;
3212 }
3213
3214 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3215 if (!consumer_data.stream_list_ht) {
3216 goto error;
3217 }
3218
3219 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3220 if (!consumer_data.stream_per_chan_id_ht) {
3221 goto error;
3222 }
3223
3224 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3225 if (!data_ht) {
3226 goto error;
3227 }
3228
3229 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3230 if (!metadata_ht) {
3231 goto error;
3232 }
3233
3234 return 0;
3235
3236 error:
3237 return -1;
3238 }
3239
3240 /*
3241 * Process the ADD_RELAYD command receive by a consumer.
3242 *
3243 * This will create a relayd socket pair and add it to the relayd hash table.
3244 * The caller MUST acquire a RCU read side lock before calling it.
3245 */
3246 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3247 struct lttng_consumer_local_data *ctx, int sock,
3248 struct pollfd *consumer_sockpoll,
3249 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3250 uint64_t relayd_session_id)
3251 {
3252 int fd = -1, ret = -1, relayd_created = 0;
3253 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3254 struct consumer_relayd_sock_pair *relayd = NULL;
3255
3256 assert(ctx);
3257 assert(relayd_sock);
3258
3259 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3260
3261 /* Get relayd reference if exists. */
3262 relayd = consumer_find_relayd(net_seq_idx);
3263 if (relayd == NULL) {
3264 assert(sock_type == LTTNG_STREAM_CONTROL);
3265 /* Not found. Allocate one. */
3266 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3267 if (relayd == NULL) {
3268 ret = -ENOMEM;
3269 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3270 goto error;
3271 } else {
3272 relayd->sessiond_session_id = sessiond_id;
3273 relayd_created = 1;
3274 }
3275
3276 /*
3277 * This code path MUST continue to the consumer send status message to
3278 * we can notify the session daemon and continue our work without
3279 * killing everything.
3280 */
3281 } else {
3282 /*
3283 * relayd key should never be found for control socket.
3284 */
3285 assert(sock_type != LTTNG_STREAM_CONTROL);
3286 }
3287
3288 /* First send a status message before receiving the fds. */
3289 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3290 if (ret < 0) {
3291 /* Somehow, the session daemon is not responding anymore. */
3292 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3293 goto error_nosignal;
3294 }
3295
3296 /* Poll on consumer socket. */
3297 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3298 if (ret) {
3299 /* Needing to exit in the middle of a command: error. */
3300 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3301 ret = -EINTR;
3302 goto error_nosignal;
3303 }
3304
3305 /* Get relayd socket from session daemon */
3306 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3307 if (ret != sizeof(fd)) {
3308 ret = -1;
3309 fd = -1; /* Just in case it gets set with an invalid value. */
3310
3311 /*
3312 * Failing to receive FDs might indicate a major problem such as
3313 * reaching a fd limit during the receive where the kernel returns a
3314 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3315 * don't take any chances and stop everything.
3316 *
3317 * XXX: Feature request #558 will fix that and avoid this possible
3318 * issue when reaching the fd limit.
3319 */
3320 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3321 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3322 goto error;
3323 }
3324
3325 /* Copy socket information and received FD */
3326 switch (sock_type) {
3327 case LTTNG_STREAM_CONTROL:
3328 /* Copy received lttcomm socket */
3329 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3330 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3331 /* Handle create_sock error. */
3332 if (ret < 0) {
3333 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3334 goto error;
3335 }
3336 /*
3337 * Close the socket created internally by
3338 * lttcomm_create_sock, so we can replace it by the one
3339 * received from sessiond.
3340 */
3341 if (close(relayd->control_sock.sock.fd)) {
3342 PERROR("close");
3343 }
3344
3345 /* Assign new file descriptor */
3346 relayd->control_sock.sock.fd = fd;
3347 fd = -1; /* For error path */
3348 /* Assign version values. */
3349 relayd->control_sock.major = relayd_sock->major;
3350 relayd->control_sock.minor = relayd_sock->minor;
3351
3352 relayd->relayd_session_id = relayd_session_id;
3353
3354 break;
3355 case LTTNG_STREAM_DATA:
3356 /* Copy received lttcomm socket */
3357 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3358 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3359 /* Handle create_sock error. */
3360 if (ret < 0) {
3361 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3362 goto error;
3363 }
3364 /*
3365 * Close the socket created internally by
3366 * lttcomm_create_sock, so we can replace it by the one
3367 * received from sessiond.
3368 */
3369 if (close(relayd->data_sock.sock.fd)) {
3370 PERROR("close");
3371 }
3372
3373 /* Assign new file descriptor */
3374 relayd->data_sock.sock.fd = fd;
3375 fd = -1; /* for eventual error paths */
3376 /* Assign version values. */
3377 relayd->data_sock.major = relayd_sock->major;
3378 relayd->data_sock.minor = relayd_sock->minor;
3379 break;
3380 default:
3381 ERR("Unknown relayd socket type (%d)", sock_type);
3382 ret = -1;
3383 ret_code = LTTCOMM_CONSUMERD_FATAL;
3384 goto error;
3385 }
3386
3387 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3388 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3389 relayd->net_seq_idx, fd);
3390
3391 /* We successfully added the socket. Send status back. */
3392 ret = consumer_send_status_msg(sock, ret_code);
3393 if (ret < 0) {
3394 /* Somehow, the session daemon is not responding anymore. */
3395 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3396 goto error_nosignal;
3397 }
3398
3399 /*
3400 * Add relayd socket pair to consumer data hashtable. If object already
3401 * exists or on error, the function gracefully returns.
3402 */
3403 add_relayd(relayd);
3404
3405 /* All good! */
3406 return 0;
3407
3408 error:
3409 if (consumer_send_status_msg(sock, ret_code) < 0) {
3410 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3411 }
3412
3413 error_nosignal:
3414 /* Close received socket if valid. */
3415 if (fd >= 0) {
3416 if (close(fd)) {
3417 PERROR("close received socket");
3418 }
3419 }
3420
3421 if (relayd_created) {
3422 free(relayd);
3423 }
3424
3425 return ret;
3426 }
3427
3428 /*
3429 * Try to lock the stream mutex.
3430 *
3431 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3432 */
3433 static int stream_try_lock(struct lttng_consumer_stream *stream)
3434 {
3435 int ret;
3436
3437 assert(stream);
3438
3439 /*
3440 * Try to lock the stream mutex. On failure, we know that the stream is
3441 * being used else where hence there is data still being extracted.
3442 */
3443 ret = pthread_mutex_trylock(&stream->lock);
3444 if (ret) {
3445 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3446 ret = 0;
3447 goto end;
3448 }
3449
3450 ret = 1;
3451
3452 end:
3453 return ret;
3454 }
3455
3456 /*
3457 * Search for a relayd associated to the session id and return the reference.
3458 *
3459 * A rcu read side lock MUST be acquire before calling this function and locked
3460 * until the relayd object is no longer necessary.
3461 */
3462 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3463 {
3464 struct lttng_ht_iter iter;
3465 struct consumer_relayd_sock_pair *relayd = NULL;
3466
3467 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3468 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3469 node.node) {
3470 /*
3471 * Check by sessiond id which is unique here where the relayd session
3472 * id might not be when having multiple relayd.
3473 */
3474 if (relayd->sessiond_session_id == id) {
3475 /* Found the relayd. There can be only one per id. */
3476 goto found;
3477 }
3478 }
3479
3480 return NULL;
3481
3482 found:
3483 return relayd;
3484 }
3485
3486 /*
3487 * Check if for a given session id there is still data needed to be extract
3488 * from the buffers.
3489 *
3490 * Return 1 if data is pending or else 0 meaning ready to be read.
3491 */
3492 int consumer_data_pending(uint64_t id)
3493 {
3494 int ret;
3495 struct lttng_ht_iter iter;
3496 struct lttng_ht *ht;
3497 struct lttng_consumer_stream *stream;
3498 struct consumer_relayd_sock_pair *relayd = NULL;
3499 int (*data_pending)(struct lttng_consumer_stream *);
3500
3501 DBG("Consumer data pending command on session id %" PRIu64, id);
3502
3503 rcu_read_lock();
3504 pthread_mutex_lock(&consumer_data.lock);
3505
3506 switch (consumer_data.type) {
3507 case LTTNG_CONSUMER_KERNEL:
3508 data_pending = lttng_kconsumer_data_pending;
3509 break;
3510 case LTTNG_CONSUMER32_UST:
3511 case LTTNG_CONSUMER64_UST:
3512 data_pending = lttng_ustconsumer_data_pending;
3513 break;
3514 default:
3515 ERR("Unknown consumer data type");
3516 assert(0);
3517 }
3518
3519 /* Ease our life a bit */
3520 ht = consumer_data.stream_list_ht;
3521
3522 relayd = find_relayd_by_session_id(id);
3523 if (relayd) {
3524 /* Send init command for data pending. */
3525 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3526 ret = relayd_begin_data_pending(&relayd->control_sock,
3527 relayd->relayd_session_id);
3528 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3529 if (ret < 0) {
3530 /* Communication error thus the relayd so no data pending. */
3531 goto data_not_pending;
3532 }
3533 }
3534
3535 cds_lfht_for_each_entry_duplicate(ht->ht,
3536 ht->hash_fct(&id, lttng_ht_seed),
3537 ht->match_fct, &id,
3538 &iter.iter, stream, node_session_id.node) {
3539 /* If this call fails, the stream is being used hence data pending. */
3540 ret = stream_try_lock(stream);
3541 if (!ret) {
3542 goto data_pending;
3543 }
3544
3545 /*
3546 * A removed node from the hash table indicates that the stream has
3547 * been deleted thus having a guarantee that the buffers are closed
3548 * on the consumer side. However, data can still be transmitted
3549 * over the network so don't skip the relayd check.
3550 */
3551 ret = cds_lfht_is_node_deleted(&stream->node.node);
3552 if (!ret) {
3553 /* Check the stream if there is data in the buffers. */
3554 ret = data_pending(stream);
3555 if (ret == 1) {
3556 pthread_mutex_unlock(&stream->lock);
3557 goto data_pending;
3558 }
3559 }
3560
3561 /* Relayd check */
3562 if (relayd) {
3563 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3564 if (stream->metadata_flag) {
3565 ret = relayd_quiescent_control(&relayd->control_sock,
3566 stream->relayd_stream_id);
3567 } else {
3568 ret = relayd_data_pending(&relayd->control_sock,
3569 stream->relayd_stream_id,
3570 stream->next_net_seq_num - 1);
3571 }
3572 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3573 if (ret == 1) {
3574 pthread_mutex_unlock(&stream->lock);
3575 goto data_pending;
3576 }
3577 }
3578 pthread_mutex_unlock(&stream->lock);
3579 }
3580
3581 if (relayd) {
3582 unsigned int is_data_inflight = 0;
3583
3584 /* Send init command for data pending. */
3585 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3586 ret = relayd_end_data_pending(&relayd->control_sock,
3587 relayd->relayd_session_id, &is_data_inflight);
3588 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3589 if (ret < 0) {
3590 goto data_not_pending;
3591 }
3592 if (is_data_inflight) {
3593 goto data_pending;
3594 }
3595 }
3596
3597 /*
3598 * Finding _no_ node in the hash table and no inflight data means that the
3599 * stream(s) have been removed thus data is guaranteed to be available for
3600 * analysis from the trace files.
3601 */
3602
3603 data_not_pending:
3604 /* Data is available to be read by a viewer. */
3605 pthread_mutex_unlock(&consumer_data.lock);
3606 rcu_read_unlock();
3607 return 0;
3608
3609 data_pending:
3610 /* Data is still being extracted from buffers. */
3611 pthread_mutex_unlock(&consumer_data.lock);
3612 rcu_read_unlock();
3613 return 1;
3614 }
3615
3616 /*
3617 * Send a ret code status message to the sessiond daemon.
3618 *
3619 * Return the sendmsg() return value.
3620 */
3621 int consumer_send_status_msg(int sock, int ret_code)
3622 {
3623 struct lttcomm_consumer_status_msg msg;
3624
3625 memset(&msg, 0, sizeof(msg));
3626 msg.ret_code = ret_code;
3627
3628 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3629 }
3630
3631 /*
3632 * Send a channel status message to the sessiond daemon.
3633 *
3634 * Return the sendmsg() return value.
3635 */
3636 int consumer_send_status_channel(int sock,
3637 struct lttng_consumer_channel *channel)
3638 {
3639 struct lttcomm_consumer_status_channel msg;
3640
3641 assert(sock >= 0);
3642
3643 memset(&msg, 0, sizeof(msg));
3644 if (!channel) {
3645 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3646 } else {
3647 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3648 msg.key = channel->key;
3649 msg.stream_count = channel->streams.count;
3650 }
3651
3652 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3653 }
3654
3655 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3656 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3657 uint64_t max_sb_size)
3658 {
3659 unsigned long start_pos;
3660
3661 if (!nb_packets_per_stream) {
3662 return consumed_pos; /* Grab everything */
3663 }
3664 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3665 start_pos -= max_sb_size * nb_packets_per_stream;
3666 if ((long) (start_pos - consumed_pos) < 0) {
3667 return consumed_pos; /* Grab everything */
3668 }
3669 return start_pos;
3670 }
This page took 0.154116 seconds and 5 git commands to generate.